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For a convex body K ⊂ R
n, let �pK be its Lp-centroid body. The Lp-Busemann–Petty

centroid inequality states that vol(�pK) ≥ vol(K), with equality if and only if K is

an ellipsoid centered at the origin. In this work, we prove inequalities for a type of

functional Lr-mixed volume for 1 ≤ r < n and establish, as a consequence, a functional

version of the Lp-Busemann–Petty centroid inequality.

1 Introduction

The study of affine isoperimetric inequalities on one side and affine Sobolev inequali-

ties for functions on R
n on the other is connected to a great extent. The equivalence of

the classical isoperimetric inequality and the classical L1-Sobolev inequality has been

known for quite some time (see, e.g., [1–7]). Following this path, Zhang in [8] established

the equivalence of an affine L1-Sobolev inequality with the Petty projection inequality

for convex bodies. Some time after, along with Lutwak and Yang, they obtained Lp

versions of this equivalence. Around the same time, these authors developed a rich

theory of geometric inequalities for centroid bodies and established Lp extensions of

many other fundamental notions from convex geometry, such as mixed volumes and

surface area.
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7948 J. E. Haddad et al.

On top of the strong connections mentioned above, other geometric inequalities

of an isoperimetric flavor like the Busemann–Petty centroid inequality or Blaschke–

Santaló inequality, among others, have been fundamental in the study of several

inequalities of Sobolev type, like Lp-log-Sobolev, Gagliardo–Nirenberg, Sobolev trace,

or weighted Sobolev inequalities (e.g., [9–14]). It is important to notice that in many of

the works mentioned above, where the Busemann–Petty centroid inequality was used

to recover some known results for Sobolev type inequalities, this inequality provided a

more direct approach. This approach often avoided the use (in their original proofs) of

other well-known tools in the area of convex geometric analysis like the solution to the

Minkowski problem or the theory of mixed or dual mixed volumes.

In this work, we continue with this line of research. We obtain a family of

inequalities for functions on R
n, inequalities of Sobolev type, that in particular recover

the Lp-Busemann–Petty centroid inequality for convex bodies in R
n. Our main inequality

is presented in the form of a functional mixed volume inequality.

Theorem 1.1. Let f be a C∞ function and g a continuous non-negative function, both

with compact support in R
n. Then, for 1 ≤ r < n, q = nr

n−r and λ ∈
(

n
n+p , 1

)
∪ (1, ∞),

∫
Rn

(∫
Rn

g(y)|〈∇f (x), y〉|pdy
)r/p

dx ≥ Cn,p,λ||g||
[(n+p)(λ−1)+p]r

np(λ−1)

1 ||g||−
λr

(λ−1)n
λ ||f ||rq. (1)

The sharp constant Cn,p,λ is computed in Section 3. After a lengthy but straightforward

computation, inequality (1) extends for f and g in the following Sobolev spaces:

g ∈ L1
1+|x|p(Rn) =

{
h ∈ L1(Rn) :

∫
Rn

|h(x)|(1 + ‖x‖p
2)dx < ∞

}

f ∈ W1,q,r(Rn) = {
h ∈ Lq(Rn) : ∇h ∈ Lr(Rn)

}
,

still with g ≥ 0. These are the natural spaces to look for extremal functions of inequality

(1), and equality is attained if and only if f and g have the following forms:

g(x) = aGp,λ(||Ax||2), for a.e.x

f (x) = bFr(||Ax||2)

for positive constants a, b, A ∈ GLn(R), Gp,λ : R+ → R defined by

Gp,λ(t) =
⎧⎨
⎩

(1 + tp)
1

λ−1 if λ ∈
(

n
n+p , 1

)
(1 − tp)

1
λ−1+ if λ > 1,
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Lp-Functional Busemann–Petty Centroid Inequality 7949

and

Fr(t) = (1 + t
r

r−1 )1− r
n .

2 Notions and Tools from Convex Geometry

In order to show the intrinsic geometric nature of inequality (1), and in particular, its

relation to the Lp-Busemann-Petty centroid inequality, let us first recall some basic

definitions. A convex body is a convex set K ⊂ R
n, which is compact and has non-empty

interior. For a convex body K, its support function hK , which uniquely characterizes it,

is defined as

hK(x) = max{〈x, y〉 : y ∈ K}.
If K contains the origin in the interior, then we also have the gauge ‖ · ‖K and radial rK(·)
functions of K defined, respectively, as

‖y‖K := inf{λ > 0 : y ∈ λK} , y ∈ R
n \ {0} ,

rK(y) := max{λ > 0 : λy ∈ K} , y ∈ R
n \ {0} .

Clearly, ‖y‖K = 1
rK(y)

.

For a convex body K ⊂ R
n and p ≥ 1, its Lp-moment and Lp-centroid bodies,

denoted by MpK and �pK, are defined by their support functions

hMpK(x)p =
∫

K
|〈x, y〉|pdy, and h�pK(x)p = 1

vol(K)cn,p

∫
K

|〈x, y〉|pdy, (2)

respectively, where cn,p = ωn+p
ω2ωnωp−1

and ωm is the m-dimensional volume of the unit ball

B of Rm. The Lp-Busemann–Petty centroid inequality states that

vol(�pK) ≥ vol(K) or vol(MpK) ≥ cn/p
n,p vol(K)

n+p
p , (3)

in terms of the moment body MpK. Equality holds in (3) if and only if K is an 0-symmetric

ellipsoid.

Centroid bodies for p = 1 can be found for the 1st time in a work of Blaschke

[15], whereas the Busemann–Petty centroid inequality for p = 1 is due to Petty [16]. The

Lp version of centroid bodies above was introduced by Lutwak and Zhang [17], while (3)

was obtained by Lutwak et al. in [18]. For the history of the Busemann–Petty centroid

inequality and a comprehensive introduction on centroid and moment bodies, we refer

to Chapter 10 in [19].

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/10/7947/5713440 by U
niversidad de Sevilla user on 21 April 2023



7950 J. E. Haddad et al.

The theory of mixed volumes, first developed by Minkowski [20, 21], is one of

the pillars of the Brunn–Minkowski theory, it provides us with a unified approach to the

study of several of the most important quantities from convex geometry, such as volume,

mean width, surface area, among others. At the same time, it has been fundamental in

many other problems ranging from characterization of special families of convex bodies

to establish new isoperimetric inequalities, we refer to [19, 22] for a comprehensive

introduction to the theory of mixed volumes. There are several extensions of the concept

of mixed volume; in this work, we will focus mainly on the dual mixed volume and the Lp

extension of the mixed volume, concepts belonging to the dual and Lp-Brunn–Minkowski

theory, respectively. Regarding the latter, we have the following Lp extension of mixed

volume; for some background on this, we refer to [23] and to [24] and the references

therein.

For r ≥ 1, the Lr-mixed volume Vr(K, L) of convex bodies K and L is defined by

Vr(K, L) = r

n
lim
ε→0

vol(K +r ε ·r L) − vol(K)

ε
,

where K +r ε ·r L is the convex body defined by

hK+rε·rL(x)r = hK(x)r + εhL(x)r, ∀x ∈ R
n.

One of the main aspects of mixed volumes is that they admit an integral

representation. As in the classical case for the Lr version, it is known (see [23]) that

there exists a unique finite positive Borel measure Sr(K, .) on S
n−1 such that

Vr(K, L) = 1

n

∫
Sn−1

hL(u)rdSr(K, u), (4)

for each convex body L.

If 1 ≤ r < ∞ and K and L are convex bodies in R
n containing the origin as

interior point, then we can find also in [23] that

Vr(K, L) ≥ vol(K)
n−r

n vol(L)
r
n , (5)

with equality if and only if K and L are dilates of each other for r > 1 and if and only if

K and L are homothetic if r = 1. Combining inequalities (5) and (3), we obtain

Vr(L, MpK) ≥ cr/p
n,p vol(L)

n−r
n vol(K)

(n+p)r
np . (6)
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Lp-Functional Busemann–Petty Centroid Inequality 7951

Taking L = MpK in (6), we recover (3); hence, (6) is an equivalent formulation for the Lp-

Busemann–Petty centroid inequality. This and similar geometric inequalities for mixed

volumes involving centroid and projection bodies were already considered in [25]. The

main result, Theorem 1.1, is a functional version of inequality (6), replacing the sets

Land K by functions f and g.

In order to establish a functional version of (6) and considering the integral

representation of the geometric Lr-mixed volume (4), let us recall the following result

obtained by Lutwak et al., where they introduced the concept of surface area measure

of a Sobolev function.

The Lr-surface area measure of a function f : Rn → R with Lr-weak derivatives

is given by

Lemma 2.1 (Lemma 4.1 of [24]). Given 1 ≤ r < ∞ and a function f : R
n → R with

Lr-weak derivatives, there exists a unique finite Borel measure Sr(f , .) on S
n−1 such that

∫
Rn

φ(−∇f (x))rdx =
∫
Sn−1

φ(u)rdSr(f , u), (7)

for every non-negative continuous function φ : Rn → R homogeneous of degree 1. If f is

not equal to a constant function almost everywhere, then the support of Sr(f , .) cannot

be contained in any n − 1 dimensional linear subspace.

Conversely, for a convex body L, the function fL(x) = F(‖x‖L) satisfies Sr(f , .) =
Sr(L, .) if F is a smooth decreasing compactly supported function F : R+ → R+ satisfying

∫ ∞

0
tn−1|F ′(t)|rdt = 1

(see [24]). By the Sobolev inequality, we have

∫
Rn

fL(x)
nr

n−r dx ≤ c
nr

n−r
s (nωn)

n
n−r

vol(L)

ωn
,

where cs is the sharp constant in the Sobolev inequality on R
n, and there is equality

when F(t) = aFr(t) with a, b > 0, where

Fr(t) = (1 + t
r

r−1 )1− r
n .

The function F(||x||2) is an extremal function of the euclidean Lr-Sobolev inequality

on R
n.
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7952 J. E. Haddad et al.

In view of identity (7), for any f and L such that Sr(f , .) = Sr(L, .), we have

Vr(L, K) = 1

n

∫
Rn

hK(−∇f (x))rdx.

This motivates the following definition:

Definition 2.2. Given 1 ≤ r < ∞ and a function f : Rn → R with Lr-weak derivatives,

we define

Vr(f , K) = 1

n

∫
Rn

hK(−∇f (x))rdx.

The Lp-Sobolev inequality for general norms was proved in [26] and [27] and can

be stated as a mixed volume inequality for functions as follows:

Theorem 2.3. If f is a function with Lr-weak derivatives and compact support in R
n

and K is an origin-symmetric convex body, then for 1 < r < n and q = nr
n−r

Vr(f , K) ≥ cr
1‖f ‖r

q vol(K)
r
n , (8)

where c1 is the optimal constant and equality holds in (8) if and only if f (x) = aFr(b‖x‖K)

for some a, b > 0. Taking f (x) = Fr(‖x‖L), we recover inequality (5).

Theorem 2.3 was originally proved using an innovative approach based on

optimal transportation of mass in [26] and in [27] using convex symmetrization.

In Section 4, we give an alternative, simpler, and elementary proof of this

inequality using the tools developed in [28]. Some of the tools we are using here, spe-

cially those contained in [24], have been used in the study of Sobolev type inequalities.

Their approach is often based on a functional extension of the so-called LYZ body and

other known geometric inequalities for projection and polar projection bodies (see [19,

Subsection 10.15] and references therein for more on this).

Let us go back to the definition of the moment body (2). It has been noticed that

hMpK is a convex function regardless of the set K (see e.g., [29, Chapter 5]). The following

definition has already appeared (in a slightly different way) in [30] and an asymmetric

version of it in [31]. In both cases, it was used in the context of valuations to study the

moment and centroid operators following the spirit of [32].
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Definition 2.4. If g is a non-negative measurable function with compact support on

R
n, then we define the convex body Mpg by

hMpg(ξ)p =
∫
Rn

g(x)|〈x, ξ 〉|pdx.

The left-hand side of (1) has the following geometric meaning:

Vr(f , Mpg) = 1

n

∫
Rn

(∫
Rn

g(y)|〈∇f (x), y〉|pdy
)r/p

dx.

If K is a convex body and g(x) = G(‖x‖K) for any non-negative continuous

function G : R+ → R with compact support, it is not hard to verify using polar

coordinates that

Mpg =
(

(n + p)

∫ ∞

0
tn+p−1G(t)dt

)1/p

MpK.

Our main result (Theorem 1.1) is a consequence of Theorem 2.3 and Theorem 2.5

below:

Theorem 2.5. If g is a non-negative measurable function with compact support in R
n,

then, for each λ ∈
(

n
n+p , 1

)
∪ (1, ∞), we have that

vol(Mpg)
p
n ≥ cn,pan,p,λ||g||

(n+p)(λ−1)+p
(λ−1)n

1 ||g||−
λp

(λ−1)n
λ , (9)

where an,p,λ is given by the Lemma 3.4.

Let Gp,λ : R+ → R be defined by

Gp,λ(t) =
⎧⎨
⎩

(1 + tp)
1

λ−1 if λ < 1

(1 − tp)
1

λ−1+ if λ > 1,

then taking g(x) = Gp,λ(‖x‖K) in (9), we recover (3).

Equality holds in (9) if and only if g(x) = aGp,λ(|Ax|2) for any a > 0 and A ∈
GLn(Rn).

Even though Theorem 2.5 contains the geometric core of the main Theorem 1.1,

the term vol(Mpg) cannot be expressed in terms of g in an elementary way, whereas this

is possible for Vr(f , Mpg). This is the reason why we need to combine it with Theorem 2.3

to obtain a purely functional inequality.
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7954 J. E. Haddad et al.

Let us note that Theorem 1.1 cannot be regarded as a functional mixed volume

inequality in full generality since it can only be applied to a function f and the

centroid/moment body of another function g. We refer the interested reader to review

the works of Milman and Rotem [33, 34] where they have defined a functional extension

of mixed volumes and have extended some of their main properties to a functional

setting.

We should finally also mention other related extensions of the Busemann–

Petty centroid inequality obtained by Paouris and Pivovarov in [35] where the authors

obtained randomized versions of this and other important isoperimetric inequalities.

The rest of the paper is organized as follows: In Section 3, we shall prove

some preliminary results, including an extension of the Lp-Busemann–Petty cen-

troid inequality, to compact domains. Then, in Section 4, we prove Theorems 2.3

and 2.5.

We hope this work will shed some more light onto the deep connection between

isoperimetric and functional inequalities.

3 Preliminary Results

In order to prove our main result, Theorem 1.1, we consider two cases: r = 1 and 1 <

r < n. For r = 1, inequality (5) holds for more general sets. As in [8], a compact domain

is the closure of a bounded open set.

Lemma 3.1 ([8, Lemma 3.2]). If M is a compact domain with piecewise C1 boundary

and K a convex body in R
n, then

V(M, K)n ≥ vol(M)n−1 vol(K),

with equality if and only if M and K are homothetic.

In the same spirit, the next lemma shows that the Lp-Busemann–Petty centroid

inequality remains valid for a compact domain:

Lemma 3.2. If M is a compact domain in R
n, then

vol(�pM) ≥ vol(M). (10)

Equality holds in (10) if and only if M is an 0-symmetric ellipsoid.
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Proof. For a compact domain M and ξ ∈ S
n−1, we define the set

Lξ = {t ∈ [0, ∞) : tξ ∈ M}.

Consider δ(t) = tn

n , for t ≥ 0, and the star set SM defined by its radial function

ρSM(ξ) = δ−1(μ(δ(Lξ ))),

where μ denotes the one-dimensional Lebesgue measure. It is easy to see that vol(SM) =
vol(M). Also, let s = δ(t) = tn

n , then ds = tn−1dt. For x ∈ R
n, we have

∫
M

|〈x, y〉|pdy =
∫
Sn−1

∫
Lξ

|〈x, tξ 〉|ptn−1dtdξ

=
∫
Sn−1

∫
Lξ

|〈x, ξ 〉|ptptn−1dtdξ

=
∫
Sn−1

∫
δ(Lξ )

|〈x, ξ 〉|p(ns)
p
n dsdξ

= n
p
n

∫
Sn−1

|〈x, ξ 〉|p
∫

δ(Lξ )

s
p
n dsdξ .

On the other hand, we have

∫
SM

|〈x, y〉|pdy =
∫
Sn−1

∫ ρSM (ξ)

0
|〈x, tξ 〉|ptn−1dtdξ

=
∫
Sn−1

∫ ρSM (ξ)

0
|〈x, ξ 〉|ptptn−1dtdξ

=
∫
Sn−1

∫ δ(ρSM (ξ))

0
|〈x, ξ 〉|p(ns)

p
n dsdξ

= n
p
n

∫
Sn−1

|〈x, ξ 〉|p
∫ μ(δ(Lξ ))

0
s

p
n dsdξ .

By the Bathtub principle (see [36, Theorem 1.14, page 28]), we have

∫
δ(Lξ )

s
p
n ds ≥

∫ μ(δ(Lξ ))

0
s

p
n ds.

Therefore,

∫
M

|〈x, y〉|pdy ≥
∫

SM
|〈x, y〉|pdy. (11)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/10/7947/5713440 by U
niversidad de Sevilla user on 21 April 2023
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Since vol(SM) = vol(M), we obtain h�pM(x)p ≥ h�pSM(x)p, whence �pM ⊃ �pSM and

vol(�pM) ≥ vol(�pSM). We conclude that

vol(�pM) ≥ vol(�pSM) ≥ vol(SM) = vol(M).

If M is a compact domain attaining equality in (10), then equality in (11) implies

μ(δ(Lξ )) = δ(Lξ ) for a.e. ξ , meaning that M is a star body. We conclude the proof recalling

the equality case of (3). �

Let f be a C∞ function with compact support in R
n. For t > 0, consider the level

sets of f in R
n:

Nf ,t = {x ∈ R
n : |f (x)| ≥ t}

and

Sf ,t = {x ∈ R
n : |f (x)| = t}.

Since f is of class C∞, by recalling Sard’s theorem, Sf ,t is a C∞ submanifold,

which has non-zero normal vector ∇f , for almost all t. Denote by dSt the surface area

element of Sf ,t. Then the co-area formula relates the area elements dx = |∇f |−1dStdt.

We present a lemma, whose proof is inside of the proof of [8, Theorem 4.1]. It

will be useful to prove Theorem 1.1 for the case r = 1.

Lemma 3.3. If f is a continuous function with compact support in R
n, then∫ ∞

0
vol(Nf ,t)

n−1
n dt ≥ ||f || n

n−1
.

We observe that the proof of Lemma 3.3 carries over replacing n−1
n by any η ∈

(0, 1) but not for η > 1. We prove an analogous result for η = n+p
p > 1.

Lemma 3.4. If g is a continuous function with compact support in R
n and λ ∈(

n
n+p , 1

)
∪ (1, ∞), then

∫ ∞

0
vol(Ng,t)

n+p
n dt ≥ an,p,λ||g||

(n+p)(λ−1)+p
(λ−1)n

1 ||g||−
λp

(λ−1)n
λ ,

where

an,p,λ =

⎧⎪⎨
⎪⎩

A
− (n+p)(λ−1)+p

(λ−1)n
n,p,λ if λ > 1

B
p

(λ−1)n
n,p,λ if λ ∈

(
n

n+p , 1
)
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Lp-Functional Busemann–Petty Centroid Inequality 7957

with

An,p,λ = ((λ − 1)n + λp)

⎛
⎜⎝�

(
λ

λ−1

)
(λp)

1
1−λ ((λ − 1)(n + p))

− n+p
p �

(
n
p + 2

)
�

(
n
p + 1

λ−1 + 2
)

⎞
⎟⎠

(λ−1)p
(λ−1)n+λp

and

Bn,p,λ = λ
p

n + p

(
λ − n

n + p

) (1−λ)(n+p)
p −1

⎛
⎝ (1 − λ)

− n
p −2

�
(

n
p + 2

)
�

(
λ

1−λ
− n

p

)
�

(
λ−2
λ−1

)
⎞
⎠

1−λ

.

Proof. For λ > 1 and t > 0, let pλ(t) = (1 − tλ−1)
n
p
+ and l(t) = vol(Ng,t). Then pλ (t/s) =

(1 − tλ−1s1−λ)
n
p
+ and

pλ (t/s)
p
n ≥ 1 − tλ−1s1−λ. (12)

Multiplying (12) by l(t) and integrating, we obtain

∫ ∞

0
l(t)pλ (t/s)

p
n dt ≥

∫ ∞

0
l(t)dt − s1−λ

∫ ∞

0
l(t)tλ−1dt,

whence

||g||1 ≤
∫ ∞

0
l(t)pλ (t/s)

p
n dt + s1−λ

∫ ∞

0
l(t)tλ−1dt.

By Hölder’s inequality, we have

∫ ∞

0
l(t)pλ (t/s)

p
n dt ≤

(∫ ∞

0
l(t)

n+p
n dt

) n
n+p

(∫ ∞

0
pλ (t/s)

n+p
n dt

) p
n+p

.

Write u = t/s and dt = sdu. Thus,

∫ ∞

0
l(t)pλ (t/s)

p
n dt ≤

(∫ ∞

0
l(t)

n+p
n dt

) n
n+p

(∫ ∞

0
pλ(u)

n+p
n du

) p
n+p

s
p

n+p .

Now, observe that

∫ ∞

0
l(t)tλ−1dt =

∫ ∞

0
vol(Ngλ,tλ)t

λ−1dt.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/10/7947/5713440 by U
niversidad de Sevilla user on 21 April 2023



7958 J. E. Haddad et al.

Write v = tλ, dv = λtλ−1dt, then tλ−1dt = 1
λ
dv and

∫ ∞

0
l(t)tλ−1dt = 1

λ

∫ ∞

0
vol(Ngλ,t)dt = 1

λ
||g||λλ.

Hence,

||g||1 ≤ 1

λ
||g||λλs1−λ +

(∫ ∞

0
l(t)

n+p
n dt

) n
n+p

(∫ ∞

0
pλ(t)

n+p
n dt

) p
n+p

s
p

n+p = as−α + bsβ , (13)

where a = 1
λ
||g||λλ, b =

(∫ ∞
0 l(t)

n+p
n dt

) n
n+p

(∫ ∞
0 pλ(t)

n+p
n dt

) p
n+p

, α = λ − 1, and β = p
n+p .

Notice that the right-hand side of (13) has a unique minimum for s ∈ (0, ∞).

Minimizing with respect to s ∈ (0, ∞), we obtain

||g||1 ≤ An,p,λ||g||
λp

(n+p)(λ−1)+p
λ

(∫ ∞

0
l(t)

n+p
n dt

) (λ−1)n
(n+p)(λ−1)+p

,

where An,p,λ is given in the statement of the lemma.

Hence,

||g||1 ≤ An,p,λ||g||
λp

(n+p)(λ−1)+p
λ

(∫ ∞

0
vol(Ng,t)

n+p
n dt

) (λ−1)n
(n+p)(λ−1)+p

,

which proves the statement of the lemma for the case λ > 1.

For the case λ ∈
(

n
n+p , 1

)
, we define qλ(t) = (tλ−1 − 1)

n
p
+ . Then, qλ(t)

p
n ≥ tλ−1 − 1

and qλ (t/s)
p
n ≥ tλ−1s1−λ − 1.

It follows that

∫ ∞

0
l(t)qλ (t/s)

p
n dt ≥ s1−λ

∫ ∞

0
l(t)tλ−1dt −

∫ ∞

0
l(t)dt.

Since
∫ ∞

0 l(t)tλ−1dt = 1
λ
||g||λλ and

∫ ∞
0 l(t)dt = ||g||1, we obtain

s1−λ

λ
||g||λλ ≤ ||g||1 +

∫ ∞

0
l(t)qλ (t/s)

p
n dt.
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By Hölder’s inequality,

∫ ∞

0
l(t)qλ (t/s)

p
n dt ≤

(∫ ∞

0
l(t)

n+p
n dt

) n
n+p

(∫ ∞

0
qλ (t/s)

n+p
n dt

) p
n+p

=
(∫ ∞

0
l(t)

n+p
n dt

) n
n+p

(∫ ∞

0
qλ(u)

n+p
n du

) p
n+p

s
p

n+p .

Hence,

1

λ
||g||λλ ≤ sλ−1||g||1 +

(∫ ∞

0
l(t)

n+p
n dt

) n
n+p

(∫ ∞

0
qλ(t)

n+p
n dt

) p
n+p

s
p

n+p +λ−1. (14)

For λ ∈
(

n
n+p , 1

)
, the right-hand side of (14) has a unique minimum s ∈ (0, ∞).

Minimizing with respect to s ∈ (0, ∞), we obtain

||g||λλ ≤ Bn,p,λ||g||
(n+p)(λ−1)+p

p
1

(∫ ∞

0
l(t)

n+p
n dt

) (1−λ)n
p

,

where Bn,p,λ is given in the statement of the lemma.

Therefore,

∫ ∞

0
vol(Ng,t)

n+p
n dt ≥ B

− p
(1−λ)n

c,d,λ ||g||−
(n+p)(λ−1)+p

(1−λ)n
1 ||g||

pλ
(1−λ)n
λ .

�

Now, we present other tools for the case 1 < r < n of our main result, introduced

by Lutwak et al. in [28]. Let H1,r(Rn) denote the usual Sobolev space of real-valued

functions of Rn with Lr partial derivatives. If f ∈ H1,r(Rn) ∩ C∞(Rn) and Q is a compact

convex set that contains the origin in its relative interior, then they define

Vr(f , t, Q) = 1

n

∫
Sf ,t

hQ(ν(x))r|∇f (x)|r−1dSt(x),

where ν(x) = ∇f (x)
|∇f (x)| . They prove that for almost every t > 0, there exists an origin-

symmetric convex body Kt such that, for each origin-symmetric convex body Q

Vr(Kt, Q) = Vr(f , t, Q). (15)

The next lemma can be deduced from [28], inequalities (6.3), (5.3), (5.4), and (5.1).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/10/7947/5713440 by U
niversidad de Sevilla user on 21 April 2023



7960 J. E. Haddad et al.

Lemma 3.5. If r ∈ (1, n), f ∈ H1,r(Rn) and q = nr
n−r , then

∫ ∞

0
vol(Kt)

n−r
n dt ≥ n

r−n
n cr

2||f ||rq,

where

c2 = n
1
q

(
n − r

r − 1

) r−1
r

(
�

(n
r

)
�

(
n + 1 − n

r

)
�(n)

) 1
n

.

4 Proof of the Main Results

We present separate proofs for the cases 1 < r < n and r = 1.

4.1 Case 1 < r < n:

Proof. of Theorem 2.3: By Sard’s lemma, the co-area formula, (15), (5), and Lemma 3.5,

Vr(f , K) = 1

n

∫
Rn

hK(−∇f (x))rdx

= 1

n

∫ ∞

0

∫
Sf ,t

hK(n
Sf ,t
x )r|∇f (x)|r−1dSf ,tdt

=
∫ ∞

0
Vr(f , t, K)dt

=
∫ ∞

0
Vr(Kt, K)dt

≥
∫ ∞

0
vol(Kt)

n−r
n vol(K)

r
n dt

=
∫ ∞

0
vol(Kt)

n−r
n dt vol(K)

r
n

≥ n
r−n

n cr
2||f ||rq vol(K)

r
n .

�

Proof of Theorem 2.5: We may observe that

hMpg(ξ)p =
∫
Rn

g(x)|〈x, ξ 〉|pdx

=
∫ ∞

0

∫
{g≥t}

|〈x, ξ 〉|pdxdt

=
∫ ∞

0
hMpNg,t

(ξ)pdt.
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In this sense, we regard Mpg as a generalized p-sum of sets, where we replace

finite p-sums by a p-integral of sets

Mpg =
∫

p
MpNg,tdt

and clearly, for any convex body K,

Vp

(
K,

∫
p

MpNg,tdt
)

=
∫ ∞

0
Vp(K, MpNg,t)dt.

We compute

vol(Mpg) = Vp(Mpg, Mpg)

= Vp

(
Mpg,

∫
p

MpNg,tdt
)

=
∫ ∞

0
Vp(Mpg, MpNg,t)dt

≥ vol(Mpg)
n−p

n

∫ ∞

0
vol(MpNg,t)

p/ndt.

Then using Lemmas 3.2 and 3.4, it follows that

vol(Mpg)
p
n ≥

∫ ∞

0
vol(MpNg,t)

p
n dt

≥ cn,p

∫ ∞

0
vol(Ng,t)

n+p
n dt

≥ cn,pan,p,λ||g||
(n+p)(λ−1)+p

(λ−1)n
1 ||g||−

λp
(λ−1)n

λ ,

where an,p,λ is given by Lemma 3.4. �

4.2 Proof of Theorem 1.1: Case r = 1

Proof. Let V1(f , Mpg) = 1
n

∫
Rn

(∫
Rn g(y)|〈∇f (x), y〉|pdy

)1/p dx. Then,

V1(f , Mpg) = 1

n

∫ ∞

0

∫
Sf ,t

(∫
Rn

g(y)

∣∣∣∣
〈 ∇f (x)

|∇f (x)| , y
〉∣∣∣∣ pdy

)1/p

dStdt.
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We denote by η
St
x = ∇f (x)

|∇f (x)| . Since

hMpg(ηSt
x ) =

(∫
Rn

g(y)

∣∣∣〈ηSt
x , y

〉∣∣∣ pdy
)1/p

=
(∫ ∞

0

∫
Ng,s

∣∣∣〈ηSt
x , y

〉∣∣∣ pdyds

)1/p

,

it follows that

V1(f , Mpg) = 1

n

∫ ∞

0

∫
Sf ,t

hMpg(ηSt
x )dStdt

= 1

n

∫ ∞

0

∫
Sf ,t

(∫ ∞

0

∫
Ng,s

∣∣∣〈ηSt
x , y

〉∣∣∣ pdyds

)1/p

dStdt.

Write hMpNg,s
(η

St
x )p = ∫

Ng,s

∣∣∣〈ηSt
x , y

〉∣∣∣ pdy, then

V1(f , Mpg) = 1

n

∫ ∞

0

∫
Sf ,t

(∫ ∞

0
hMpNg,s

(ηSt
x )pds

)1/p

dStdt.

By the co-area formula, the Minkowski integral inequality and Lemmas 3.1, 3.2,

3.5, and 3.4,

V1(f , Mpg) ≥ 1

n

∫ ∞

0

(∫ ∞

0

(∫
Sf ,t

hMpNg,s
(ηSt

x )dSt

)p

ds

) 1
p

dt

≥ 1

n

(∫ ∞

0

(∫ ∞

0

(∫
Sf ,t

hMpNg,s
(ηSt

x )dSt

)
dt

)p

ds

) 1
p

=
(∫ ∞

0

(∫ ∞

0
V1(Nf ,t, MpNg,s)dt

)p

ds
) 1

p

≥
(∫ ∞

0

(∫ ∞

0
vol(Nf ,t)

n−1
n vol(MpNg,s)

1
n dt

)p

ds
) 1

p

=
(∫ ∞

0

(∫ ∞

0
vol(Nf ,t)

n−1
n dt

)p

vol(MpNg,s)
p
n ds

) 1
p

=
(∫ ∞

0
vol(Nf ,t)

n−1
n dt

)(∫ ∞

0
vol(MpNg,s)

p
n ds

) 1
p

≥ c
1
p
n,p

(∫ ∞

0
vol(Nf ,t)

n−1
n dt

) (∫ ∞

0
vol(Ng,s)

n+p
n ds

) 1
p

≥ c1/p
n,p ||f || n

n−1
C

− (n+p)(λ−1)+p
(λ−1)np

n,p,λ ||g||
(n+p)(λ−1)+p

(λ−1)np
1 ||g||−

λ
(λ−1)n

λ .

�
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Remark 4.1. Let us point out that a simpler proof of Theorem 1.1 for the case r = p

can be deduced from the Lp-affine Sobolev inequality [28] and the equivalence between

the Lp-Busemann–Petty centroid inequality and the Lp-Petty projection inequality (see

[18]). The well-known identity for sets

Vp(L, �pK) = ωn

vol(K)
Ṽ−p(K, �◦

pL),

where Ṽp(·, ·) denotes the Lp-dual mixed volume and �◦
pL, the Lp-polar projection body

of L, can be extended to functions as

Vp(f , Mpg) = Ṽ−p(g, �◦
pf ),

where we define

Ṽ−p(g, L) =
∫
Rn

||x||pLg(x)dx

and

h(�◦
pf , ξ)p =

∫
Rn

|〈∇f (x), ξ)〉|pdx.

Then an application of the dual mixed volume inequality for functions ([37, Lemma

4.1]) and the Lp-Affine Sobolev inequality (which corresponds to the Lp-Petty projection

inequality for functions) gives the result.
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