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A B S T R A C T

Hepatocellular carcinoma (HCC) is the most common primary liver cancer and a major public health problem
worldwide. Liver fibrosis is closely correlated with liver functional reserve and the risk of HCC development.
Meanwhile, malignant tumors generally have high cellularity compared to benign tumors, which results in
increased stiffness. Magnetic resonance elastography (MRE) has emerged as a new non-invasive technique
for assessing tissue stiffness with excellent diagnostic accuracy, not only for assessing liver fibrosis but also
for measuring tumor stiffness. Recent studies provide new evidence that MRE may play an important role in
the management of patients with HCC and show several novel clinical applications, such as predicting the
development of HCC, differentiating between benign/malignant liver lesions (FLL) and HCC pathological
grades, assessing treatment response, and predicting recurrence after treatment, although some findings are
controversial. Therefore, we conducted this review to summarize these novel applications of MRE in HCC
patients and also discuss their limitations and future advancement.
© 2022 Fundación Clínica Médica Sur, A.C. Published by Elsevier España, S.L.U. This is an open access article
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1. Introduction

Hepatocellular carcinoma (HCC) is the fifth most common malig-
nancy and second most frequent cause of cancer-related death
worldwide [1]. The overall survival of HCC patients was still very low,
with a 5-year survival rate of <15% [2]. The most common causes of
HCC are hepatitis B and/or hepatitis C virus infection, as well as alco-
holic and non-alcoholic fatty liver disease (NAFLD) [3].

The degree of liver fibrosis seems to be a strong predictor of
HCC development risk. Furthermore, 70−90% of HCCs develop in
the context of pre-existing cirrhosis or advanced fibrosis [4]. Liver
fibrosis is also closely related to liver functional reserve, which is
an important factor in developing a treatment strategy and
determining prognosis in HCC patients. The reference standard
for staging liver fibrosis remains liver biopsy; however, this pro-
cedure has several limitations, including high cost, potential com-
plications, sampling variability, and inter- and intra-observer
variability in the interpretation of histopathological findings [5].
And it is also undesirable to repeatedly perform liver biopsies to
assess disease progression and treatment response. Moreover,
many physiological and pathological processes cause marked
changes in the stiffness of tissue, not only in liver parenchyma
but also in tumor tissue. Disorderly cell proliferation and changes
in the microenvironment are accompanied by profound altera-
tions in tumor stiffness [6]. Malignant tumors generally have high
cellularity compared to benign tumors, which results in increased
stiffness. Tumor stiffness may also be another candidate imaging
biomarker to distinguish tumor features.

In fact, several non-invasive ultrasound elastographic techniques
[7,8] have been used to measure tissue stiffness. In recent years, with
the advancement of magnetic resonance imaging technology and
equipment, magnetic resonance elastography (MRE), as a new non-
invasive technique, has shown great potential and good development
prospects not only in the staging of fibrosis in patients with chronic
liver disease but also in the field of oncology [9,10]. Obesity, massive
ascites, and operator dependence limit the use of ultrasound-based
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elastography, but those can’t affect MR elastography. In addition,
MRE has been shown to have higher diagnostic accuracy and better
reproducibility than other elastographic modalities in staging hepatic
fibrosis [11,12]. Moreover, this modality can play an important role
in quantifying tumor stiffness. HCC is a unique malignancy because it
does not require histological confirmation but is diagnosed primarily
by imaging. So MRE may also be another supplementary imaging bio-
marker of HCC. Some evidence has been emerging in recent years. In
this review, the clinical significance of MRE in HCC patients will be
highlighted, along with an outlook on the shortcomings of the cur-
rent technology and future developments.

2. Current MRE techniques

Stiffness is the ability of a tissue to resist deformation under cer-
tain stress, which is the biomechanical property of human tissue [13].
The basic principle of MRE is to calculate the tissue stiffness and
related parameters by detecting the propagation of shear waves in
the target organ. So far, liver MRE can be used extensively in existing
clinical MR scanners. The most widely used MRE pulse sequences
nowadays are phase-contrast two-dimensional gradient recovery
echo (2D-GRE-MRE) sequences. The clinical liver MRE device consists
of an active pneumatic mechanical driver, which is located outside
the MRI scanning room and connected to the passive driver with a
circular, rigid plastic tube. The mechanical wave is generated by the
active driver and the commonly used 60 Hz wave provides sufficient
wave conduction in the tissue for transmission through the tube to
the passive driver. The passive driver is usually positioned close to
the liver, under the right cartilage, with the patient in a supine posi-
tion, and secured with a soft elastic band that maintains appropriate
contact with the right upper quadrant rib cage; it delivers shear waves
to the whole abdomen, including the liver. Typically, four 10 mm thick
sections are acquired through the largest cross-section of the liver.
Magnitude and phase images are automatically processed using an
inversion algorithm to produce a two-dimensional image. The two-
dimensional displacement maps are called “wave maps,” and the two-
dimensional grayscale or color-coded maps are called “elastograms”
that measure the hepatic stiffness. The reader can obtain a reliable liver
stiffness measure (LSM) by outlining the region of interest (ROI) on the
liver with a “confidence map,” avoiding the liver margin, severely
dilated bile ducts, gallbladder fossa, large blood vessels, widened liver
fissures, and wave interference regions. Mean values and measurement
ranges are reported for four different levels of ROI. The mechanical
property measured with MRE is the magnitude of the complex shear
modulus expressed in kilopascals (kPa). This mechanical property rep-
resents the elasticity and viscosity of the tissue [11,14].

3. Applications in HCC

3.1. Prediction of the HCC occurrence and portal hypertension (PHT)

Assessing the risk of HCC occurrence in patients with chronic liver
disease(CLD) is of critical importance for clinical management. Liver
Table 1
The summary of articles on predicting the occurrence of HCC

Study Case(All) Etiology Cut-o

Lee 2018 [19] 33 (217) Mixed CLDs 4.44
Higuchi 2021 [23] 99 (2373) Mixed CLDs NR
Ichikawa 2019 [25] 47 (161) Mixed CLDs <3;3-
Shimizu 2019 [20] 45 (98) Mixed CLDs 4.0
Meren 2021 [21] 32 (487) Mixed CLDs 3.94
Tamaki 2019 [22] 24 (346) HCV 3.75
Kumada 2021 [24] 18 (567) HCV 4.5

CLD = Chronic liver disease; HCV = Hepatitis C virus; AUROC =
No Report; Case(All) = Number of patients with HCC occurren
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fibrosis is a potent prognostic factor that can reflect hepatic function
and the risk of HCC development [15,16]. A retrospective case-control
study by Motosugi et al. [17] firstly showed that liver stiffness mea-
surement (LSM) by MRE in patients with HCCs was significantly
higher than that in patients without HCCs, and it may be a significant
predictor of HCC development. Subsequently, several studies found
that the risk of HCC development increased with increasing MRE-
associated liver stiffness in a dose-dependent manner [18,19]. In a
recent large-scale retrospective study, the adjusted hazard ratio
(aHR) for HCC was 1.28 (1.2-1.4) with each 1-kPa increase in LSM by
MRE in patients with chronic liver disease [18]. Another study [19]
showed a similar result (aHR = 1.59/unit; 95% CI = 1.20-1.78)in
patients with CLDs. The optimal cut-off LS value for predicting the
occurrence of HCC was set at 3.75-4.7 kPa in different studies [19
−25]. The adjusted HRs could also be estimated by the highest versus
lowest category of liver stiffness, ranging from 1.91 [0.66-6.23] to
7.301 [1.994-26.73]. The AUROCs predicted by LSM by MRE for the
occurrence of HCC in CLD patients were 0.743-0.893. All these are
shown in Table 1. It is expected that the development of HCC in
patients with viral hepatitis will be suppressed after direct-acting
antiviral (DAA) treatment. However, some patients developed HCC
even after the eradication of the hepatitis C virus in clinical practice.
Therefore, the prediction of HCC development after sustained viral
responses has become more important clinically. Tamaki et al. [22]
reported that LSM by MRE at the end of antiviral treatment was an
independent predictor of HCC development, and its AUROC was
higher than the fibrosis stage in histopathology, while 3.75 kPa was
used as the optimal cut-off value. Importantly, the cut-off value (3.75
kPa) in Tamaki’s study was lower than in other previous studies,
which may be explained by the fact that LSM by MRE in patients with
viral hepatitis C can change or revert with time following antiviral
therapy [23]. However, in another study [24], MRE values >4.5 kPa
was the only significant factor associated with the development of
HCC in patients who achieved HCV eradication after DAA treatment.
Meanwhile, some other authors have considered that a simple point
assessment of pathology-based fibrosis staging is not able to accu-
rately stratify the risk of HCC development. Ichikawa et al. [25]
reported that the persistently high LSM value may be a greater risk
factor for hepatocarcinogenesis than a single point measurement of
current moderate-to-high liver stiffness, and that longitudinal moni-
toring of LSM by MRE can help to stratify the risk of developing HCC.

On the other hand, patients with PHT present a higher risk of
developing HCC, and HCC through changes in the hepatic architec-
ture and vascular invasion also contributes to PHT occurrence [61].
Clinically significant portal hypertension, (CSPH) also impacts the
choice of HCC treatment. CSPH is a well-identified predictive factor
for liver decompensation and death after liver resection. Several
studies have demonstrated the feasibility and utility of MRE in pre-
dicting portal hypertension. Both liver and spleen stiffness measure-
ments by MRE have been shown high accuracy in predicting portal
hypertension [63,64]. A most recent meta-analysis [62] showed the
area under the curve (AUC) values for liver and spleen stiffness on
MRE were 88% (95% CI 85−91%) and 92% (95% CI 89−94%),
in patients with CLDS

ff (kPa) AUROC Hazard Ratio(95% CI)

NR 1.59 [1.25-2.03] per unit
NR 1.28 [1.2-1.4] per unit

4.7;>4.7 NR 4.379 [1.523-14.59]
NR 1.91 [0.66−6.23]
0.77 5.25 [1.91-14.4]
0.743 3.51 [1.24�9.99]
0.858-0.893 7.301 [1.994−26.73]

Area Under the Receiver Operating Characteristics; NR =
ce (Number of patients in follow up).
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respectively. Spleen stiffness may be more specific and accurate than
liver stiffness for detecting portal hypertension. Idilman et al. [9]
introduced that high LSM, especially >5 kPa, was associated with an
increased risk of portal hypertension and esophageal varices in clini-
cal practice. Treatment options for such HCC patients with suspected
combined portal hypertension (LSM >5kPa) should be carefully eval-
uated.

3.2. Differentiation of benign/malignant liver lesions (FLL) and HCC
pathological grades

When a focal liver lesion, (FLL) is found, the most important deter-
mination is to know whether it is benign or malignant. Some features
of FLLs on computed tomography (CT) and magnetic resonance imag-
ing (MRI) are useful for their diagnosis. Dynamic contrast-enhanced
CT/MRI and the use of special contrast agents (GD-EOB-DTPA) for
assessing imaging features provide more valuable clues to the type of
FLL. However, some lesions are still not precisely determined and the
use of contrast agents is expensive, plus radiation and/or nephrotoxi-
city in some patients. An imaging technique with high accuracy and
without contrast agents is needed to provide additional information.
Theoretically, FLLs mechanically differ from surrounding tissues and
exhibit changes in their elasticity, with a tendency for increased stiff-
ness in malignant lesions [6]. That is because the malignancy has an
abundant extracellular matrix with increased vascular and interstitial
pressure, which may lead to an increase in stiffness that can be
assessed by elastography.

MR elastography (MRE) may be a promising technique capable of
differentiating benign and malignant FLLs without the use of an intra-
venous contrast agent. The mean stiffness of different species of
benign and malignant tumors as measured by MRE are collated in
Table 2. Venkatesh et al. [26] were the first to demonstrate that
malignant liver tumors had significantly higher mean shear stiffness
(10.1 kPa; 95% CI, 8.7−11.4) than benign tumors (2.7 kPa; 95% CI, 2.4
−3.0, p = 0.001). This study suggests that a cut-off value of 5.0 kPa
may be very accurate (accuracy = 100%) for differentiating benign
focal masses from malignant tumors.

A prospective study [27] showed that loss modulus (G”, kPa) and
magnitude of the complex-valued shear modulus (|G*|, kPa) were
measured by MRE with SE-EPI sequence. The ROC analysis for dis-
criminating between benign and malignant lesions displayed similar
statistical trends, whereby AUROC (0.774) of G00 was statistically
higher than that of |G*| (AUROC: 0.718, p<0.05). In another study
comparing MRE and diffusion-weighted imaging (DWI) [28], malig-
nant FLLs also showed significantly higher mean stiffness than benign
Table 2
Mean stiffness (kPa) values of different focal liver lesions and HCC tumor grade

Mean stiffness values of different focal liver lesions (FLL)
Study MRE Technique Tumor size FNH HEM

Venkatesh 2008 [26] 1.5T GRE-MRE 1.4 - 11.0cm 2.7§ 0.2 2.7 §
Garteiser 2012 [27] 1.5T SE-EPI-MRE 1.2 - 7.2cm 1.19 § 0.95 0.88 §

2.51 § 1.03 2.31 §
Hennedige 2015 [28] 1.5T GRE-MRE 3.77 § 3.39cm 3.5§ 1.3 3.09 §
Dominguez 2020 [29] 3.0T SE-MRE >2.0cm 3.9§ 1.5 5.0 §
Shahryari 2019 [30] Tomoelastography 0.9 - 17.5cm C(m/s): 2.08 § 0.96 1.97 §

w(rad): 0.78 § 0.24 0.95 §

Mean stiffness (kPa) values of well/ moderately and poorly differentiated HCC
Study MRE Technique Tumor size TS well/m

Thompson 2017 [31] 2D-GRE-MRE 5.3§ 3.9 cm TS-WT (kPa): 6.5 §
Wang 2018 [32] 3.0T 3D-SE-EPI MRE 2.3 − 15.5 cm TS-WT (kPa): 4.91 [
Park 2020 [33] 1.5T 3D-SE-EPI MRE 4.73 § 3.17 cm TS-WT (kPa): 2.27 §

TS-SP (kPa): 2.33 §

FLL = focal liver lesions; TS = Tumor stiffness; TS-WT = Tumor stiffness values for the wh
echo-planar imaging; GRE = gradient-echo; FNH = Focal nodular hyperplasia; H
HCC = Hepatocellular carcinoma; MET = Metastasis.
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FLLs (7.92 vs. 3.12 kPa, p<0.001), and ROC analysis showed that MRE
(AUROC = 0.986) performed better than DWI (AUROC = 0.87, p =
0.0016) in differentiating malignant and benign FLLs with an optimal
cut-off value of 4.54 kPa.

The results of a most recent preliminary study [29] were con-
sistent with these previous studies: malignant FLLs have signifi-
cantly higher stiffness values than benign FLLs, and the optimal
cut-off value was set at 5.8 kPa to provide 75−85% accuracy for
differentiating these lesions. Moreover, Shahryari et al. [30]
applied a novel MRE actuation system with a recently introduced
analysis approach called Tomoelastography, which provides two
parameters c and ’, c can be considered a surrogate of stiffness
and ’ indicates fluid tissue properties. c with a cut-off value of
1.75 m/s allowed distinction between benign and malignant
lesions with a sensitivity of 94% and specificity of 78% (AUROC =
0.85). Similarly, ’ with a cut-off value of 0.91 rad distinguished
benign from malignant lesions with a sensitivity of 83% and spec-
ificity of 78% (AUROC = 0.86).

MRE also can help distinguish pathological features of HCC
tumors. Thompson et al. [31] reported that there was a trend
toward increased tumor stiffness in well/moderately differentiated
HCC compared to poorly differentiated HCC. The reduced stiffness
of poorly differentiated HCCs may be due to more necrosis and
reduced vascularity. But this study only included a small sample
size. Wang et al. [32] showed contrary results that tumor stiffness
in well and/or moderately-differentiated HCC were significantly
lower than that in poorly differentiated HCCs (4.91 [4.01−6.48]kPa
vs. 7.28 [5.68−9.80] kPa, P = 0.001). Park et al. [33] conducted a ret-
rospective study that seems to explain this discrepancy. Tumor
stiffness values were measured separately for the whole tumor (TS-
WT) and the solid portion (TS-SP) by adjusting for different ROIs
methods, and these two tumor stiffness values of well or moder-
ately differentiated HCC were also significantly higher than the
poorly-differentiated HCC group. As necrotic areas have lower stiff-
ness values compared with solid tumor components, when a tumor
contains a greater degree of necrosis, TS-WT values could be lower
than TS-SP values. The discrepancy between the results of the two
previous studies may be due to the different proportions of tumor
necrosis. Therefore, TS-SP may better represent the biological
aggressiveness of HCCs than TS-WT. These results support the
hypothesis that quantitative assessment of tumor stiffness by MRE
can help identify liver lesions and differentiate HCC grades. It is
worth noting that all above-published studies had not investigated
FLLs below 1cm (Table 2) due to the lower spatial resolution of
MRE, which limits its clinical use.
HCA CCA HCC MET Cut-off AUROC

0.5 3.1 16.2 § 3.4 10.3 § 2.0 7.6 § 1.7 5.0 kPa 1
0.31 0.71 § 0.33 2.80 § 2.11 2.36 § 1.69 1.89 § 0.70 G00 :1.38kPa 0.774
0.66 2.13 § 0.70 3.30 § 1.77 3.57 § 1.71 2.99 § 0.76 |G*|:2.40kPa 0.718
0.9 2.7§ 0.3 8.7 § 3.4 7.7 § 2.6 8.2 § 1.7 4.54 kPa 0.986

1.3 2.8§ 1.3 12.1 § 0.8 8.2 § 4.5 6.2 § 3.2 5.82 kPa 0.75
0.45 1.41 § 0.21 2.57 § 0.90 2.54 § 0.64 2.34 § 0.48 C:1.75 m/s 0.85
0.30 0.66 § 0.12 1.24 § 0.25 1.20 § 0.29 1.14 § 0.28 w: 0.91 rad 0.86

oderately: Poorly:

1.2 4.9§ 1.2
4.01 − 6.48] 7.28 [5.68 −9.80]
0.77 1.86 § 0.57
0.78 2.85 § 1.31

ole tumor; TS-SP = Tumor stiffness values for the solid portion; SE-EPI = spin-echo
EM = Hemangioma; HCA = Hepatic adenoma CCA = Cholangiocarcinoma;
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3.3. Prediction of post-treatment complications

Hepatectomy is regarded as the most efficient and available treat-
ment method for early HCC [34]. Advanced liver fibrosis and cirrhosis
are present in the majority of HCC patients, which is associated with
blood loss and severe postoperative complications, particularly in
those undergoing major hepatectomy. Li et al. [35] first demonstrated
that LSM by MRE was significantly correlated with liver functional
reserve, which correlated strongly with postoperative complications.
Several recent studies have reported that preoperative LSM by MRE
correlates well with postoperative outcomes, which are summarized
in Table 3. In a study from Japan [36] including 175 patients undergo-
ing liver resection, LSM was mentioned as an independent predictor
of major complications after liver resection. ROC analysis showed
that the AUROC of LSM by MRE for predicting major complications
was 0.81 with a cut-off value of 5.3 kPa. In another prospective study
[37], the results of the ROC analysis showed that the LSM was deter-
mined to be the best cut-off value for predicting major complications
at 4.3 kPa, with AUROC = 0.813. A C-index model combined with LSM
by MRE and serum albumin concentration showed a higher precision
(AUROC = 0.84). Another study from the same center [38] demon-
strated that LSM by MRE could predict postoperative ascites occur-
rence with a C index of 0.7612. In a retrospective study that used the
comprehensive complication index (CCI) as the reference standard
[40], MRE also showed a higher performance than TE and ICG-R15 in
predicting postoperative complications [39]. Furthermore, a predic-
tion model of 3 variables (LSM by MRE, the type of surgical approach,
and the extent of surgery) showed a good discriminative capability
with a C-index of 0.911 in this study. Shibutani et al. [41] also com-
bined the future liver remnant (FLR) by CT and LSM by MRE for pre-
dicting major complications after liver resection, with an area under
the curve (AUC) of 0.818.

Posthepatectomy liver failure (PHLF) is one of the major complica-
tions after hepatectomy. Lee et al. [42] demonstrated that LSM by
MRE was assessed as a more potent biomarker for predicting PHLF,
with an optimal cut-off of 3.30 kPa. The AUC for LSM was 0.740 (95%
CI; 0.638−0.822, P = 0.001), higher than ICG-15 (AUC = 0.573) in pre-
dicting the development of PHLF. In addition, several variables,
including high LSM by MRE, low serum albumin, major hepatic resec-
tion, higher albumin-bilirubin score, and higher serum-fetoprotein,
were used to develop another risk prediction model for distinguish-
ing PHLF with AUROC = 0.877 [43].

Except for surgical treatment, RFA has been recommended for
early-stage HCC (less than 3 cm in diameter) in patients with liver cir-
rhosis. Kim et al. [44] demonstrated that the LSM by MRE was signifi-
cantly associated with the development of liver function
deterioration after RFA treatment, with AUROC = 0.764. In addition,
Sorafenib, an oral multi-tyrosine kinase inhibitor, is the first
Table 3
The summary of articles on predicting the post-treatment complications in HCC patients.

Study Treatment Case(All) Cut-off (kPa) Diagnostic accuracy

Abe 2017 [36] LR 28 (175) 5.3 MRE:AUROC= 0.81
Sato 2018 [37] LR 15 (96) 4.3 MRE: AUROC= 0.813

Albumin+MRE: C-index=0
Bae 2020 [39] LR 28 (208) 3.07 MRE: AUROC= 0.874

MRE+ surgical approach
index = 0.911

Lee 2017 [42] LR 43 (144) 3.30 MRE:AUROC= 0.740
Shibutani 2021 [41] LR 22 (108) 3.76 MRE: AUROC = 0.793

FLR + MRE:C-index = 0.81
Kim 2021 [46] Sorafenib 12 (50) 7.5 MRE+gender+Child-Pugh

Kim 2016 [44] RFA 5 (66) NR MRE:AUROC = 0.764

LR = Liver resection RFA = Radiofrequency ablation PHLF = post hepatectomy liver failure; IS
tion index; NR = No Report MRE = Magnetic Resonance Elastography; Case(All) = Num
treatment).
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regulatory-approved systemic therapeutic agent for advanced HCC
patients. However, Sorafenib-induced liver injury is known to be idi-
osyncratic hepatotoxic and strongly associated with poor prognosis
in HCC patients [45]. LSM by MRE was identified as a potent indepen-
dent biomarker for predicting severe liver injury after Sorafenib
administration. Higher LSM by MRE (> 7.5 kPa, HR 10.11, 95% CI 2.41
−42.46) and higher Child-Pugh score (>6, HR 5.09, 95% CI 1.28
−20.19) were identified as independent risk factors for predicting
significant liver injury after Sorafenib administration, with the C-
index calculated as 0.747 [46].

3.4. Biomarker of treatment response

Unfortunately, many patients have the advanced-stage disease
and are not candidates for radical treatment options such as tumor
resection or liver transplantation [34]. In these cases, systemic or
loco-regional therapy is used to treat the disease with promising
results. Non-invasive quantitative imaging techniques can predict
tumor response to these treatments and will provide useful informa-
tion to clinicians. Recently, the performance of MRE as a marker of
tumor response has been reported in a few preliminary studies.

Gordic et al. [47] reported that tumor stiffness (TS) after loco-
regional treatment (90Y radioembolization/TACE/RFA) was significantly
lower than untreated tumors (3.9 § 1.8 vs. 6.9 § 3.4 kPa, p = 0.006).
There was a negative correlation between TS and the percentage of
necrosis (r = -0.540, p = 0.0001). However, the opposite result appears
in a recent prospective study [48]. Tumor stiffness (TS) and peritumoral
liver stiffness (LS) were significantly increased after 90Y radioemboliza-
tion treatment. Patients who achieved complete treatment response at
six weeks were found to have significantly lower baseline TS and peritu-
moral LS than those who did not, but only 17 tumors were included in
this study. Another study [49] focusing on the stiffness of colorectal liver
metastases after chemoembolization therapy also found a significant
increase in tumor stiffness at six weeks post-treatment.

In a preliminary study [50] about immunotherapy in advanced
HCC patients, tumor stiffness increased by 0.12 kPa after treatment.
In the correlation analysis, this change was significantly associated
with overall survival (R = 0.81) and time to relapse (R = 0.88) and also
significantly associated with tumor T lymphocytes (R = 0.79). This
finding suggests effects related to immune cell infiltration and alter-
ation in tumor stroma (including fibrosis and angiogenesis) can result
in early increased tumor stiffness as an independent biomarker of
treatment response. However, this is a pilot study that is meant to be
hypothesis-generating, and the number of patients is very small
(only nine patients). The results of the above studies are inconsistent,
possibly due to different study designs and interval times between
treatment and imaging. And these studies with low statistical power
were due to the small sample size.
Definition of post-treatment complications

Clavien−Dindo

.84
Clavien−Dindo

+ extent of surgery: C-
CCI

PHLF by ISGLS

8
Clavien−Dindo

: C-index = 0.747 The grading system of the Drug-Induced Liver
Injury Network

Child-Pugh score

GLS = International Study Group of Liver Surgery; CCI = The comprehensive complica-
ber of patients with post-treatment complication (Number of patients undergoing
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3.5. Prediction of HCC recurrence after treatment

Early tumor recurrence after treatment is associated with a poor
prognosis in patients with HCC. Therefore, risk assessment for tumor
recurrence should be considered in the treatment decision-making
process. Previous studies have identified poor tumor differentiation
and microvascular invasion as independent risk factors for HCC
recurrence after surgical resection and liver transplantation [51,52].

Several previous studies have found that LSM by Fibroscan can be
an independent risk factor for the recurrence of HCC after treatment
in patients with viral hepatitis [53,54]. Subsequently, studies about
LSM by MRE on this topic have gradually emerged (Table 4). Cho et al.
[55] reported that higher LSM (cut-off: > 5.5 kPa, HR = 1.12; 95% CI
1.01−1.25; p = 0.040) emerged as an independent risk factor for early
tumor recurrence after treatment. In the subgroup analysis, higher
LSM were associated with higher risks of early HCC recurrence in
both the resection/RFA group (cut-off: > 4.5 kPa, HR = 2.95; 95%
CI = 1.26−6.94) and the TACE group (cut-off: > 6 kPa, HR = 2.94; 95%
CI = 1.27−6.83; p = 0.012). Interestingly, the cut-off value for the
TACE-treated group was higher than those in other groups. It might
be due to the proportion of Child-Pugh B grade/advanced HCC
patients being higher in the group with TACE. In a recent prospective
study, Abe et al. [56] also introduced that LSM by MRE and vascular
invasion were identified as independent predictors of recurrence
after hepatic resection for HCC. The optimal cut-off value for this
study was set at 4.53 kPa, similar to the study by Cho et al. [55]. On
the other hand, a study by Matsuda et al. [57] was not consistent
with the above-mentioned studies; LSM by MRE wasn’t associated
with the recurrence of HCC.

With the advance of 3D MRE techniques, they may provide better
tumor stiffness estimates that are less affected by partial volume
effects and other artifacts than conventional 2D methods. Wang et al.
[32] first introduced the novel 3D MRE technique on this topic; the
results showed that the tumor stiffness of HCCs with recurrence
[5.89 (4.34−9.10) kPa] was significantly higher than that of HCCs
without recurrence [4.87 (4.08−6.57) kPa]. The multivariate Cox pro-
portional hazard model showed that tumor stiffness (HR = 1.163 per
unit; 95% CI: 1.055-1.282) was a risk factor associated with early
recurrence. Another study [33] evaluated two tumor stiffnesses of
HCCs with 3D-MRE reconstruction and a new ROI selection method,
including whole tumor (TS-WT) and solid fraction (TS-SP), both of
which are significant factors associated with recurrence after surgery
for a single nodal HCC. Among them, TS-SP values were positively
correlated with the recurrence of HCC, while TS-WT values were the
reverse. TS-SP might better represent the biological aggressiveness of
HCCs because it removed the effect of the necrotic area.

4. Limitations and advances

First, the majority of studies in this review were retrospective
designs with a small sample size and from single center. The mea-
surement parameters used in the current studies were different, lim-
iting the comparison and technical standardization between different
Table 4
The summary of articles on predicting HCC recurrence after treatment.

Study MRE Technique Treatment Case(All) Cut-off

Cho 2020 [55] 2D GRE/SE-EPI LR/RFA 5(119) LS:4.5
TACE 16(73) LS:6

Abe 2021 [56] 2D SE-EPI LR 72(156) LS:4.53
Wang 2018 [32] 3D SE-EPI LR 29(99) NR
Park 2020 [33] 3D SE-EPI LR 38(95) NR

NR

HR = Hazard ratio LS: liver stiffness TS-WT = tumor stiffness values for whole
quency ablation TACE = Transarterial chemoembolization LR = liver resection
Case(All) = Number of patients with HCC recurrence (Number of patients under

5

techniques and devices. Furthermore, the basic characteristics and
etiology of the patients and the standard references for the outcomes
varied among the studies. All these factors may affect reliability.

Second, the cut-off values varied widely across studies in the same
clinical application. Likewise, they were similar among different indi-
cations, which would seem to limit their clinical usefulness. We spec-
ulate that this may be attributed to the fact that the occurrence and
recurrence of HCC, portal hypertension, and post-treatment compli-
cations were all closely associated with advanced liver fibrosis/cir-
rhosis. Moreover, the LSM cut-offs that distinguish the fibrotic stages
would not be similar for different basic characteristics and etiologies.
Based on the currently available data, it seemed difficult to establish
a specific point cut-off value for each different clinical application. A
simple and practical cut-off value system was recommended by
Mayo Clinic for general practice [9], which was derived using a large
database and from a clinical management perspective. For any etiol-
ogy of CLDs, LSM: 4.0-5.0kPa were recognized as patients with
advanced fibrosis (stage 3-4) and considered suitable for surveillance
and follow-up. LSM>5.0kPa were recognized as cirrhosis and associ-
ated with the development of complications, including HCC, portal
hypertension, and decompensation.

Third, the most significant limitation of MRE in differentiating
liver tumor stiffness is low spatial resolution. The conventional 2D-
GRE MRE has a slice thickness of 1 cm and cannot accurately measure
small tumors (<1 cm). In contrast, the slice count of 3D MRE usually
ranges from 32 to 40 slices, which significantly improves the spatial
resolution compared to conventional 2D-MRE reconstruction. Recent
studies have shown that 3D-MRE may be more accurate than 2D-
MRE in staging liver fibrosis [58]. Due to the long shear wavelength,
liver MREs using a vibration frequency of 60-Hz may be less effective
in distinguishing small, rigid HCC, and a higher vibration frequency
may be appropriate to consider for smaller tumors. Meanwhile, a
novel MRE actuation system that is called Tomoelastography, oper-
ates multiple drivers in parallel to ensure full wave penetration into
the abdominal region of the body. It is more robust to noise than con-
ventional recovery approaches and recovers spatially resolved stiff-
ness measurements from even lower signal-to-noise ratio (SNR)
regions of the organ [59]. These new techniques may become prefer-
able in the future for assessing the stiffness of liver lesions.

Forth, MRE was most often used in the previous decade with
gradient echo (GRE)-based sequences. However, SE-EPI-MRE has
been widely used recently, and it outperforms GRE-MRE in terms
of success rate, image quality, and liver coverage because of its
low motion artifacts, short acquisition time, and comparable per-
formance [60].

Future multicenter, large sample, prospective-designed cohort
studies are necessary to validate these promising observations, espe-
cially under standardized technical conditions, such as subgrouping
of included patients according to different baseline characteristics
and etiology (HBV, HCV and NAFLD, etc.), harmonization of technical
indicators of MRE (MRI field strength and sequence, etc.) and
placement region of interest, and the same standard reference of
outcomes.
(kPa) Follow-up time(month) Hazard ratio (95% CI)

25 (1−41) m HR = 2.95 [1.26 -6.94],
HR = 2.94 [1.27- 6.83],

25.1(6.0−60.5) m HR = 1.27 [1.11-1.43],
5.39(1.18−30.85)m TS-WT:HR = 1.163 [1.055-1.282]
47.4 § 3.2 m TS-WT:HR = 2.05 [1.42−2.96]

TS-SP:HR = 0.32 [0.18−0.57]

tumor; TS-SP = tumor stiffness values for solid portion; RFA = Radiofre-
SE-EPI = spin-echo echo-planar imaging; GRE = gradient recovery echo;
going treatment).
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5. Conclusions

To the best of our knowledge, this review is the first to summarize
these new clinical applications of MRE in patients with HCC, which
include predicting the occurrence of HCC, differentiating between
benign/malignant liver lesions (FLL) and pathological grades of HCC,
assessing treatment response, and predicting recurrence and compli-
cations after treatment. In summary, emerging evidence suggests
that MRE may be suitable as a useful supplement to MRI enhance-
ment in the clinical management of HCC. However, the evidence
remains limited and this technique is not widely used in clinical
practice.
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