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1. Introduction

Linking different branches of mathematics has always been a very interesting way of
approaching problems due to the tools provided by both sides. Some examples of linking
differential geometry with graph theory can be found in [1,2], where the authors present a
representation of vector spaces of even dimension and submanifolds with combinatorial
structures. All of them have obtained nice results in their areas.

When we study a submanifold isometrically immersed in a Riemannian manifold
(M̃, g), it is very important to take into account its behaviour with respect to the second
fundamental form. Many submanifolds presenting homogeneus behaviour in this sense
have been defined: totally geodesic submanifolds, minimal submanifolds, totally umbilical
submanifolds and so forth. Most of them have something in common, and they can be
characterized by a certain combinatorial structure described in this paper. The idea of
this combinatorial structure is influenced by [3], where the author introduced a graphic
representation of submanifolds in order to understand the behaviour of a submanifold
with respect to the almost-complex structure.

In fact, we present a new method of submanifold representation by a combinatorial
structure in order to understand the behaviour of the second fundamental form. This
representation is closely related to a selected local frame field of tangent vector fields, and
it depends on it. Thus, it will be more useful in the case of the existence of special local
frame fields, for instance, when the ambient Riemannian manifold has an extra structure.
On the other hand, sometimes, it is possible to obtain information about the submanifold
by using the representation.

The paper is organized as follows. After a general preliminaries section, in which we
recall some definitions and results for later use, in Section 3, we define the new represen-
tation and present some examples in which we point out the dependence on the selected
local frame field, and we see how to obtain information of the submanifold from such a
representation. In Section 4, we study some general results concerning this representation;
specifically, we characterize totally umbilical submanifolds by using it. In Section 5, we
study a Lagrangian submanifold of Kaehler manifolds, in which there exists a distinguished
local frame field, and we prove a pure differential geometry theorem (Theorem 3) from the
obtained results. Finally, we show other utilities that the representation can have with a
well-known example: the Clifford torus.

Mathematics 2022, 10, 2279. https://doi.org/10.3390/math10132279 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10132279
https://doi.org/10.3390/math10132279
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5370-3453
https://orcid.org/0000-0002-6152-2908
https://orcid.org/0000-0002-4666-2494
https://doi.org/10.3390/math10132279
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10132279?type=check_update&version=2


Mathematics 2022, 10, 2279 2 of 10

2. Preliminaries

In this section, we recall some general definitions and basic formulas which we will
use later. For more background on the geometry of submanifolds, we recommend the
references [4,5]. We will recall some more specific notions and results in the following
sections, when needed.

From now on, let M be an isometrically immersed m-dimensional submanifold of a
n-dimensional Riemannian manifold (M̃, g), and let us denote by∇ and ∇̃ their respective
Levi–Civita connections. Then, the second fundamental form(SFF) is defined as

h(X, Y) = (∇̃X̃Ỹ)⊥, for any X, Y ∈ X(M),

where X̃, Ỹ ∈ X(M̃) are the extensions of X, Y, respectively. From the Gauss formula, given
a local frame field B = {X1, . . . Xn} of tangent vector fields to M̃, where the first m vector
fields are tangent to M and the last n−m ones are normal to M, the SFF can be written as

h(Xi, Xj) =
n

∑
k=m+1

hk
ijXk, i, j = 1, . . . , m,

where hk
ij = g(h(Xi, Xj), Xk). In addition, for each normal vector field to M, V, the shape

operator AV is the (1,1)-tensor field on M such that g(X, AVY) = g(V, h(X, Y)), for any
X, Y ∈ X(M).

From the behaviour of the SFF, some types of submanifolds can be defined. In this
context, we would like to point out that a submanifold M is called totally geodesic if the SFF
vanishes identically, and it is called minimal if the mean curvature vector field,

H =
1
m

m

∑
i=1

h(Xi, Xi),

vanishes. Moreover, if for each normal vector field V ∈ TM⊥, the eigenvalues of AV ,
λ1, . . . , λm, are invariant under multiplication by −1, that is if

(λ1, . . . , λm) = (a,−a, b,−b, . . . , c,−c, 0, . . . , 0),

the submanifold is called austere (see [6] for more details concerning this type of submani-
folds). Finally, M is called totally umbilical if h(X, Y) = g(X, Y) · H for any tangent vector
fields X, Y ∈ X(M).

Next, suppose that M̃ is of even dimension. A (1,1)-tensor field J on M is called an
almost-complex structure on M if, at every point x on M, J is an endomorphism of the tangent
space Tx(M) such that J2 = −I. A manifold M with a fixed almost complex structure J
is called an almost-complex manifold. A Hermitian metric on M̃ is a Riemannian metric g
such that g(JX, JY) = g(X, Y) for any X, Y ∈ X(M̃). An almost complex manifold with a
Hermitian metric is called an almost-Hermitian manifold. An almost-Hermitian manifold
is called a Kaehler manifold if its almost complex structure is normal (that is, its Nijenhuis
tensor field vanishes) and ∇̃J = 0.

A submanifold M of an almost-Hermitian manifold (M̃, J, g) is called totally real if
J(X(M)) ⊆ TM⊥ [7]. Furthermore, if dim(M̃) = 2 dim(M), then M is called a Lagrangian
submanifold. For a m-dimensional Lagrangian submanifold M in M̃, a local orthonormal
frame field of tangent vector fields to M̃

{X1, . . . , Xm, X′1, . . . , X′m}

is called an adapted Lagrangian frame field if X1, . . . , Xm are tangent vector fields to M and
X′1, . . . , X′m are normal vector fields given by X′i = JXi, i = 1, . . . , m.
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3. A New Submanifold Representation

Let (M̃, g) be a n-dimensional Riemannian manifold and M be an isometrically im-
mersed m-dimensional submanifold. We now introduce a combinatorial representation
procedure in order to understand the behaviour of the SFF of the immersion. We follow
these steps:

1. Let us choose a local orthonormal frame of tangent vector fields to M̃,

B = {X1, · · · , Xn},

such that X1, · · ·Xm are tangent to M and Xm+1, · · ·Xn are normal to M.
2. We consider a vertex for every field of B, labeled with its corresponding natural index.
3. For i, j ∈ {1, · · · , m} with i ≤ j and k ∈ {m + 1, · · · , n} we have:

(a) If i = j, we say that the {i, k} edge exists if and only if hk
ii 6= 0.

(b) If i 6= j, we say that the {i, j, k} triangle exists if and only if hk
ij 6= 0.

4. We assign to every edge {i, k} the weight given by hk
ii and on every triangle {i, j, k}

the weight given by hk
ij.

5. Finally, notice that we obtain additional visual information by putting the vertices cor-
responding to tangent fields at an imaginary bottom line and those which correspond
to normal fields at a top line.

We are going to use this method with the following examples. For them, let M be a
surface isometrically immersed in a Riemannian 4-dimensional manifold (M̃, g).

Example 1. Consider a local orthonormal frame B = {X1, X2, X3, X4}, such that X1, X2 are
tangent to M and X3, X4 are normal to M. Then we can write the SFF as

h(X1, X1) = h3
11X3 + h4

11X4,

h(X1, X2) = h3
12X3 + h4

12X4,

h(X2, X2) = h3
22X3 + h4

22X4,

and we obtain the combinatorial visualization shown in Figure 1.

Figure 1. Example 1.

Example 2. Suppose that M is a totally umbilical surface with a non-zero mean curvature H.
Then, we can fix the local orthonormal frame

B = {X1, X2, X3 =
H
|H| , X4},

such that X1, X2 are tangent to M and X4 is normal to the other fields. Then, the SFF results in

h(X1, X1) = g(X1, X1)H = H = |H|X3,

h(X1, X2) = g(X1, X2)H = 0,

h(X2, X2) = g(X2, X2)H = H = |H|X3,
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and we obtain the combinatorial visualization shown in Figure 2.

Figure 2. Example 2.

Example 3. As above, suppose that M is a totally umbilical surface with a non-zero mean curvature
H and consider the local orthonormal frame

B′ = {Y1 = X1, Y2 = X2, Y3 =

√
2

2
(X3 + X4), Y4 =

√
2

2
(X3 − X4)}.

Then, we obtain the representation drawn in Figure 3 (we use a color code for edges and
triangles of the same weight).

Figure 3. Example 3.

Remark 1. Examples 2 and 3 show that the representation depends on the chosen local
orthonormal frames.

However, this representation allows us to consider the inverse procedure to obtain
information concerning the submanifold.

Example 4. Let M again be a surface immersed in a 4-dimensional Riemannian manifold (M̃, g)
with a local orthonormal frame B = {X1, X2, X3, X4} whose representation can be visualized
in Figure 4.

Figure 4. Example 4.
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In a simple view, we note the absence of edges, which implies

h(Xi, Xi) = h3
iiX3 + h4

iiX4 = 0 for i = 1, 2,

thus, the mean curvature vector field vanishes, and M is a minimal submanifold.

4. General Results

In this section we are going to present some results to point out the utility of this new
representation on a general Riemannian manifold.

Proposition 1. Let M be a hypersurface isometrically immersed in a (m + 1)-dimensional Rie-
mannian manifold (M̃, g). Then, there exists a local frame field of tangent vector fields to M̃
whose representation is that of Figure 5, where λ1, . . . , λm denote the eigenvalues of the shape
operator AXm+1 .

Figure 5. Hypersurface Mm.

Proof. Let B = {X1, . . . , Xm+1} be a local frame field where X1, . . . , Xm are tangent to M
and Xm+1 is normal to M. One of the properties of the shape operator AXm+1 is that its
induced matrix is symmetric. Therefore, by the spectral theorem of symmetric matrices,
we know that there exists a local orthonormal frame field {X′1, . . . , X′m} of eigenvectors of
AXm+1 , whose eigenvalues are λ1, . . . , λm, respectively. Then, we obtain the diagonal matrix

AXm+1 =


λ1

λ2
. . .

λm

.

Therefore, with respect to the local frame field B′ = {X′1, . . . , X′m, Xm+1}, we obtain

hm+1
ij = g(h(X′i , X′j), Xm+1) = g(AXm+1 X′i , X′j) = g(λiX′i , X′j) = δijλi.

We conclude that h(X′i , X′j) = δijXm+1, and the representation is that of Figure 5.

Corollary 1. A hypersurface M isometrically immersed in a (m + 1)-dimensional Riemannian
manifold (M̃, g) is an austere submanifold if and only if there exists an orthonormal frame field
{X1, . . . , Xm, Xm+1} of tangent vector fields to M̃ such that Xm+1 is normal to M and whose
representation is Figure 6, where µ1,−µ1, . . . , µm1 ,−µm1 are the non-zero eigenvalues of the shape
operator AXm+1 .
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Figure 6. Austere hypersurface Mm.

Theorem 1. The representation of a totally umbilical submanifold with respect to any orthonormal
frame field has no triangles.

Proof. Let M be a m-dimensional totally umbilical submanifold isometrically immersed
in a n-dimensional Riemannian manifold (M̃, g), with H being the mean curvature vector.
Consider an orthonormal frame field of the tangent vector field to M̃, B = {X1, . . . , Xn},
such that the first m vector fields are tangent to M. Then, it is clear that:

h(Xi, Xj) = g(Xi, Xj)H = δijH, for any i, j ∈ {1, . . . , m}. (1)

In particular, if i 6= j, then h(Xi, Xj) = 0 so hk
ij = 0 for any k ∈ {m + 1, . . . , n}.

Consequently, the representation has no triangles.

Theorem 2. A (non-minimal) submanifold M isometrically immersed in a Riemannian manifold
(M̃, g) is totally umbilical if and only if there exists a local orthonormal frame of tangent vector
fields to M̃, whose representation is shown in Figure 7.

Figure 7. Totally umbilical submanifold with mean curvature vector field H.

Proof. Firstly, if the submanifold is totally umbilical, consider an orthonormal frame field
of the tangent vector field to M̃, B = {X1, . . . , Xn} such that the first m vector fields are

tangent to M and Xm+1 =
H
|H| .

Then, from (1), we easily obtain:

h1
ii = |H|, i = 1, . . . , m,

hk
ii = 0, i = 1, . . . , m, k = m + 2, . . . , n,

hk
ij = 0, i, j = 1, . . . , m, i 6= j, k = m + 1, . . . , n.

(2)

Conversely, suppose that there exists a local orthonormal frame field of the tangent
vector field to M̃, B = {X1, . . . , Xn} such that the first m vector fields are tangent to M and
whose representation is given in Figure 7.
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Then, for such a representation, we get:

H =
1
m

m

∑
i=1

h(Xi, Xi) =
1
m

m

∑
i=1

n

∑
k=m+1

hk
iiXk

=
1
m

m

∑
i=1

h1
iiXm+1 = |H|Xm+1.

Consequently, Xm+1 =
H
|H| . Then, from (2) and since B is the local orthonormal

frame field:

If i 6= j, h(Xi, Xj) = 0 = g(Xi, Xj)H

If i = j, h(Xi, Xi) = h1
iiXm+1 = H = g(Xi, Xi)H.

Consequently, by using the linearity of fundamental forms, the submanifold is
totally umbilical.

Proposition 2. A submanifold M is minimal if and only if there exists a frame field whose repre-
sentation satisfies that the weights of the incident edges of each vertex associated to the normal fields
of M add up to zero.

Proof. Let us suppose that M is minimal. Then, we have:

0 =
1
m

m

∑
i=1

h(Xi, Xi) =
1
m

n

∑
k=m+1

(
m

∑
i=1

hk
ii)Xk.

Therefore,
m

∑
=1

hk
ii = 0 for every k ∈ {m + 1, . . . , n}. Thus, we conclude the proof of

the proposition.

Corollary 2. If, for a local frame field, the representation only has triangles, the represented
submanifold is minimal.

5. Lagrangian Submanifolds of Kaehler Manifolds

In this section, let (M̃, J, g) be a 2m-dimensional Kaehler manifold and consider a
Lagrangian submanifold M isometrically immersed in M̃. Let B be an adapted Lagrangian
frame field [4],

B = {X1, . . . , Xm, X1′ = JX1, . . . , Xm′ = JXm}

where {X1, . . . , Xm} is a local frame field for tangent vector fields to M. We say that
the representation obtained by using this adapted Lagrangian frame field is a Lagrangian
representation of M.

Lemma 1. Every Lagrangian representation of a submanifold M of a Kaehler manifold M̃ satis-
fies that

hk′
ij = hj′

ik = hi′
jk, (3)

for any i, j, k ∈ {1, . . . , m}.

Proof. Given hk′
ij , we have hk′

ij = hj′

ik due to the properties of the Kaehler ambient manifold
and the anti-symmetry of the almost complex structure J. By using the symmetry of the
SFF, we obtain

hk′
ij = hj′

ik = hj′

ki = hi′
jk,

which implies (3).
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Corollary 3. Let M be a Lagrangian submanifold of a Kaehler manifold. If a Lagrangian represen-
tation of M has no triangles, then hk′

ij is non-zero if and only if i = h = k.

Proof. Let us suppose that there exists an edge hk′
ii 6= 0 with i 6= k. Therefore, from Lemma 1,

hk′
ii = hi′

ik 6= 0, which is a contradiction because the representation has
no triangles.

The other implication is analogous.

Theorem 3. Let M be a m-dimensional (m > 1) Lagrangian and totally umbilical submanifold of
a Kaehler manifold. Then, M is minimal.

Proof. Suppose that M is not minimal; that is, that the mean curvature vector H is not
zero. Let

B = {X1 = −JX1′ , X2, . . . , Xm, X1′ =
H
|H| , X2′ = JX2, . . . , Xm′ = JXm}

be an adapted Lagrangian frame field of M. We now have:

h(X2, X2) = g(X2, X2)H = 1 · |H| · X1′ = |H| · X1′ .

Therefore, h1′
22 = |H|, and due to Lemma 1, |H| = h1′

22 = h2′
12. However, we know

that h2′
12 = g(h(X1, X2), X2′) = g(g(X1, X2)H, X2′) = g(|H|X1′ , X2′) = 0 6= H, which is a

contradiction. We conclude that Mm is a minimal submanifold.

Corollary 4. Any m-dimensional (m > 1) Lagrangian and totally umbilical submanifold of a
Kaehler manifold is totally geodesic.

6. Example: The Clifford Torus

The Clifford torus is a special type of torus with
1√
2

S1 × 1√
2

S1 inside R2 ×R2 = R4.

It actually lies in the unit sphere S3 because each point has the same distance to the
origin. Then, it is well known that the Clifford torus with the Euclidean metric is an
austere submanifold of S3(1) [8]. We are going to reach this conclusion by using this
new representation.

Consider f : R2 → R4, given by:

f (θ, φ) =
1√
2
(cos θ, sin θ, cos ϕ, sin ϕ), (θ, ϕ) ∈ R2.

The mapping f is an immersion of R2 into the unit sphere S3(1) ⊂ R4, where the
image f (R2) is the flat torus. The vector fields

e1 = (− sin θ, cos θ, 0, 0)

e2 = (0, 0,− sin ϕ, cos ϕ)

form an orthonormal basis of the tangent space Tf (θ,φ) Im f , and the normal vectors

e3 =
1√
2
(cos θ, sin θ, cos ϕ, sin ϕ)

e4 =
1√
2
(− cos θ,− sin θ, cos ϕ, sin ϕ)
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form an orthonormal basis of the normal space. The matrices Ae3 and Ae4 with respect to
the basis {e1, e2} are:

Ae3 =

(
− 1√

2
0

0 − 1√
2

)
, Ae4 =

( 1√
2

0

0 − 1√
2

)
.

Therefore, the second fundamental form is given by:

h(e1, e1) = −
1√
2

e3 +
1√
2

e4,

h(e2, e2) = −
1√
2

e3 −
1√
2

e4,

h(e1, e2) = 0.

In this context, the submanifold representation is presented in Figures 8 and 9 (in
the representation, we also include a color code to clarify the edges and triangles of the
same weight).

Figure 8. Clifford torus representation as a submanifold of R4.

Figure 9. Clifford torus representation as a submanifold of S3(1).

We observe that the Figure 9 is an austere submanifold of S3 in virtue of Corollary 1.
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