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OBSERVABILITY INEQUALITIES ON MEASURABLE SETS FOR
THE STOKES SYSTEM AND APPLICATIONS\ast 

FELIPE W. CHAVES-SILVA\dagger , DIEGO A. SOUZA\ddagger , AND CAN ZHANG\S 

Abstract. In this paper, we establish spectral inequalities on measurable sets of positive
Lebesgue measure for the Stokes operator, as well as observability inequalities on space-time mea-
surable sets of positive measure for nonstationary Stokes system. The latter extends the result
established recently by Wang and Zhang [SIAM J. Control Optim., 55 (2017), pp. 1862--1886] to the
case of observations from subsets of positive measure in both time and space variables. Furthermore,
we present their applications in the shape optimization problem, as well as the time optimal control
problem for the Stokes system. In particular, we give a positive answer to an open question raised
by Privat, Tr\'elat, and Zuazua [Arch. Rational Mech. Anal., 216 (2015), pp. 921--981].
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1. Introduction and main results. Let T > 0, and let \Omega \subset \BbbR N , N \geq 2, be a
bounded connected open set with a smooth boundary \partial \Omega . We will use the notation
Q = \Omega \times (0, T ), \Sigma = \partial \Omega \times (0, T ), and we will denote by \bfitnu = \bfitnu (x) the outward unit
normal vector to \Omega at x \in \partial \Omega . Throughout the paper spaces of \BbbR N -valued functions,
as well as their elements, are represented by boldface letters.

The present paper deals with an observability inequality on measurable sets of
positive measure for the Stokes system

(1.1)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
zt  - \Delta z+\nabla q = 0 in Q,

div z = 0 in Q,

z = 0 on \Sigma ,

z(\cdot , 0) = z0 in \Omega .

System (1.1) is a linearization of the Navier--Stokes system for a homogeneous vis-
cous incompressible fluid (with unit density and unit kinematic viscosity) subject to
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OBSERVABILITY ESTIMATE AND APPLICATIONS 2189

homogeneous Dirichlet boundary conditions. Here, z is the \BbbR N -valued velocity field
and q stands for the scalar pressure.

Our motivation to obtain an observability inequality on measurable sets for the
Stokes system (1.1) comes from the well-known fact that observability inequalities
are equivalent to controllability properties. In the case we are dealing with, this
will be equivalent to the null controllability of system (1.1) with bounded controls
acting on measurable sets with positive measure and will have important applications
in shape optimization problems, in the study of the bang-bang property for time
optimal control problems, and also distributed control problems for system (1.1) (see
section 3).

Observability inequalities for (1.1) from a cylinder \omega \times (0, T ), with \omega \subset \Omega being a
nonempty open set, have been proved in different ways by several authors in the past
few years. For instance, in [11], the observability inequality for the Stokes system
is obtained by means of global Carleman inequalities for parabolic equations with
zero Dirichlet boundary conditions (see also [6] and [10]). Another proof is given in
[12] by means of Carleman inequalities for parabolic equations with nonhomogeneous
Dirichlet boundary conditions applied to the system satisfied by the vorticity curl z.
More recently, in [5], a new proof was established based on a spectral inequality in
terms of finite sums of eigenfunctions of the Stokes operator.

Concerning observability inequalities over general Lebesgue measurable sets in
space and time variables, as far as we know, the first result was obtained in [2] for the
heat equation in a bounded and locally star-shaped domain, and later extended in [7]
and [8] to the case of parabolic systems with time-independent analytic coefficients
associated to possibly non--self-adjoint elliptic differential operators and higher order
parabolic evolutions with the analytic coefficients depending on space and time vari-
ables, respectively, when the boundary of the bounded domain in which the equation
evolves is analytic. We also refer the interested reader to [1, 18, 21] for some earlier
and closely related results on this subject.

For the Stokes system, the only result we know is the one in [22], which shows an
observability inequality from a measurable subset with positive measure in the time
variable. The argument in [22] is mainly based on the theory of analytic semigroups.
In this paper, however, we can extend the result in [22] to the case of observations
from sets of positive measure in both time and space variables, by using also the
spatial analyticity of solutions to the Stokes operators.

Before presenting our main results, we first introduce the usual spaces in the
context of fluid mechanics:

V = \{ y \in H1
0(\Omega )

N ; divy = 0\} ,

H = \{ y \in L2(\Omega )N ; divy = 0, y \cdot \bfitnu = 0 on \partial \Omega \} .

In what follows, the following notation will be used frequently: BR(x0) denotes a ball
in \BbbR N of radius R > 0 and with center x0 \in \Omega ; | \omega | is the Lebesgue measure of a subset
\omega \subset \Omega , and C(. . .) stands for a positive constant depending only on the parameters
within the brackets, and it may vary from line to line in the context.

The first main result is a L1-observability inequality from measurable sets with
positive measure for system (1.1).

Theorem 1.1. Let B4R(x0) \subset \Omega . For any measurable subset M \subset BR(x0)\times (0, T )
with positive measure, there exists a positive constant Cobs = C(N,R,\Omega ,M, T ) such
that the observability inequality
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2190 FELIPE W. CHAVES-SILVA, DIEGO A. SOUZA, AND CAN ZHANG

(1.2) \| z(T, \cdot )\| \bfH \leq Cobs

\int 
M

| z(x, t)| dxdt

holds for all z0 \in H.

Remark 1.2. When the observation set is M = BR(x0)\times (0, T ), one can see that
the observability constant Cobs has the form CeC/T with C = C(N,\Omega , R) > 0. This
is in accordance with the very recent result [5, Theorem 1.1].

Remark 1.3. The above technical assumption imposed on the measurable set M
is just to simplify the statement of the main result. Without loss of generality, for any
measurable set M \subset \Omega \times (0, T ) with positive measure, one can always assume that

(1.3) M \subset BR(x0)\times (0, T ) with B4R(x0) \subset \Omega 

for some R > 0 and x0 \in \BbbR N . Indeed, by Lebesgue's density theorem, one may choose
a new measurable set \widetilde M \subset M such that (1.3) holds and | \widetilde M| \geq c| M| , for some constant
0 < c < 1.

The argument we shall use to prove Theorem 1.1 relies mainly on the telescoping
series method, the propagation of smallness for real-analytic functions on measurable
sets, as well as a spectral inequality for Stokes system.

We next start to introduce the spectral inequality: Let \{ ej\} j\geq 1 be the sequence
of eigenfunctions of the Stokes system

(1.4)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
 - \Delta ej +\nabla pj = \lambda jej in \Omega ,

div ej = 0 in \Omega ,

ej = 0 on \partial \Omega ,

with the sequence of eigenvalues \{ \lambda j\} j\geq 1 satisfying

0 < \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot and lim
j\rightarrow \infty 

\lambda j = +\infty .

The following was proved in [5].

Theorem 1.4 (see [5, Theorem 3.1]). For any nonempty open subset O \subset \Omega ,
there exists a constant C = C(N,\Omega ,O) > 0 such that

(1.5)
\sum 
\lambda j\leq \Lambda 

a2j =

\int 
\Omega 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
\lambda j\leq \Lambda 

ajej(x)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

dx \leq CeC
\surd 
\Lambda 

\int 
O

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
\lambda j\leq \Lambda 

ajej(x)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

dx

for any sequence of real numbers \{ aj\} j\geq 1 \in \ell 2 and any positive number \Lambda .1

We mention that the spectral inequality (1.5) allows one to control the low fre-
quencies of the Stokes system with a precise estimate on the cost of controllability with
respect to the frequency length which, combined with the exponential decay of solu-
tions of (1.1), thus implies the null controllability of Stokes system with L2-controls
applied to arbitrarily small open sets.

The second main result is an extension of the spectral inequality (1.5) from open
sets to measurable sets of positive measure.

1Recall that \ell 2 \triangleq \{ \{ aj\} j\geq 1 :
\sum +\infty 

j=1 a2j < +\infty \} .
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OBSERVABILITY ESTIMATE AND APPLICATIONS 2191

Theorem 1.5. Let B4R(x0) \subset \Omega , and let \omega \subset BR(x0) be a measurable set with
positive measure. Then, there exists a constant C = C(N,R,\Omega , | \omega | ) > 0 such that

(1.6)

\left(  \sum 
\lambda j\leq \Lambda 

a2j

\right)  1/2

\leq CeC
\surd 
\Lambda 

\int 
\omega 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
\lambda j\leq \Lambda 

ajej(x)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| dx
for all \Lambda > 0 and any sequence of real numbers \{ aj\} j\geq 1 \in \ell 2.

Remark 1.6. It is worth mentioning that the inequality (1.6) leads to a null con-
trollability result for the Stokes system with L\infty -controls (see Theorem 3.6 below),
which is a refined controllability result.

The proof of Theorem 1.5 strongly depends on quantitative estimates of the inte-
rior spatial analyticity for finite sums of eigenfunctions of the Stokes system (1.4). As
far as we know, for the Navier--Stokes equations, the qualitative analyticity has been
first analyzed in [13] and [14], where the authors consider a nonlinear elliptic system
satisfied by the velocity z and the vorticity curl z and show the interior analyticity for
the velocity z. However, since the boundary condition for the curl z is not prescribed,
the analyticity up to the boundary cannot be achieved by this method.

In this paper, in order to establish the spectral inequality (1.6), we adapt and
combine the arguments in [13] and [14] and [2, Theorem 5] to the low frequencies of
the Stokes system.

The rest of the paper is organized as follows. In section 2, we shall present the
proofs of Theorems 1.1 and 1.5, respectively. Section 3 deals with several applications
of main theorems for shape optimization and time optimal control problems of Stokes
system. Finally, in Appendix A, we prove real-analytic estimates for solutions of the
Poisson equation.

2. Proofs of main results.

2.1. Spectral inequality on measurable sets. This subsection is devoted to
the proof of Theorem 1.5. Compared with the proof of [2, Theorem 5] for the Laplace
operator, we here encounter the difficulty due to the pressure in the Stokes system.
To circumvent that, we instead consider the equation satisfied by the curl of the low
frequencies, which is an equation without pressure but with no boundary conditions.
This allows us recover and quantify the interior real-analytic estimates based on the
curl operator.

We begin with an estimate of the propagation of smallness for real-analytic func-
tions on measurable sets with positive measure, which plays a core ingredient in the
proof of Theorem 1.5.

Lemma 2.1. Assume that f : B2R(x0) \subset \BbbR N  - \rightarrow \BbbR N is real-analytic and verifies

| \partial \alpha x f(x)| \leq 
M | \alpha | !
(\rho R)| \alpha | 

for x \in B2R(x0), \alpha \in \BbbN N ,

with some M > 0 and 0 < \rho \leq 1. For any measurable set \omega \subset BR(x0) with positive
measure, there are positive constants C = C(R,N, \rho , | \omega | ) and \theta = \theta (R,N, \rho , | \omega | ), with
\theta \in (0, 1), such that

\| f\| \bfL \infty (BR(\bfx 0)) \leq C

\biggl( \int 
\omega 

| f(x)| dx
\biggr) \theta 

M1 - \theta .
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2192 FELIPE W. CHAVES-SILVA, DIEGO A. SOUZA, AND CAN ZHANG

The above-mentioned local observability inequality for real-analytic functions
was first established in [20]. The interested reader can also find a simpler proof
of Lemma 2.1 in [1, section 3] and a more general extension in [7, Lemma 2].

Such a kind of stability estimate is called as the Hadamand three spheres theorem
when \omega is a nonempty open ball. The fact that the smallest set \omega is allowed to be
Lebesgue measurable while the constants depend only on its measure are particularly
useful in our proof below.

Proof of Theorem 1.5. For each real number \Lambda > 0 and each sequence \{ aj\} j\geq 1 \in 
\ell 2, we define

u\Lambda (x) =
\sum 
\lambda j\leq \Lambda 

ajej(x), x \in \Omega ,

and

v\Lambda (x, s) =
\sum 
\lambda j\leq \Lambda 

aje
s
\surd 

\lambda jdej(x), (x, s) \in \Omega \times ( - 1, 1),

where d denotes the curl operator.2

Because v\Lambda (\cdot , 0) = du\Lambda and div\bfx u\Lambda = 0, we have

(2.1) \Delta \bfx u\Lambda (x) = d\ast v\Lambda (x, 0), x \in \Omega ,

where d\ast is the adjoint of d.
Let us now obtain an estimate of the propagation of smallness for u\Lambda on measur-

able sets with positive measure. According to Lemma 2.1, it is sufficient to quantify
the analytic estimates of higher-order derivatives of u\Lambda .

Since v\Lambda (\cdot , \cdot ) satisfies

 - \partial 2ssv\Lambda (x, s) - \Delta \bfx v\Lambda (x, s) = 0, (x, s) \in \Omega \times ( - 1, 1),

we have that d\ast v\Lambda verifies

 - \partial 2ssd\ast v\Lambda (x, s) - \Delta \bfx d
\ast v\Lambda (x, s) = 0, (x, s) \in \Omega \times ( - 1, 1),

and, using Lemma A.1 in Appendix with f \equiv 0, d\ast v\Lambda is real-analytic in B4R(x0, 0) \subset 
\BbbR N+1, and the following estimate holds

\| \partial \alpha \bfx \partial \beta s d\ast v\Lambda \| \bfL \infty (B2R(\bfx 0,0)) \leq C
(| \alpha | + \beta )!

(\rho R)| \alpha | +\beta 

\Biggl( 
--

\int 
B4R(\bfx 0,0)

| d\ast v\Lambda (x, s)| 2dxds

\Biggr) 1/2

\forall \alpha \in \BbbN N , \beta \geq 0,

where the positive constants \rho and C only depend on the dimension N . Note that
here we are assuming that B4R(x0, 0) \subset \Omega \times ( - 1, 1), which is always possible because
B4R(x0) \subset \Omega and Remark 1.3.

2In fact, d is the differential which maps 1-forms into 2-forms. When a vector field w is identified
with a 1-form, then dw can be identified with a 1

2
N(N  - 1)-dimensional vector. We can also see d

as an operator d : D\prime (\Omega )N \rightarrow D\prime (\Omega )N
2
whose entries are given by

(du)i,j = \partial xjui  - \partial xiuj (1 \leq i, j \leq N),

and d\ast is its adjoint operator.
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OBSERVABILITY ESTIMATE AND APPLICATIONS 2193

Taking \beta = 0 in the previous estimate, we readily obtain

\| \partial \alpha x d\ast v\Lambda (\cdot , 0)\| \bfL \infty (B2R(\bfx 0)) \leq C
| \alpha | !

(\rho R)| \alpha | 

\Biggl( 
--

\int 
B4R(\bfx 0,0)

| d\ast v\Lambda (x, s)| 2dxds

\Biggr) 1/2

(2.2)

\forall \alpha \in \BbbN N .

To bound the right-hand side in (2.2), we set

w\Lambda (x, s) =
\sum 
\lambda j\leq \Lambda 

aje
s
\surd 

\lambda jej(x), (x, s) \in \Omega \times ( - 1, 1),

and then the following estimate holds

\| d\ast v\Lambda \| 2\bfL 2(B4R(\bfx 0,0))
\leq C\| w\Lambda \| 2L2(( - 1,1);\bfH 2(\Omega ))

\leq C

\int 1

 - 1

\| Aw\Lambda (\cdot , s)\| 2\bfH ds,

where we have used the fact that there exists C = C(N,\Omega ) > 0 such that

1

C
\| y\| \bfH 2(\Omega ) \leq \| Ay\| \bfH \leq C\| y\| \bfH 2(\Omega ) \forall y \in D(A),

with A being the Stokes operator.3

Since \{ ej\} j\geq 1 is an orthonormal basis of H, the last estimate yields

(2.3) \| d\ast v\Lambda \| 2\bfL 2(B4R(\bfx 0,0))
\leq CeC

\surd 
\Lambda 
\sum 
\lambda j\leq \Lambda 

a2j

for some C > 0.
Therefore, combining (2.2) and (2.3), we have

\| \partial \alpha x d\ast v\Lambda (\cdot , 0)\| \bfL \infty (B2R(\bfx 0)) \leq C
| \alpha | !

(\rho R)| \alpha | 
eC

\surd 
\Lambda 

\left(  \sum 
\lambda j\leq \Lambda 

a2j

\right)  1/2

\forall \alpha \in \BbbN N ,(2.4)

where C = C(N,\Omega ).
Since u\Lambda solves the Poisson equation (2.1), we have that u\Lambda is real-analytic when-

ever the exterior force d\ast v\Lambda (\cdot , 0) is real analytic. Now, thanks to (2.4), we can apply
again Lemma A.1 to obtain that

\| \partial \alpha xu\Lambda \| \bfL \infty (BR(\bfx 0)) \leq (R\~\rho ) - | \alpha |  - 1| \alpha | !

\left(   \| u\Lambda \| \bfL 2(B2R(\bfx 0)) + CeC
\surd 
\Lambda 

\left(  \sum 
\lambda j\leq \Lambda 

a2j

\right)  1/2
\right)   

\forall \alpha \in \BbbN N

for some constant \~\rho > 0.
Noticing that

\| u\Lambda \| 2\bfL 2(B2R(\bfx 0))
\leq \| u\Lambda \| 2\bfH =

\sum 
\lambda j\leq \Lambda 

a2j ,

3The Stokes operator A : D(A)  - \rightarrow H is defined by A =  - P\Delta , with D(A) =
\bigl\{ 
y \in V : Ay \in 

H
\bigr\} 
and P : L2(\Omega ) = H\oplus H\bot  - \rightarrow H is the Leray projection.
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one can see that

\| \partial \alpha xu\Lambda \| \bfL \infty (BR(\bfx 0)) \leq 
| \alpha | !

(\rho R)| \alpha | 
eK

\surd 
\Lambda 

\left(  \sum 
\lambda j\leq \Lambda 

a2j

\right)  1/2

\forall \alpha \in \BbbN N ,(2.5)

where \rho and K are positive constants independent of \Lambda .
Applying (2.5) and Lemma 2.1 to the real-analytic function u\Lambda , we obtain the

estimate

(2.6) \| u\Lambda \| \bfL \infty (BR(\bfx 0)) \leq C

\biggl( \int 
\omega 

| u\Lambda (x)| dx
\biggr) \theta 

\left(   eK\surd 
\Lambda 

\left(  \sum 
\lambda j\leq \Lambda 

a2j

\right)  1/2
\right)   

1 - \theta 

for some constants C = C(N,R,\Omega , | \omega | ) > 0 and \theta = \theta (N,R,\Omega , | \omega | ) \in (0, 1).
On the other hand, by the spectral inequality given in Theorem 1.4, there exists

C = C(\Omega , R,N) such that\left(  \sum 
\lambda j\leq \Lambda 

a2j

\right)  1/2

\leq CeC
\surd 
\Lambda \| u\Lambda \| \bfL \infty (BR(\bfx 0)).

The above inequality and (2.6) then lead to\left(  \sum 
\lambda j\leq \Lambda 

a2j

\right)  1/2

\leq CeC
\surd 
\Lambda 

\biggl( \int 
\omega 

| u\Lambda (x)| dx
\biggr) \theta 
\left(  \sum 

\lambda j\leq \Lambda 

a2j

\right)  (1 - \theta )/2

,

which gives us the desired observability inequality\left(  \sum 
\lambda j\leq \Lambda 

a2j

\right)  1/2

\leq CeC
\surd 
\Lambda 

\int 
\omega 

| u\Lambda (x)| dx.

This finishes the proof.

2.2. Observability inequality on measurable sets in space-time vari-
ables. This subsection is devoted to the proof of Theorem 1.1. We begin with an
interpolation estimate for the solutions of the Stokes system, which is a consequence
of the spectral inequality given in Theorem 1.5 and the exponential decay of solutions
of the Stokes system. This can also be seen as a quantitative estimate of strong unique
continuation of solutions to the Stokes system. We refer the reader to [2, 7, 22] for
closely related results concerning the strong unique continuation property for general
parabolic equations.

Proposition 2.2. Let B4R(x0) \subset \Omega , and let \omega \subset BR(x0) be a measurable set
with positive measure. Then, there exists C = C(\Omega , | \omega | ) > 0 such that

\| z(\cdot , t)\| \bfH \leq 
\Bigl( 
Ce

C
t - s \| z(\cdot , t)\| \bfL 1(\omega )

\Bigr) 1/2
\| z(\cdot , s)\| 1/2\bfH \forall z0 \in H,

where 0 \leq s < t \leq T and z is the solution of (1.1) associated to z0.
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OBSERVABILITY ESTIMATE AND APPLICATIONS 2195

Proof. It suffices to prove the estimate in the case s = 0.
For any \Lambda > 0, we set

H\Lambda \triangleq span
\bigl\{ 
ej ;\lambda j \leq \Lambda 

\bigr\} 
.

Given z0 \in H, the solution z of (1.1) can be split into z = z\Lambda + z\bot \Lambda , where z\Lambda and z\bot \Lambda 
are the solutions of (1.1) (together with some pressures) associated to z0,\Lambda \in H\Lambda and
z\bot 0,\Lambda \in H\bot 

\Lambda ,
4 z0 = z0,\Lambda + z\bot 0,\Lambda , respectively. Moreover, one has

(2.7) z\Lambda (\cdot , t) \in H\Lambda and \| z\bot \Lambda (\cdot , t)\| \bfH \leq e - \Lambda t\| z0\| \bfH 

for every t > 0.
From (1.6) and (2.7), for each t > 0 we have

\| z(\cdot , t)\| \bfH \leq \| z\Lambda (\cdot , t)\| \bfH + \| z\bot \Lambda (\cdot , t)\| \bfH 
\leq CeC

\surd 
\Lambda \| z\Lambda (\cdot , t)\| \bfL 1(\omega ) + e - \Lambda t\| z0\| \bfH 

\leq CeC
\surd 
\Lambda 
\bigl( 
\| z(\cdot , t)\| \bfL 1(\omega ) + \| z\bot \Lambda (\cdot , t)\| \bfH 

\bigr) 
+ e - \Lambda t\| z0\| \bfH 

\leq CeC
\surd 
\Lambda 
\bigl( 
\| z(\cdot , t)\| \bfL 1(\omega ) + e - \Lambda t\| z0\| \bfH 

\bigr) 
+ e - \Lambda t\| z0\| \bfH 

\leq \widehat Ce \widehat C\surd 
\Lambda  - \Lambda 

2 t
\Bigl( 
e

\Lambda 
2 t\| z(\cdot , t)\| \bfL 1(\omega ) + e - 

\Lambda 
2 t\| z0\| \bfH 

\Bigr) 
\leq \widetilde Ce \widetilde C

t \| z(\cdot , t)\| 1/2\bfL 1(\omega )\| z0\| 
1/2
\bfH ,

where in the last inequality we used the fact that

C1

\surd 
\Lambda  - t\Lambda 

2
\leq C2

1

2t
for any \Lambda > 0

as well as the following lemma.

Lemma 2.3 ([19]). Let C1, C2 be positive and M0, M1, and M2 be nonnegative.
Assume there exist C3 > 0 and \delta 0 > 0 such that M0 \leq C3M1 and

M0 \leq e - C1\delta M1 + eC2\delta M2

for every \delta \geq \delta 0. Then, there exits C0 > 0 such that

M0 \leq C0M
C2/(C1+C2)
1 M

C1/(C1+C2)
2 .

For the proof of Theorem 1.1, we will use the following result concerning the
property of Lebesgue density point for a measurable set in \BbbR .

Lemma 2.4 ([18], Proposition 2.1). Let E be a measurable set in (0, T ) with
positive measure, and let \ell be a density point of E5. Then, for each \mu > 1, there is
\ell 1 = \ell 1(\mu ,E) in (\ell , T ) such that the sequence \{ \ell m\} m\geq 1 defined as

\ell m+1 = \ell + \mu  - m (\ell 1  - \ell ) , m = 1, 2, . . .

satisfies

(2.8) | E \cap (\ell m+1, \ell m)| \geq 1

3
(\ell m  - \ell m+1) \forall m \geq 1.

4H\bot 
\Lambda = span

\bigl\{ 
ej ;\lambda j > \Lambda 

\bigr\} 
.

5Let E a measurable set of \BbbR . A point x \in E is a density point if

lim
h\rightarrow 0

| E \cap (x - h, x+ h)| 
2h

= 1.
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Proof of Theorem 1.1. For each t \in (0, T ), let us define the slice

Mt = \{ x \in \Omega : (x, t) \in M\} 

and

E =

\biggl\{ 
t \in (0, T ); | Mt| \geq 

| M| 
2T

\biggr\} 
.

From Fubini's theorem, it follows that Mt \subset \Omega is measurable for almost everywhere
(a.e.) t \in (0, T ), E is measurable in (0, T ) and

| E| \geq | M| 
2| BR(x0)| 

and \chi E(t)\chi Mt(x) \leq \chi M(x, t), in \Omega \times (0, T ).

For a.e. t \in E, we apply Proposition 2.2 to Mt to find a constant C =
C(\Omega , R, | M| / (T | BR(x0)| )) such that

(2.9) \| z(\cdot , t)\| \bfH \leq 
\Bigl( 
Ce

C
t - s \| z(\cdot , t)\| \bfL 1(Mt)

\Bigr) 1/2
\| z(\cdot , s)\| 1/2\bfH 

for 0 \leq s < t.
Let \ell be any density point in E. For \mu > 1 (to be chosen later), we denote

by \{ \ell m\} m\geq 1 the strictly monotone decreasing sequence associated to \ell and \mu as in
Lemma 2.4. For each m \geq 1, we set

\tau m = \ell m+1 +
(\ell m  - \ell m+1)

6
;

hence,

(2.10) | E \cap (\tau m, \ell m)| = | E \cap (\ell m+1, \ell m)|  - | E \cap (\ell m+1, \tau m)| \geq (\ell m  - \ell m+1)

6
.

Taking s = \ell m+1 in (2.9), we get
(2.11)

\| z(\cdot , t)\| \bfH \leq 
\Bigl( 
Ce

C
\ell m - \ell m+1 \| z(\cdot , t)\| \bfL 1(Mt)

\Bigr) 1/2
\| z(\cdot , \ell m+1)\| 1/2\bfH for a.e. t \in E \cap (\tau m, \ell m).

Then, using the L2 energy estimate for the Stokes system, integrating (2.11) with
respect to t over E \cap (\tau m, \ell m) and using (2.10), we obtain

\| z(\cdot , \ell m)\| \bfH \leq 

\Biggl( 
Ce

C
\ell m - \ell m+1

\int \ell m

\ell m+1

\chi E(t)\| z(\cdot , t)\| \bfL 1(Mt) dt

\Biggr) 1/2

\| z(\cdot , \ell m+1)\| 1/2\bfH ,

which implies that

\| z(\cdot , \ell m)\| \bfH \leq \epsilon \| z(\cdot , \ell m+1)\| \bfH + \epsilon  - 1Ce
C

\ell m - \ell m+1

\int \ell m

\ell m+1

\chi E(t)\| z(\cdot , t)\| \bfL 1(Mt) dt

for any \epsilon > 0.

Taking \epsilon = e
 - 1

2(\ell m - \ell m+1) in the above inequality, we have
(2.12)

e
 - 

C+1
2

\ell m - \ell m+1 \| z(\cdot , \ell m)\| \bfH  - e
 - C+1

\ell m - \ell m+1 \| z(\cdot , \ell m+1)\| \bfH \leq C

\int \ell m

\ell m+1

\chi E(t)\| z(\cdot , t)\| \bfL 1(Mt) dt.
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Finally, choosing \mu = 2(C+1)
2C+1 , where C is any constant for which inequality (2.12)

holds, we readly obtain

e
 - 

C+1
2

\ell m - \ell m+1 \| z(\cdot , \ell m)\| \bfH  - e
 - 

C+1
2

\ell m+1 - \ell m+2 \| z(\cdot , \ell m+1)\| \bfH 

\leq C

\int \ell m

\ell m+1

\chi E(t)\| z(\cdot , t)\| \bfL 1(Mt) dt \forall m \geq 1,(2.13)

because \mu (\ell m+1  - \ell m+2) = \ell m  - \ell m+1 for all m \geq 1.
This way, adding the telescoping series in (2.13) from m = 1 to +\infty and using

the fact that lim
m\rightarrow \infty 

\ell m = \ell , we have that

e - 
C+1

2
\ell 1 - \ell 2 \| z(\cdot , \ell 1)\| \bfH =

\infty \sum 
m=1

\Biggl[ 
e
 - 

C+1
2

\ell m - \ell m+1 \| z(\cdot , \ell m)\| \bfH  - e
 - 

C+1
2

\ell m+1 - \ell m+2 \| z(\cdot , \ell m+1)\| \bfH 

\Biggr] 

\leq C

\int 
M\cap (\Omega \times [\ell ,\ell 1])

| z(x, t)| dxdt.

The L2 energy estimate for the Stokes system and the fact that \ell < \ell m < T for
every m \in \BbbN lead to the following observability inequality

\| z(\cdot , T )\| \bfH \leq C

\int 
M\cap (\Omega \times [l,l1])

| z(x, t)| dxdt,

with some constant C = C(N,R,\Omega ,M, T ) > 0. This completes the proof.

3. Applications.

3.1. Shape optimization problems. As an interesting application of Theo-
rem 1.5, we analyze the following shape optimization problem formulated in [17].

Let \{ \beta \nu 
j \} j\in \BbbN be a sequence of independent real random variables on a probability

space (X,F,\BbbP ) having mean equal to 0, variance equal to 1, and a super exponential
decay (for instance, independent Gaussian or Bernoulli random variables; see [4, As-
sumption (3.1)] for more details). For every \nu \in X, the solution of (1.1) corresponding
to the initial datum

(3.1) z\nu 0 =
\sum 
j\geq 1

\beta \nu 
j ajej , with \{ aj\} j\geq 1 \in \ell 2,

is given by

(3.2) z\nu (\cdot , t) =
\sum 
j\geq 1

\beta \nu 
j aje

 - t\lambda jej .

Given L \in (0, 1), we define the set of admissible designs

UL =
\Bigl\{ 
\chi \omega \in L\infty (\Omega ; \{ 0, 1\} ) : \omega \subset \Omega is a measurable subset of measure | \omega | = L| \Omega | 

\Bigr\} 
.

For each \chi \omega \in UL, we then define the randomized observability constant by

CT,rand(\chi \omega ) = inf
| | \bfz \nu (T )| | =1

\BbbE 
\int T

0

\int 
\omega 

| z\nu (x, t)| 2dxdt.
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Using (3.2), the properties of random variables \beta \nu 
j , and the change of variable

bj = aje
 - T\lambda j , we deduce that

CT,rand(\chi \omega ) = inf\sum \infty 
j=1 | bj | 2=1

\BbbE 
\int T

0

\int 
\omega 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
j\geq 1

\beta \nu 
j bje

t\lambda jej(x)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

dxdt,

where \BbbE is the expectation over the space \BbbX with respect to the probability measure
\BbbP .

From Fubini's theorem and the independence of the random variables \{ \beta \nu 
j \} j\in \BbbN , a

simple computation gives

CT,rand(\chi \omega ) = inf
j\geq 1

e2T\lambda j  - 1

2\lambda j

\int 
\omega 

| ej(x)| 2 dx.

We now consider the optimal design problem of maximizing the randomized ob-
servability constant CT,rand(\chi \omega ) over the set of admissible designs UL. In other words,
we study the problem

(3.3) (PT ) : sup
\chi \omega \in UL

CT,rand(\chi \omega ) = sup
\chi \omega \in UL

inf
j\geq 1

e2T\lambda j  - 1

2\lambda j

\int 
\omega 

| ej(x)| 2 dx.

The optimal shape design problem (3.3) models the best sensor shape and location
problem for the control of the Stokes system (1.1).

We have the following result.

Theorem 3.1. The problem (PT ) has a unique solution.

Proof. We only have to check the following two conditions:

(i) If there exists E \subset \Omega of positive Lebesgue measure, an integer m \in \BbbN \ast ,
\beta 1, . . . , \beta m \in \BbbR +, and C \geq 0 such that

\sum m
j=1 \beta j | ej(x)| 2 = C almost every-

where on E, then there must hold C = 0 and \beta 1 = \beta 2 = \cdot \cdot \cdot = \beta m = 0.

(ii) For every a \in L\infty (\Omega ; [0, 1]) such that
\int 
\Omega 
a(x) dx = L| \Omega | , one has

lim inf
j\rightarrow +\infty 

e2T\lambda j  - 1

2\lambda j

\int 
\Omega 

a(x)| ej(x)| 2 dx >
e2T\lambda 1  - 1

2\lambda 1
.

By the analyticity of the eigenfunctions of Stokes system with homogeneous
Dirichlet boundary conditions, it is not difficult to show that the first condition holds.

For the second condition, notice that there exists \epsilon > 0 and E \subset \Omega of positive
measure such that a \geq \epsilon \chi E and\int 

\Omega 

a(x)| ej(x)| 2 dx \geq \epsilon 

\int 
E

| ej(x)| 2 dx.

From Theorem 1.5, we easily see that

lim inf
j\rightarrow +\infty 

e2T\lambda j  - 1

2\lambda j

\int 
\Omega 

a(x)| ej(x)| 2 dx = +\infty .

From [17, Theorem 1], it follows that problem (PT ) has a unique solution.
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Remark 3.2. The optimal set given by Theorem 3.1 is open and semianalytic.6

This follows from the fact that the eigenfunctions of the Stokes system with homoge-
neous Dirichlet boundary conditions are analytic.

Remark 3.3. A proof of Theorem 3.1 when \Omega is the unit disk of \BbbR 2 can be found
in [17]. However, the proof there relies on an explicit knowledge of the eigenfunctions
of the Stokes operator, which of course cannot be extended to the case of general
domains or higher dimensions. For the general case, the key point is the obtainment
of a uniform observability inequality with observations on measurable sets of posi-
tive measure. Thus, Theorem 1.5 gives a positive answer to the shape optimization
problem for Stokes system raised in [17].

3.2. Null controllability for Stokes system with bounded controls. Let
\omega be a nonempty open subset of \Omega , and consider the following controlled Stokes system

(3.4)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
ut  - \Delta u+\nabla p = v\chi \omega in Q,
divu = 0 in Q,
u = 0 on \Sigma ,
u(\cdot , 0) = u0 in \Omega .

It is well known that for any T > 0, u0 \in H, and v \in L2(\omega \times (0, T )), there exists
exactly one solution (u, p) to the Stokes equations (3.4) with

u \in C0 ([0, T ];H) \cap L2 (0, T ;V) , p \in L2(0, T ;U),

where

U :=

\biggl\{ 
\psi \in H1(\Omega );

\int 
\Omega 

\psi (x) dx = 0

\biggr\} 
.

In the context of the Stokes system (3.4), for 1 \leq p \leq \infty , the Lp- null controlla-
bility problem at time T reads as follows:

For any u0 \in H, can one find a control v \in Lp(\omega \times (0, T )) such that
the associated solution to (3.4) satisfies

(3.5) u(\cdot , T ) = 0 in \Omega ?

The following result is well known.

Theorem 3.4. For any nonempty open subset \omega of \Omega and any T > 0, the Stokes
system (3.4) is L2-null controllable.

For the proof, we refer the reader to [5, 10, 11].
In practice it would be interesting to take the control steering the solution of

the Stokes system to rest to be in L\infty (\omega \times (0, T )). Nevertheless, to the best of our
knowledge, it is not clear how to construct L\infty (\omega \times (0, T )) controls from L2(\omega \times (0, T ))
controls. Notice that for the case of the heat equation this is always possible since
one can use local regularity results (for more details, see [3]), which is no longer the
case for the Stokes system.

The observability inequality established in Theorem 1.1 allows us to conclude
stronger controllability properties for the Stokes system (3.4). In fact it is possible
to control the Stokes system with L\infty -controls supported in any measurable set of
positive measure:

6Here, it is understood that the optimal set is unique up to the set of zero measure. A subset of
a real analytic finite-dimensional manifold is said to be semianalytic if it can be written in terms of
equalities and inequalities of real analytic functions.
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Theorem 3.5. For any T > 0 and any measurable set of positive measure \gamma \subset 
\Omega \times [0, T ], the Stokes system (3.4) is L\infty -null controllable with a control v supported
in \gamma and having the following estimate

(3.6) \| v\| \bfL \infty (\gamma ) \leq Cobs(T, \gamma )| u0\| \bfH ,

where Cobs(T, \gamma ) is the observability constant given by Theorem 1.1 for the control
domain \gamma at time T .

In particular, in the case of a nonempty open subset, we have the following.

Corollary 3.6. For any nonempty open subset \omega of \Omega and any T > 0, the
Stokes system (3.4) is L\infty -null-controllable.

3.3. Time optimal control problem for Stokes system. Let | \cdot | r : \BbbR N \rightarrow 
[0,\infty ) be the r-Euclidean norm in \BbbR N , i.e.,

| x| r =

\Biggl\{ 
(| x1| r + \cdot \cdot \cdot + | xN | r) 1

r if r \in [1,\infty ),

max\{ | x1| , . . . , | xN | \} if r = \infty 

for every x \in \BbbR N .
For r \in [1,\infty ] fixed and any M > 0, we consider the set of admissible controls

U
M,r
ad =

\bigl\{ 
v \in L\infty (\omega \times [0,\infty )) ; | v(x, t)| r \leq M a.e. in \omega \times [0,\infty )

\bigr\} 
,

and for u0 \in H given, we define the set of reachable states starting from u0:

R(u0,U
M,r
ad ) =

\Bigl\{ 
u(\cdot , \tau ) ; \tau > 0 and u is the solution of (3.4) with v \in U

M,r
ad

\Bigr\} 
.

Thanks to Theorem 3.6, it follows that 0 \in R(u0,U
M,r
ad ) for any u0 \in H.

In this section, we study the following time optimal control problem:
Given u0 \in H and uf \in R(u0,U

M,r
ad ), find v \star 

r \in U
M,r
ad such that the

corresponding solution u \star of (3.4) satisfies

(3.7) u \star (\tau  \star r (u0,uf )) = uf ,

where \tau  \star r (u0,uf ) is the minimal time needed to steer the initial datum

u0 to the target uf with controls in U
M,r
ad , i.e.,

(3.8) \tau  \star r (u0,uf ) = min
\bfv \in U

M,r
ad

\{ \tau ; u(\cdot , \tau ) = uf\} .

Time optimal control problems are well known for the heat equation; see, for
instance, [15, 18]. However, we are not aware any result for the Stokes system.

We have the following result.

Theorem 3.7. Let M > 0 and r \in [1,\infty ] be given. For every u0 \in H and

any uf \in R(u0,U
M,r
ad ), the time optimal problem (3.8) has at least one solution.

Moreover, any optimal control v \star 
r satisfies the bang-bang property: | v \star 

r(x, t)| r = M
for a.e. (x, t) \in \omega \times [0, \tau  \star r (u0,uf )].

Proof. Since uf \in R(u0,U
M,r
ad ), there exists a minimizing sequence (\tau n,vn)n\geq 1

such that \tau n  -  -  -  - \rightarrow 
n\rightarrow \infty 

\tau  \star r (u0,uf ) and (vn)n\geq 1 \subset U
M,r
ad has the property that the as-

sociated solution un to (3.4) satisfies un(\cdot , \tau n) = uf for all n \geq 1. Also, because
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(vn)n\geq 1 \subset U
M,r
ad , it follows that (vn)n\geq 1 converges weak- \star to some vector-function

v \star \in U
M,r
ad in L\infty (\omega \times (0, \tau  \star r (u0,uf ))).

Claim: v \star is a solution of the time optimal problem (3.7).

Proof of the Claim. We only have to show that u \star (\cdot , \tau  \star r (u0,uf )) = uf , where u \star 

is the solution of (3.4) associated to v \star .
To show this, let \=u be the solution of (3.4) with v \equiv 0 and w = u \star  - \=u, wn =

un  - \=u solutions of \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
wt  - \Delta w +\nabla \pi = v \star 1\omega in Q,
divw = 0 in Q,
w = 0 on \Sigma ,
wn(0) = 0 in \Omega ,

and \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
wn,t  - \Delta wn +\nabla \pi n = vn1\omega in Q,
divwn = 0 in Q,
wn = 0 on \Sigma ,
wn(0) = 0 in \Omega ,

respectively.
Now, thanks to the continuity in time of \=u and that \tau n  -  -  -  - \rightarrow 

n\rightarrow \infty 
\tau  \star (u0,uf ), it

follows that \=u(\cdot , \tau n)  -  -  -  - \rightarrow 
n\rightarrow \infty 

\=u(\cdot , \tau  \star r (u0,uf )) in H. Moreover, it is not difficult to see

that

\langle wn(\tau n) - wn(\tau 
 \star 
r (u0,uf )), \varphi \rangle \rightarrow 0 \forall \varphi \in H,

\langle wn(\tau 
 \star 
r (u0,uf )), \varphi \rangle \rightarrow \langle w(\tau  \star r (u0,uf )), \varphi \rangle \forall \varphi \in H,

and

\langle wn(\tau n), \varphi \rangle \rightarrow \langle w(\tau  \star r (u0,uf )), \varphi \rangle \forall \varphi \in H.

Since uf = \=u(\cdot , \tau n)+wn(\cdot , \tau n), we have that \langle uf , \varphi \rangle = \langle \=u(\cdot , \tau n)+wn(\cdot , \tau n), \varphi \rangle for
all \varphi \in H and \langle uf , \varphi \rangle = \langle \=u(\cdot , \tau  \star r (u0,uf ))+w(\cdot , \tau  \star r (u0,uf )), \varphi \rangle = \langle u \star (\cdot , \tau  \star r (u0,uf )), \varphi \rangle 
for all \varphi \in H.

Now, let us show that any optimal control v \star \in U
M,r
ad satisfies the bang-bang

property. To do this, we argue by contradiction.
We consider u \star the corresponding state (with some pressure) to (3.4) and suppose

that there exist \epsilon > 0 and a measurable set of positive measure \gamma \subset \omega \times (0, \tau  \star r (u0,uf ))
such that

(3.9) | v \star (x, t)| r < M  - \epsilon ((x, t) \in \gamma ).

Choosing \delta 0 > 0 small enough such that\biggl\{ 
\tau 0 = \tau  \star r (u0,uf ) - \delta 0 > 0,
the set \Gamma = \{ (x, t) \in \omega \times (0, \tau 0) : (x, t) \in \gamma \} has positive measure,

and using the time continuity of u \star , there exists \delta \in (0, \delta 0) such that

(3.10) \| u0  - u \star (\cdot , \delta )\| \bfH <
\epsilon 

Cobs(\tau 0,\Gamma )
,
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where Cobs(\tau 0,\Gamma ) is the observability constant given by Theorem 1.1 for the control
domain \Gamma at time \tau 0.

From Theorem 3.5, there exists a control v \in L\infty (\omega \times (0, \tau 0)) with\left\{   suppv \subset \Gamma ,
the associated solution u satisfies u(\cdot , 0) = u0  - u \star (\cdot , \delta ) and u(\cdot , \tau 0) = 0,
\| v\| \bfL \infty (\Gamma ) \leq Cobs(\tau 0,\Gamma )\| u0  - u \star (\delta )\| \bfH .

Thus, from (3.10) we have that

\| v\| \bfL \infty (\omega \times (0,\tau 0)) \leq \epsilon .

Now, let \widehat v \in L\infty (\omega \times (0, \tau 0)) be defined by\widehat v(x, t) = v \star (x, t+ \delta ) + v(x, t) (t \in [0, \tau 0]).

Noticing that \tau 0 + \delta \leq \tau  \star r (u0,uf ), using the fact that suppv \subset \Gamma and estimate (3.9),

it follows that \widehat v \in U
M,r
ad .

Finally, setting \widehat u(x, t) = u \star (x, t+ \delta ) + u(x, t) and \widehat p(x, t) = p \star (x, t+ \delta ) + p(x, t),
we have that \widehat u(\cdot , 0) = u0, \widehat u(\tau  \star r (u0,uf ) - \delta ) = uf and that\widehat ut  - \Delta \widehat u+\nabla \widehat p = \widehat v1\omega .
Hence, \widehat v \in U

M,r
ad is a control which steers u0 to uf at time \tau  \star r (u0,uf )  - \delta . This

contradicts with the definition of \tau  \star r (u0,uf ) and thus the desired bang-bang property
holds.

About the uniqueness of the optimal control for the problem (3.8), using some
ideas from [9], we have the following result.

Proposition 3.8. Let M > 0 and r \in (1,\infty ). For any u0 \in H and every

uf \in R(u0,U
M,r
ad ), the time optimal control problem (3.7)--(3.8) has a unique so-

lution v \star 
r which satisfies a bang-bang property: | v \star 

r(x, t)| r = M for a.e. (x, t) \in 
\omega \times [0, \tau  \star r (u0,uf )].

Proof. The existence of solution and the bang-bang property is a consequence of
Theorem 3.7. We only have to prove the uniqueness of solution. Thus, let v and
h be two time optimal controls in U

M,r
ad . Thanks to the linearity, w = 1

2 (v + h)
is also a time optimal control. From Theorem 3.7, w also satisfies the bang-bang
property. Therefore, we have that | v(x, t)| r = | h(x, t)| r = | w(x, t)| r = M , a.e. in
\omega \times (0, \tau  \star r (u0,u1)). Now, if v(x, t) \not = h(x, t) in a measurable set of positive measure
D \subset \omega \times (0, \tau  \star r (u0,u1)), then, thanks to the fact that any norm | \cdot | r for r \in (1,\infty ) is
uniformly convex in \BbbR N , we have that | w(x, t)| r < M a.e. in D \subset \omega \times (0, \tau  \star r (u0,u1)).
This contradicts with the bang-bang property for w.

Remark 3.9. Related to the results of this section, one could ask for a stronger
bang-bang property for time optimal controls: given an optimal control v \star , is it true
that each component of v \star satisfies | v \star 

i (x, t)| =M for a.e. (x, t) \in \omega \times [0, \tau  \star (u0,uf )]
and all i = 1, . . . , N?

Arguing as in Theorem 3.7, one can see that this problem is related to the null
controllability property on measurable sets for the Stokes system with only one control
(see, e.g., [6]), which we believe it is true at least for N = 2.

Appendix A. Real-analytic estimates for solutions to the Poisson
equation.

In this appendix we prove the following lemma which was used in the proof of
Theorem 1.5.
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Lemma A.1. Assume that f is a real-analytic function in BR(x0) verifying

(A.1) | \partial \alpha \bfx f(x)| \leq 
M | \alpha | !
(R\rho 0)| \alpha | 

\forall x \in BR(x0) and \alpha \in \BbbN N ,

with some positive constants M and \rho 0. Let u \in H2(BR(x0)) satisfy the Poisson
equation

(A.2)  - \Delta u = f in BR(x0).

Then, u is real-analytic in BR/2(x0). Further, it verifies the estimate

\| \partial \alpha \bfx u\| L\infty (BR/2(\bfx 0)) \leq 
| \alpha | !

(R\~\rho )| \alpha | +1

\bigl( 
\| u\| L2(BR(\bfx 0)) +M

\bigr) 
for all \alpha \in \BbbN N ,(A.3)

where \~\rho is a constant depending only on the dimension N and \rho 0.

A proof of the lemma A.1 for f \equiv 0 can be found in [16]. For the sake of completeness,
we give a sketch proof for the nonhomogeneous case.

Proof. By a rescaling argument, it suffices to prove the estimate (A.3) when R = 1
and x0 = 0.

Since f is real-analytic in B1(0), by the interior regularity for solutions of elliptic
equations, we have that u is smooth in B1(0). Hence, we have that

 - \Delta \partial \alpha \bfx u(x) = \partial \alpha \bfx f(x) \forall x \in B1(0)

for every \alpha = (\alpha 1, . . . , \alpha N ) \in \BbbN N .
Multiplying the above equation by (1 - | x| 2)2(| \alpha | +1)\partial \alpha \bfx u gives

(A.4)
 - (1 - | x| 2)2(| \alpha | +1)\partial \alpha \bfx u(x)\Delta \partial 

\alpha 
\bfx u(x) = (1 - | x| 2)2(| \alpha | +1)\partial \alpha \bfx u(x)\partial 

\alpha 
\bfx f(x) \forall x \in B1(0),

and integration by parts gives\int \int 
B1(\bfzero )

(1 - | x| 2)2(| \alpha | +1)| \nabla \partial \alpha \bfx u| 2 dx = 4(| \alpha | + 1)

\int \int 
B1(\bfzero )

(1 - | x| 2)2| \alpha | +1(\nabla \partial \alpha \bfx u \cdot x)\partial \alpha \bfx u dx

+

\int \int 
B1(\bfzero )

(1 - | x| 2)2(| \alpha | +1)\partial \alpha \bfx u\partial 
\alpha 
\bfx f dx.

Now, thanks to the Young inequality, we have the following estimate:\int \int 
B1(\bfzero )

(1 - | x| 2)2(| \alpha | +1)| \nabla \partial \alpha \bfx u| 2dx \leq [16(| \alpha | + 1)2 + 1]

\int \int 
B1(\bfzero )

(1 - | x| 2)2| \alpha | | \partial \alpha \bfx u| 2 dx

+

\int \int 
B1(\bfzero )

| \partial \alpha \bfx f | 2 dx.

Since f satisfies (A.1), we get\int \int 
B1(\bfzero )

(1 - | x| 2)2(| \alpha | +1)| \nabla \partial \alpha \bfx u| 2 dx \leq 17(| \alpha | + 1)2
\int \int 

B1(\bfzero )

(1 - | x| 2)2| \alpha | | \partial \alpha \bfx u| 2 dx

+ | B1(0)| 

\bigm| \bigm| \bigm| \bigm| \bigm| M | \alpha | !
\rho 
| \alpha | 
0

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

.
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Therefore, we obtain
(A.5)\bigm\| \bigm\| \bigm\| (1 - | x| 2)| \alpha | +1\nabla \partial \alpha \bfx u

\bigm\| \bigm\| \bigm\| 
L2(B1(\bfzero ))

\leq 5

\Biggl[ 
(| \alpha | + 1)

\bigm\| \bigm\| \bigm\| (1 - | x| 2)| \alpha | \partial \alpha \bfx u
\bigm\| \bigm\| \bigm\| 
L2(B1(\bfzero ))

+
M | \alpha | !
\rho 
| \alpha | 
0

\Biggr] 

for every \alpha = (\alpha 1, . . . , \alpha N ) \in \BbbN N . In particular, taking \alpha = (0, . . . , 0), we deduce the
estimate \bigm\| \bigm\| (1 - | x| 2)\nabla u

\bigm\| \bigm\| 
L2(B1(\bfzero ))

\leq 5
\bigl( 
\| u\| L2(B1(\bfzero )) +M

\bigr) 
.

By induction, we have the inequality\bigm\| \bigm\| (1 - | x| 2)| \alpha | \partial \alpha \bfx u
\bigm\| \bigm\| 
L2(B1(\bfzero ))

\leq \rho  - | \alpha |  - 1| \alpha | !
\bigl( 
\| u\| L2(B1(\bfzero )) +M

\bigr) 
(A.6)

for some constant 0 < \rho < min \{ \rho 0, 1/6\} and every \alpha = (\alpha 1, . . . , \alpha N ) \in \BbbN N . Finally,
it is not difficult to see that the estimate (A.6) leads to (A.3).
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