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Abstract. In this note, it is proved the existence of a c-dimensional
vector space of real-entire functions all of whose nonzero members are
non-integrable in the sense of Lebesgue but yet their two iterated in-
tegrals exist as real numbers and coincide. Moreover, it is shown that
this vector space can be chosen to be dense in the space of all real
C∞-functions on the plane endowed with the topology of uniform con-
vergence on compacta for all derivatives of all orders. If the condition
of being entire is dropped, then a closed infinite dimensional subspace
satisfying the same properties can be obtained.
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1. Introduction

According to Fubini’s theorem (see e.g. [11, Chapter 17]), if a real function
f , which is defined on a measure space X × Y that is the product of two σ-
finite product spaces, is integrable, then its two iterated integrals exist as real
numbers and coincide, and in fact their common value is the integral of f on
the product space. In [2] it is analyzed –among other questions– the algebraic
size of the set of those measurable functions f : X × Y → R being non-
integrable but still satisfying the conclusion of Fubini’s theorem, that is, its
two iterated integrals exist as real numbers and are equal. These functions are
called pseudo-Fubini functions, and they abound in a topological-algebraic
sense.

Specifically, it is shown in [2] that, under appropriate soft conditions on
the measure spaces X and Y , there exists a c-dimensional vector space all of
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whose nonzero members are pseudo-Fubini that is dense in the space of all
measurable functions X × Y → R when endowed with its natural metrical
topology. Here c denotes the cardinality of the continuum.

Turning to the more familiar setting of the Lebesgue measure (dx on
the real line R, and dxdy on the plane R

2) as well as to functions with richer
properties, in [3] it is exhibited an explicit c-dimensional vector space of
analytic functions R

2 → R all of whose nonzero elements are pseudo-Fubini
that is dense in the Fréchet space of all real continuous functions on R

2 when
endowed with the compact-open topology. Recall that, if Ω is an open subset
of R

2, then a function f : Ω → R is said to be analytic on Ω whenever, given
(x0, y0) ∈ Ω, there are a neighborhood U of (x0, y0) with U ⊂ Ω and a double
sequence {ajk}j,k≥0 ⊂ R such that f(x, y) =

∑
j,k≥0 ajk(x−x0)j(y −y0)k for

every (x, y) ∈ U , the convergence being absolute (see, e.g., [5, Chap. 4] for
background on real or complex analytic functions of several variables).

Going one step further, in [3] it is posed the problem of the existence of
entire functions R

2 → R that are pseudo-Fubini. Recall that a function f :
R

2 → R is said to be entire if an absolutely convergent expansion f(x, y) =∑
j,k≥0 ajkxjyk is valid on the whole plane. Note that any entire function on

R
2 is analytic but the converse is false: consider, for instance, the function

f(x, y) = 1
1+x2+y2 .

In this short note, we solve in the affirmative the last problem. In fact,
it is proved that the family of pseudo-Fubini entire functions is, again, rather
large in both algebraic and topological senses. This will be done in Sect.
3. Section 2 will be devoted to fix some notation and provide a number
of preliminary results. In Sect. 4 the problem of existence of closed infinite
dimensional spaces made up of pseudo-Fubini smooth functions is considered.

2. Preliminaries and Notation

Let k,N ∈ N := {1, 2, . . . } and Ω be a nonempty open subset of R
N . The

case N = 2, Ω = R
2 will be mostly considered. Throughout this note, we

shall use the following –mostly standard– notation:

• C(Ω) will stand for the set of all real continuous functions on Ω. This
set becomes a Fréchet space when endowed with the topology of uniform
convergence in compacta, see [9].

• Ck(Ω) denotes the vector space of all functions Ω → R that are k times
differentiable on Ω.

• C∞(Ω) represents the set of all real functions on Ω that are infinitely
times differentiable on Ω. This set becomes a Fréchet space when en-
dowed with the topology of uniform convergence in compacta for all
partial derivatives of all orders, see [9].

• Cω(Ω) will stand for the vector space of all functions Ω → R that are
analytic on Ω.

• EN denotes the vector space of all real entire functions on R
N . Then

EN ⊂ Cω(RN ) ⊂ C∞(RN ).
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• L1(Ω) represents the vector space of all functions Ω → R that are
Lebesgue integrable on Ω.

• For each multi-index α = (α1, . . . , αN ) ∈ (N ∪ {0})N , we set |α| :=
α1 + · · · + αN .

In addition, we denote by pF(R2) the vector space of all pseudo-Fubini
functions f : R

2 → R, meaning that each of such functions is Lebesgue mea-
surable but not Lebesgue integrable and, in addition, both iterated integrals∫
R

( ∫
R

f(x, y) dx
)
dy,

∫
R

( ∫
R

f(x, y) dy
)
dx exist as real numbers and have

the same value.
We now turn to a different setting. If E is a vector space, we can

study the algebraic size of a subset, which becomes more interesting if such
a subset is not a vector space in itself (see [1] for background on this line of
research, called lineability). The basic concepts that are relevant to this note
are contained in the following definition.

Definition 2.1. Assume that E is a vector space. Let A ⊂ E and α be a
cardinal number. Then A is called lineable if A∪{0} contains some infinite
dimensional vector space. If, in addition, E is a topological vector space
and A ∪ {0} contains some dense (some (dense) α-dimensional, some closed
infinite dimensional, resp.) vector subspace of E, then A is said to be dense
lineable (α-(dense) lineable, spaceable, resp.) in E. And A is called maximal
dense lineable in E if it is dim(E)-dense lineable.

Under the previous terminology, the main result in [3] can be stated as
follows.

Theorem 2.2. The set pF ∩ Cω(R2) is maximal dense lineable in C(R2).

The main result in this note (Theorem 3.1) tells us that the same asser-
tion holds when one replaces Cω(R2) by the much smaller family E2, and the
space C(R2) by the space C∞(R2), whose topology is much stronger than
that inherited from the former space. With this aim, we shall make use of the
next two assertions. The first one enables us to extract dense lineability from
mere lineability and can be found in [1, Chapter 7], while the second one is an
approximation result due to Frih and Gauthier [6], which is a strengthening
of corresponding results due to Carleman [4], Scheinberg [12] and Hoischen
[8] [cases (k = 0, N = 1), (k = 0, N arbitrary) and (k arbitrary, N = 1),
resp.].

Theorem 2.3. Assume that E is a metrizable separable topological vector
space, that κ is an infinite cardinal number and that A,B are subsets of
E satisfying the following properties:

• A is κ-lineable,
• B is dense lineable,
• A + B ⊂ A, and
• A ∩ B = ∅.

Then A is κ-dense lineable in E.
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Theorem 2.4. Assume that N, k ∈ N, that f ∈ Ck(RN ) and that ε : R
N →

(0,+∞) is a continuous function. Then there is an entire function g : R
N →

R such that

|Dαf(x) − Dαg(x)| < ε(x)

for all x ∈ R
N and all α ∈ (N ∪ {0})N with |α| ≤ k.

3. A Large Vector Space of Pseudo-Fubini Entire Functions

This section is devoted to prove the following theorem.

Theorem 3.1. The set pF ∩ E2 is maximal dense lineable in C∞(R2).

Proof. It is well-known (an easy proof follows, for instance, from the Baire
category theorem) that dim C∞(R2) = c. Hence, we have to prove that pF ∩
E2 is c-dense lineable in C∞(R2).

Our first task is to locate a pseudo-Fubini C
∞-function on R

2. For
this, denote by I0 the open unit interval (0, 1) and consider the function
ϕ0 : R → R defined as

ϕ0(t) =
{

e
1

t(t−1) if t ∈ I0

0 otherwise.

It is well known that ϕ0 ∈ C∞(R). For each a ∈ R, set Ia := a + I0 =
(a, a+1), and let ϕa : R → R be the C∞-function given by ϕa(t) = ϕ0(t−a).
Observe that, for every pair a, b of reals, the function (x, y) 	→ ϕa(x)ϕb(y)
belongs to C∞(R2) and vanishes exactly outside Ia × Ib. Now, define the
function Φ0 : R

2 → R by

Φ0(x, y) = ϕ1(x)ϕ1(y) +
∞∑

n=1

ϕ2n(x)ϕ2n+1(y) +
∞∑

n=1

ϕ2n+1(x)ϕ2n(y)

−
∞∑

n=1

ϕ2n(x)ϕ2n−1(y) −
∞∑

n=1

ϕ2n−1(x)ϕ2n(y).

Observe that Φ0 is well defined because the products of intervals Ia×Ib

where the functions ϕa(x)ϕb(y) participating in the sum do not vanish are
mutually disjoint and so, given a point of R

2, there is at most one term
of the series that is not zero at it. The same argument and the fact that
differentiability is a local property yields that Φ0 ∈ C∞(R2).

Since ϕ0 > 0 on I0, we get

α :=
∫ ∫

I2
0

ϕ0(x)ϕ0(y) dxdy =
(∫

I0

ϕ0(t) dt
)2

> 0,

and the change of variables rule together with Fubini’s theorem gives
∫ ∫

R2
ϕa(x)ϕb(y) dxdy =

∫ ∫

Ia×Ib

ϕa(x)ϕb(y) dxdy

=
( ∫

Ia

ϕa(x) dx
)( ∫

Ib

ϕb(x) dx
)

=
(∫

I0

ϕ0(x) dx
)2

= α.
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Therefore (note that for nonnegative functions it is always possible to
interchange the integral with the series) we get

∫ ∫

R2
|Φ0(x, y)|dxdy ≥

∫ ∫

R2

( ∞∑

n=1

ϕ2n(x)ϕ2n+1(y)
)

dxdy

=
∞∑

n=1

∫ ∫

R2
ϕ2n(x)ϕ2n+1(y) dxdy =

∞∑

n=1

α = +∞,

which shows that Φ0 �∈ L1(R2).
To see that Φ0 ∈ pF , observe that if y0 ∈ R\⋃∞

n=1 In then Φ0(·, y0) ≡
0, and so

∫
R

Φ0(x, y0) dx = 0. And if y0 belongs to some (necessarily unique)
In, then Φ0(·, y0) = cy0

(
ϕpχIp − ϕqχIq

)
for some different p, q ∈ N and a

constant cy0 ∈ R. Therefore
∫

R

Φ0(x, y0) dx = cy0

(∫

Ip

ϕp(x) dx −
∫

Iq

ϕq(x) dx

)

= cy0

(∫

I0

ϕ0(x) dx −
∫

I0

ϕ0(x) dx

)

= 0

too. Thus, the iterated integral
∫
R

( ∫
R

Φ0(x, y) dx
)
dy exists in the Lebesgue

sense as a real number, with value 0. Now the symmetry property Φ0(x, y) =
Φ0(y, x) yields the same conclusion for

∫
R

( ∫
R

Φ0(x, y) dy
)
dx, which shows

that Φ0 is pseudo-Fubini.
Next, consider for each k ∈ N the translation

τk : (x, y) ∈ R
2 	−→ (x + 4k, y + k) ∈ R

2.

For every a, b ∈ R we have τk(Ia×Ib) = Ia+4k×Ib+k. Observe that if k, l ∈ N

(with k �= l) and Im × In and Ip × Iq are two different products of intervals
where Φ0 does not vanish, then we have not only (Im+4k × In+k)∩ (Ip+4k ×
Iq+k) = ∅ but also (Im+4k × In+k) ∩ (Ip+4l × Iq+l) = ∅. In particular, the
supports of the functions

Φk : (x, y) ∈ R
2 	−→ (Φ0 ◦ τ−1

k )(x, y) = Φ0(x − 4k, y − k) ∈ R (k = 1, 2, . . . )

are mutually disjoint. The fact that the mappings x 	→ x−4k, y 	→ y−k are
C

∞-smooth on R together with the rule of change of variables (for integrals
on R and R

2) shows that Φk ∈ C∞(R2) ∩ pF for every k ∈ N.
Let us choose an almost disjoint family N of subsets of N, that is, N

satisfies the following properties (see [10, Chapter 8]): each S ∈ N is infinite,
card (N ) = c and S ∩ S′ is finite for every pair of different S, S′ ∈ N . Let
us define, for every S ∈ N , the function fS : R

2 → R by

fS :=
∑

k∈S

Φk.

From the facts that the supports of the Φk’s are mutually disjoint and
Φk ∈ C∞(R2) we obtain fS ∈ C∞(R2). It is also obtained that |fS | =∑

k∈S |Φk|. Hence selecting any k0 ∈ S we get
∫

R2
|fS(x, y)|dxdy ≥

∫

R2
|Φk0(x, y)|dxdy =

∫

R2
|Φ0(x, y)|dxdy = +∞,



218 Page 6 of 11 L. Bernal-González et al. MJOM

and so fS �∈ L1(R2). Finally, the fact that the supports of the Φk’s are
steadily moving up and right when k → ∞ yields that, given x0 ∈ R, the
function y ∈ R 	→ fS(x0, y) ∈ R is a (possibly empty) sum of finitely many
functions of the form c (ϕaχIa − ϕbχIb) (with c ∈ R and a, b ∈ N, a �= b),
whose integrals over R are zero. An analogous property happens if we fix
y0 ∈ R and consider the function x ∈ R 	→ fS(x, y0) ∈ R. Therefore both
iterates integrals of fS exist in the sense of Lebesgue and share the value 0.
Summarizing, we have fS ∈ C∞(R2) ∩ pF for each S ∈ N .

Now, it is the turn of approximation. Thanks to Theorem 2.4, for every
S ∈ N we can find gS ∈ E2 such that

|fS(x, y) − gS(x, y)| <
1

(1 + x2)(1 + y2)
for all (x, y) ∈ R

2. (3.1)

We define the family M as

M := span {gS : S ∈ N}.

Then M is a vector space which is contained in E2. If we showed
that any nontrivial finite linear combination of functions from M is pseudo-
Fubini (and, hence, in particular non-integrable) then we would prove at one
stroke that the gS ’s are linearly independent (hence dim(M) = c) and that
M ⊂ (pF ∩ E2) ∪ {0}, which would show the desired maximal lineability.

Assume that G ∈ M is one of such combinations, so that there are
p ∈ N, reals α1, . . . , αp and pairwise different sets S1, . . . , Sp ∈ N such that
G = α1gS1 + · · · αpgSp

and not all the αi’s are zero (we may assume without
loss of generality that α1 �= 0). From (3.1), the comparison test and the fact
that 1

(1+x2)(1+y2) ∈ L1(R2), it follows that the functions

hi := gSi
− fSi

(i = 1, . . . , p)

are integrable C∞-functions from R
2 to R. Then every hi satisfies the con-

clusion of Fubini’s theorem and, as fSi
also does, the linearity of the integral

shows that for the function gSi
and, consequently, for the function G, both

iterated integrals exist as real numbers in the sense of Lebesgue and coincide.

Now, since the family N is almost disjoint, the set S1 \ ( ⋃p
j=2 Sj)

is not empty, so that we can select an element k0 in it. Consider the set
A :=

⋃∞
n=1 I2n+4k0 ×I2n+1+k0 , which has empty intersection with each of the

supports of the functions fSi
(i = 2, . . . , p). Therefore, G is not Lebesgue

integrable on R
2 because if G were Lebesgue integrable on R

2, it would be
integrable on A, but we have
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∫ ∫

A

|G(x, y)|dxdy =
∫ ∫

A

∣
∣
∣
∣
∣

p∑

i=1

αigSi
(x, y)

∣
∣
∣
∣
∣

dxdy

≥
∫ ∫

A

|α1||gS1(x, y)|dxdy −
∫ ∫

A

p∑

i=2

|αi||gSi
(x, y)|dxdy

≥
∫ ∫

A

|α1| (|fS1(x, y)| − |gS1(x, y) − fS1(x, y)|) dxdy

−
∫ ∫

A

p∑

i=2

|αi| (|fSi
(x, y)| + |gSi

(x, y) − fSi
(x, y)|) dxdy

=
∫ ∫

A

|α1||fS1(x, y)|dxdy −
p∑

i=1

|αi|
∫ ∫

A

|gSi
(x, y) − fSi

(x, y)| dxdy

≥
∫ ∫

A

|α1||fS1(x, y)|dxdy −
p∑

i=1

|αi|
∫ ∫

A

1
(1 + x2)(1 + y2)

dxdy

= |α1|
∫ ∫

A

|Φk0(x, y)|dxdy − C

= |α1|
∞∑

n=1

∫ ∫

I2n+4k0×I2n+1+k0

|Φk0(x, y)|dxdy − C

= |α1|
∞∑

n=1

∫ ∫

I2n×I2n+1

|Φ0(x, y)|dxdy − C

= |α1|
∞∑

n=1

∫ ∫

I2n×I2n+1

ϕ2n(x)ϕ2n+1(y) dxdy − C

= |α1|
∞∑

n=1

α − C = +∞,

since α > 0 and C :=
∑p

i=1 |αi|
∫ ∫

A
1

(1+x2)(1+y2) dxdy < ∞, that is absurd.
Consequently, G ∈ pF and so the family A := pF ∩ E2 is maximal lineable
in C∞(R2).

Next, we consider the family

B := {P · Ψ1 : P is a polynomial of two real variables with coefficients in R},

where Ψ1 is the Gaussian function Ψ1(x, y) = e−x2−y2
, that is integrable on

the plane (with integral equal to π) together with every function Ψλ(x, y) :=
e−λ(x2+y2) with λ > 0. Plainly, B is a vector space contained in E2. On the
one hand, each function h := P · Ψ1 ∈ B belongs to L1(R2). Indeed, since
P is a polynomial, there are a constant M ∈ (0,+∞) and an N ∈ N

such that |P (x, y)| ≤ M(1 + (x2 + y2)N ) for all (x, y) ∈ R
2. And since

limt→+∞
M(1+tN )

et/2 = 0, we derive the existence of a constant γ ∈ (0,+∞)

such that |P (x, y)| ≤ γ · e
x2+y2

2 on R
2, and therefore |h| ≤ γ · Ψ1/2 on

R
2. The comparison test yields the integrability of h. In particular, Fubini’s

theorem implies that
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∫

R

(∫

R

h(x, y) dx

)

dy =
∫ ∫

R2
h(x, y) dxdy =

∫

R

(∫

R

h(x, y) dy

)

dx

for all h ∈ B. Since B ⊂ L1(R2), we have A ∩ B = ∅. On the other hand,
we also have A + B ⊂ A. This is a consequence of the facts that the sum of
an integrable function with a non-integrable one is non-integrable and that
both finiteness and coincidence of the iterated integrals are preserved under
finite summations.

Take E := C∞(R2) and κ := c. According to Theorem 2.3, and taking
into account that B is itself a vector space, it only remains to prove that B
is dense in E. To this end, observe first that the formula

‖f‖k := max
0≤i+j≤k

sup
(x,y)∈[−k,k]2

|Dijf(x, y)| (f ∈ C∞(R2); k = 1, 2, . . . ) (3.2)

defines an increasing sequence of seminorms generating the natural Fréchet
topology of our space E. In fact, C∞(R2) endowed with multiplication of
functions is a Fréchet algebra (see, e.g., [7, Chapter 1] for background about
this structure) because the Leibniz rule for the derivative of a product gives
the existence of a sequence {Ck}k≥1 ⊂ (0,+∞) such that

‖f · g‖k ≤ Ck‖f‖k‖g‖k (f, g ∈ E; k ∈ N). (3.3)

Now, fix a nonempty open subset U of E. Then there are ε > 0, f ∈ E
and k ∈ N such that U ⊃ {h ∈ E : ‖h − f‖k < ε}. Define ε(x, y) := ε/2.
By Theorem 2.4, there is g ∈ E2 such that |Dijf(x, y) − Dijg(x, y)| < ε/2
for all (i, j) ∈ (N ∪ {0})2 with i + j ≤ k and all (x, y) ∈ R

2. Consider the
sequence {Pn}n≥0 of Taylor polynomials of g at the origin, that is,

Pn(x, y) =
∑

0≤i+j≤n

Dijg(0)
i!j!

xiyj (n = 0, 1, 2, . . . ).

Then (see, e.g., [5]) for each 2-index (i, j) ∈ (N ∪ {0})2 the sequence
{DijPn}n≥0 converges uniformly to Dijg on every compact subset of R

2. In
particular, we can find n0 ∈ N such that |DijPn0(x, y) − Dijg(x, y)| < ε/2
for all (i, j) ∈ (N ∪ {0})2 with i + j ≤ k and all (x, y) ∈ [−k, k]2. Let us set
h := Pn0 . Thus, according to (3.2) we obtain

‖h − f‖k ≤ ‖Pn0 − g‖k + ‖f − g‖k <
ε

2
+

ε

2
= ε.

Consequently, h ∈ U . This tells us that the set P of polynomials in
two real variables with real coefficients is dense in E. Finally, consider the
multiplication operator

S : f ∈ E 	−→ Ψ1 · f ∈ E,

that is linear and surjective (because Ψ1 never vanishes and 1/Ψ1 ∈ E).
Thanks to (3.3), we have ‖S(f)‖k ≤ Ck‖Ψ1‖k‖f‖k for all f ∈ E and all
k ∈ N, which proves that S is continuous. Then B = S(P) is dense in
S(E) = E. The proof is complete. �
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4. Pseudo-Fubini Smooth Functions: Spaceability

In this final section, we want to raise the question of existence of closed
infinite dimensional spaces of entire pseudo-Fubini functions.

Question. Is pF ∩ E2 spaceable in C∞(R2)? Or at least: Is pF ∩ Cω(R2)
spaceable in C∞(R2)?

We have not been able to give an answer to it. Therefore, we shall for the
moment content ourselves with establishing the next assertion, which puts
an end to this note.

Theorem 4.1. The set pF ∩ C∞(R2) is spaceable in C∞(R2).

Proof. Consider the functions Φk ∈ C∞(R2) ∩ pF (k ∈ N) defined in the
proof of Theorem 3.1. Since their supports Sk are pairwise disjoint, they are
linearly independent. By the same reason, for each sequence α = (αk) ∈ R

N

the function
∑∞

k=1 αkΦk is well defined and belongs to C∞(R2). Let us
define the family

M :=

{ ∞∑

k=1

αkΦk : α ∈ R
N

}

,

which is plainly a vector subspace of C∞(R2). Moreover, it is infinite di-
mensional because M contains every Φk. The fact that every f ∈ M \ {0}
belongs to pF can be seen as in the proof of Theorem 3.1, where one uses
the property that the supports of the Φk’s move steadily up and right as
k → ∞. Hence, our unique task is to show that M is closed in C∞(R2).

To this end, assume that fj → f as j → ∞ in the topology of C∞(R2),
where fj =

∑∞
k=1 αj,kΦk ∈ M (k = 1, 2, . . . ). It should be shown that

f ∈ M. Since convergence in C∞(R2) implies pointwise convergence, we get
limk→∞ fj(x) = f(x) for every x ∈ R

2. If x �∈ S :=
⋃

k∈N
Sk then Φk(x) = 0

for all k, and so fj(x) = 0. Hence f(x) = 0 in this case. If x ∈ S then there
is a (unique) k = k(x) ∈ N with x ∈ Sk. Then fj(x) = αjkΦk(x) → f(x)
as j → ∞. Therefore limj→∞ αjk = f(x)

Φk(x) . But this limit (say, βk) must be
independent of x. Thus, f(x) = βkΦk(x) for all x ∈ Sk. Consequently, from
the disjointness of the Sk’s, we get f =

∑∞
k=1 βkΦk ∈ M, as required. �
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