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Abstract: We consider vector valued mappings de�ned on metric measure spaces with a measurable di�er-
entiable structure and study both approximations by nicer mappings and regular extensions of the given
mappings when de�ned on closed subsets. Therefore, we propose a �rst approach to these problems, largely
studied on Euclidean and Banach spaces during the last century, for �rst order di�erentiable functions de-
�ned on these metric measure spaces.
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1 Introduction
In this paper we deal with problems about density of regular mappings and regular extensions of regular
mappings on metric measure spaces endowed with a measurable di�erentiable structure (MDS for short) in
the sense of J. Cheeger [6].We present here a �rst order di�erentiability study on these questions following the
steps already given in Euclidean spaces aswell as in �nite dimensional Banach spaces on the same questions.

In any context it is natural to wonder whether a function can be approximated by another onewith better
properties. This is one of our goals for functions de�ned onmetric measure spaces with MDS. More precisely,
we will study the existence of di�erentiable (di�erentiable and Lipschitz) approximations for continuous
(continuous and Lipschitz) vector valued mappings. There exists a large literature on this subject, mainly
given on linear spaces, developed during the last century where a whole collection of related problems are
considered, the interested reader may check, for instance, [5, 7, 11, 27] and references therein.

The extension problem for mappings de�ned on closed subsets of �nite dimensional Banach spaces has
been extensively studied. The �rst one in dealing with this problem was H. Whitney [29, 30], who charac-
terized functions de�ned on closed subsets of the real line that can be extended to the whole real line as
functions of Ck class. Then, G. Gleaser [12] studied the same problem for higher dimensions and C1 exten-
sions and, �nally, C. Fe�erman [9, 10], in a series of papers, completed the program for �nite dimensional
spaces and functions de�ned on compact subsets of them with Ck class extensions.
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In Banach spaces of in�nite dimension the situation of the problem is far less well understood although
there has been a large collection of publications on the topic, see, for instance, [1–3, 15, 16, 19, 20, 27]. Here the
variety of regularity notions and the kind of spaces under consideration vary upon the goals of the authors.

Metric measure spaces endowed with a measurable di�erentiable structure (MDS) in the sense of J.
Cheeger were introduced in [6]. These spaces have called the attention of many authors since then and has
helped to develop a �rst order di�erential analysis on certain metric spaces. The interested reader may check
[4, 6, 13, 14, 22, 23] and references therein. These spaces will allow us for a �rst order di�erentiability notion
for the functions we are going to deal with and, of course, the notion of derivative we will deal with is that of
derivative with respect to a chart given by J. Cheeger [6] and S. Keith [22].

In Section 2we give the precise de�nition of ametricmeasure spacewith aMDS, this is basically the same
notion that we �nd in [6, 22]. In Section 3we study the problem of the density of di�erentiable functionswhen
de�ned from ametric measure space into a Banach space. We consider �rst the case of approximating vector
valued continuousmappings by di�erentiable almost everywhere ones and, then,we study the sameproblem
for continuous and Lipschitz functions which will be approximated by di�erentiable almost everywhere and
Lipschitz ones (see Theorems 3.1 and 3.7). The condition of themetric space to be doublingwill also be impor-
tant for the density results we obtain. Some of these results will be applied in Section 4, where we deal with
the problem of the di�erentiable extension of di�erentiable functions de�ned from a metric measure space
into a Banach space. We prove here a number of partial results on the pursuit of, under adequate conditions,
proving that every di�erentiable almost everywhere, or di�erentiable almost everywhere and Lipschitz, map-
ping can be extended as di�erentiable almost everywhere, or, respectively, di�erentiable almost everywhere
and Lipschitz mappings, to the whole space (see Theorems 4.5 and 4.8).

2 Measurable Di�erentiable Structures
In this section we describe the notion of metric measure space with a measurable di�erentiable structure
introduced by J. Cheeger [6] and S. Keith [22], as well as the associated notions as that of di�erentiable almost
everywhere mapping. Metric measure spaces with MDS were also called Lipschitz di�erentiability spaces in
[4]. The interested reader may also check the survey [23] to learn more about them.

Given a metric space X, the set LIP(X) denotes the set of all Lipschitz real functions on X. We give next
the precise de�nition of a metric measure space that admits a measurable di�erentiable structure.

De�nition 2.1. (Cheeger, Keith). Let (X, d, µ) be ametricmeasure space, and letC ⊂ LIP(X) be a vector space
of functions.

(A) A pair (Y , y) is a C -chart if Y ⊂ X is a measurable subset with µ(Y) > 0 and y = (y1, . . . , yk) : X → Rk is
a function for some k ∈ N ∪ {0}, called coordinates on Y, where yi ∈ C for every 1 ≤ i ≤ k.

(B) Themetricmeasure space (X, d, µ) has aC -measurable di�erentiable structure (C -MDS, for short) if there
is a countable collection of C -charts {(Xα , yα)}α∈A , which is called a C -atlas of X, with coordinates
yα : X → Rk(α), so that

µ(X \
⋃
α∈A

Xα) = 0,

k = supα k(α) < ∞, and for every f ∈ C and chart (Xα , yα) there exists a unique (up to a set of zero
measure) measurable function df α : Xα → Rk(α) such that

lim sup
z→x

|f (z) − f (x) − df α(x) · (yα(z) − yα(x))|
d(z, x) = 0

for µ-a.e. x ∈ Xα. Moreover, such a structure is called k-dimensional and it is non-degenerate if k(α) ≥ 1
for all α ∈ A . We will assume we always work with non-degenerate MDS.
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(C) We say that the pair (Y , y) is a chart, the countable collection {(Xα , yα)}α∈A is an atlas of X and the
metric measure space (X, d, µ) has ameasurable di�erentiable structure (MDS, for short) whenever (Y , y)
is a LIP(X)-chart, {(Xα , yα)}α∈A is a LIP(X)-atlas of X and (X, d, µ) has a LIP(X)-MDS.

In references [6, 22, 23] the reader may �nd examples of metric spaces that can be endowed with a MDS
andmain facts on them. Next we de�newhat we understand by di�erentiability at a point ofmappings acting
on these structures.

De�nition 2.2. Let X be a metric space with a C -MDS and let (Xα , yα) be a C -chart of X and V a Banach
space.

(a) A function f : X → R is C -di�erentiable at x ∈ Xα (just di�erentiable if C = LIP(X)), with respect to
(Xα , yα), if there is a linear function df α(x) : Rk(α) → R such that

lim sup
z→x

|f (z) − f (x) − df α(x) ◦ (yα(z) − yα(x))|
d(z, x) = 0.

(b) A mapping f : X → V is C -di�erentiable at x ∈ Xα (just di�erentiable if C = LIP(X)), with respect to
(Xα , yα), if there is a linear function df α(x) : Rk(α) → V such that

lim sup
z→x

||f (z) − f (x) − df α(x) ◦ (yα(z) − yα(x))||
d(z, x) = 0.

Finally,we can statewhatwemeanby di�erentiability almost everywhere of amapping de�ned onmetric
measure spaces with a MDS.

De�nition 2.3. Let X be a metric space with a C -MDS and let (Xα , yα) be a C -chart of X and V a Banach
space. A mapping f : X → V is C -di�erentiable almost everywhere (just di�erentiable almost everywhere if
C = LIP(X)) with respect to the C -atlas {(Xα , yα)}α∈A if there is a collection { dfyαm : Xα → V}α∈A , 1≤m≤k(α) of
measurable functions uniquely determined (up to a set of zero measure), such that for almost every x ∈ Xα

lim sup
z→x

||f (z) − f (x) −∑k(α)
m=1

df
dyαm

(x)(yαm(z) − yαm(x))||
d(z, x) = 0. (2.1)

Remark 2.4. Notice that if we are in the case C = LIP(X), then real-valued Lipschitz functions will be di�er-
entiable almost everywhere by de�nition. This fact will be used at several instances regarding the distance
function. Also, mappings in the chart are di�erentiable almost everywhere and Lipschitz.

3 Density of di�erentiable functions
In this section we study properties of density of di�erentiable almost everywhere mappings. We begin by
showing that any continuous mapping can be approximated by such mappings. We will achieve our goal by
applying standard techniques on partitions of unity. To make the exposition easier, we will work with MDS
instead of C -MDS although some comments will be added on this regard.

Theorem 3.1. Let (X, d, µ) be a separable metric measure space with a MDS and let V be a Banach space.
Then, for every continuous mapping f : X → V and every ε > 0, there is a di�erentiable almost everywhere
mapping g : X → V such that

||f (x) − g(x)|| < ε for all x ∈ X.

Proof. Since X is separable and f is continuous, there exists a covering {B(xn , rn2 )}∞n=1 of X by open balls, such
that

||f (x) − f (xn)|| < ε
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for every x ∈ B(xn , rn).
We claim that there is a di�erentiable almost everywhere (and Lipschitz) partition of unity subordinated

to the covering {B(xn , rn)}∞n=1 of X. Indeed, by a standard procedure, we can take C1 smooth and Lipschitz
functions θn : R → [0, 1] such that θn(t) = 1 whenever t ≤ rn

2 , θn(t) = 0 whenever t ≥ rn and Lip(θn) ≤ 3/rn.
Let us de�ne ψn : X → [0, 1] as

ψn(x) = θn(d(x, xn)) for x ∈ X.
Functions ψn are di�erentiable almost everywhere (and Lipschitz), ψn(x) = 1 on B(xn , rn2 ) and ψn(x) = 0 on
X \ B(xn , rn). Let us de�ne now the functions φn : X → [0, 1] as

φn(x) = ψn(x)
n−1∏
k=1

(1 − ψk(x)).

The functionsφn aredi�erentiable almost everywhere (andLipschitz).Moreover, it is easy to see that
∞∑
n=1

φn ≡

1, for each x ∈ X there is a neighborhood of x where all but a �nite number of functions φn are 0, and

suppφn = {x ∈ X : φn(x) ≠ 0} ⊂ B(xn , rn).

Consider now the function g : X → V de�ned as

g(x) =
∞∑
n=1

φn(x)f (xn).

This function is di�erentiable almost everywhere because the family {φn}∞n=1 is locally �nite and di�eren-
tiable almost everywhere. Let us see that g uniformly approximates f . For every x ∈ X

||f (x) − g(x)|| ≤
∞∑
n=1

φn(x)||f (x) − f (xn)|| < ε,

where the last inequality is a consequence of the fact that ||f (x) − f (xn)|| < ε whenever φn(x) ≠ 0.

Remark 3.2.

(i) Let us note that if C ⊂ LIP(X) is a vector space of functions such that (X, d, µ) has a C -MDS, the above
theorem holds whenever the functions x 7→ d(x, x0) belong to C for all x0 ∈ X.

(ii) Furthermore, if the functions x 7→ d(x, x0) are di�erentiable everywhere but x0, then the approximation
mapping is di�erentiable everywhere on X (assuming X = ∪αXα).

Now we seek approximations by mappings that are di�erentiable almost everywhere and Lipschitz. For
that we will need the extra hypothesis of working with doubling metric spaces which, in particular, are sep-
arable.

De�nition 3.3. A metric space (X, d) is said to be doubling if there is a constant C such that for each r > 0,
every ball contained in X with radius r can be covered by at most C balls of radius r/2. The doubling constant
λ(X) if the in�mum over all constants C satisfying the doubling condition.

Doubling metric spaces have played a major role in the recent theory of analysis on metric spaces, as
reader may check in references [6, 22, 23] or the monograph by J. Heinonen [13]. Notice also that if (X, d) is
doubling, then for each r > 0, every ball contained in X with radius r can be covered by at most λ(X)n balls
of radius r/2n.

The following theorem is needed to prove the next density result.

Theorem 3.4 ([24]). There exists a universal constant C > 0 such that for every doubling metric space (X, d),
for every Y ⊃ X and V Banach spaces, and for every Lipschitz mapping f : X → V, there exists a Lipschitz
extension F : Y → V such that

Lip(F) ≤ Cλ(X) Lip(f ).
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Another tool that we will use in this section is the concept of functions that locally depend on �nitely
many coordinates. This notion was �rst de�ned on Banach spaces with Schauder basis using the coordinate
functionals [25]. Later, a generalization of this notion was considered by some authors using arbitrary con-
tinuous linear functionals, see, for instance, [8, 18, 28].

De�nition 3.5. Let Y and Z be Banach spaces, M ⊂ Y* and G : Y → Z. We say that G locally depends on
�nitely many coordinates from M (LFC-M, for short) if for each x ∈ Y there are a neighborhood U of x, a �nite
subset {f1, . . . , fn} ⊂ M and a mapping H : Rn → Z such that G(x) = H(f1(x), . . . , fn(x)) for all x ∈ U.

A simple example is the sup norm on c0, which is LFC-{e*n}∞n=1 away from the origin (where {e*n}∞n=1 are
the coordinate functionals in c0).

Lemma 3.6. Let (X, d, µ) be a metric measure space with a MDS and let V be a Banach space. Let Φ : X → c0
be amapping whose coordinate functions e*n ◦Φ : X → R are di�erentiable almost everywhere, and G : c0 → V
a LFC-{e*n}∞n=1 and C1 smooth map. Then, the mapping G ◦ Φ : X → V is di�erentiable almost everywhere.

Proof. The coordinate functions e*n ◦ Φ : X → R are di�erentiable almost everywhere. Then, for every x ∈
{y ∈ X : e*n ◦Φ is di�erentiable at y for all n ≥ 1}, there is a neighborhood U of x, a �nite subset {e*1, . . . , e*n}
of functionals and a C1 smooth mapping H : Rn → V such that G(y) = H(e*1(y), . . . , e*n(y)) for all y ∈ Φ(U)
(see [27]). Thus, G ◦ Φ(y) = H(e*1 ◦ Φ(y), . . . , e*n ◦ Φ(y)) for all y ∈ U, which is di�erentiable at x. Since the
set {x ∈ X : e*n ◦ Φ is di�erentiable at x for all n ≥ 1} has full measure in X, the mapping G ◦ Φ : X → V is
di�erentiable almost everywhere.

Now, we can show the main theorem of this section, which gives a su�cient condition for the set of
di�erentiable almost everywhere andLipschitz vector-valued functions to approximate set of Lipschitz vector-
valued functions.

Theorem 3.7. Let (X, d, µ) be a metric measure space with a MDS where (X, d) is doubling, and let V be a
Banach space. Then, for every Lipschitz mapping f : X → V and every ε > 0, there is a di�erentiable almost
everywhere and Lipschitz mapping g : X → V such that

||f (x) − g(x)|| < ε for all x ∈ X, and Lip(g) ≤ 2Cλ(X)2 Lip(f ),

where C is the universal constant given by Theorem 3.4.

Proof. Notice that since (X, d) is doubling then it is separable. Now, recall that Ahanori proved in [1] that for
any ρ > 0, every separable metric space (X, d) is (6 + ρ)-Lipschitz isomorphic to a subset of the Banach space
c0. Thus, for any ρ > 0, there is a mapping Φ : X → c0 such that

d(x, y) ≤ ||Φ(x) − Φ(y)|| ≤ (6 + ρ)d(x, y) for all x, y ∈ X.

Later Assouad in [2] and Pelant in [26] re�ned this result by showing that every separable metric space 3-
embeds into c0. Finally, Kalton and Lancien [21] constructed a 2-embedding (resp. 1-embedding) into c0 for
every separable (resp. proper) metric space.

Thus, since our metric space (X, d) is separable, there is a mapping Φ : X → c0 such that

d(x, y) ≤ ||Φ(x) − Φ(y)|| ≤ 2d(x, y) for all x, y ∈ X.

We claim that Φ(X) is doubling in c0 with constant λ(X)2. Indeed, for any x ∈ X and r > 0 we have that

Φ−1(B(Φ(x), r)) ⊂ B(x, r) ⊂
λ(X)2⋃
j=1

B(xj ,
r
22 )
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since Φ−1 is 1-Lipschitz and X is doubling. Now, using the fact that Φ is 2-Lipschitz,

B(Φ(x), r) ∩ Φ(X) ⊂
λ(X)2⋃
j=1

Φ(B(xj ,
r
22 )) ⊂

λ(X)2⋃
j=1

B(Φ(xj), 2
r
22 ) ∩ Φ(X)

⊂
λ(X)2⋃
j=1

B(Φ(xj),
r
2) ∩ Φ(X),

which proves the claim.
Moreover, if f : X → V is a Lipschitz map, then f ◦ Φ−1 : Φ(X) → V is a Lip(f )-Lipschitz map, and by

Theorem 3.4 there is a Lipschitz extension F : c0 → V with Lip(F) ≤ Cλ(X)2 Lip(f ).
Given ε > 0, adapting the proof of [15, Theorem 1] (see also [17, Theorem 74, pg 437]) we �nd a C∞ smooth,

LFC-{e*n}∞n=1 and Lipschitz mapping G : c0 → V such that

||F(x) − G(x)|| < ε for all x ∈ c0, and Lip(G) ≤ Lip(F).

Let us take g : X → V de�ned as g(x) = G ◦ Φ(x). Then

• Lip(g) ≤ 2Cλ(X)2 Lip(f ),
• ||f (x) − g(x)|| = ||(f ◦ Φ−1) ◦ Φ(x) − G ◦ Φ(x)|| < ε for all x ∈ X, and
• by Lemma 3.6, g is di�erentiable almost everywhere on X.

In the next proposition we show that subsets of doubling metric spaces are doubling too. We include it
in this work as we lack a reference for it.

Proposition 3.8. Let (X, d) be a doubling metric space and A ⊆ X. Then (A, d) is doubling too with doubling
constant at most λ(X)2, where λ(X) stands for the doubling constant of X.

Proof. Let A ⊆ X and let BA(a, r) be a ball in (A, d). We need to show that it can be covered by at most a given
number λ(A) of ball in (A, d) with radius at most r/2. Since (X, d) is doubling and BA(a, r) ⊆ BX(a, r), there
are at most λ(X) balls in X such that

BA(a, r) ⊆
λ(X)⋃
i=1

BX(xi , r/2).

Applying the doubling property again, each ball BX(xi , r/2) can be covered by, at most, λ(X) balls with center
in X and radius r/4. Therefore we have, at most, λ(X)2 balls of radius r/4 which union contains BA(a, r).
Taking, for each of these balls, a point in the intersection of A with it (when such intersection is nonempty)
we obtain, at most, λ(X)2 points in A such that the union of balls with center in these points and radius r/2
covers BA(a, r).

Corollary 3.9. Let (X, d, µ) be a metric measure space with a MDS where (X, d) is doubling, and let V be a
Banach space. Then, for every subset A ⊂ X, every Lipschitz mapping f : A → V and every ε > 0, there is a
di�erentiable almost everywhere and Lipschitz mapping g : X → V such that

||f (x) − g(x)|| < ε for all x ∈ A, and Lip(g) ≤ 2Cλ(X)4 Lip(f ),

where C is the universal constant given by Theorem 3.4.

Finally, notice that a doubling metric space is proper (i.e., closed and bounded subsets are compact) if
and only if it is complete. Then, using the 1-embedding into c0 for proper metric spaces given in [21], we
obtain the last result of this section.
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Corollary 3.10. Let (X, d, µ) be ametric measure space with aMDSwhere (X, d) is complete and doubling, and
let V be a Banach space. Then, for every Lipschitz mapping f : X → V and every ε > 0, there is a di�erentiable
almost everywhere and Lipschitz mapping g : X → V such that

||f (x) − g(x)|| < ε for all x ∈ X, and Lip(g) ≤ Cλ(X) Lip(f ),

where C is the universal constant given by Theorem 3.4.

Remark 3.11.

(i) Let C ⊂ LIP(X) such that (X, d, µ) has a C -MDS, the main theorem holds whenever the functions x 7→
d(x, x0) belong to C for all x0 ∈ X. Indeed, following the proof of [27, Proposition 3.1.3, Proposition 3.1.2]
(see also [16]) the Lipschitz embedding Φ into c0 can be chosen with di�erentiable almost everywhere
coordinate functions and Lipschitz constant less or equal to 4 + r for any r > 0.

(ii) Furthermore, the approximation mapping is di�erentiable everywhere on X whenever the functions x 7→
d(x, x0) are di�erentiable everywhere but x0.

4 Extension of di�erentiable functions
In this section we study the problem of extending di�erentiable functions from ametric space with a MDS as
di�erentiable functions. We begin by obtaining some Lip-derivation inequalities for vector-valued functions
similar to the one obtained in [6, 14] in the real-valued case.

Suppose that (X, d, µ) is a metric measure space with a MDS and V is a Banach space. Given a mapping
f : X → V, the point-wise Lipschitz constant, Lipx(f ), at x ∈ X is given by:

Lipx(f ) = lim sup
y→x

‖f (y) − f (x)‖
d(y, x) .

A mapping f : X → V satisfying equation (2.1) on a chart (Xα , yα) satis�es

Lipx(f ) = Lipx

({
df
dyαm

(x)
}k(α)
m=1

· yα
)
≤ Lip(yα)

k(α)∑
m=1
|| dfdyαm

(x)||,

for almost every x ∈ Xα. The opposite inequality also holds, but a �ner atlas must be chosen. Firstly, let us
recall the real-valued case (see [6, Lemma 4.32] or [14, Lemma 5.1]).

Proposition 4.1. Let (X, d, µ) be a metric measure space with a MDS. Then, there is an atlas {(Xα , yα)}α∈A

on X such that for each α ∈ A there exists a constant Cα > 0, which depends on the chart (Xα , yα), such that
for every di�erentiable almost everywhere function f : X → R

||dα f (x)||∞ ≤ Cα Lipx(f ),

for a.e. x ∈ Xα.

Notice that df α(x) =
{

df
dyαm

(x)
}k(α)
m=1
∈ Rk(α) and ||df α(x)||∞ = max

1≤m≤k(α)
| dfdyαm

(x)|.

Proposition 4.2. Let (X, d, µ) be a metric measure space with a MDS and let V be a Banach space. Then, for
every di�erentiable almost everywhere mapping f : X → V, we have that

max
1≤m≤k(α)

∥∥∥∥ df
dyαm

(x)
∥∥∥∥ ≤ Cα Lipx(f ), (4.1)

for a.e. x ∈ Xα, where {(Xα , yα)}α∈A and Cα are the atlas on X and the constants given in Proposition 4.1.
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Proof. Since f : X → V is di�erentiable almost everywhere, the function ϕ ◦ f : X → R is di�erentiable
almost everywhere for any ϕ ∈ V* (actually, they are di�erentiable at the points where f is di�erentiable).
Moreover, it is easy to see that

dα(ϕ ◦ f )(x) =
{
d(ϕ ◦ f )
dyαm

(x)
}k(α)
m=1

=
{
ϕ
(
df
dyαm

(x)
)}k(α)

m=1
.

Using Proposition 4.1
max

1≤m≤k(α)

∣∣∣∣ϕ( df
dyαm

(x)
)∣∣∣∣ ≤ Cα Lipx(ϕ ◦ f ) ≤ Cα||ϕ||Lipx(f ),

for a.e. x ∈ Xα.
Notice that the above inequality is satis�ed for every ϕ ∈ V* and any point x ∈ Xα where f is di�eren-

tiable. Thus, for any 1 ≤ m ≤ k(α) and any point x ∈ Xα where f is di�erentiable, we choose ϕ ∈ V* such that
||ϕ|| = 1 and ϕ

(
df
dyαm

(x)
)
=
∥∥∥ df
dyαm

(x)
∥∥∥, and we obtain that∥∥∥∥ df

dyαm
(x)
∥∥∥∥ = ∣∣∣∣ϕ( df

dyαm
(x)
)∣∣∣∣ ≤ max

1≤m≤k(α)

∣∣∣∣ϕ( df
dyαm

(x)
)∣∣∣∣ ≤ Cα Lipx(f ).

To sum up, inequality (4.1) holds for any x ∈ Xα where f is di�erentiable.

To show the main result of this section, we need the following lemma.

Lemma 4.3. Let (X, d, µ) be a metric measure space with a MDS where (X, d) is doubling, let V be a Banach
space and A ⊂ X. Then, for every continuous mapping F : X → V such that F|A is Lipschitz, and every ε > 0,
there exists a di�erentiable almost everywhere mapping G : X → V such that:

(i) ||F(x) − G(x)|| < ε for all x ∈ X,
(ii) Lip(G|A ) ≤ 2Cλ(X)

4 Lip(F|A ), where C is the universal constant given in Theorem 3.4.
(iii) In addition, if F is Lipschitz, then there exists a constant C1 ≥ 2Cλ(X)4, depending only on the doubling

constant of X, such that the mapping G can be chosen to be Lipschitz on X and Lip(G) ≤ C1 Lip(F).

Proof. Assume that the mapping F : X → V is continuous on X and F|A is Lipschitz. By Theorem 3.1 there is a
di�erentiable almost everywhere mapping h : X → V, such that ||F(x) − h(x)|| < ε for all x ∈ X. Let us apply
Corollary 3.9 to F|A to obtain a di�erentiable almost everywhere and Lipschitz mapping g : X → V such that

(a) ||F(x) − g(x)|| < ε/4 for all x ∈ A, and
(b) Lip(g) ≤ 2Cλ(X)4 Lip(F|A ).

Consider the open sets D = {x ∈ X : ||F(x)− g(x)|| < ε/2} and the closed set C = {x ∈ X : ||F(x)− g(x)|| ≤ ε/4}
in X. Then A ⊂ C ⊂ D. There is a di�erentiable almost everywhere function u : X → [0, 1] such that

u(x) =
{
1 if x ∈ C,
0 if x ∈ X \ D.

Indeed, since C ∩ (X \ D) = ∅, the function

p(x) = dist(x, X \ D)
dist(x, C) + dist(x, X \ D)

is continuous on X, p(C) = 1 and p(X \ D) = 0. Using Theorem 3.1, there is a di�erentiable almost everywhere
function q : X → R such that |p(x) − q(x)| < 1

4 . Let us take a C1 smooth function θ : R → [0, 1] such that
θ(t) = 0 whenever t ≤ 1/4 and θ(t) = 1 whenever t ≥ 3/4. Then, u(x) = θ(q(x)) satis�es the desired properties.

Let us de�ne G : X → V as
G(x) := u(x)g(x) + (1 − u(x))h(x).

It is clear that G is a di�erentiable almost everywhere mapping. Since u(x) = 0 for all x ∈ X \ D, we deduce
that

||F(x) − G(x)|| = ||F(x) − h(x)|| < ε for all x ∈ X \ D.
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Now, if x ∈ D, then

||F(x) − G(x)|| ≤ u(x)||F(x) − g(x)|| + (1 − u(x))||F(x) − h(x)|| ≤ u(x)ε/2 + (1 − u(x))ε ≤ ε.

Finally, since u(x) = 1 and G(x) = g(x) for every x ∈ C, we obtain that Lip(G|A ) = Lip(g|A ) ≤ 2Cλ(X)
4 Lip(F|A ).

To prove the last part, let us now assume that F is Lipschitz on the whole X. Let us apply Theorem 3.7 and
Corollary 3.9 to F and F|A to obtain di�erentiable almost everywhere mappings g and h from X into V such
that

(a) ||F(x) − g(x)|| < ε/4 for all x ∈ A,
(b) ||F(x) − h(x)|| < ε for all x ∈ X,
(c) Lip(g) ≤ 2Cλ(X)4 Lip(F|A ) and Lip(h) ≤ 2Cλ(X)

2 Lip(F).

We take again the open subsets B, D and the closed subset C as earlier in this proof. Notice that

dist(C, X \ D) ≥ ε
4(Lip(F) + 2Cλ(X)4 Lip(F|A ))

= ε′.

We claim that there is a di�erentiable almost everywhere and Lipschitz function u : X → [0, 1] such that

u(x) =
{
1 if x ∈ C
0 if x ∈ X \ D

and Lip(u) ≤ 4(Lip(F) + 2Cλ(X)
4 Lip(F|A ))

ε .

In fact, let us take a Lipschitz function θ : R → [0, 1] such that θ(t) = 0 whenever t ≤ 0, θ(t) = 1 whenever
t ≥ ε′ and Lip(θ) = 1/ε′. Thus, the function u(x) = θ(dist(x, X \ D)) is Lipschitz, so it is di�erentiable almost
everywhere, u(C) = 1, u(X \ D) = 0 and Lip(θ) ≤ 1/ε′.

Let us now consider G : X → V as

G(x) = u(x)g(x) + (1 − u(x))h(x).

Clearly G is di�erentiable almost everywhere on X. We follow the above proof to obtain that

(i) ||F(x) − G(x)|| < ε on X,
(ii) Lip(G|A ) = Lip(g|A ) ≤ 2Cλ(X)

4 Lip(F|A ).

Additionally, if y, z ∈ X \ D, then u(y) = 0, u(z) = 0, G(y) = h(y), G(z) = h(z), and ||G(y) − G(z)|| = ||h(y) −
h(z)|| ≤ 2Cλ(X)2 Lip(F)d(y, z). For y, z ∈ D, we have

||G(y)−G(z)|| = ||g(y)u(y) + h(y)(1 − u(y)) − g(z)u(z) − h(z)(1 − u(z))||
≤||g(y)(u(y) − u(z)) + h(y)(u(z) − u(y))|| + ||u(y)(g(y) − g(z)) + (1 − u(y))(h(y) − h(z))||
≤||(g(y) − F(y))(u(y) − u(z)) + (h(y) − F(y))(u(z) − u(y))|| + 2Cλ(X)4 Lip(F)d(y, z)
≤((ε/2 + ε) Lip(u) + 4Cλ(X)4 Lip(F))d(y, z)
≤(6 + 16Cλ(X)4) Lip(F)d(y, z).

The case z ∈ X \ D and y ∈ D follows the same way as the previous one. We de�ne C1 := 6 + 16Cλ(X)4 and,
�nally, obtain that Lip(G) ≤ C1 Lip(F).

Equation (2.1) can be also written as

f (z) − f (x) −
k(α)∑
m=1

df
dyαm

(x)(yαm(z) − yαm(x)) = o(d(z, x))

for a.e. x ∈ Xα. This expression inspires the mean value condition we will need to impose in order to obtain
our results. This mean value condition was proved to be needed for C1 extension of vector valued mappings
in [20] when working this problem in the context of Banach spaces. We adapt the notion given in [20] to our
context in the following de�nition.
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De�nition 4.4. Let (X, d, µ) be a metric measure space with a MDS, consider {(Xα , yα)}α∈A an atlas on it.
Let V be a Banach space and A ⊂ X a measurable subset with µ(A) > 0. We say that a di�erentiable almost
everywhere mapping f : A → V satis�es the mean value condition on A if for every α, almost every x ∈ A∩Xα
and every ε > 0, there is an open ball B(x, r) in X such that

||f (z) − f (y) −
k(α)∑
m=1

df
dyαm

(x)(yαm(z) − yαm(y))|| ≤ εd(z, y),

for every z, y ∈ A ∩ Xα ∩ B(x, r).

The following theorem is the main result in this section. It is rather an approximation result than an
extension one as it shows that continuous extensions can be approached by smooth mappings in a precise
way that can be useful to obtain the extensions result we are seeking. How to apply this result will be show
later.

Theorem 4.5. Let (X, d, µ) be a metric measure space with a MDS where (X, d) is doubling, let V be a Banach
space, A ⊂ X a closed subset and f : A → V a mapping satisfying the mean value condition. Let us consider
F : X → V a continuous extension of f to X. Then, for every ε > 0 there exists a di�erentiable almost everywhere
G : X → V such that

(i) ||F(x) − G(x)|| < ε on X, and
(ii) Lip(f − G|A ) < ε.
(iii) Furthermore, assume that f is Lipschitz on A and F is a Lipschitz extension of f to X. Then the function G

can be chosen to be Lipschitz on X and Lip(G) ≤ C Lip(F) for a certain constant C.

Proof. Assume that F is a continuous extension of f . Since X is a separable metric space, A ⊂ X is a closed
subspace and f satis�es the mean value condition on A, there exists {B(xn , rn)}n∈N a covering of A by open
balls of X, with centers xn ∈ A such that

||f (z) − f (y) −
k(α)∑
m=1

df
dyαm

(xn)(yαm(z) − yαm(y))|| ≤
ε

8C0
d(z, y),

for every z, y ∈ A ∩ Xα ∩ B(xn , rn), where C0 = 2Cλ(X)4.
Let us de�ne Tn as the �rst order Taylor Polynomial of f at xn given by

Tn(x) = f (xn) +
k(α)∑
m=1

df
dyαm

(xn)(yαm(x) − yαm(xn)),

for x ∈ X. Notice that Tn satis�es the following properties:

(1) Tn is di�erentiable almost everywhere on X,
(2) dTn

dyαm
(x) = df

dyαm
(xn) for almost every x in X and 1 ≤ m ≤ k(α), and

(3) for all z, y ∈ A ∩ Xα ∩ B(xn , rn),
||(Tn − F)(y) − (Tn − F)(z)|| =

= ||f (z) − f (y) −
k(α)∑
m=1

df
dyαm

(xn)(yαm(z) − yαm(y))|| ≤
ε

8C0
d(z, y).

Thus, Lip((Tn − F)|A∩Xα∩B(xn ,rn)) ≤
ε

8C0 .

By Theorem3.1 there is a di�erentiable almost everywheremapping F0 : X → V such that ||F(x)−F0(x)|| <
ε
2 for every x ∈ X.

Let us denote the open set B0 := X \A. Then, the collection {B(xn , rn)}∞n=1 ∪ B0 is a covering of X by open
sets. In the sameway as the proof of Theorem 3.1, there is a partition of unity {φn}∞n=0 of di�erentiable almost
everywhere and Lipschitz functions such that
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• for each x ∈ X there is a neighborhood of x where all but a �nite number of the functions are 0,
• suppφn = {x ∈ X : φn(x) ≠ 0} ⊂ B(xn , rn), suppφ0 ⊂ B0, and
• ∑∞

n=0 φn = 1.

Let us de�ne Ln := max{Lip(φn), 1} for every n ≥ 0. Now, for every n ∈ N we apply Lemma 4.3 to Tn − F on
A ∩ Xα ∩ B(xn , rn) to obtain a di�erentiable almost everywhere mapping δn : X −→ V so that

||Tn(x) − F(x) − δn(x)|| < ε
2n+2Ln

for every x ∈ X

and
Lip(δn |A∩Xα∩B(xn ,rn ) ) ≤

ε
8 .

Let us de�ne
G(x) = φ0(x)F0(x) +

∞∑
n=1

φn(x)(Tn − δn)(x).

The mapping G is di�erentiable almost everywhere since {φn}∞n=0 is locally �nitely nonzero. For every x ∈ X

||G(x) − F(x)|| ≤ φ0(x)||F0(x) − F(x)|| +
∑
n≥1

φn(x)||Tn(x) − δn(x) − F(x)|| ≤

≤
∑
n≥0

φn(x) ε2 < ε.

Let us prove that Lip(f − G|A ) < ε. In order to simplify the notation let us write Fz := {n ≥ 0 : φn(z) ≠ 0} for
z ∈ X, and Sn(y) := Tn(y) − δn(y) − f (y) for y ∈ A. Now, we obtain

||(G(y) − f (y)) − (G(z) − f (z))|| =

= ||
∑
n∈Fy

φn(y)Sn(y) −
∑
n∈Fz

φn(z)Sn(z) −
∑
n∈Fy

φn(z)Sn(y) +
∑
n∈Fy

φn(z)Sn(y)||

= ||(
∑
n∈Fy

φn(y)Sn(y) −
∑
n∈Fy

φn(z)Sn(y)) +
( ∑
n∈Fy

φn(z)Sn(y) −
∑

n∈Fz∩Fy

φn(z)Sn(z)
)

+
( ∑
n∈Fz\Fy

φn(y)Sn(z) −
∑

n∈Fz\Fy

φn(z)Sn(z)
)
||

≤
∑
n∈Fy

|φn(y) − φn(z)| ||Sn(y)|| +
∑

n∈Fz∩Fy

φn(z)||Sn(y) − Sn(z)||

+
∑

n∈Fz\Fy

|φn(y) − φn(z)| ||Sn(z)|| ≤
∑
n∈Fy

Lnd(y, z) ε
2n+2Ln

+
∑

n∈Fz∩Fy

φn(z) ε4d(y, z) +
∑

n∈Fz\Fy

Lnd(y, z) ε
2n+2Ln

< εd(y, z).

Let us now consider the case when F is a Lipschitz extension of f on X. In this case, we can assume that
f is not constant (otherwise the assertion is trivial) and thus Lip(F) ≥ Lip(f ) > 0. Let us �x 0 < ε < Lip(F). If
we follow the above construction for the open covering {B(xn , rn)}∞n=1 ∪ B0 of X, we additionally obtain

(4) Tn − F is Lipschitz on X and, by Proposition 4.2,

Lip(Tn) ≤ Lip(yα)
k(α)∑
m=1
|| dfdyαm

(xn)|| ≤ Lip(yα)k(α)Cα Lip(f ) ≤ Kα Lip(f ),

where Kα = k(α)Cα Lip(yα). Thus, Lip(Tn − F) ≤ Kα Lip(f ) + Lip(F) for every n ∈ N.

Also, the construction of the Lipschitz partition of unity {φn}n≥0 and the de�nition of Ln are similar to the
previous case.
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Now, for any n ∈ N, we apply Lemma 4.3 to Tn − F on A ∩ Xα ∩ B(xn , rn) to obtain a di�erentiable almost
everywhere mapping δn : X → V satisfying the properties of the previous case and

Lip(δn) ≤ C1 Lip(Tn − F) ≤ C1(Kα Lip(f ) + Lip(F)).

Besides, by applying Corollary 3.9, we select a di�erentiable almost everywhere mapping F0 : X → V, such
that

||F0(x) − F(x)|| <
ε

22L0
for every x ∈ X and Lip(F0) ≤ 2Cλ(X)4 Lip(F).

Similarly to the �rst case, the de�nition of G is

G(x) = φ0(x)F0(x) +
∞∑
n=1

φn(x)(Tn − δn)(x).

The proofs that G is di�erentiable almost everywhere, ||G(x) − F(x)|| < ε for all x ∈ X and Lip(f − G|A ) < ε
follow along the same lines. To show that G is Lipschitz, notice that, from the fact that the mappings {φn}
are a partition of unity,

G(z) − G(y) = (φ0(z) − φ0(y))(F0(z) − F(z)) + φ0(y)(F0(z) − F0(y))+

+
∑
n≥1

(φn(z) − φn(y))(Tn(z) − δn(z) − F(z)) +
∑
n≥1

φn(y)((Tn(z) − δn(z)) − (Tn(y) − δn(y))).

Therefore

||G(z) − G(y)|| ≤ ||(φ0(z) − φ0(y))(F0(z) − F(z))|| + ||φ0(y)(F0(z) − F0(y))||

+ ||
∑
n≥1

(φn(z) − φn(y))(Tn(z) − δn(z) − F(z))|| + ||
∑
n≥1

φn(y)((Tn(z) − δn(z)) − (Tn(y) − δn(y)))||

≤ ε
22 d(y, z) + 2Cλ(X)

4 Lip(F)d(y, z) +
∞∑
n=1

ε
2n+2 d(y, z) + (1 + C1)(Kα Lip(f ) + Lip(F))d(y, z)

≤ (ε + 2Cλ(X)4 Lip(F) + (1 + C1)(Kα Lip(f ) + Lip(F)))d(y, z).

We close the paper by showing how this result can be applied to obtain smooth extensions of smooth
mappings. We begin with a convergence theorem.

Theorem4.6. Let (X, d, µ) be ametric measure space with aMDS and V a Banach space. If {fn} is a sequence
of di�erentiable almost everywhere functions from X to V and f : X → V is such that

(i) Lipx(fn − f )→ 0 for almost every x ∈ X, and
(ii) there exists a function g : X → V such that df αn (x)→ g(x) for almost every x ∈ X,

then, f is di�erentiable for almost every x ∈ X and df α(x) = g(x).

Proof. We have to show that Lipx(f − g(x)yα) = 0 for almost every x ∈ X, that is, for ε > 0 there exists δ > 0
such that

sup
{
||f (z) − f (x) − g(x)(yα(z) − yα(x))||

d(z, x) : z ∈ B(x, δ) \ {x}
}
< ε.

Let us �x x ∈ X so that (i) and (ii) hold. From (i), there exists n0 ∈ N such that for n ≥ n0 we have that
Lipx(fn − f ) < ε/3. Therefore, there exists δ1 > 0 such that

sup
{
||(fn − f )(z) − (fn − f )(x)||

d(z, x) : z ∈ B(x, δ1) \ {x}
}
< ε/3.

From (ii) and the fact themappings yα are Lipschitz by de�nition, there exists n1 ∈ N such that for n ≥ n1
we have that

||df αn (x) − g(x)|| <
ε

3Lip(yα) .
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Let us take now N = max{n0, n1}, since fN is di�erentiable almost everywhere, there exists δ > 0, we can
choose it so that δ < δ1, such that

sup
{
||fN(z) − fN(x) − df αN(x)(yα(z) − yα(x))||

d(z, x) : z ∈ B(x, δ) \ {x}
}
< ε/3.

Then, z ∈ B(x, δ) \ {x},

||f (z) − f (x) − g(x)(yα(z) − yα(x))||
d(z, x) ≤ ||fN(z) − fN(x) − df

α
N(x)(yα(z) − yα(x))||

d(z, x)

+ ||(fN − f )(z) − (fN − f )(x)||d(z, x) + ||df
α
N(x) − g(x)|| · ||yα(z) − yα(x)||

d(z, x) < ε,

which completes the proof.

We obtain the following corollary.

Corollary 4.7. Under the conditions of the above theorem, given a sequence of di�erentiable almost everywhere
functions fn : X → V such that

(i)
∑∞

n=1 fn(x) < ∞ for x ∈ X, and
(ii) Lipx(

∑∞
n=N+1 fn)→ 0 as N →∞, for almost every x ∈ X,

then, f (x) =∑ fn(x) is di�erentiable almost everywhere in X.

Proof. We will apply Theorem 4.6 for functions∑n
j=1 fj. We need the function g(x) =∑∞

n=1 df
α
n (x). This func-

tion is well de�ned due to Proposition 4.2 and (ii). Also, (ii) in Theorem 4.6 follows from Proposition 4.2 and
(ii) in this corollary. Therefore, f is di�erentiable almost everywhere.

We go next with the �nal result of this paper where we provide existence of smooth extensions. We will
require of a very strong use of the mean valued condition. Of course, the mean valued condition as required
in the next statement can be weakened by imposing it only to the mappings that are needed in the proof,
however we impose it on all di�erentiable mappings so it makes the exposition easier.

Theorem 4.8. Let (X, d, µ) be a metric measure space with a MDS where (X, d) is doubling, let V be a Banach
space and A ⊂ X a closed subset with µ(A) > 0. Let us supposed that any di�erentiable almost everywhere
mapping from X to V satis�es the mean value condition on A. Then, given a di�erentiable almost everywhere
and Lipschitz mapping from A to V, there is a di�erentiable almost everywhere mapping F : X → V such that
F|A = f .

Moreover, if the mapping f is Lipschitz, then the di�erentiable almost everywhere extension F : X → V can
be chosen to be Lipschitz with Lip(F) ≤ C Lip(f ), where C ≥ 1 is a constant that only depends on X.

Proof. By Theorem 4.5, there exists a di�erentiable almost everywhere and Lipschitz g1 : X → V such that

(i) ||f (x) − g1(x)|| < 1/2 en A.
(ii) Lip(f − g1|A ) < 1/2.
(iii) Lip(g1) ≤ C Lip(f ).

Let us take f − g1|A : A → V, since we are assuming all di�erentiable functions satisfy the mean value
condition, we can apply Theorem 4.5, for globally de�ned Lipschitz functions on the whole X, again and so
there exists a di�erentiable almost everywhere and Lipschitz g2 : X → V such that

(i) ||f (x) − g1(x) − g2(x)|| < 1/22 en A.
(ii) Lip(f − (g1 + g2)|A ) < 1/2

2.
(iii) Lip(g2) ≤ C Lip(f − g1|A ) ≤ C/2.

Proceeding in thisway, for all n ≥ 2 there exists a di�erentiable almost everywhere andLipschitzmapping
gn : X → V such that
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(i) ||f (x) −∑n
j=1 gj(x)|| < 1/2n in A.

(ii) Lip(f − (∑n
j=1 gj)|A ) < 1/2

n.
(iii) Lip(gn) ≤ C/2n−1.

We de�ne now g(x) =∑∞
n=1 gn(x) for x ∈ X. Mapping g veri�es:

(i) g(x) = f (x) for x ∈ A.
(ii) Lip(g) ≤∑∞

n=1 Lip(gn) ≤ Lip(g1) +
∑∞

n=2 C/2n−1 ≤ C(Lip(f ) + 1).
(iii) For x ∈ X, take a ∈ A, and so ||g(x)|| ≤ ||g(x) − g(a)|| + ||f (a)|| ≤ Lip(g)d(x, a) + ||f (a)|| < ∞.
(iv) Lip(∑∞

n=N+1 gn) ≤
∑∞

n=N+1 Lip(gn) ≤ C
∑∞

n=N+1 1/2n−1 = C/2N−1 → 0.

Finally, from Corollary 4.7, g is di�erentiable almost everywhere and the theorem is proved.

Remark4.9. As �nal remarkwe point out that themean value conditionwas needed in the studies in Banach
spaces because they were looking for C1 extensions. Since being of class C1 has not been considered at all
in this work, the remaining question is not if the strong assumptions on the mean value condition may be
weakened but rather if it can be completely dropped.
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