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Abstract
Mollusc communities are getting endangered in the aftermath of urban sprawl because artificial structures do not surrogate 
natural substrates. In this study, we compared the diversity, community and trophic arrangements of molluscs among differ-
ent models of artificial substrate and their adjacent natural rock, to detect relationships between some abiotic variables and 
the mollusc communities. Complexity, chemical composition and age were tested as potential drivers of the community. 
Diversity, community and trophic structure differed between natural and artificial substrates. Complexity at the scale of cm 
was detected as the most important factor driving the community structure. In addition, a chemical composition based on 
silica and/or scarce calcium carbonates seems to be relevant for molluscs, as well as for the secondary substrate where they 
inhabit. However, age did not seem to be a driving factor. Among the different artificial structures, macroscale complexity 
was detected as the main factor diverging a drastically poor community at seawall from other artificial structures. In this 
context, macro and microscale complexity, chemical composition and mineral type are variables to consider in future designs 
of artificial substrates.
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Introduction

Biodiversity on natural coastal habitats is under threat by 
many causes, mainly: coastal artificialization, exploitation 
of renewable (fisheries) and non-renewable (mineral and 
energy extraction) resources, pollutant discharge and marine 
debris (Dulvy et al. 2003; Jacob et al. 2018).

In the Bay of Sydney (Australia), 50% of the natural 
coastline is replaced by artificial substrates (Chapman 2006; 
Dafforn et al. 2015) and around 22.000  Km2 of European 
coasts are covered with concrete or asphalt (European Envi-
ronment Agency Report 2006; Airoldi and Beck 2007). This 
coastal transformation, the so-called ‘urban sprawl’ (Firth et 
al. 2016), is being boosted by shore erosion due to more 
frequent stormy events and the sea-level rise (Bouma et al. 
2014; Bulleri and Chapman 2010), altogether, threatening 
intertidal ecosystems. Intertidal communities are diverse 
and complex due to the broad range of biotic and abiotic 

interactions that occur on intertidal natural substrates 
(Chapman 2013).

For example, wave and tide action (Southward and 
Orton 1954), desiccation or top-down processes (predation, 
competition, grazing, etc.) modulate both the sessile and 
vagile biota, promoting the development of rich and ecologi-
cally important communities.

Molluscs are one of the most abundant taxa in the intertidal 
zone, providing important ecosystem services (see Table 2 in 
Firth et al. 2016). They are considered early colonizers of sub-
strates (Underwood and Chapman 2013) and play important 
roles in C and Si cycles (Meysman and Montserrat 2017). Ses-
sile filter molluscs can contribute to clean water and improve 
nutrient uptake for algae (Eriksson et al. 2017) and together 
with other sessile organisms, they serve as engineers (Melero 
et al. 2017; Commito et al. 2018) setting up a secondary sub-
strate for many different species. Also, mobile grazers can feed 
on macrophytes, cleaning areas for subsequent colonization of 
many species (Firth et al. 2016). Previous studies have reported 
a negative impact of artificial substrates on intertidal molluscs. 
For example, Moreira et al. (2006) suggested that seawall  
do not sustain viable populations of limpets. Furthermore, 
complexity/heterogeneity (e.g. micro-roughness) can affect  
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the abundance of chitons (Moreira et al. 2007) or limpets 
(Rivera-Ingraham et al. 2011) on artificial substrates. In fact, 
substrate complexity is one of the biggest drivers of intertidal 
biodiversity. Concrete-made artificial substrates usually lack 
microhabitats (crevices, rock pools, etc.), preventing refuge 
from stressful conditions such as desiccation or predation, 
and are largely responsible for the biodiversity deficit of arti-
ficial substrates compared with the natural rocky shore (Firth 
et al. 2016 and references therein). Therefore, eco-engineering 
actions that added habitat complexity at different scales have 
been related with a higher number of taxa (Kefi et al. 2015; 
Strain et al. 2018) and enhanced recruitment and survival of 
sessile and mobile macrofauna (Atilla and Finelli 2005).

Substrate composition, like minerals and elements, is 
also known to be an important factor affecting commu-
nities developing on artificial structures (Coombes et al. 
2015; Sempere-Valverde et al. 2018). For example, acidic 
siliceous quartz from sandstone may cause oxidative stress 
and hold less diverse and mature community when com-
pared to limestone (Bavestrello et al. 2000; Cattaneo-Vietti 
et al. 2005). The mineralogical composition usually varies 
from artificial substrates (normally made from concrete) 
to natural substrates (Ido and Shimrit 2015; Ponti et al. 
2015). Concrete may liberate toxic metals and carbonates 
that enhance alkalinity (pH ~ 13) producing stress on indi-
viduals (Ido and Shimrit 2015). In the case of molluscs, 
higher saturation of aragonite can facilitate a higher occur-
rence of burrowing bivalves (Mos et al. 2019) and alka-
line concrete surfaces may increase oysters’ recruitment 
(Anderson 1996).

Although ecological succession may not occur in a 
parallel manner on artificial and natural substrates (Burt 
et al. 2011), the age of substrates has been considered as 
an important factor explaining the differences between arti-
ficial and natural substrates (Glasby and Connell 1999a, 
b). Some authors have estimated that it takes from 5 to 
20 years for artificial structures to reach climax communi-
ties (Coombes 2011; Hawkins et al. 1983; Pinn et al. 2005), 
while others suggest that communities on low crested struc-
tures never reach climax (Gacia et al. 2007) or take more 
than 100 years (Perkol-Finkel et al. 2005). Consequently, 
we decided to consider the date of substrates deployment in 
the present study, together with substrate composition and 
complexity, to study mollusc diversity associated with arti-
ficial substrates.

Furthermore, changes in the community structure of 
epifaunal organisms associated with artificial substrates 
can cause trophic shifts (Sedano et al. 2020a). Artificial 
substrates are known to affect prey resources (Munsch 
et al. 2015), limiting the diet of some mollusc species 
(Burgos-Rubio et al. 2015) and ultimately restricting the 
diversity of trophic strategies. For example, the reduced 
primary productivity on seawalls has been related to the 

scarcity of herbivore grazers (Lai et  al. 2018). These 
effects, among others, call for an ecological evaluation 
of coastal artificial substrates to prevent the decline of 
intertidal habitats (Dafforn et al. 2015; Firth et al. 2016) 
and promote other ecological services (García-Gómez 
et al. 2014; Dearborn and Kark 2010). Taking into account 
that molluscs are diverse and contribute highly to this 
habitat (Ricciardi et al. 1997), we decided to study the 
community of molluscs as a model to detect relationships 
between the abiotic features of the man-made intertidal 
substrate and the associated fauna. We focused on habi-
tat complexity, substrates composition and age intending 
to identify which factors are driving the differences in 
molluscs taxonomic and trophic structure between arti-
ficial substrates and natural substrates. In this regard, we 
hypothesized that:

1. Substrate complexity and composition would be the main 
drivers differentiating artificial from natural substrates, 
given the differences in complexity and composition 
between artificial and natural substrates in our study area. 
Additionally, we hypothesized that the mollusc commu-
nity at rip-raps (an artificial substrate made from natural 
rock) would be the most similar to natural substrates.

2. Trophic community structure would vary among differ-
ent artificial substrates and between artificial and natural 
substrates.

3. Age will be a driver structuring intertidal molluscs’ 
community on artificial substrates.

Methods

Study area

Our study area was located in the Algeciras Bay (Cadiz, 
Spain), which achieves 400 m in depth and occupies 73  Km2 
of area. This deep bay is found next to one of the most rel-
evant marine regions in the world, the Strait of Gibraltar. It 
is a marine area with high biodiversity due to its location 
and structure, which is placed between Africa and Europe 
and between two water bodies, the Atlantic Ocean and 
the Mediterranean Sea (Usero et al. 2016). Algeciras Bay 
contains five different substrates (four artificial and their 
nearest natural rocky shore), very close to each other and 
under very similar environmental conditions. We selected 
four nearby artificial substrates (acropods, cubes, rip-raps 
and seawall) and compared the molluscan assemblages and 
trophic structure among them and with the nearest natural 
substrate. Given the difficulty to find different artificial sub-
strates next to each other, we limited our study area to this 
single Bay (Fig. 1).
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Abiotic analysis

To identify possible drivers of the differences between sub-
strates, we measured the physicochemical features of each 
substrate. The variables included macro and microscale 
complexity, elemental composition, minerals, crystallinity, 
calcination percentage (C.P) and age. Complexity measures 
were divided into macroscale complexity (m) and microscale 
complexity (cm). In both cases (macro and microscale), 
substrate roughness was calculated as in Rivera-Ingraham 
et al. (2011) using the equation by Blanchard and Bourget 
(1999): Roughness or topographical heterogeneity index 
(THI) = Tr / Ts, where Tr is the “effective” distance between 
two points “A-B” (measuring the contour between A-B) and 
Ts is the linear distance between A-B. Macroscale roughness 
was calculated over 15 m length transects. Three transects 
were selected at each substrate and a flexible meter was 
laid directly over it, trying to conform as closely as pos-
sible to all contours of the bare substrate. Regarding micro-
scale roughness, three 15 cm profile gauges with 0.5 mm 
pins were pushed onto the bare rock to record the surface 
of each substrate (Frost et al. 2005). The resulting profiles 
were photographed, and the images were digitally processed 
with Adobe Photoshop to obtain two coloured images. The 
length of the contour of the profile was obtained with ImageJ 
software. The elemental composition and calcination per-
centage, mineralogical absorption spectra, crystallinity and 
lithology composition of each sample were obtained from 
Sedano et al. (2019). All chemical composition was charac-
terized using three powdered fragments of each substrate. 
Age of the substrate was based on the date of construction 
and resulting from the difficulty of dating age of the natural 
substrate, the oldest possible date in the same order of mag-
nitude compared to the oldest artificial substrate was used 
instead. Also, wave exposure was quantified at each substrate 
using a combination of the maximum fetch and the modified 
effective fetch (Fe) index developed by (Howes et al. 1994): 
Fe = [∑ (cos ɵi) X  Fi/∑cos ɵi], where ɵi is the angle between 

the shore-normal, and the directions 0º, 45º left and 45º right 
and  Fi is the fetch distance in Km along the relevant vector. 
To determine if substrates differed physico-chemically and 
to detect the most relevant abiotic components that separate 
the substrates, we performed a Principal Component Analy-
ses (PCA) using macro, microscale complexity, elemental 
composition (calcium, silicon and magnesium), crystallinity 
and age. Data were normalized before analyses.

Biotic analysis

Community and trophic structure, as well as biodiversity 
indices (richness, Pielou’s Evenness and Shannon’s diver-
sity), were compared among artificial and natural substrates. 
Three different sites were randomly selected within each of 
the five substrates (natural, cubes, acropods, rip-raps and 
seawall). At each site, three replicate quadrats of 20 × 20 cm 
were scraped (3 sites × 3 replicates × 5 substrates = 45 sam-
ples). The samples were collected during low tide and within 
the lower intertidal zone (5–30 cm over the lowest tidal level). 
We scraped the biotic substrate (secondary substrate) and the 
associated fauna and preserved it in 96% ethanol until labo-
ratory analyses. At the laboratory, associated molluscs were 
sorted out from the rest of sessile and vagile biota, identified 
down to species level whenever possible and quantified in 
terms of their abundance. Since the secondary substrate (ses-
sile biota developing on the hard primary substrate) can influ-
ence the associated fauna (Chapman et al. 2005), all sessile 
fauna and flora that conform the secondary substrate were 
volumetrically quantified at each replicated site to control 
this variable (used as a covariate in the analyses). Besides, 
percentages of the most abundant species of the secondary 
substrate were recorded as well, to detect possible differences 
between substrates.

To identify possible trophic shifts, we grouped the 
different species into trophic categories and compared 
the trophic structure among substrates. Species were 
assigned and grouped according to their trophic strategies 

Fig.1  Study area with 5 
substrates (1 = Cubes, 2 = Acro-
pods, 3 = Rip-Raps, 4 = Seawall, 
5 = Natural)
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(see Table 1 in Donnarumma et  al. 2018), with slight 
modifications to better represent the feeding strategy of 
the species in our study. We assigned them into different 
groups depending on what they feed on, and the way to 
obtain the food (trophic guilds) (Table 1). Despite being 
known to feed on larvae of animals and detritus (Burgos-
Rubio et al. 2015), limpets were considered herbivores. 
We also considered omnivores all animals that feed on 
suspended organic-matter or by filtering particles in the 
water column.

After species identification, three biodiversity indexes 
were measured (Badalamenti et al. 2002): species richness, 
Shannon–Wiener diversity and Pielou evenness for each 
replicated site in all substrates. To test for biodiversity dif-
ferences among substrates, we performed a nested ANOVA 
for each biodiversity index using GMAV5 (Underwood et al. 
2002). A Student Newman Keuls (SNK) test was also con-
ducted to elucidate differences among pairs of substrates. 
The statistic design had two factors: “Substrate” (fixed), with 
five levels: Natural, Cubes, Acropods, Rip-raps and Seawall, 
and “Sites” (random), which was nested in the substrate and 
had three levels (1,2,3). Cochran’s test was performed to 
confirm the homoscedasticity of biotic data.

Metric multidimensional scaling (MDS) based on 
the similarity of Bray Curtis matrix was performed on 
the community and trophic structure (see Table 1 with 
six categories). We made an additional CLUSTER and 
SIMPROF test to group the substrates depending on their 
dissimilarity. Furthermore, a permutational multivariate 
analysis of variance (PERMANOVA) was also carried out 
to test if the community and trophic structure of molluscs 
varied significantly among substrates and sites. Previously, 
data were square-root transformed and the analysis was 
carried out on a Bray Curtis triangular matrix. When a 
significant source of variance was detected, a pair-wise test 
between pairs of substrates was also computed to obtain 
the corresponding p-values.

Correlation analyses

Correlation tests between the community and abiotic matrix 
were made to explore potential relationships between com-
munity structure and the abiotic variables. Multicollin-
earity among abiotic factors was previously tested with a 
Draftsman’s plot based on Pearson correlations and only 
one abiotic factor was used when there were high pairs of 
correlation (Pearson correlation limit was set a 0.80) (See 
Fig. 5 in Sedano et al. 2019). Variance inflance factor (VIF) 
was also perfomed to avoid multicollinearity. Furthermore, a 
distance-based redundancy analysis (dbRDA) was computed 
using a fourth root transformed biotic matrix paired with a 
normalized abiotic matrix, to give similar weight to vari-
ables measured on different units. DbRDA was portrayed 
into a bidimensional representation. A BIOENV routine 
(Clarke and Ainsworth 1993) was done to detect the best set 
of variables that better suit the response data. This method 
calculates correlation coefficients between response vari-
ables (community matrix) and predictor variables (abiotic 
matrix) (Balkenhol et al. 2009). RELATE routine (Clarke 
and Warwick 2001) was carried out to detect the correlation 
coefficient between both, community and abiotic dissimilar-
ity matrix. All multivariant and correlation analyses were 
carried out with PRIMER + PERMANOVA 6 using 9999 
permutations (Anderson et al. 2008).

Results

Abiotic analyses

The results of the fetch index indicate that all the substrates 
belong to a semi-exposed wave exposure class, whereas 
the age of origin was different for each substrate (Table 2). 
Regarding substrate complexity, microscale complexity was 
higher at natural substrate and cubes comparing with the 

Table 1  Abiotic variables measured of each substrate. Average ± standard deviation

n.a not applicable, Macro Macroscale complexity, Micro Microscale complexity, C.P calcination percentage

Abiotic variables Natural Cubes Acropod Rip-Rap Seawall

Latitude 36° 0.634.1''N 36°07′ 12.1''N 36°07′03.2''N 36°07′ 01.2''N 36°07′00.5''N
Longitude 5° 25′55.4''W 5°26′ 07.6 ''W 5° 36′07.4''W 5° 26 ′07.4'' W 5°25′ 02.4''W
Date of deployment n.a 1955 1997 1997 2008
Distance form natural rock n.a 1.19 km 0.96 km 0.90 km 1.50 km
Effective fetch 95.79 km 74.66 km 116.52 km 116.52 km 43.15 km
Wave exposure class Semi-exposed Semi-exposed Semi-exposed Semi-exposed Semi-exposed
Mayor component Quartz Quartz-Calcite Dolomite Calcite Magnesium calcite
Macro (average ± SD) 1.05 ± 0.03 1.43 ± 0.06 1.47 ± 0.24 1.26 ± 0.09 1.00 ± 0.01
Micro (average ± SD) 1.62 ± 0.22 1.62 ± 0.31 1.20 ± 0.07 1.30 ± 0.04 1.00 ± 0.01
C.P 1.17 ± 0.41 29.10 ± 5.20 40.48 ± 1.40 41.56 ± 1.10 1.28 ± 1.60
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rest of substrates, being very low at seawall and acropods. 
In contrast, macroscale complexity was higher at acropods 
and cubes than rip-raps and natural substrate (Table 2). From 
a chemical point of view, elemental composition differed 
between natural and artificial substrates and among all sub-
strates. Silica (SiO2) concentration was higher at natural 
substrate compared to artificial substrates, which were char-
acterized by a higher concentration of calcium oxide (CaO) 
at all samples (Table 3).

According to the mineralogical composition, natural 
substrate was very different from the artificial ones, and 
differences were also found within the artificial substrates. 
The natural substrate was composed of high percentages 
of quartz, while cubes and rip-raps were mostly composed 
by quartz and CaO in a carbonated form, calcite (CaCO3). 
Acropods presented high levels of magnesium oxide (MgO) 
and their mineralogical composition was based on dolomite 
(CaMg(CO3)2) (Table 3) (full mineralogical composition in 
supplementary files of Sedano et al. 2019).

Figure 2 represent these values bidimensionally. In addi-
tion, crystallinity was positively correlated with silica and 
negatively correlated with calcium oxide and calcination 
percentage.

Age causes the separation of cubes and natural samples 
from the rest of substrate samples, correlating with micro-
scale complexity.

Biotic analyses

A total of 3198 molluscan specimens were identified during 
this study, corresponding to 3 classes, 20 orders, 35 families, 
41 genera and 46 species (supplementary material Table 1). 
A total of 1855 specimens were collected from 4 artificial 
substrates (4 × 9 = 36 samples) and 1343 from 1 natural 
substrate (9 samples). Abundance was drastically lower at 
seawall (28) and moderately lower at cubes (447), acropods 
(705) and rip-raps (675).

Ellisolandia elongata was the dominant secondary sub-
strate at natural substrate (83.5%) and rip-raps (85.4%); 
Perforatus perforatus predominated at cubes (66.9%) and 
acropods (47.5%) and Mytillus galloprovincialis predomi-
nated at seawall (Fig. 3).

Regarding trophic groups, natural substrate contained all the 
groups measured, and scavenger was exclusive for this substrate. 
This group was formed by a single species, Tritia tingitana, and 
its abundance was 2. On the other hand, mostly all artificial sub-
strates lacked the group detritus feeder except for seawall. Shared 
species per substrate are shown in Fig. 4. The differences in the 
percentages of groups between substrates were also remarkable.

In terms of percentages, more macro and micro grazers 
appeared at artificial substrates compared to natural sub-
strate. In contrast, predators and detritus feeders appeared 
in higher percentage at natural substrate, with the exception 

Table 2  Feeding Guilds and Trophic groups of mollusc’s community with Code and Description

Trophic groups Feeding guilds Decription Code

Omnivores Filter feeder Filter over organic matter suspended in the ocean FF
Suspension feeder Suspensivore of organic matter suspended in the ocean SF

Herbivores Deposit feeder Feeding over unicelular algae, diatoms, hormogonies from cyanophites 
or detritus over algae

DF

Macro/Micro grazer Macro–Micro grazer over tapizant and incrustant macroalgae MG
Carnivores Scavenger Feeding over dead animals SC

Predator Predator or grazer of cnidarians, sponges, molluscs and
other animals

PR

Table 3  Mayor elements  
and minerals  of each  
substrate. Average ± standard 
deviation

SiO2 Silica, CaO Calcium oxide, MgO Magnesium oxide, SO3 Sulphur trioxide

Elements Natural Cube Acropod Rip-Rap Seawall

SiO2 95.63 ± 1.25 31.96 ± 11.28 6.51 ± 1.76 3.88 ± 2.71 11.34 ± 1.25
CaO 0.22 ± 0.03 33.74 ± 7.91 33.14 ± 1.89 52.66 ± 2.23 45.83 ± 1.85
MgO 0.24 ± 0.10 2.48 ± 0.76 14.27 ± 3.06 0.50 ± 0.19 1.84 ± 0.72
SO3 0.00 ± 0.00 1.06 ± 0.76 1.33 ± 0.28 0.00 ± 0.00 1.28 ± 0.20
Minerals
Quartz 0.96 ± 0.01 0.57 ± 0.16 0.01 ± 0.00 0.08 ± 0.04 0.18 ± 0.03
Calcite 0.00 ± 0.00 0.34 ± 0.07 0.01 ± 0.13 0.92 ± 0.04 0.00 ± 0.00
Dolomite 0.00 ± 0.00 0.00 ± 0.00 0.80 ± 0.12 0.00 ± 0.00 0.00 ± 0.00
Mg-Calcite 0.00 ± 0.00 0.07 ± 0.12 0.00 ± 0.00 0.00 ± 0.00 0.78 ± 0.04
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of seawall, where the percentage of predators and detritus 
feeders was higher than that of natural substrate.

There were also differences between artificial substrates 
because the percentage of filter feeders was higher at rip-
raps and cubes compared to natural substrate and acropods, 
while more macro and micro grazers appeared at acropods 
compared to the rest of substrates. Finally, seawall had a 
very heterogeneous trophic structure among samples (Fig. 5, 
supplementary material Table 1).

Shannon’s diversity and richness varied significantly 
among substrates (p < 0,001) (Table 4). According to SNK 
test, Shannon’s diversity was greater on the natural substrate 
compared to the artificial substrate. Among artificial sub-
strates, acropods showed higher Shannon’s diversity values 
than seawall, cubes and rip-raps. In contrast, cubes, rip-raps 
and seawall did not differ significantly on Shannon’s diver-
sity. Similarly, SNK test showed that natural substrate had 
higher species richness than the artificial substrates. Among 

Fig. 2  Principal Component 
Analyses (PCA) portraying the 
differences among substrates 
according to the abiotic data 
measured

Fig. 3  Total volume of second-
ary substrate (ml) in the Y axis 
and substrates in the X axis. 
Percentages of volume of the 
most abundant species from 
secondary substrate (species 
ml/total species ml) at each 
substrate. Percentages < 1% are 
not included
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artificial substrates, acropods were richer than cubes, rip-
raps (p < 0,05) and seawall (p < 0,01). cubes and rip-raps did 
not differ between them but both were richer than Seawall 
(p < 0,05). Finally, Pielou’s evenness did not differ among 
substrates (Fig. 6).

MDS analysis for the community structure showed three 
groups: 1 = natural, 2 = seawall and 3 = acropods, rip-raps 
and cubes. These groups were statistically supported by the 
SIMPROF test (p < 0.05). The natural group appeared homo-
geneous and different from the rest of the substrates. Sea-
wall group was heterogeneous, but it also appeared clearly 
segregated. The third group, formed by acropods, cubes and 
rip-raps was homogeneous but distinct from natural substrate 
and seawall groups (Fig. 7).

MDS for the trophic structure revealed three groups: 
1 = seawall, 2 = seawall and 3 = natural, acropods, cubes, 
rip-raps and seawall. These groups were statistically sup-
ported by the SIMPROF test (p < 0.05). Seawall was the 
most heterogeneous substrate diverging into three groups, 
while acropods, rip-raps, natural substrate and cubes were 

more similar. However natural substrate was homogeneous 
and was significantly different from the rest at a level of 
similarity of 80% (Fig. 8).

PERMANOVA test indicated significant differences in 
community structure between substrates and among sites. 
According to the pair-wise tests, the community at natural 
substrate differed from the rest. When comparing among arti-
ficial substrates, seawall differed from rip-raps and acropods 
(p < 0,01), but not from cubes. Cubes, acropods and rip-raps 
seemed to have a similar community structure (Table 5).

PERMANOVA test indicated differences in trophic struc-
ture among substrates but not among sites. The pair-wise 
test revealed that trophic structure on the natural substrate 
was different from the artificial substrates. Among artificial 
substrates, seawall differed from rip-raps (< 0,05) and acro-
pods (p < 0,01) but not from cubes. Also, acropods, rip-raps 
and cubes had a similar trophic community (Table 6). The 
volume of the secondary substrate using as a covariable was 
significant for taxonomical PERMANOVA but not for the 
trophic one.

Fig. 4  Venn diagram with the 
percentage of shared species of 
associated fauna of molluscs 
among the five substrates
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Correlation analyses

A dbRDA analysis revealed a relationship between the physi-
cal–chemical composition and the molluscan community. The 
associated community of molluscs at natural substrate was 
highly correlated with a low CaO concentration and carbon-
ated nature, a high microscale complexity and older age. On 
the other hand, the community at artificial substrates was cor-
related with a high CaO concentration and carbonated nature, 
low microscale complexity and younger age. Because SiO2 
appeared negatively collineated with CaO and C.P, these 
parameters were not included in the analyses. Among artificial 
substrates, the seawall community was also correlated with 
a low macroscale complexity, and therefore they have clus-
tered apart from the more heterogeneous artificial substrates 
(acropods, cubes and rip-raps) (Fig. 9). The BIOENV analy-
ses showed that the most correlated variables (p < 0.01) were 
macro, microscale complexity and crystallinity (Rho = 0,669). 
The RELATE test showed a significant correlation of abiotic 
with taxonomic matrices (Rho = 0,518; p < 0,01).

Discussion

The molluscs community structure and diversity seemed to 
be significantly different between artificial and natural sub-
strates. Among our studied variables, substrate complexity 
(macro and microscale roughness) and chemical composi-
tion appeared to be the main drivers of those differences. 
Besides, the trophic structure also seemed to be different 
between artificial and natural substrates.

By our results, habitat complexity in terms of the rela-
tive abundance of microhabitats such as crevices (Evans 
et al. 2016), rockpools and macrophytes is considered as 
one of the most influencing factors on intertidal communi-
ties (Warfe et al. 2008). Higher heterogeneity at the scale 
of centimeters increases recruitment of spores and larvae 
(Sempere-Valverde et al. 2018) due to a higher number of 
refugees (Kostylev et al. 2005; Coombes et al. 2010). This 
can be particularly important for intertidal molluscs since 
they can not only find shelter against environmental stress 
(Meager et al. 2011; Harley and Helmuth 2003; Loke et al. 
2015), but also against predation (Warfe et al. 2008) and 
competition (Huston 1979) by finding crevices that fit their 
shell size (Loke and Todd 2016), determining community 
structure and diversity. Moreover, algae turfs that cover the 

Fig. 5  Total percentage of abundance (individuals) of each trophic 
group per substrate. Groups with < 1% are not included. SF: Suspen-
sion feeder, FF: Filter feeder, MG: Macro–micro grazer, DF: Detritus 
feeder, PR: Predator

Table 4  Two-way ANOVA test for the three diversity indices. Sub-
strate (Su), Site (Si)

df degrees of freedom, MS Mean square, P p value, Perms permuta-
tions, n.s not significant
*** p < 0,001

Index Richness

Source df MS F P
Su 4 188,911 27,60 ***
Si(Su) 8 6,0667 0,81 0,4543
Residual 30 7,4889
Cochran test n.s
SNK test N > (A > ((C = R) > S))
Index Pielou’s Eveness
Source df MS F P
Su 4 0,0631 1,32 n.s
Si(Su) 8 0,0008 0,01 0,3407
Residual 30 0,1162 0,9933
Cochran test n.s
SNK test N = A = C = R = S
Index Shannon’s Diversity
Source df MS F P
Su 4 1,9643 34,05 ***
Si(Su) 8 0,0649 0,16 0,8552
Residual 30 0,4128
Cochran test n.s
SNK test N > (A > (C = R = S))



827Urban Ecosystems (2021) 25:819–834 

1 3

rocky substrate can influence the abundance and biodiver-
sity of associated fauna, playing biogenic roles, similar to 
sessile animals such as barnacles or annelids who play the 
role of “ecological engineers”, providing the secondary 
substrate where many species live (Simboura et al. 1995; 
Bavestrello et al. 2000). The greater abundance of the cal-
careous algae Ellisolandia elongata on natural substrate 
can influence the associated fauna via increasing both the 
habitat volume and habitat complexity (Guerra-García et al. 
2012; Veiga et al. 2014; Torres et al. 2015). Moreover, it can 
decrease desiccation and temperature stress by providing 
shelter for mobile fauna (Singh et al. 2013; Kefi et al. 2015).

In our study, 15 species were exclusive of natural sub-
strate. Natural substrate had high microscale complexity, but 
they were also highly covered by the calcareous algae Elli-
solandia elongata, altogether possibly boosting the higher 

occurrence of more taxa. Species sensitive to disturbance 
such as the bivalves Irus irus, Parvicardium vroomi and gas-
tropods such as Skeneopsis planorbis only appeared at natu-
ral substrate. For example, S. planorbis and P. vroomi are 
known to be well represented along the Algeciras Bay 
associated with the algae Halopteris sp. (Sánchez-Moyano 
et al. 2000), a highly complex algae (as E. elongata) that 
can support rich associated communities (Navarro-Barranco 
et al. 2018). In addition, P. vroomi has shown preference 
for the algae Halopteris filiscina (Avila 2003). Similarly, 
more abundance of sea snails and bivalves appeared at 
natural substrate. For example, Cerithiopsis tubercularis is 
usually restricted to live on algae that are associated with 
its food (sponges), as it is the case of the branched Elliso-
landia spp. and its association with the sponges Halichon-
dria and Hymeniacidon (Fretter and Manly 1977). Given the 

Fig. 6  Bar graph for mean 
Pielou’s Evenness, Shannon’s 
Diversity and Richness. Error 
bars represent Standard Devia-
tion. a > b > c
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close association between algae and molluscs that certain 
species can present, the absence or very low abundances 
of these species at artificial substrates, where the cover of 
algae was very scarce, highlights the importance of calcare-
ous algae in supporting richer communities of molluscs on 
artificial substrates at this area. In contrast, a lower micro-
scale complexity and scarce algae canopy, probably lead to 
a lower abundance of the less competitive bivalves and sea 
snails because fewer microhabitats are available (Underwood 
and Fairweather 1989; Hills 1996; Strain et al. 2018) as it 
happens at seawall. Also, the sandstone porosity of natural 
substrates increases algae settlement (Green et al. 2012), 
probably generating positive cascading effects.

However, a higher complexity at the scale of meters 
increases recruitment of propagules and the dissipation of 
water energy (Vieira et al. 2020) on cubes, acropods and 
rip-raps, boosting the abundance, richness and diversity of 
associated fauna, on these substrates, in comparison with 
seawall. However, these species were mostly “limpets” 
as Fissurela nubeluca, Siphonaria pectinata and Patella 
caerulea and chitons. The increment of this taxa is pos-
sibly related to the fact that artificial substrates are better 
habitat for sedentary species, such as limpets and chitons, 
rather than strictly vagile gastropods (Rivera-Ingraham 
et al. 2011; Cha et al. 2013), probably by suffering lower 
predation and being more resilient to wave action. In fact, 
non-native species of Siphonaria and barnacles have been 
recorded on seawalls at Plymouth and Singapore (Hsiung 
et al. 2020).

Seawalls have a small intertidal area for recruitment but, 
as it happens in our study, seawalls harbour abundant beds 
of mussels (Chapman et al. 2005) and barnacles on the sec-
ondary substrate, associated with lower biodiversity values 
in comparison with natural substrates (People 2006; Sedano 
et al. 2020b). The community at seawall was very scarce 

Fig. 7  MDS for the mollusc community structure at each substrate. 
The groups are supported by the SIMPROF test (p < 0.05)

Fig. 8  MDS for the mollusc trophic structure at each substrate. The 
groups are supported by the SIMPROF test (p < 0.05)

Table 5  PERMANOVA test on community structure for the fixed fac-
tor substrate (Su: Natural, Cubes, Acropods, Rip-raps, Seawall) and 
the nested factor Site (Si: Site 1, Site 2, Site 3)

df degrees of freedom, MS Mean square, P p value, Perms permuta-
tions, CO covariable (volume of secondary substrate)
* (p < 0.05); *** (p < 0.001)

Source df MS Pseudo-F P Perms

CO 1 3318,3 2,3131 * 9954
Su 4 11,171 7,2066 *** 9910
Si(Su) 10 1647,6 1,6347 *** 9831
Res 29 1007,9
Total 44
Pair-wise tests  N ≠ (C = R = A) ≠ S; C = S

Table 6  PERMANOVA test on trophic structure for the fixed factor 
substrate (Su: Natural, Cubes, Acropods, Rip-raps, Seawall) and the 
nested factor Site (Si: Site 1, Site 2, Site 3)

df degrees of freedom, MS Mean square, P p value, Perms permuta-
tions, CO covariable (volume of secondary substrate), n.s not signifi-
cant
*** p < 0,001

Source df MS Pseudo-F P Perms

CO 1 1312,8 2,8039 n.s 9969
Su 4 3953,8 8,0587 *** 9939
Si(Su) 10 509,55 1,3222 n.s 9920
Res 29 385,38
Total 44
Pair-wise tests N ≠ (C = R = A) ≠ S; C = S
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and had the lowest diversity. Chapman (2006) suggested 
that seawalls lack microhabitats for many species and limit 
the life strategies of specialized intertidal fauna, such as 
limpets and chitons. For example, as it has been recorded 
in the chiton belonging to Ischiochiton genera that inhabits 
underneath the boulders as habitat-specialist (Grayson and 
Chapman 2004). On the other hand, the pulmonate lim-
pet Siphonaria pectinata was absent at seawall, in accord-
ance with Moreira et al. (2006) who detected a relation 
among living on seawall and a reduction on the reproductive 
output of this limpet. However, these results contrast with 
Hsiung et al. (2020) who recently detected non-native spe-
cies of Siphonaria guanemensis and barnacles on seawalls 
at Plymouth and Singapore.

Chemical composition was also identified as a possible 
driver of the community, mainly differentiating communities 
settled on natural or artificial substrates, since the natural rock 
was mainly pure quartz (SiO2), while artificial substrates had 
great amount of carbonated minerals, with high levels of the 
calcite (CaCO3). The effect of quartz on natural substrates 
and the carbonated mineralogy at artificial substrates could 
affect the associated fauna. For example, it has been reported 
that quarzitic radicals inhibit the settlement of first recruits 
of secondary substrates such as the hydroid Eudendrium 
glomeratum (Bavestrello et al. 2000) or the sponge Clionia 
sp. (Cerrano et al. 2007) while they are neutral for algae set-
tlement. Moreover, in the present study, associated fauna 

was more abundant and more diverse at natural substrate, 
where more Ellisolandia elongata appeared, possibly due to 
a reduction in competition with other sessile biota affected 
by the toxicity of silicon radicals (Cerrano et al. 1999). In 
addition, facilitation by calcium hydroxides that are liberated 
by concrete artificial substrates to the substrate surface, alka-
linizing the pH, also contributes to the settlement of bivalves 
(Anderson 1996; Soniat and Burton 2005; Burt et al. 2009) 
and barnacles (Guilbeau et al. 2003) on the sessile substrate, 
as it occurs in the concrete substrates in this study (acropods 
and seawall).

The concrete substrates are also rich in magnesium oxides 
and other minerals, which could influence the presence of 
exclusive species. For example, aragonite has been related 
with improving boring bivalves’ settlement (Green et al. 
2013), being more soluble on water than calcite (Cornelis 
and Cornelius 2007), and acropods that are composed by 
this material showed the presence of the boring species Lei-
sonelus aristatus.

Therefore, a combination of a carbonated nature and a 
lower microscale complexity at artificial substrates pos-
sibly promotes a different community of molluscs and 
increase the dominance of the most ‘colonizer’ species of 
the secondary substrate (mussels and barnacles) at cubes, 
acropods and seawall (Miller and Etter 2008; Underwood 
and Chapman 2013), all disturbing the associated fauna 
of molluscs.

Fig. 9  dbRDA for the taxo-
nomic structure using the 
abiotic variables as predictors
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According to the trophic structure, natural substrate 
seems to be more diverse, mostly because they contain 
all the trophic groups measured, while acropods, rip-raps 
and cubes lack of suspension feeder and scavengers. Con-
trarily, seawall had all the measured groups except scav-
engers. Another interesting difference was the different 
percentage of groups among substrates because detritus 
feeder and predator were more abundant at natural sub-
strate than at acropods, rip-raps and cubes, where more 
percentage of macro and micro-grazer appeared. Natural 
substrate hold the majority of detritus feeders, a fact that 
could be related to higher sediment retention by macro-
phytes (Melero et al. 2017; Casoli et al. 2019). In contrast, 
the detritus feeder Barleeia unifasciata appeared at sea-
wall. In fact, littorinid snails have been related to break-
waters, with lower crevice availability (Aguilera et al. 
2014). In addition, predators were exclusive from natural 
substrate, probably because intraguild predation (Janssen 
et al. 2007) and the number of preys has been reported to 
be lower at structures with less complexity. In contrast, 
macro and micro grazers were highly abundant at artificial 
substrates, mostly derived from an increment in species 
of limpets and chitons (see the first part of Discussion).

Limpets are known to control the volume of macro-
phytes in concert with sea-urchins by their grazing activ-
ity (Piazzi et al. 2016) and, in this area, they have been 
recorded as omnivorous and very generalist (Burgos-Rubio 
et al. 2015). This could explain the lower volume of the 
secondary substrate at cubes, rip-raps and acropods when 
compared to natural substrate and seawall. In addition, 
the higher volume of secondary substrate on seawall, a 
substrate with a low abundance of molluscs, sustains the 
hypothesis that grazers control these sessile populations 
at acropods, rip-raps and cubes, in special the Ellisolandia 
elongata, as has been observed at rip-raps. The idea that 
these grazers could be controlling the associated fauna at 
artificial substrates should be considered.

Several authors had pointed out that biodiversity 
could be driven by the age of substrate (Perkol-Finkel 
et al. 2005; Glasby and Connell 1999a, b), and others have 
reported that temporal heterogeneity among artificial and 
natural substrates is a relevant factor driving communities 
(Glasby and Connell 1999a). For example, on artificial 
substrates, first recruits as ephemeral algae, sponges and 
bivalves occur fast in less than a year on but later, as a 
consequence of a low microscale complexity, dominant 
species outcompete the first colonizers (Burt et al. 2011). 
Nevertheless, among the artificial substrates studied in the 
present work, age did not appear as a driver of the commu-
nity, because the community at cubes (80y) and rip-raps 
(20y) was similar, and community of seawall (20y) and 
acropods (20y) differed, independently of age.

Conclusions and future approach

As expected in our first hypothesis, mollusc community and 
diversity differed between artificial and natural substrates. Dis-
tortion in the bottom-up interactions between, a combination 
of low microscale complexity and a carbonated nature, rich in 
calcium, of the artificial substrates and the mollusc community, 
seems to impact over many species of molluscs and the common 
calcareous algae Ellisolandia elongata they inhabit in, compar-
ing with the natural substrate. Moreover, macroscale complex-
ity seems to influence the community of molluscs, increasing 
recruitment of species at acropods, rip-raps and cubes in com-
parison with seawall, but mostly benefiting limpets, chitons and 
bivalves, and also barnacles on the secondary substrate.

As for our second hypothesis, physico-chemical factors 
seem to alter the trophic community increasing the per-
centage of macro and micro grazers and filter feeders on 
artificial substrates. In contrast with our third hypothesis, 
age did not appear as a driver of the mollusc community.

We suggest that, according to previous studies, increas-
ing habitat heterogeneity by means of increasing crevices 
(Archambault and Bourget 1996) and rock-pools (Ostalé-
Valriberas et al. 2018) and microscale complexity is fun-
damental in the future designs of artificial substrates. On  
the other hand, the chemical structure should be included 
as an important topic of research in new models of arti-
ficial substrates, possibly depending on the geology and  
chemistry of the surrounding lands (Moschella et al. 2005).

In the case of Algeciras, rip-raps and cubes were the most 
similar to natural substrate in relation to abiotic features. At 
the same time, in relation to community and trophic struc-
ture, these substrates seem to be less disturbed. Even though 
the study was replicated within substrates, the lack of several 
types of substrates under similar environmental factors on a 
higher spatial scale represents a limitation. In this sense, fur-
ther studies re-analyzing already published data and/or meta-
analysis at higher spatial scales will provide valuable insights 
on the role of artificial substrates in structuring coastal assem-
blages. Furthermore, more research should clarify how mol-
luscs or macrophytes recruitment and survivance are influ-
enced by chemical and other physical issues of the substrate. 
Finally, biological interactions among secondary substrates 
and associated fauna should be also explored in future designs.
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