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The Conjugacy Stability Problem for
Parabolic Subgroups in Artin Groups
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Abstract. Given an Artin group A and a parabolic subgroup P , we study
if every two elements of P that are conjugate in A, are also conjugate in
P . We provide an algorithm to solve this decision problem if A satisfies
three properties that are conjectured to be true for every Artin group.
This allows to solve the problem for new families of Artin groups. We
also partially solve the problem if A has FC-type, and we totally solve
it if A is isomorphic to a free product of Artin groups of spherical type.
In particular, we show that in this latter case, every element of A is
contained in a unique minimal (by inclusion) parabolic subgroup.
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1. Introduction

Artin (or Artin–Tits) groups were defined by Jacques Tits in the 60’s. They
are groups presented by a finite set of generators S and at most one relation
of the form stst · · · = tsts · · · , for every pair s, t ∈ S, with the same number
of letters ms,t at each side of the equality. If there is no relation associated
with a pair of generators s, t ∈ S, then we denote ms,t = ∞. Then, the
presentation of an Artin group is as follows:

AS = 〈S | sts . . .
︸ ︷︷ ︸

ms,t elements

= tst . . .
︸ ︷︷ ︸

ms,t elements

∀s, t ∈ S, s �= t, ms,t �= ∞〉.

These groups are algebraic generalisations of the well-known braid
groups on n + 1 strands [2]:

An =
〈

σ1, . . . , σn
σiσj = σjσi, |i − j| > 1
σiσjσi = σjσiσj , |i − j| = 1

〉

.

A fundamental tool for the study of braid groups is the action by isometries
of An on the curve complex of the n+1-punctured disk Dn+1. The curve com-
plex has as vertices (isotopy classes of non-degenerated) simple closed curves
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in Dn+1. For Artin groups, the analogous of simple closed curves are irre-
ducible parabolic subgroups. In fact, there is a bijection between the proper
irreducible parabolic subgroups of An and the simple closed curves in Dn+1

(see an explanation in [9, Section 2].
A standard parabolic subgroup AX is a subgroup generated by a subset of

generators X ⊆ S. The conjugate of any standard parabolic subgroup by an
element of AS is called a parabolic subgroup. The study of parabolic subgroups
has been an important source of research in Artin groups over the last forty
years. These are natural and easy-to-define subgroups. They are the main
ingredient of complexes in which Artin groups act, as the Deligne complex
[6,11] or the complex of irreducible parabolic subgroups [9]. However, as it
happens for most questions in Artin groups, basic properties of parabolic
subgroups are in general unknown. Some of the facts we know about are the
following: In his thesis, Van der Lek [24] proved that a standard parabolic
subgroup is again an Artin group, and we also know that they are convex in
every case [7]. The structure of centralisers of parabolic subgroups and many
of their properties have been well studied only certain cases by Paris [21]
and Godelle [12–14], among others; and we only know if the intersection of
parabolic subgroups is again a parabolic subgroup for a few families of Artin
groups [9,10,20].

In this paper, we discuss in which cases embeddings of parabolic sub-
groups into the Artin group merge conjugacy classes. This is also called the
conjugacy stability problem for parabolic subgroups.

Definition 1. A parabolic subgroup P of an Artin group A is conjugacy stable
in A if for every x, y ∈ P such that g−1xg = y, g ∈ G, there is ĝ ∈ P such
that ĝ−1xĝ = y. If P is not conjugacy stable in A we say that the inclusion
of P into A merges conjugacy classes.

This problem has been solved only for some specific families of Artin
groups. [16] proved that parabolic subgroups of braid groups are always con-
jugacy stable. However, for Artin groups this is not always the case. In Calvez
et al. [5], we give an explicit classification for spherical-type (or finite type)
Artin groups, which are the groups that become finite when adding to their
presentation the relations s2 = 1 for every s ∈ S. For large type and FC-type,
a simpler question was addressed by Godelle [15]: He studied what happen-
s if in the definition of conjugacy stable we impose g to be an element of
S. At the end of Cumplido et al. [10], we completely classify the parabolic
subgroups of large Artin groups up to conjugacy stability, using the afore-
mentioned results of Paris and Godelle. The aim of this article is to use these
results to prove that conjugacy stability problem can be solved for every
Artin group satisfying three properties that are conjectured to always hold
in Artin groups.

If for an element α in an Artin group there is a unique minimal (with
respect to the inclusion) parabolic subgroup Pα containing α, we say that Pα

is the parabolic closure of α. We will show:

Theorem A. Let A be a standardisable (Definition 14) Artin group satisfying
the ribbon property (Definition 13) and such that every element in A has a
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parabolic closure. Then, there is an algorithm that decides whether a parabolic
subgroup P of A is conjugacy stable in A or not.

The existence of parabolic closures—which is a consequence of the intersec-
tion of two parabolic subgroups being a parabolic subgroup—and the oth-
er two hypotheses of the theorem are conjectured to be true for all Artin
groups. In particular, they are known to be true for spherical-type Artin
groups [9,12]. The standardisation and ribbon properties are true for FC-
type and two-dimensional Artin groups [13,14]. For FC-type, the problem
of the intersection of parabolic subgroups is solved for spherical-type para-
bolic subgroups—the conjugates of some spherical-type standard parabolic
subgroup—by Morris-Wright [20]. Using these results and the fact that FC-
type Artin groups can be seen as amalgamated free-products of spherical-
type Artin groups, we will partially solve the conjugacy stability problem for
parabolic subgroups of a FC-type Artin group A. We will totally solve the
problem if A is isomorphic to a free-product of spherical-type Artin groups,
by proving the existence of parabolic closures in this case (Proposition 28).
This is summarized in Theorem B.

Definition 2. Given an Artin group A and a parabolic subgroup P of A,
we say that P is conjugacy quasi-stable if for every two elements x, y ∈ P
contained in (possibly different) spherical-type parabolic subgroups of A such
that g−1xg = y with g ∈ A, there is z ∈ P such that z−1xz = y.

Remark 3. Notice that for spherical-type Artin groups being conjugacy quasi-
stable is equivalent to be conjugacy stable.

Theorem B. Let A be an FC-type Artin group. There is an algorithm that
decides whether a given parabolic subgroup P of A is conjugacy quasi-stable
in A. In particular, this algorithm can tell whether a spherical-type parabolic
subgroup is conjugacy stable or not.

Moreover, if A is isomorphic to a free product of spherical type Artin
groups, then every element of A has a parabolic closure and there is an algo-
rithm that solves the conjugacy stability problem for every parabolic subgroup
of A.

This article is structured in the following way: In Sect. 2 we will describe
a result of Paris [21] that gives an algorithm to decide when two standard
parabolic subgroups are conjugate in any Artin group, and we will give an
explicit form for this algorithm; in Sect. 3 we will explain how to modify this
algorithm to solve the conjugacy stability problem for parabolic subgroups
of Artin groups that satisfy the three hypothesis of Theorem A; in Sect. 4 we
will discuss the case of FC-type Artin groups.

Remark 4. After the first preprint of this paper, [3] generalised the results
in Cumplido et al. [10] and showed that the intersection of parabolic sub-
groups is a parabolic subgroup for two-dimensional Artin groups with a Cox-
eter graph—see next section—in which every vertex is disconnected from at
most one other vertex. This completed the set of three hypotheses needed in
Theorem A and allowed him two apply Algorithm 4 of Sect. 3 to solve the
conjugacy problem in this case.
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Figure 1. Classification of irreducible Coxeter graphs of
finite type

Haettel [17] has also proved the three conjectures for Euclidean Artin
groups of type Ã and C̃, so we know that the main theorem works for these
groups.

2. Conjugate Standard Parabolic Subgroups

In this section, we explain in detail the results in Paris, [21] to decide when
two standard parabolic subgroups are conjugate in an Artin group AS . This
work is based on the part of Daan Krammer’s thesis that solves the conjugacy
problem in Coxeter groups, which is published in Krammer, [18]. To begin,
we first need to know how to define the Coxeter graph of an Artin group and
the classification of Artin groups of spherical type.

Definition 5. The Coxeter graph ΓS of the Artin group AS is the graph de-
fined by the following data:

• The set of vertices of ΓS is S.
• There is an edge connecting s and t if and only if ms,t > 2. This edge if

labeled with ms,t if ms,t > 3.

If ΓS is connected, we say that AS is irreducible.

In Fig. 1, the reader can find the classification [8] of the ten types of irre-
ducible Artin groups of spherical type. All the other Artin groups of spherical
type are direct products of irreducible ones. When useful, we will refer to AS

as An, Bn, Dn . . . , but normally we will say that the Artin group and Cox-
eter graph are of type An, Bn, Dn . . . We denote the generators of AS by
s1, s2, s3, . . . , accordingly with the numbering of Fig. 1.

Given an Artin group AS , the submonoid A+
S of AS generated by S

has the exactly same presentation as AS (seen as monoid) [22]. If AS is an
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Artin group of spherical type, it has a Garside structure. This implies that
if AS has spherical type there is a lattice order � defined by “a � b iff
∃c ∈ A+

S , ac = b”. The least common multiple of all generators of S is called
the Garside element of AS and is denoted by Δ. By Brieskorn and Saito, [4]
we know that the centre Z(AS) of AS is generated either by Δ or by Δ2.

For Artin groups of type An (n ≥ 2),Dn (n ≥ 5), E6 and I2(m) (m ≥
5 and odd), Δ2 generates the centre of the group. Otherwise, Δ generates
the centre of AS . In the first case, the conjugation by Δ can be seen as a
reflection automorphism of ΓS . These conjugations, that are well-known by
experts, are detailed in what follows:

• For An, n ≥ 2, one has that Δ−1siΔ = sn−i+1.
• For Dn, with n ≥ 5 and n odd, the conjugation by Δ permutes s1 and

s2 and fixes the other generator.
• For E6, the conjugation by Δ fixes s1 and Δ−1siΔ = s8−i for i �= 1.
• For I2(m), with m ≥ 5 and m odd, the conjugation by Δ permutes s1

and s2.

We will be specially interested in the Artin groups such that the conju-
gation by Δ can be seen as a reflection automorphism of ΓS :

Definition 6. We say that AS is a twistable Artin group if it is one of the
following Artin groups of spherical type:

An, n ≥ 2; Dn, n ≥ 5 and n odd; E6; I2(m), m ≥ 5 and m odd.

Thanks to [24], we also know that a standard parabolic subgroup AY is
an Artin group having as Coxeter graph ΓY ⊂ ΓS . If AY has spherical type,
we denote its Garside element by ΔY .

Suppose that AX is a maximal proper standard parabolic subgroup of a
twistable standard parabolic subgroup AY of AS , in other words, X = Y \{t},
t ∈ X. If AY is of type An, n odd, suppose that t is not the central generator
of AY . If AY is of type E6 suppose that t does not correspond to s1 or s4
and if AY is of type Dn suppose that t corresponds to either s1 or s2. Then
Δ−1

Y AXΔY is a standard parabolic subgroup of AY different from AX . (If
t is one of the forbidden generators, then Δ−1

Y AXΔY = AX). This is the
main ingredient of Paris’ result, which states that two standard parabolic
subgroups AX and AX′ are conjugate if and only if it is possible to go from
one to the other by performing those types of conjugations or “twists”.

Let X ⊂ S and define Adj(X) as the set of vertices in ΓS that are
adjacent to ΓX . We will consider lists of couples (Y, c), where Y ⊂ S is a
subset of generators and c ∈ AS is an element that conjugates the set X to
the set Y . For a given X ⊂ S, we will recursively construct the list VX as
follows. Start the list with the couple (X, 1). For every (Y, c) in the list and
for every t ∈ Adj(Y ), take the connected component ΓY ′ of ΓY ∪{t} containing
t. If this component is twistable, conjugate Y by the Garside element ΔY ′ of
the component. If the result Z is a subset of generators that is not contained
in some couple of the list, add the couple (Z, cΔY ′). Repeat this process.
To prove that the process stops at some point, just observe that the set of
standard parabolic subgroups of an Artin group is finite.
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Theorem 7. Given an Artin group AS and two standard parabolic subgroups
AX and AX′ , AX is conjugate to AX′ if and only if there is a couple (X ′, c)
in VX , in which case c is a conjugacy element.

Proof. This theorem is a reformulation of [21, Theorem 4.1]. We can see that
c is a conjugacy element by its own construction. �

In Algorithm 1, we give to Paris’ result an explicit algorithmic form.
The algorithm tells us when two standard parabolic subgroups AX and AX′

are conjugate. If they are not, it constructs the whole list VX .

Algorithm 1: Algorithm that finds a conjugating element between
two standard parabolic subgroups or tells that it does not exist.

Input : The Coxeter graph ΓS of an Artin group AS and two
subsets X,X ′ ⊂ S.

Output: A conjugating element between the parabolic subgroups
AX and AX′ or “There is no conjugating element”.

if |X| �= |X ′| then
return “There is no conjugating element”;

V = {(X, 1)};
for (Y, c) ∈ V do

for t ∈ Adj(Y ) do

if the connected component ΓY ′ of ΓY ∪{t} containing t is
twistable then

Z = Δ−1
Y ′ Y ΔY ′ ;

if Z is not the first element of any couple in V then

V = V ∪ {(Z, cΔY ′)};

if Z = X ′ then
return cΔY ′ ;

return “There is no conjugating element”;

Example. Consider the spherical-type Artin group E7, as depicted in Fig. 1.
We are going to see that the parabolic subgroup AX with X = {s1, s2, s3, s4, s6}
is conjugate to AX′ , where X ′ = {s2, s4, s5, s6, s7}. First, we take s5 ∈
Adj(X). The set of generators X ∪{s5} = {s1, s2, s3, s4, s5, s6} defines a con-
nected spherical-type parabolic subgroup isomorphic to E6, which is twistable.
If we conjugate X by the Garside element of AX∪{s5}, we obtain the set of
generators Y = {s1, s2, s4, s5, s6}. Now take s7 ∈ Adj(Y ). The group de-
fined by Y ∪ {s7} has the connected component AZ , Z = {s1, s4, s5, s6, s7},
which is a (twistable) braid group. Conjugating by the corresponding Garside
element, we finally obtain Δ−1

Z Y ΔZ = X ′.



MJOM The Conjugacy Stability Problem Page 7 of 22 237

3. Solution to the Conjugacy Stability Problem

In this section, we will explain two of the three hypotheses of Theorem A,
namely the ribbon property and the property of being standardisable. After
that, we will construct the main algorithm of this paper to know when the
embedding of a standard parabolic subgroup merges conjugacy classes.

We first describe the results of Godelle [12–14] concerning the set of
elements conjugating two standard parabolic subgroup of an Artin group AS .
Suppose that AX , X ⊂ S \ T , is a standard parabolic subgroup of spherical
type and let X ′ = X \ {t}, for some t ∈ X. Since X has a spherical type, X ′

also has a spherical type and we can consider ΔX and ΔX′ . We have that

Δ−1
X ΔX′AX′Δ−1

X′ ΔX = Δ−1
X AX′ΔX = AY ,

for some subset Y ⊂ X. The conjugating element Δ−1
X′ ΔX and its inverse

is what Godelle respectively calls an elementary (X ′, Y )–ribbon and an ele-
mentary (Y,X ′)–ribbon.

In general, for any (not necessarily of spherical type) parabolic subgroup
AT of AS , if there is s ∈ S such that the component ΓU of ΓT∪{s} that
contains s is of spherical type, we call rT,s := Δ−1

U\{s}ΔU and its inverse
elementary ribbons—notice that ΓU does not need to be twistable—. We say
that an element r = r1r2 · · · rq is a (T, T ′)—ribbon if and only if there is a
sequence of sets of generators T = T1, T2, . . . , Tq+1 = T ′ such that each ri is
an elementary (Ti, Ti+1)—ribbon. The set of all (T, T ′)—ribbons is denoted
by Ribb(T, T ′). When referring to a (T, T ′)—ribbon without caring about
the specific T ′, we will use the term (T,−)—ribbon.

Now we will see some properties about ribbons. The following lemma
will allow us to work on some of the proofs using positive elementary ribbons
and treat the negative ones as an analogous case:

Lemma 8. Let AS be an Artin group, X ⊂ S and a ∈ S \ X. Suppose that
ΓY is the component of ΓX∪{a} that contains a. If there is an elementary
ribbon rX,a = Δ−1

Y \{a}ΔY , then there are T ⊂ S, s ∈ S \ T such that rT,s =
Δ−1

Y \{s}ΔY and r−1
X,a = ΔY \{s}Δ−1

Y .

Proof. We have that r−1
X,a = Δ−1

Y ΔY \{a} = ΔY \{s}Δ−1
Y , where s = Δ−1

Y aΔY .
To see that there is a positive elementary ribbon of the form Δ−1

Y \{s}ΔY , let
T = (X ∪ {a}) \ {s}. Hence, ΓY is the component of ΓT∪{s} that contains s

and rT,s = Δ−1
Y \{s}ΔY . �

Remark 9. In the above lemma, rT,s = Δ−1
Y \{s}ΔY and r−1

X,a = ΔY \{s}Δ−1
Y

are (positive and negative) elementary (T,X)—ribbons. Similarly, rX,a =
Δ−1

Y \{a}ΔY and r−1
T,s = ΔY \{a}Δ−1

Y are (positive and negative) elementary
(X,T )—ribbons.

The next two lemmas help us understand how the conjugation by rib-
bons transforms the generators of standard parabolic subgroups:
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Lemma 10. Let AS be an Artin group and X ⊂ S. Let t ∈ S \ X and Z ⊂
X ∪ {t} be such that ΓZ is the connected component of ΓX∪{t} containing t
and it is of spherical type. Let X ′ ⊆ X denote any subset defining a connected
component ΓX′ of ΓX . Then

• If AX′ defines a component which is not of spherical type, then
r−1
X,tsrX,t = s, for every s ∈ X ′.

• If AX′ is of spherical type and of type different from A,D,E6 and I2(m),
then r−1

X,tsrX,t = s, for every s ∈ X ′.
• If AX′ is of type either E6 or I2(m), then either r−1

X,tsrX,t = s for every
s ∈ X ′ or r−1

X,tsrX,t = ΔX′sΔ−1
X′ for every s ∈ X ′.

• If AX′ is of type either A or D, then r−1
X,tX

′rX,t ⊂ X ∪ {t}.
Proof. If X ′ is not of spherical type, then X ′ cannot be contained in Z and
X ′ and Z are not adjacent, so the conjugation by the elementary ribbon
rX,t does not modify X ′. Suppose that X ′ is different from A, D, E6 and
I2(m). If X ′ is not contained in Z, again X ′ and Z are not adjacent and
therefore X ′ cannot be modified by a conjugation by rX,t. If X ′ ⊂ Z, then
X ′ ⊂ Z \ {t} so (X ′, Z) ∈ {(Bm1 , Bm2), (B3, F4), (H3,H4), (E7, E8)}, for
1 < m1 < m2. In this case, both ΔX′ and ΔZ are central in AX′ and AZ , re-
spectively. This means that r−1

X,tsrX,t = s, for every s ∈ X ′. If X ′ is of type E6

or I2(m), we can suppose as before that X ′ ⊂ Z. In this case, (X ′, Z) ∈
{(E6, E7), (E6, E8)(I2(5),H3), (I2(5),H4)}, so ΔZ is central in AZ and ΔX′

is not central in AX′ . Thus, r−1
X,tsrX,t = Δ−1

Z ΔX′sΔ−1
X′ ΔZ = ΔX′sΔ−1

X′ for
every s ∈ X ′. The last item follows by definition. �
Remark 11. By Lemma 8, the previous lemma works analogously if we re-
place the positive elementary (X,−)—ribbon rX,t by a negative elementary
(X,−)—ribbon.

Lemma 12. Let AS be an Artin group, X ⊂ S, and α be an (X,X)—ribbon.
Let X ′ ⊆ X denote any subset defining a connected component ΓX′ of ΓX .
Then,

• If AX′ has not spherical type or has a spherical type different from A,
D, E6 and I2(m), then α−1sα = s, for every s ∈ X ′.

• If AX′ is of type E6 or I2(m), then either α−1sα = s for every s ∈ X ′

or α−1sα = ΔX′sΔ−1
X′ for every s ∈ X ′.

• If AX′ is of type A or D, then α−1X ′α = X ′′, where ΓX′′ is isomorphic
to ΓX′ .

Proof. By definition, α is a product
∏k

i=1 ri of elementary (Xi, Yi)—ribbons,
ri, where Yi = Xi+1 and X1 = Yk = X. When we conjugate AX′ by an
elementary X—ribbon, we obtain a parabolic subgroup of the same type.
Therefore, by Lemma 10 and Remark 11 we can distinguish three cases. If
AX′ has non-spherical type or has a spherical type different from A, D, E6

and I2(m), then all the conjugations by the elementary ribbons are trivial. If
AX′ is of type E6 or I2(m), then Δ2

X′ is the smallest positive power of ΔX′

that is central and all conjugations are as indicated in the second item of
Lemma 10. If AX′ is of type A or D, the result is trivial. �



MJOM The Conjugacy Stability Problem Page 9 of 22 237

Now we define the two main properties that used ribbons that are con-
jectured to be true for every Artin group:

Definition 13. Given an Artin group AS and S′ ⊆ S, we say that a pair
(X,Y ), X,Y ⊆ S′, is conjugate by ribbons in AS′ if, for any g ∈ AS′ ,

g−1AXg = AY if and only if g ∈ AX · (Ribb(X,Y ) ∩ AS′).

We say that AS satisfies the ribbon property if, for any two sets of generators
X,Y ⊂ S, the pair (X,Y ) is conjugate by ribbons in AZ for every Z ∈ {T ⊆
S |X,Y ⊆ T}.

Definition 14. Let AS be an Artin group and X,Y ⊂ S. We say that the pair
(X,Y ) is standardisable in AS if

∀g ∈ AS such that g−1AY g ⊆ AXthere are h ∈ AX and Z ⊆ X

such that h−1g−1AY gh = AZ .

In particular, if there is no g ∈ AS such that g−1AY g ⊆ AX , then (X,Y )
is standardisable. We say that AS is standardisable if every pair (X,Y ),
X,Y ⊂ S, is standardisable.

Godelle conjectures that every Artin group is standardisable and has the
ribbon property [14, Conjecture 1, Conjecture 4.2] after the first article by
Paris, [21] showing the ribbon property and other results about normalizers
for spherical-type Artin groups. Godelle proves that FC-type Artin groups
satisfy the ribbon property in [13, Theorem 3.2] and in [14, Proposition 4.3] he
uses the ribbon property to prove that they are also standardisable. He also
shows that all two-dimensional Artin groups are standardisable and satisfy
the ribbon property, and this is what we use in Cumplido et al. [10] to solve
the conjugacy stability problem for large Artin groups.

3.1. Proof of Theorem A

To prove Theorem A we will first prove the following theorem:

Theorem 15. Let AS be an Artin group and let X ⊂ S. There is an algorithm
that decides whether AX is conjugacy stable if the three following properties
hold:

• For any Y ⊂ S, the pair (X,Y ) is standardisable;
• For any X1,X2 ⊆ X, the pair (X1,X2) is conjugate by ribbons in AS

and in AX ;
• Every element α ∈ AX has a parabolic closure Pα in AS.

Let us see that the previous theorem implies Theorem A:

Proof of Theorem A. Let AS be an Artin group. To give a solution to the
conjugacy stability problem for parabolic subgroups of Artin groups, we shall
notice that the property of being conjugacy stable is preserved under conju-
gation. Hence, it suffices to give an algorithm that tells if a standard parabolic
subgroup AX is conjugacy stable for every X ⊂ S. To satisfy the conditions
of Theorem A, AS need to be standardisable and conjugate by ribbons and
every element α ∈ AS has a parabolic closure Pα in AS . In particular, we
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have the three conditions of Theorem 15 for every X ⊂ S, so we have the
desired algorithm. �

Before showing Theorem 15, we will prove some lemmas:

Lemma 16. Let AS be any Artin group, X ⊂ S and α, β ∈ AS. The parabolic
closure Pβ−1αβ exists if and only if Pα exists and in this case Pβ−1αβ =
β−1Pαβ.

Proof. Suppose that Pα exists and let Q be a parabolic subgroup containing
β−1αβ. Then α ∈ βQβ−1, where βQβ−1 is a parabolic subgroup. Hence
Pα ⊂ βQβ−1 and β−1Pαβ ⊂ Q. The converse is symmetric. �

Remark 17. Let (∗) be a property for parabolic subgroups that is preserved
under conjugation, such as being of spherical type. Notice that the previous
proof can be adapted to prove that, if P (∗)α is the unique minimal parabolic
subgroup containing α and satisfying (∗), then β−1P (∗)αβ is the unique
minimal parabolic subgroup containing β−1αβ and satisfying (∗).

The support, supp(g), of a positive element g ∈ AS is the set of all
generators that appear in any positive word representing g. For Artin groups
of spherical type, the parabolic closure of an element depends on the element
support. In particular, for positive elements we have the following result:

Lemma 18. ([9, Proposition 6.8]) Let AS be an Artin group of spherical type.
The parabolic closure of a positive element g ∈ AS is Asupp(g).

Our strategy to know if two elements are conjugate inside a parabolic
subgroup will be based on taking their parabolic closure and verifying if
this parabolic closure are conjugate inside the parabolic subgroup. However,
there several ways of sending a set of generators to another set of generators
by conjugacy. Due to that, standard parabolic subgroups of type Dk will
produce special cases that will need to be treated separately. The following
three lemmas will help to deal with these cases.

Lemma 19. Let AS be a spherical-type Artin group. Let Δe be a central power
of the Garside element and α and β be two elements of AS. Then α and β
are conjugate if and only if α−1Δe and β−1Δe are conjugate.

In particular, using the same numbering as in Fig. 1, the elements
(s1s3s4 · · · sn)−1Δ and (s2s3s4 · · · sn)−1Δ are not conjugate in Dn when n
is even.

Proof. The first statement is quite straightforward as γ−1αγ = β if and
only if γ−1α−1γ = β−1. Since Δe is central, this happens if and only if
γ−1α−1Δeγ = γ−1α−1γΔe = β−1Δe.

For the second statement, notice that by Lemma 18 the parabolic clo-
sures of s1s3s4 · · · sn and s2s3s4 · · · sn are respectively AS\{s2} and AS\{s1}.
We know by Algorithm 1 that these two parabolic subgroups are not conju-
gate in Dn if n is even. Therefore, by Lemma 16 and the previous statement,
(s1s3s4 · · · sn)−1Δ and (s2s3s4 · · · sn)−1Δ are not conjugate. �
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Lemma 20. Let AS be an Artin group and let AX and AT be standard para-
bolic subgroups so that T ⊂ X ⊂ S such that (T, T ) is conjugate by ribbons
in AX . Suppose that there is s ∈ S \ X so that the connected component
of ΓT∪{s} containing s is of type D2k+1, k > 1, and s = s5 with the number-
ing established for D2k+1 in Fig. 1. If AX is conjugacy stable, then at least
one of the following situations applies:

• There is t ∈ X adjacent to s4 such that the connected component of
AT∪{t} containing t and X ′ is of type D2k′+1, k′ > 1.

• There are t1 ∈ X adjacent to s1 and t2 ∈ X adjacent to s2, such that
the connected component of ΓT∪{t1} containing t1 is of type D2k1+1 and
the connected component of ΓT∪{t2} containing t2 is of type D2k2+1,
k1, k2 > 1.

Proof. Let ΓY be the connected component of AT∪{s5} containing s, which
is of type D2k+1, for some k > 1. Notice that s = s5 can be adjacent to at
most two connected components of ΓT , one being generated the subset X ′ =
{s1, s2, s3, s4} with the numbering established for D2k+1 in Fig. 1. The ele-
ment ΔY conjugates a := (s1s3s4)−1ΔX′ΔT\X′ = s2s1s3s4s2s1s3s4s2ΔT\X′

to b := (s2s3s4)−1ΔX′ΔT\X′ = s1s2s3s4s1s2s3s4s1ΔT\X′ .
Since AX is conjugacy stable, there is an element x ∈ AX such that

x−1ax = b. As a and b are positive and supp(a) = supp(b) = T , by Lemma
18 the parabolic closures of a and b are both AT . Then, by Lemma 16, any
element that conjugates a to b normalises AT . In particular x−1AT x = AT

and, since (T, T ) is conjugate by ribbons in AX , we can write x as x = x1x2

where x1 ∈ AT and x2 ∈ AX is a (T, T )—ribbon. Equivalently, we can write
x = x2x3, where x3 = x−1

2 x1x2 ∈ AT .
The non-trivial elementary (T,−)—ribbons in AX are the ones written

as rt := Δ−1
Z\{t}ΔZ or ΔZ\{t}Δ−1

Z (Remark 9), where t ∈ X, ΓZ is the con-
nected component of ΓT∪{t} that contains t and ΓZ∪{t} has spherical type.
If ΓZ does not contain X ′, since ΔT\X′ is central in AT\X′ , the conjugation
by all other elementary (T,−)—ribbons will commute with X ′ and will fix a.
If ΓZ contains X ′, as X ′ has type D4, we have that ΓZ∪{t} has type Dm. In
the case of type Dm, m even, the conjugation by rt centralises AZ and, in par-
ticular, it fixes a. In the case of type Dm with m odd, t is adjacent to either s1,
or s2, or s4. If for that case we suppose that none of the items of the lemma are
satisfied, then all t ∈ X are all adjacent to s1 or all adjacent to s2. So suppose
without loss of generality that all t ∈ X are adjacent to s1. Then, the conju-
gation by rt normalises AZ and permutes the elements in Z (it switches s2
and s4). Hence, rt conjugates a to c := (s1s3s2)−1ΔX′ΔT\X′ and it conju-
gates c to a. It follows that, as x2 is a product of elementary ribbons, each
one preserving T , one has x−1

2 ax2 ∈ {a, c}. Then, since x−1
3 (x−1

2 ax2)x3 = b
either a or c are conjugate to b in AT (and so in AX′). However, we know by
Lemma 19 that a is not conjugate to b in AX′ , and that c is not conjugate
to b in AX′ . A contradiction. Hence some of the items of the statement must
be satisfied. �
Lemma 21. Let AS be an Artin group and AX and AT , T ⊂ X ⊂ S, be
standard parabolic subgroups such that (T, T ) is conjugate by ribbons in AX .
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Suppose that there is s ∈ S \ X so that the connected component of ΓT∪{s}
containing s is of type D2k+1, k > 2, and s = s2i+1, i > 2, with the numbering
established for D2k+1 in Fig. 1. If AX is conjugacy stable in AS, then there is
t ∈ X adjacent to s2i such that the connected component of ΓT∪{t} containing
t is of type D2k′+1, k′ > 2.

Proof. The proof is analogous to the proof of the previous lemma. Notice
that s = s2i+1 can be adjacent to at most two connected components of ΓT ,
one being generated the subset X ′ = {s1, s2, s3, s4, · · · s2i} with the num-
bering established for D2k+1 in Fig. 1. Suppose also that there is no t ∈
X adjacent to s2i such that the connected component of ΓT∪{t} contain-
ing X ′ is of type D2k′+1 for some k′ > 2. The element ΔY conjugates
a := (s1s3 · · · s2i)−1ΔX′ΔT\X′ to b := (s2s3 · · · s2i)−1ΔX′ΔT\X′ . Suppose
that AX is conjugacy stable. Then, there is x ∈ AX such that x−1ax = b.

It is well-known by experts that ΔX′ = (s2s3 · · · s2is1)2i−1 = (s1s3 · · ·
s2is2)2i−1 (see [4] and [23]). So, by Lemma 18, the parabolic closure of both a
and b is AT . Then, by Lemma 16, x normalises AT . As in the proof of the
previous lemma, (T, T ) being conjugate by ribbons in AX means that we can
write x = x2x3, where x2 ∈ AX is an (T, T )—ribbon and x3 ∈ AT . The
non-trivial elementary (T,−)—ribbons belonging to AX are rt := Δ−1

Z\{t}ΔZ

or ΔZ\{t}Δ−1
Z (Remark 9), where t ∈ X, ΓZ is the connected component of

ΓT∪{t} that contains t and ΓZ∪{t} has spherical type. If ΓZ does not contain
X ′, since ΔT\X′ is central in AT\X′ , the conjugation by all other elementary
(T,−)—ribbons will commute with X ′ and will fix a. Otherwise, in ΓZ has
type E7 or D2k′+1 for some k′ > i. In the E7 case, the conjugation by rt

centralises AZ and it fixes a. We have supposed that the D2k′+1 case does
not happens, so x−1

2 ax2 = a. Hence x−1
3 ax3 = b with x3 ∈ AX′ , which by

Lemma 19 is a contradiction. �

The following lemma will help to deal with fact that an element in
the stabilizer of a standard parabolic subgroup can permute its connected
components.

Lemma 22. Let AS be an Artin group and AX , X ⊂ S, a standard parabolic
subgroup of AS which is conjugacy stable. Suppose that for any X1,X2 ⊆ X,
the pair (X1,X2) is conjugate by ribbons in AX . Let X1,X2 ⊂ X be such
that g−1X1g = X2, for some g ∈ AS. Then there is g′ ∈ AX such that
g−1Y g = g′−1Y g′ for every connected component ΓY of ΓX1 .

Proof. Denote by ΓY1 ,ΓY2 , . . . ,ΓYl
, Yi ⊂ X1, the connected components of

ΓX1 . For each i, denote by si,j , 1 ≤ j ≤ |Yi| the elements in Yi. Now

define yi :=
(
∏|Yi|

j=1 si,j

)ki

, where the ki’s are chosen to satisfy that the

number of letters in
(
∏|Yi|

j=1 si,j

)ki

is different from the number of letters in
(
∏|Yi′ |

j=1 si′,j

)ki′
for i′ �= i.

By Lemma 18, we know that the element a := y1y2 . . . yl has parabolic
closure AX1 and that g−1ag has parabolic closure AX2 . Since AX is conjugacy
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stable in AS , there must be h ∈ AX such that h−1ah = g−1ag. Then, by
Lemma 16, h−1AX1h = AX2 . The ribbon hypothesis tells us that h = h1h2

with h1 ∈ AX1 and h2 ∈ Ribb(X1,X2) ∩ AX . So h2 is an element in AX

conjugating X1 to X2. Also, since h1 ∈ AX1 , the conjugation h1 preserves
each Yi and one has that h−1AYi

h = h−1
2 AYi

h2 for 1 ≤ i ≤ l—observe that
conjugations by g and h2 send letters to letters, but h and h1 do not have
to—.

Suppose that g−1Yig �= h−1
2 Yih2 for some 1 ≤ i ≤ l. By the previous

discussion, one should have that hg−1(y1y2 . . . yl)gh−1 = y1y2 . . . yl, but let
us see that this is impossible: The conjugation by gh−1 permutes non trivially
the components of AX1 and every yi is contained in a different component,
so there is some yi such that hg−1yigh−1 = yi′ , for i′ �= i. However, since the
relations in an Artin group are homogeneous, two positive words representing
two conjugate positive elements need to have the same number of letters. This
is a contradiction and therefore we can set g′ = h2. �

Proof of Theorem 15. We are going to prove that a standard parabolic sub-
group AX is conjugacy stable in AS if and only if the following conditions
are fulfilled:

1. For every X ′ ⊂ X such that g−1X ′g ⊂ X, for some g ∈ AS , there is
h ∈ AX such that g−1X ′′g = h−1X ′′h for every connected component
ΓX′′ of ΓX′ .

2. Let AT , T ⊂ X, be a parabolic subgroup. Let s ∈ S \ X be such that
the connected component of ΓT∪{s} containing s is of type D2k+1, k > 2
with s = s2i+1 following the numbering of Fig. 1, then there is s′ ∈ X
adjacent to s2i such that the connected component of ΓT∪{s′} containing
s′ is of type D2k′+1, k′ > 2. This condition is checked by Algorithm 2.

3. Let AT , T ⊂ X, be a parabolic subgroup. Let s ∈ S \ X be such that
the connected component of ΓT∪{s} containing s is of type D2k+1, k > 1
and s = s5 with the numbering of Fig. 1. Then either there is s′ ∈ X
adjacent to s4 such that the connected component of ΓT∪{s′} containing
s′ is of type D2k′+1, k > 1, or there are t1 ∈ X adjacent to s1 and t2 ∈ X
adjacent to s2 such that the connected component of ΓT∪{t1} containing
t1 is of type D2k1+1, k1 > 1 and the connected component of ΓT∪{t2}
containing t2 is of type D2k2+1, k2 > 1. This condition is checked by
Algorithm 3.
Once this is proven, we will be able to construct an algorithm to solve

the conjugacy stability problem, explained in Algorithm 4. This is a refine-
ment of Algorithm 1 that considers permutations of components and the D2k

exceptions.
By Lemmas 20, 21 and 22, we know that if some of the items is not

satisfied, then AX cannot be conjugacy stable in AS . So we need to prove
that if all the items are satisfied, then AX is conjugacy stable.

Let α, β ∈ AX be such that there is g ∈ AS satisfying g−1αg = β.
Let Pα, Pβ ⊂ AX be the minimal parabolic subgroups containing α and
β respectively. Suppose that all of the items of the theorem are fulfilled.
Thanks to the standardisation condition, we know that Pα = g−1

1 AY g1 and
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Pβ = g−1
2 AZg2, with g1, g2 ∈ AX and Y,Z ⊆ X. Also, Lemma 16 implies

that Pα = g−1Pβg. So, up to conjugacy by elements of AX , we can suppose
that AY and AZ are the parabolic closures of α and β and are conjugate
by g.

(Y,Z) being conjugate by ribbons in AS tells us that g = a1 · a2 where
a1 ∈ AY and a2 is a (Y,Z)—ribbon in AS . Since the first item is satisfied
and a−1

1 Y a1 = Z, we know that there is h ∈ AX such that g−1Yig = h−1Yih
for every connected component ΓYi

of ΓY . As (Y,Z) is conjugate by ribbons
in AX , h = b1 ·b2 where b1 ∈ AY and b2 is a (Y,Z)—ribbon in AS . Also, note
that b1 cannot permute the connected components of Y : b1 = y1 · · · yn where
yi ∈ Yi, so every yi commutes with Yj , j �= i. Hence a−1

2 Yia2 = b−1
2 Yib2 for

every connected component ΓYi
of ΓY .

Notice that a2b
−1
2 is a (Y, Y )—ribbon. Since the connected compo-

nents of Y are preserved, the conjugation by a2b
−1
2 induces an isomorphis-

m of the subgraph ΓYi
. If AYi

has not spherical type or it has a spherical
type and it is non-twistable, we know by Lemma 12 that b2a

−1
2 sa2b

−1
2 = s,

for every s ∈ Yi. If AYi
is of type A or D2k+1, the only isomorphisms

of graphs that we can have are the trivial one and a reflection switching
the vertices corresponding to the two first generators. Then we have either
b2a

−1
2 sa2b

−1
2 = s or Δ−1

Yi
b2a

−1
2 sa2b

−1
2 ΔYi

= s. This is also valid if AYi
has

type E6 or I2(m) by Lemma 12. If AYi
is of type D2k, the only non-trivial

isomorphism of ΓYi
is a switch of the two first vertices. But, since ΔYi

is
central, the conjugation by ΔYi

cannot perform this isomorphism. Then, if
the conjugation by a2b

−1
2 switches the vertices, there must be a t ∈ S adja-

cent to ΓYi
such that the connected component of ΓY ∪{t} containing Yi is of

type D2k′+1 (notice that the conjugation by Δ2k′+1 does the desired switch-
ing). Then, by conditions 2 and 3 above, either there is t ∈ X adjacent to
Yi such that Δ−1

Y ′ b2a
−1
2 sa2b

−1
2 ΔY ′ = s, where ΓY ′ is the connected compo-

nent of ΓY ∪{t} containing t; or there are t1, t2 ∈ X adjacent to Yi such that
Δ−1

Y ′′Δ−1
Y ′ b2a

1
2sa2b

−1
2 ΔY ′ΔY ′′ = s, where ΓY ′ is the connected component of

ΓY ∪{t1} containing ΓY ′ is the connected component of ΓY ∪{t2} containing
ΓY ′ .

The previous paragraph means that we can suppose that a−1
2 sa2 =

b−1
2 sb2 up to conjugations by elements of the form ΔX′ , X ′ ⊂ X. Then, up

these conjugations, g−1αg = a−1
1 b−1

2 αb2a1. Since b2, a1 ∈ AX , we have proven
that under the three items, AX is conjugacy stable in AS . �

4. FC-type Artin Groups

If every standard parabolic subgroup of an Artin group AS that does not
contain infinite relations has a spherical type, then AS is said to be of FC-
type. The aim of this section is to prove Theorem B, that is, to discuss
whether we can apply the algorithm to solve the conjugacy stability problem
in Artin groups of FC-type. From now on, suppose that AS has FC-type.

It is shown in [1, Proposition 2] that, if s, t ∈ S are such that ms,t = ∞,
then AS is isomorphic to the amalgamated free product of AS\{s} and AS\{t}
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over AS\{s,t}, denoted by AS\{s} ∗AS\{s,t} AS\{t}. Then, if we give an order to
the ∞-labels of AS , we will obtain a specific amalgamated product structure
for AS . The next two propositions about canonical forms in amalgamated
free products can be found in [19, Section 4] and sometimes will be used
without explicit reference:

Proposition 23. (Canonical form for amalgamated free products) Given the
amalgamated free product G = G1 ∗H G2 of the groups G1 and G2 over H,
we respectively denote by C1 and C2 the transversals of G1/H and G2/H
that contain 1. Then, every x ∈ G can be uniquely expressed as a product
x = x1x2 · · · xrh, where h ∈ H, xi ∈ C1 ∪ C2 is not trivial for i = 1, . . . , r,
and xi and xi+1 belong to different transversals if r > 1. This expression is
called the amalgam normal form of x, and we denote it by ρ(x).

Proposition 24. (Conjugacy in amalgamated free products) Given the previ-
ous amalgamated free product G = G1 ∗H G2, any element g ∈ G is conjugate
to an element x with amalgam normal form x1x2 · · · xrh, in which x1 and xr

belong to different transversals. We say that such an element x is cyclically
reduced. Moreover,

• if x is conjugate to a element written y = p1p2p3 · · · pk, k ≥ 2, where
pi,pi+1 as well as p1,pk belong to different transversals, then x is ob-
tained from y by cyclically permuting p1p2p3 · · · pk and then conjugating
by an element of H;

• if H = {1} and x is conjugate to an element y in one of the factors
(G1 or G2), then x and y belong to the same factor and are conjugate
in that factor.

The amalgamated free product structure of a standard parabolic subgroup
AX of AS heavily relies on the structure of AS . The next result is a conse-
quence of [1, Theorem 2].

Lemma 25. ([13, Corollary 1.12]) Let AS � AS\{s} ∗AS\{s,t} AS\{t} be a FC-
type Artin group. Let X ⊂ S. If w ∈ AX , then the amalgam normal form of
w has its terms in AX .

4.1. Proof of Theorem B

In [20, Corollary 3.2], it is proven that if an element α of an FC-type Artin
group is contained in a spherical-type parabolic subgroup, then there is a
unique minimal (by inclusion) spherical-type parabolic subgroup Qα contain-
ing α. We call Qα the spherical-type parabolic closure of α. Since all parabolic
subgroups of a spherical-type Artin group have a spherical type, we can use
Remark 17 to easily adjust the proof of Theorem 15 and be able to apply
Algorithm 4 to spherical-type parabolic subgroups.
The following lemma will allow us to complete the proof of the first part of
Theorem B.

Lemma 26. Let AS be an Artin group of FC type and AX , X ⊂ S, a standard
parabolic subgroup of non-spherical type. If α ∈ AX belongs to a spherical
parabolic subgroup of AS, then the spherical-type parabolic closure Qα of α is
contained in AX .
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Proof. Choose an ∞-label ms,t in AX and take the decompositions A �
AS\{s} ∗AS\{s,t} AS\{t} and AX � AX\{s} ∗AX\{s,t} AX\{t}. We know by Lem-
ma 25 that the amalgam normal form of α has their terms in AX so it is
also an amalgam normal form with respect to the structure of AX . Then, we
can obtain a cyclically reduced element x ∈ AX from α by conjugating by an
element c of AX . Also, we can write Qα = β−1AY β, where AY is a spherical
type standard parabolic subgroup of AS . Then, βαβ−1 ∈ AY and we can
obtain a cyclically reduced element y ∈ AY from βαβ−1 by conjugating by
an element of AY . We will show our lemma by induction on the number of
∞-labels of AX .

Suppose that there is only one ∞-label ms,t in AX . We first prove that
x is contained in a spherical-type standard parabolic subgroup AX′ . In this
case AX\{s} and AX\{t} have a spherical type, so if x is contained in any of
them we are done. Suppose then that x is not contained in any of these two
subgroups. As x and y are conjugate and cyclically reduced, by Proposition
24 x is obtained from y by conjugating by an element in AY ∪(S\{s,t}). Then,
x ∈ AX′ := AY ∪(S\{s,t}). Since AY has spherical type, Y cannot simulta-
neously contain s and t. By Van der Lek, [24], the intersection of standard
parabolic subgroups is (the expected) standard parabolic subgroup, meaning
that AX ∩ AX′ = AX∩X′ . So x is contained in AX∩X′ , which has a spher-
ical type because it lies in AX and cannot contain simultaneously s and t.
Conjugating by c−1, we have that α is in the spherical-type parabolic sub-
group cAX∩X′c−1 < AX , which must contain Qα because the spherical-type
parabolic closure is unique. This finishes the proof of the base case of our
induction.

To prove the step case suppose that, if α is contained in a standard
parabolic subgroup with less than k ∞-labels, then Qα is contained in that
parabolic subgroup. Let AX have k labels. If x belongs to AX\{s} or AX\{t},
then x belongs to the standard parabolic subgroup containing less than k
∞-labels. Otherwise, applying the same reasoning as in the initial case, x ∈
AX ∩AY ∪(S\{s,t}), which also has less than k ∞-labels. Thus, by hypothesis,
the spherical-type parabolic closure Qx of x is in AX . Therefore, α is in
the spherical-type parabolic subgroup cQxc−1 < AX , which must contain
Qα. �

In the particular case in which AS is a free product of spherical-type
Artin groups, we can prove the existence of a parabolic closure, hence all the
hypotheses of Theorem A will be fulfilled.

Lemma 27. Suppose that AS is an Artin group of FC-type such that AS �
AX1 ∗ AX1 ∗ · · · ∗ AXk

, where every AXi
is a spherical-type Artin group. Let

α ∈ AS. Then, any minimal parabolic subgroup containing αm for any m ∈ Z

contains also α.

Proof. If α in contained in a single factor AXi
, this is proven in [9, The-

orem 8.2]. Suppose otherwise and let P be a minimal parabolic subgroup
containing αm. There is an element β such that β−1Pβ = AX is standard.
Notice that β−1αmβ = (β−1αβ)m. This means that the amalgam normal



MJOM The Conjugacy Stability Problem Page 17 of 22 237

form of (β−1αβ)m can be written using only letters in X (Lemma 25). By
hypothesis, the length of the amalgam form of β−1αβ is bigger than 1, hence
all the letters in the amalgam normal form of β−1αβ are letters that appear
in the amalgam normal form of (β−1αβ)m. Therefore AX contains β−1αβ.
Conjugating by β−1, we have that P contains α. �

Proposition 28. If AS is an Artin group of FC-type such that AS � AX1 ∗
AX1 ∗ · · · ∗ AXk

, where every AXi
is a spherical-type Artin group, then every

element α has a parabolic closure Pα.

Proof. We will prove the proposition by induction on k. If k = 1, AS has
spherical type and the result is true by [9, Proposition 7.2]. Now suppose that
the result is true for k − 1 and consider the free product structure AX1 ∗ B
where B = AX2 ∗ AX3 ∗ · · · ∗ AXk

. Suppose there are two minimal parabolic
subgroups P1 = β−1AY β, P2 = γ−1AZγ containing α. By [20, Theorem 3.1],
if P1 and P2 have spherical type, then α is contained in P1 ∩ P2, so by
minimality P1 = P2. Suppose then that P1 has non-spherical type. Then,
AY is a minimal parabolic subgroup containing α′ := βαβ−1 and AZ is
a minimal parabolic subgroup containing α′′ := γαγ−1. Applying Algorithm
1Algorithm implies that if AY and AZ are different, they cannot be conjugate.

Let α1α2α3 · · · αr be the amalgam normal form of α′ with respect to
AX1 ∗ B. We also know that α′ and α′′ are conjugate and that all αi’s are
contained in AY (Lemma 25). If r = 1, then by Proposition 24 we have
that α′ and α′′ belong to the same factor F of the free product and are
conjugate by an element f in that factor. By inductive hypothesis, AY is
the parabolic closure of α′ in F and AZ is the parabolic closure of α′′ in
F , so by Lemma 16 f has to conjugate AY to AZ , which is only possible if
AY = AZ . Since α′′ = γβ−1α′βγ−1, we can apply again Lemma 16 to obtain
γβ−1AY βγ−1 = AY , so P1 = P2. If r ≥ 2, then α′′ is obtained from α′

by cyclically permuting the αi’s. This means that α′, α′′ belong AY ∩ AZ ,
which by Van der Lek,[24] is a parabolic subgroup contained in AY and AZ .
As AY and AZ are minimal, we have that AY = AY ∩ AZ = AZ . It remains
to show that this implies P1 = P2. Notice that P2 can be obtained from P1

by using conjugation by an element that centralizes α, namely c := βgγ−1,
where g is the element that conjugates α′ to α′′. Now, by [19, Corollary 4.1.6],
either c and α are in the same factor (this would be the case r = 1) or α
and c are a power of the same element h. By Lemma 27, h ∈ P1, hence
P2 = c−1P1c = P1. �

Proof of Theorem B. Thanks to [13, Theorem 3.2] and [14, Proposition 4.3],
we know that A is standardisable and has the ribbon property. If A has a
free product structure, then every element has a parabolic closure (Propo-
sition 28) and we can apply Algorithm 4Algorithm. Now suppose that A
is any FC-type Artin group and that AX is standard parabolic subgroup
of A. We need to prove that there is an algorithm that takes as input A
and AX and decides whether for every two elements x, y ∈ AX , with x, y
contained in (possibly different) spherical-type parabolic subgroups, and such
that g−1xg = y with g ∈ A, there is g′ ∈ H such that g′−1xg′ = y. Lemma 26
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proves that the spherical-type parabolic closures Qx and Qy, are contained
in AX . This last condition and the existence of a spherical-type parabolic clo-
sure suffice to reproduce the proof of Theorem 15—just replacing parabolic
closures by spherical-type parabolic closures—and show that running Algo-
rithm 4Algorithm will do the job—notice that the only distinct irreducible
standard parabolic subgroups that can be conjugate are the spherical-type
ones—. �

Algorithm 2: Algorithm to check the D2k, k > 2, exceptions described
in the proof of Theorem 15

Input : The Coxeter graph ΓS of an Artin group AS and three
subgraphs ΓX ⊂ ΓS , ΓY ′ ⊂ ΓY ⊂ ΓX such that AX and AS

satisfies the hypotheses of Theorem 15 and Γ′
Y is a

connected component of ΓY of type D2k.
Output: 1 (if we know that AX is not conjugacy stable) or 0.

Label the elements s1, s2, . . . , s2k of Y as in Fig. 1.
for t ∈ Adj({s2k}) ∩ (S \ X) do

if the connected component of ΓY ∪{t} containing Y ′ (and t) is of
type D2m+1, for some m then

for t′ ∈ Adj({s2k}) ∩ X do
if the connected component of ΓY ∪{t′} containing Y ′

(and t′) is of type D2m′+1, for some m′ then
return 0;

return 1;

return 0
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Algorithm 3: Algorithm to check the D4 exceptions described in the
proof of Theorem 15

Input : The Coxeter graph ΓS of an Artin group AS and two
subgraphs ΓX ⊂ ΓS , ΓY ′ ⊂ ΓY ⊂ ΓX such that AX and AS

satisfy the hypotheses of Theorem 15 and ΓY ′ is a
connected component of ΓY of type D4.

Output: 1 (if we know that AX is not conjugacy stable) or 0.

Label the elements s1, s2, s3, s4 of Y as in Fig. 1.
Z = {s1, s2, s3};
for s ∈ Z do

for t ∈ Adj({s}) ∩ (S \ X) do
p = 0; q = 0;
if the connected component of ΓY ∪{t} containing Y ′ (and t)
is of type D2m, for some m then

p = 1; q = 1;
for t′ ∈ Adj({s}) ∩ X do

if the connected component of ΓY ∪{t′} containing Y ′

(and t′) is of type D2m′+1, for some m′ then
p = 0; break loop;

if p = 1 then
for t1 ∈ Adj(Z \ {s}) ∩ X do

if the connected component of ΓY ∪{t1} containing
Y ′ (and t1) is of type D2m1+1, for some m1 then

for t2 ∈ Adj(Z \ {s, t1}) ∩ X do
if the connected component of ΓY ∪{t2}
containing Y ′ (and t2) is of type D2m2+1,
for some m1 then

p = 0; break loop;

if p = 0 then
break loop;

if p = 1 then
return 1;

if q = 1 then
break loop;

return 0
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Algorithm 4: Algorithm that tell us if a parabolic subgroup is conju-
gacy stable or not.

Input : The Coxeter graph ΓS of an Artin group AS and a ΓX ⊂ AS

such that AX and AS satisfy the hypotheses of Theorem 15.
Output: “AX is conjugacy stable” or “AX is not conjugacy stable”.

for (X1, X2) ⊂ (X, X) such that |X1| = |X2| do
if ΓX1 is of type D2k then

if k > 2 then
run algorithm 2;
if algorithm 2 returns 1 then

return “AX is not conjugacy stable”;

if k = 2 then
run algorithm 3;
if algorithm 3 returns 1 then

return “AX is not conjugacy stable”;

ΓX′
1
, ΓX′

2
, . . . , ΓX′

m
:= components of ΓX1 ;

C := {(X ′
1, X

′
2, . . . , X

′
m)};

if X1 = X2 then
D := {(X ′

1, X
′
2, . . . , X

′
m)};

else
D := {∅};

for (Y1, Y2, . . . , Ym) ∈ C do
Y := Y1 ∪ Y2 ∪ · · · ∪ Ym;
for t ∈ X ∩ Adj(Y ) do

if the connected component ΓY ′ of ΓY ∪{t} containing t is

twistable then

Z = Δ−1
Y ′ Y ΔY ′ ;

T = (Δ−1
Y ′ Y1ΔY ′ , Δ−1

Y ′ Y2ΔY ′ , . . . , Δ−1
Y ′ YmΔY ′);

if T /∈ C then

C = C ∪ {T};
if Z = X2 and T �∈ D then

D = D ∪ {T};

for (Y1, Y2, . . . , Ym) ∈ C do
Y := Y1 ∪ Y2 ∪ · · · ∪ Ym;
for t ∈ Adj(Y ) do

if the connected component ΓY ′ of ΓY ∪{t} containing t is

twistable then

Z = Δ−1
Y ′ Y ΔY ′

T = (Δ−1
Y ′ Y1ΔY ′ , Δ−1

Y ′ Y2ΔY ′ , . . . , Δ−1
Y ′ YmΔY ′)

if T /∈ C then

C = C ∪ {T};
if Z = X2 and T �∈ D then

return “AX is not conjugacy stable”;

return “AX is conjugacy stable”;
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[16] González-Meneses, J.: Geometric embeddings of braid groups do not merge
conjugacy classes. Bol. Soc. Mat. Mex. 20(2), 297–305 (2014)

[17] Haettel, T.: Lattices, injective metrics and the K(π, 1) conjecture. arX-
iv:2109.07891 (2021)

[18] Krammer, D.: The conjugacy problem for Coxeter groups. Groups Geom. Dyn.
71–171 (2009)

[19] Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory. Wiley,
New York (1966)

[20] Morris-Wright, R.: Parabolic subgroups in FC-type Artin groups. J. Pure Appl.
Algebra 225(1), 106468 (2021)

[21] Paris, L.: Parabolic Subgroups of Artin Groups. J. Algebra 196(2), 369–399
(1997)

[22] Paris, L.: Artin monoids inject in their groups. Comment. Math. Helv. 77(3),
609–637 (2002)

[23] Paris, L.: Artin groups of spherical type up to isomorphism. J. Algebra 281(2),
666–678 (2004)

[24] Van der Lek, H.: The Homotopy Type of Complex Hyperplane Complements.
Ph.D. thesis, Nijmegen (1983)
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