
Temporal-Awareness in SLAs: Why Should We
Be Concerned?�

C. Müller, A. Ruiz-Cortés, and P. Fernández

Dpto. Lenguajes y Sistemas Informáticos
ETS. Ingeniería Informática - Universidad de Sevilla (Spain - España)

41012 Sevilla (Spain - España)
{cmuller,aruiz,pablofm}@us.es

Abstract. Traditionally, Service Level Agreements have been decom-
posed in two sets of properties: functionals (what) and non-functionals
(how). However, in our opinion, there has been a third key element that
has had a minor attention from academy: temporal awareness (when).
We believe temporality is a main concern that should be addressed in
realistic scenarios. In doing so, this position paper discuss our experience
in extending the specification WS-Agreement with a temporal Domain
Specific Language; importantly, main aim of the paper is to provoke a
debate about the importance of temporality in SLAs.

1 Introduction

As service-oriented computing (SOC) [18] paradigm is being widely adopted
in industry, new challenges need to be considered to address the problems of
complex scenarios. The core infrastructure stack behind SOC has been proved
as solid pilar to articulate new specifications to deal with more abstract business
requirements. In particular, a key element is that gaining importance is the
traditional service level agreement (SLA) idea to enrich the basic SOA platform.
In doing so, SLAs will help to express and guarantee the appropriate quality of
service (QoS) demanded by the different participants of a SOC scenario.

However, in spite of the extensive work carried out on SLAs in the context
of SOC [7,8,15,16], we believe there has been not needed minor attention to an
important issue that must be promoted as a first-class element of SLAs: the
temporality.

Traditionally, SLAs are expressed using a set of properties in order to spec-
ify “which” service is offered and “how ” it is offered. That is to say, it includes
requirements and guarantees about functional (FP), and non-functional proper-
ties (NFP) of the services. However, another important question about services
is “when”. In our opinion, temporal awareness is top concern in order to deal
with realistic scenarios because they usually have strong temporal restrictions
at different levels that should be met: the entire agreement (e.g. the agreement
� This work has been partially supported by the European Commission (FEDER) and

Spanish Government under CICYT project Web-Factories (TIN2006-00472).

expires on 2007/05/31), any FP of the service (e.g. this operation of the service
is available from 8:00h to 18:00h), and/or any NFP that appears in the SLA
(e.g. the response time is 30 ms from 8:00h to 17:00h and 15 ms from 17:00h to
8:00h).

In order to deal with the previous issues, in [13] we propose a framework to
express temporal-aware SLA by extending the specification WS-Agreement (WS-
Ag) [7]. This specification is a proposed recommendation of the Open Grid Forum
working group (OGF) that provides both a structural schema for specifying
SLAs and a protocol for creating them based on a mechanism of templates. It is
important to highlight that, due to compatibility and complexity reasons, WS-Ag
specification only defines a general structure of the agreement; complementary, in
order to enrich the core structure, WS-Ag leave extensibility points for domain-
specific extensions like [1], [17] and [14].

Based on the experience of the authors in creating the temporal-awareness
extension to WS-Ag, the main goal of this position paper is to analyse the
key topics of temporalities in SLAs: when it is useful? or which is the correct
approach? are some of the questions we raise. Additionally, with this discussion
we aim to boost a debate to make temporality the main concern to be addressed
by the SLA community.

The rest of the paper is structured as following: In section 2, we outline the
main issues of our temporal-aware DSL for extending Ws-Ag. Next, in section
3, we analyse from a critical point of view our experience. In section 4, we
summarise a set of discussion topics based on our experience. Finally, we present
the conclusions.

2 Improving Temporal-Awareness of WS-Ag in a Nutshell

2.1 WS-Agreement in a Nutshell

WS-Ag specifies an XML-based language and a protocol for advertising the
capabilities of service providers, creating agreements based on agreement offers.
The structure of an agreement for WS-Ag is comprised of:

– Name: identifies the agreement and can be used for reference.
– Context: it includes information such as the name of the parties and their

roles of initiator or responder of the agreement. Additionally, it can refer to
an agreement template if needed. In this element, an agreement lifetime can
be defined by means of an element called “ExpirationTime”.

– Terms: agreement terms are wrapped by term compositors, which allow
simple terms or sets of terms to be denoted by “ExactlyOne”, “OneOrMore”,
or “All”. The two main types of terms are: (a) Service terms : they provide
information to instantiate or identify services and operations involved in
the agreement. Additionally, it can comprise of information about the mea-
surable service properties. (b) Guarantee terms : they describe the service
level objectives (SLO) agreed by the parties. It also includes the scope of
the term (e.g. a certain operation of the service or the whole service itself);

a “QualifyingCondition” that specifies the validity conditions under which
the term is applied; and information about business properties in the “Busi-
nessValueList” element such as “Importance”, “Penalty” or “Reward” and
“Preference”.

In order to create agreements, WS-Ag allows us to specify templates with the
above structure, but including agreement “Creation Constraints” that describe
the variability allowed by a party and it should be taken into account during
the agreement creation process. The element “Item” is used in case we need to
describe a creation constraint for a specific part of the agreement.

2.2 Temporal-Awareness of WS-Agreement

WS-Ag identifies two locations to include temporal awareness. On the one hand,
lifetime for the entire agreement must be included in Context into the “Expira-
tionTime” element (i.e. the last instant where the agreement is valid). On the
other hand, WS-Ag recommends the use of “QualifyingCondition” elements for
describing validity periods of terms and/or the party preferences. However, the
specification document leaves open the specific way that temporal awareness
must be exposed for reasons of compatibility and complexity.

2.3 Our Temporal DSL for WS-Agreement

Figure 1 shows an UML class diagram which represents the schema we pro-
posed in [13] for describing temporal properties in SLAs. An interval is the basic
element, different non-disjoint intervals can be grouped together so that more

init : DateTime
duration : float
durationMetric : {Seconds,

Hours, Days,
Months}

1

1..*

<<interface>>
Interval

<<interface>>
Disjoint

op : {And, Or, Xor}

<<interface>>
Periodical

repetitions : float
frequency: float
frequencyMetric : {Seconds,

Hours, Days,
Months}

{incomplete}
1

1

Fig. 1. Schema for Temporal Intervals

complex intervals can be composed. The three interfaces denote the different
types of intervals:

– Interval: stands for the basic element; is comprised of an initial time and a
duration (which can be infinite) expressed in seconds, hours, days, or months.

– Disjoint: stands for disjoint intervals constituted of a set of intervals related
by a logic operator (or, and, or xor).

– Periodical: stands for periodic intervals, either disjoint or non-disjoint. Its
periodicity is comprised of the number of period repetitions (which can be
infinite) and a frequency expressed in seconds, hours, days, or months, which
denotes the time between two consecutive intervals.

Agreement Template

Terms Compositor

Context
Name

<ServiceDescriptionTerm>
<Request> </…>
<Algorithm> </…>
<MTBR> </…>

</…>
<ServiceProperties>
…
</…>

<ServiceProvider>responder</…>
…

<All>

<All>

…

Creation Constraints
<Item Name="TestPrevious">

<Location>
//ServiceDescriptionTerm/MTBR

</…>
<ItemConstraint>
<restriction base="positiveInteger">

<minInclusive value="40"/>
</…>

</…>
<Interval init="2007-09-30T

00:00:00+01:00"
duration=“1.0"
durationMetric="Days"/>

</…>

<Item Name=”AlgorithmAllowed”>
<Location>
//ServiceDescriptionTerm/Algorithm

</…>
<ItemConstraint>

<restriction base="xs:string">
<enumeration value=“Dijkstra" />
<enumeration value=“Knapsack" />
<enumeration value=“Kruskal" />

</…>
</…>

</…>

<Constraint>
<Interval init="2007-09-29T

00:00:00+01:00"
duration=“2.0"
durationMetric="Days"/>

</…>

<GuaranteeTerm
Obligated=“ServiceProvider”…>
<QualifyingCondition>

</…>
<SLO>”MTBR ≥ 20”</…>
<BusinessValueList>

<CustomBussinessValue>
<VariableReference>Algorithm</…>
<UtilityFunction>F1(U)</…>
<VariableReference>MTBR</…>
<UtilityFunction>F3(U)</…>

</…>
</…>

</…>

(a)

(b)

(c)

<GlobalPeriod>
<Periodical f requency=”1.0”

f requencyMetric=”Hours”
repetitions=”13.0”>

<Interval init=”2007-10-01T00:00:00+01:00”
duration=”167.0”
durationMetric=”Hours”/>

</…>
</…>

From Monday 0:00
to Sunday 23:00

From 10/01/2007
to 12/30/2007

(13 weeks)

<Periodical f requency=”62.0”
f requencyMetric=”Hours”
repetitions=”13.0”>

<Periodical f requency=”14.0”
f requencyMetric=”Hours”
repetitions=”5.0”>

<Interval init=”2007-10-01T
08:00:00+01:00”

duration=”10.0”
durationMetric=”Hours”/>

</…>
</…>

From 8:00
to 18:00

From 18:00
to 8:00

From Monday
to Friday

From 18:00 to 24:00
+

Weekend
+

From 0:00 to 8:00

Validity
Period for the

entire agreement

Validity Period for:
(a) Service

Description
Terms

(b) The SLO
(c) The Preferences

Validity
Period for a single

constraint
(TestPrevious)

Validity
Period for all

creation
constraints

Fig. 2. An example of temporal-aware WS-Ag Template

Our proposal allows to include temporality regarding several aspects of agree-
ments. Figure 2, shows a particular case study where a provider offers computing
services to other organizations with a template. The Figure includes where we
improve the Temporal-Awareness into the WS-Ag structure.

In this scenario, a provider is likely to be looking for an optimization in the
usage of its resources. Thus, agreement offers should vary in a certain period by
the mean time between two consecutive requests (MTBR) within the period.

– The global validity of the SLA is from october 1/2007 to december 30/2007.
– All Sundays at 23:00h. servers are down for an hour due to maintenance.

This affects the global validity period.
– The Provider needs part of its server resources for its own computing ne-

cessities from Mondays to Fridays, from 8:00h to 18:00h. Therefore, in such
time period, the provider requires that consumers specify in their service
requests a MTBR greater or equal to 20 seconds.

– The provider allows requests with “Dijkstra”, “Knapsack”, or “Kruskal” al-
gorithm allowing execution tests 48 hours before agreement initiation date
with any value of the MTBR. But 24 hours before agreement initiation date
the provider constrains these tests with a minimum MTBR of 40s.

3 Complexity on Defining Our DSL

Most of the time, design is a challenging task with a high degree of uncertainty.
In particular, we face the challenge of creating a DSL to express the temporal
requirements that we could find in real-world SLAs. At the end of the designing
process we found that, choosing the WS-Ag gives us a consistent framework.
In this section, we analyse with a more critical point of view, the advantages
and drawbacks of our approach in order to spread our know-how in the design
of the temporal extension so it could be used as a basis for further debate on
temporal-aware SLAs.

The expressiveness and succinctness of a DSL are key factors for considering
it as a good proposal or not. Our temporal DSL is the result of several works
where we have already studied temporality on web services: In [11], we presented
a constraint-based approach to temporal-aware web services procurement. In
[12], we elaborated a study about expressiveness of temporal descriptions for
web services. And in [13], while improving temporal-awareness of WS-Ag, we
reviewed the kinds of temporal periods defined in several proposals from semantic
and traditional web service specifications and additionally we studied the periods
defined by the IETF RFC 3060 [20]. We concluded that the expressiveness of
our proposal is similar to theirs.

In relation to succinctness it is important to remark that as we show in [13],
we consider the periodical validity periods as a main concern in the agreements
domain rather than simply using a set time intervals (choice made by most of
the approaches found in the literature [2,3,4,6,9,10,21,22]). In this context, to the
best of our knowledge the only proposal with explicit periodic terms is IETF RFC
3060 which includes a large amount of properties such as “MonthOfYearMask”,

“DayOfMonthMask” and other syntactic structures that allows the definition of
this kind of period as concise as our definition. On the contrary, other proposals
that do not include periodic time periods can be defined as less succinct due to
the amount of effort that must be carried out to express a periodic behaviour. As
an example, we would need 1000 period definitions for describing a single periodic
interval from our proposal with a value of 1000.0 for repetitions property.

The effort to express periodic behaviour even increases if the repeated period
of time is discontinuous. Our proposal allows a simple definition of periodic and
discontinuous periods of time by mean of a set of intervals defined inside the
disjoint element over which the periodicity is defined. Additionally, a common
limitation found in other proposals is related with the possibility of specify-
ing restrictions only over certain parts of the agreement; this limitation can be
described as a main drawback in the expressiveness of the DSL.

Another important issue is related with parties preferences for an SLAs. In
general, each of the parties that sign a particular agreement, have to specify in a
concrete manner its preferences. In WS-Ag, this is made by means of an agree-
ment template that should be completed for the other party. In this preference
context, we found a little set of proposals , among those which are temporal-
aware, that have taken the preferences into account. However, to the best of our
knowledge, none of them have studied temporality on preferences and creation
constraints.

We distinguish two ways to declare the preferences: (1) by comparing the “de-
gree of similarity” between values of service properties from different agreement
offers and templates; for example, if a provider specifies in the agreement tem-
plate that it prefers a value of MTBR of 30s, an agreement offer which requires
a MTBR of 32s will be more similar to the template than another offer requiring
20s; and (2) by comparing utility values given by utility functions defined on
the service properties, just as we have described above. Both alternatives use
weights as a means of incorporating the degree of importance among service
properties to the preferences. UDDIe [2], EWSDL [3] and METEOR-S [17] have
based their preferences on the degree of similarity, whereas other proposals have
only mentioned their interest. Regarding utility functions, WSMO/WSML [5],
Gonzalez et al. [6] and METEOR-S [17] are currently working on incorporat-
ing this feature to their proposals. Therefore in preferences our proposal is as
expressive as most expressive proposals.

In addition, a key point addressed by our DSL has been to express a suitable
semantic for determining the consistency of an agreement offer/template, the
conformity between templates and offers, and the selection of the optimal offer
for a given template.

In [11], we described the semantic of these operations applied to web services
specifications and matchmaking processes but in this paper we consider their on
the SLAs establishment context. More formally, we identify the following three
operations that are highly common in fault-tolerant scenarios: (i) consistency (i.e
an agreement document is consistent if it does not have contradictory terms);
(ii) conformity (i.e. two agreement documents conform if the guarantee terms

from each party support the requirements to the other party); (iii) optimality,
an agreement offer is optimal for a SLA when its guarantee terms give the best
support to the requirements of the other party and vice versa.

Finally, while describing our temporal DSL this has lead us to discover a wide
range of uses for temporality in WS-Ag, it is important to highlight the explicit
inclusion of a temporal feature made in the specification; that is the lifetime
for the whole agreement. As a complement, we can summarise the new range of
possibilities when using our approach; depending on the target we could have
temporal-aware creation constraints or preferences over service properties: On
the one hand, we can express temporal creation constraints in the agreement cre-
ation process, e.g. “Provider must allow execution tests with a minimum MTBR
of 40s, 48 hours before agreement initiation date in order to create the agree-
ment”. In [13], we give more details for temporal creation constraints on single or
multiple constraints. On the other hand, we allow the specification of temporal
preferences over service properties.

Additionally, we define a schema for using any kind of utility functions over
any set of service properties, instead of only constant float functions as described
in WS-Ag. With this approach, we now formulate the preferences of the parties
over a service property (or a set) versus other properties with any kind of math-
ematical function, leaving open the concrete language to specify those functions.

4 Discussion

Based on the experience of developing an improvement of temporal-awareness of
WS-Ag we believe that some important topics must be discussed. In this section,
we propose a set of key points that must be analysed in order to deal properly
with temporality in real-world scenarios. Main aim of this list is to establish a
rich discussion rather than expose an exhaustive analysis.

– To develop concrete DSL for describing temporal properties in SLAs based
on real scenarios.

– To have a temporal DSL as expressive as possible in order to allow the
description of a rich set of temporal constraints.

– To express this succinctly, temporality is made easier for its user allowing it
to be more understandable and clearer for both parties.

– To apply the operations of consistency, conformity and optimality on the
SLA establishment boosts an automation of the process.

– To allow the definition of variable preferences based on temporal-aware util-
ity functions for supporting scenarios in which the parties preference may
vary at times, such as “an increasing utility function f(x) will be used in
rush hour and a decreasing utility function f ′(x) will be applied at any
other instant”. This gives more expressiveness or more succinctness to our
proposal.

– To allow the definition of temporal creation constraints. Thus, we could
describe constraint such as “In order to create the agreement you must have
paid the 50% of the total price a week before the agreement initation date”.

5 Conclusions

In this paper, we show our experience in the extension of WS-Ag as the starting
point to propose a set of key topics to start a discussion about the convenience of
to consider temporal properties as a main concern in SLAs. As a conclusion we
can enumerate the following issues: We consider the importance to extend the
temporal-awareness WS-Ag by defining an appropriate domain-specific language.
Based on the discussion presented, we believe the temporal DSL must have a
wide expressiveness in order to allow as many temporal properties as possible.
Although the succinctness is not essential for the DSL it makes it easier and
more understandable to an user.

Additionally, to boost an automation of the process based on previous works
[11,19] we should apply the operations of consistency, conformity and optimality
on the SLA establishment. Furthermore, to support scenarios in where the parties
preference which may vary from time to time we should allow the definition of
variable preferences based on temporal-aware utility functions; e.g. the provider
would vary its preferences according to the usage level of the resources. These
kinds of preferences give more expressiveness to our proposal in a succinct way
because a complex utility function described on a concrete period of time can
be defined as several constant utility functions on consecutive instants.

Finally, we need to describe temporal constraints in the agreement creation
process in order to allow that variability of the parties would vary from time
to time too. This is why are concerned about temporal-awareness in SLAs. Our
proposal is quite expressive, but what about efficiency in the automation of the
process?. So, expressiveness on one side and efficiency on the other, can actually
represent two sides of the same coin (You can’t have one without the other). In
order to obtain a good solution we should get a good balance between them.

References

1. Aiello, M., Frankova, G., Malfatti, D.: What’s in an agreement?An analysis and
an extension of WS-agreement. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826, pp. 424–436. Springer, Heidelberg (2005)

2. Ali, A.S., Al-Ali, R., Rana, O., Walker, D.: UDDIe: An Extended Registry for Web
Services. In: Proc. of the IEEE Int’l Workshop on Service Oriented Computing:
Models, Architectures and Applications at SAINT Conference. IEEE Press, Los
Alamitos (2003)

3. Chen, Y., Li, Z., Jin, Q., Wang, C.: Study on qoS driven web services composition.
In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006.
LNCS, vol. 3841, pp. 702–707. Springer, Heidelberg (2006)

4. Chen, Z., Liang-Tien, C., Bu-Sung, L.: Semantics in Service Discovery and QoS
Measurement. IT Pro - IEEE Computer Society, 29–34 (2005)

5. de Bruijn, J., Feier, C., Keller, U., Lara, R., Polleres, A., Predoiu, L.: WSML
Reasoning Survey (November 2005)

6. González-Castillo, J., Trastour, D., Bartolini, C.: Description Logics for Match-
making of Services. Technical Report HPL-2001-265, Hewlett-Packard (2001)

7. OGF Grid Resource Allocation Agreement Protocol WG (GRAAP-WG). Web Ser-
vices Agreement Specification (WS-Agreement), v. gfd.107 (2007)

8. IBM. Web Service Level Agreement (WSLA) Language Specification (2003)
9. Li, L., Horrocks, I.: A Software Framework for Matchmaking based on Semantic

Web Technology. In: Proc. of the 12th ACM Intl. Conf. on WWW, pp. 331–339
(2003)

10. Lodi, G., Panzieri, F., Rossi, D., Turrini, E.: SLA-Driven Clustering of QoS-Aware
Application Servers. IEEE Transactions on Software Engineering 33(3), 186–196
(2007)

11. Martín-Díaz, O., Ruiz-Cortés, A., Durán, A., Müller, C.: An approach to temporal-
aware procurement of web services. In: Benatallah, B., Casati, F., Traverso, P.
(eds.) ICSOC 2005. LNCS, vol. 3826, pp. 170–184. Springer, Heidelberg (2005)

12. Müller, C., Martín-Díaz, O., Resinas, M., Fernández, P., Ruiz-Cortés, A.: A WS-
Agreement Extension for Specifying Temporal Properties in SLAs. In: Proc. of the
3rd Jornadas Científico-Técnicas en Servicios Web y SOA (2007)

13. Mller, C., Martín-Díaz, O., Ruiz-Cortés, A., Resinas, M., Fernández, P.: Improving
temporal-awareness of WS-agreement. In: Krämer, B.J., Lin, K.-J., Narasimhan,
P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 193–206. Springer, Heidelberg (2007)

14. Di Modica, G., Tomarchio, O., Vita, L.: A framework for the management of dy-
namic SLAs in composite service scenarios. In: Di Nitto, E., Ripeanu, M. (eds.)
ICSOC 2007. LNCS, vol. 4907, pp. 139–150. Springer, Heidelberg (2007)

15. Molina-Jiménez, C., Pruyne, J., van Moorsel, A.: The role of agreements in IT
management software. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Archi-
tecting Dependable Systems III. LNCS, vol. 3549, pp. 36–58. Springer, Heidelberg
(2005)

16. OASIS and UN/CEFAT. Electronic business using XML, ebXML (2007)
17. Oldham, N., Verma, K., Sheth, A., Hakimpour, F.: Semantic WS-Agreement Part-

ner Selection. In: 15th International WWW Conf., pp. 697–706. ACM Press, New
York (2006)

18. Papazoglou, M.P., Georgakopoulos, D.: Service oriented computing. Commun.
ACM 46(10), 24–28 (2003)

19. Ruiz-Cortés, A., Martín-Díaz, O., Durán, A., Toro, M.: Improving the Automatic
Procurement of Web Services using Constraint Programming. Int. Journal on Co-
operative Information Systems 14(4) (2005)

20. The Internet Society. Policy Core Information Model - v1 Specification (2001)
21. Tian, M., Gramm, A., Naumowicz, T., Ritter, H., Schiller, J.: A Concept for QoS

Integration in Web Services. In: Proc. of the IEEE Int’l Web Services Quality
Workshop (WISE 2003), pp. 149–155 (2003)

22. Trastour, D., Bartolini, C., González-Castillo, J.: A Semantic Web Approach to
Service Description for Matchmaking of Services. Technical Report HPL-2001-183

	Temporal-Awareness in SLAs: Why Should We Be Concerned?
	Introduction
	Improving Temporal-Awareness of WS-Ag in a Nutshell
	WS-Agreement in a Nutshell
	Temporal-Awareness of WS-Agreement
	Our Temporal DSL for WS-Agreement

	Complexity on Defining Our DSL
	Discussion
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

