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ABSTRACT Three-phase four-wire systems require a reference frame similar to that used in 3-phase 3-wire
system configurations that allow them to be easily analysed, modelled and controlled. A new reference frame
called Reduced Reference Frame (RRF) was presented by the authors in a previous work to satisfy these
objectives. This is based on the locus of the voltage space vector which is used to perform a transformation
applied to 3-phase 4-wire systems. This paper uses the proposed RRF to demonstrate the benefits of this
transformation under different conditions of load or voltage imbalance. To this end, the different types
of imbalances considered are studied by comparing the results in the classical αβγ axes, the so-called
mno-transform specifically developed for 3-phase 4-wire systems and the RRF coordinates. In addition,
a theoretical identification of some types of imbalances is done comparing the simulation results and the
fundamentals of the RRF.

INDEX TERMS Coordinate transformation, reference frame, three–phase four–wire system, unbalanced
power system.

I. INTRODUCTION
The integration of distributed energy resources such as pho-
tovoltaic plants, energy storage systems, or electric vehicles
in low-voltage networks will require more detailed studies of
three-phase four-wire systems. These will be deployed in a
three-phase or single-phase manner depending on the power
to be managed by each resource, which could lead to a greater
imbalance of these networks. An example of this situation can
be found in [1], where a year-long campaign was carried out
to measure the currents and voltages on the low-voltage side
of more than a hundred transformers integrated in a network
with high PV penetration in Great Britain. The report shows
an average voltage imbalance in the transformers of more
than 0.5%, with some of them reaching maximum imbal-
ances of more than 5% in certain moments. In this situation,
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the neutral wire current may be high with maximum values
above the rated current during some periods. In addition,
in electrical systems such as microgrids, it is common to
find load and generation imbalance conditions, due to the
single-phase character of the consumers/generators and to the
different demand/generation of each of them [2], [3]. This
situation becomes more pronounced for islanded microgrids
dominated by power converters, where it is especially inter-
esting to have the ability to control the voltage and currents
of these power converters in an unbalance way [2], [3]. This
way, it could be possible to improve the general performance
of the microgrid [4].

As a consequence, it is essential to define an adequate
reference frame that allows to analyze, model, and control
three-phase four-wire systems with a high level of imbalance.

The classical reference frames based on the Clarke et al. [5]
and Park [6] transforms have proven to be successful in three-
phase three-wire systems. However, for three-phase four-wire
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systems, a more general approach than the one proposed by
Akagi et al. in [7] is required for a better understanding of
how the unbalanced magnitudes may affect the active and
reactive instantaneous powers [8]. In recent years, several
transformations have emerged to address this issue. Of spe-
cial interest are those based on Singular Value Decomposition
proposed by V. Choqueuse in [9] or those based on the
Frenet-Serret frame proposed by Granjon and Phua [10] and
more recently Milano et al. [11]. Others authors use tensor
algebra [12], while others apply the geometric or Clifford
algebra to analyze three-phase four wire systems [13], [14]
or multiphase power systems in time-domain [15], [16].

Other authors apply transformation methods based on the
voltage space vector and its time derivative to define a sta-
tionary mno reference frame, whose orientation depends on
the system imbalance [17]. In addition, the active and reactive
power terms can be related to the corresponding voltages and
currents in the mno reference frame. Nevertheless, this frame
is undefined for some particular voltage conditions, i.e. a volt-
age with just zero-sequence component or null voltage in the
phase a [17]. A similar approach was proposed by Tan et al.
[18], representing unbalanced signals in a non-orthogonal
reference frame bymeans of a space vector for 3-phase 3-wire
systems. This strategy was recently extended for 3-phase
4-wire systems in [19] and [20]. Despite the extension of the
transform, it is not defined if any of the phase magnitudes of
the system is null or the phase difference between two of them
is 0 or π radians [21].
To cover all possible imbalances within 3-phase 4-wires

systems, the authors recently presented a new reference frame
called Reduced Reference Frame (RRF) [22] whose orien-
tation depends on the trajectory, or locus, defined by the
space vector of the analysed three–phase abc magnitude.
This allows to formulate a power theory for computing the
instantaneous active and reactive power similar to the one
proposed by Akagi et al. for three-phase balanced systems
in [7]. Additionally, the axes that define these coordinates are
oriented taking advantage of the locus geometry. Specifically,
they are oriented on the semi-major and semi-minor axes of
its geometry. This brings a series of benefits once the space
vector of the measured signals are expressed in terms of the
RRF: (i) a dimensional reduction of the space vector from
three to two coordinates and (ii) both coordinates are sinusio-
dal signals delayed a quarter of cycle and their amplitudes are
related through the locus eccentricity. Moreover, this locus
eccentricity allows to compute one RRF magnitude from the
other one. In addition, this parameter can be used to classify
the imbalances of 3-phase 4-wire systems depending on the
locus shape.

The RRF advantages have been also addressed in dynamic
scenarios and protection systems. Particularly, the dynamics
of the space vectors related to first-order 3-phase 4-wire
circuits with different imbalances has been analyzed in [23].
Its application for line protection has been reported in [24].
This time-domain protection technique detects the fault type

FIGURE 1. Three–phase four–wire system under study.

based on the variation of the angle between the space vectors
related to voltages and currents.

The objective of this paper is to show and to interpret
several case studies of unbalanced 3-phase 4-wires systems
using the RRF proposed by the authors in [22]. For this pur-
pose, a three-phase four-wire circuit composed of three volt-
age sources feeding a three-phase load is analysed working
under load and voltage imbalances. The voltage and current
in the load will be transformed using the classical Clarke
transform, the mno axes and the recently proposed RRF
coordinates. This will allow to demonstrate the benefits of the
RRF approach compared to the Clarke and mno transforma-
tions in terms of unbalance classification, computation of the
power terms and the relationships between the transformed
magnitudes.

The paper is organized as follows: Section II presents the
most relevant concepts of the RRF transform. Section III
presents several case studies for evaluating the performance
of the RRF under unbalanced voltages and loads. Finally,
Section IV presents the most important conclusions of this
work.

II. REDUCED REFERENCE FRAME TRANSFORMATION
The theoretical fundamentals and mathematical formulation
of the RRF transformation are fully described in [22]. This
section presents the most important concepts on which the
RRF transform is based to understand the results presented
throughout the paper.

Let us consider a three-phase four-wire system as shown
in Fig. 1, where up to three linear independent line voltages
va (t), vb (t) and vc (t) can be defined taking the voltage of the
fourth wire as the voltage reference. Expressing the generic
set of the linearly independent line voltages as:

vph (t) =
√
2Vph cos

(
ω t + θph

)
ph = a, b, c, (1)

where ph is the tag of the wire, ω is the angular frequency,
Vph and θph are the RMS value and phase angle of the voltage
respectively.
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FIGURE 2. Voltage locus and 5v –plane.

Note that Vph and θph can take any value. Thus, using the
space vector representation proposed in [25] and [26], the
three-dimensional vector vabc (t) is defined as:

vabc (t) = [va (t) , vb (t) , vc (t)] , (2)

and this vector describes a three-dimensional trajectory over
the time t .

This trajectory can be easily interpreted rewriting (2) as:

vabc (t) = c1 cos (ωt) + c2 sin (ωt), (3)

since (2) is also the homogeneous solution of the harmonic
oscillator extended to vabc (t):

d2 vabc (t)
d t2

+ ω2 vabc (t) = 0. (4)

where c1, c2 are constant vectors given by the initial
conditions:

c1 = vabc(t)
∣∣∣
t=0

, (5)

c2 =
d
dt

(
vabc(t)

ω

)∣∣∣
t=0

. (6)

From (3) it is derived that the trajectory of vabc (t) is in the
plane defined by c1 and c2. Both, the orientation of that
plane (hereinafter 5v–plane) and the locus or the shape of
the vabc (t) trajectory (hereinafter λv–locus), depend on the
degree of the voltage imbalance. Figure 2 shows a general
case of voltage imbalance where the λv–locus described by
vabc (t) in the 5v–plane and vectors c1 and c2 are illustrated.
In [22], three classes associated with the locus shape were
defined: circular (Class I), elliptical (Class II) and linear
(Class III). Note that Class II (elliptical shape) is the most
general case while the other two are degenerated versions
of it.

The proposed RRF takes advantage of the locus-shape
symmetry and geometrical properties. For this purpose, the
RRF orientation is defined over the ellipse semi-major and
semi-minor axes which are denominated in the transforma-
tion as x and y directions respectively. The orthonormal direc-
tion to the 5v–plane is known as o direction defining the xyo
axes of the RRF. As illustrated in Fig. 3, the RRF frame is
defined by the set of orthonormal vectors {ex, ey, eo}. Note
that eo is pointing outward the 5v–plane.

FIGURE 3. Voltage locus and xyo axes.

The components of vabc (t) can be represented in the RRF
as follows:

vxyo (t) =
[
vx (t) , vy (t) , vo (t)

]
= T extRv vabc (t) , (7)

where T extRv is the unitary rotation matrix

T extRv =

exa exb exc
eya eyb eyc
eoa eob eoc

 , (8)

and ex = [exa, exb, exc], ey =
[
eya, eyb, eyc

]
and eo =

[eoa, eob, eoc] are the coordinates of {ex, ey, eo} expressed in
the canonical base {[1, 0, 0] , [0, 1, 0] , [0, 0, 1]} or the abc
frame.

The resulting components vx (t) , vy (t) and vo (t) are char-
acterised by the following properties:

• Null value for the orthonormal component vo (t) since all
the locus lies within the 5v–plane. This property allows
to use the reduced version of the transformation:

TRv =

[
exa exb exc
eya eyb eyc

]
, (9)

where only xy are required to be computed:

vxy (t) = TRvvabc (t) , (10)

• The vx (t) , vy (t) components are two sinusoidal func-
tions π/2 radians out of phase (1/4 cycle), whose ampli-
tudes are related with the eccentricity εv of the ellipse.

Since in a three-phase four-wire system there are at most three
lineal independent line currents ia (t) , ib (t) , ic (t), a simi-
lar procedure can be applied to the currents to obtain the
λi–locus, the 5i–plane and the T extRi transform. Note that the
subscript i is used to denote that the RRF transform is related
to currents.

Once the voltages and currents have been defined in the
same RRF, they can be used to formulate the active and
reactive powers. In this work, the considered reference plane
is5v, therefore the voltages and currents in the RRF are given
respectively by (7) and

ixyo(t) = T extRv iabc(t). (11)

The power definition is independent of the selected reference
frame, thus, using the abc frame, the active power of the
system, P, is defined as the sum of the active power of each
phase, P = Pa + Pb + Pc

P = ℜ{V aI
⋆
a} + ℜ{V bI

⋆
b} + ℜ{V cI

⋆
c}, (12)
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and the reactive power Q = Qa + Qb + Qc

Q = ℑ{V aI
⋆
a} + ℑ{V bI

⋆
b} + ℑ{V cI

⋆
c}, (13)

where V a, V b, V c are the phasors related to va(t), vb(t), vc(t),
and I ⋆a, I

⋆
b, I

⋆
c are the complex conjugate of the phasors related

to ia(t), ib(t), ic(t).
Using the RRF transformation:V x

V y
V o

 = T extRv ·

V a
V b
V c

 , (14)

I xI y
Io

 = T extRv ·

IaIb
I c

 , (15)

the powers are formulated as P = Px + Py + Po,

P = ℜ{V xI
⋆
x} + ℜ{V yI

⋆
y} + ℜ{V oI

⋆
o}, (16)

and Q = Qx + Qy + Qo,

Q = ℑ{V xI
⋆
x} + ℑ{V yI

⋆
y} + ℑ{V oI

⋆
o}, (17)

where V x , V y, V o are the phasors related to vx(t), vy(t), vo(t)

respectively and I ⋆x , I
⋆
y, I

⋆
o are the complex conjugate of the

phasors related to ix(t), iy(t), io(t) respectively.
The instantaneous active and reactive power can be

expressed according to [27] in abc and RRF axes as follows:

p(t) = vabc (t) · iabc (t) = vxy (t) · ixyo (t) , (18)

q (t) = ∥qabc (t) ∥ = ∥qxyo∥ = ∥vxy (t) × ixyo (t) ∥ (19)

The power computation using the RRF presents a key
advantage with respect to the abc frame, as the component
vo is always null. This allows to obtain a reduced expression
for the active power P, reactive power Q and instantaneous
active power,

P = Px + Py = ℜ{V x I
⋆
x} + ℜ{V y I

⋆
y}, (20)

Q = Qx + Qy = ℑ{V x I
⋆
x} + ℑ{V y I

⋆
y}, (21)

p (t) = vx ix + vyiy. (22)

However, this reduction is not achieved for the instanta-
neous reactive power since io affects the voltages in xy axes:

qxyo (t) =

 vyio
−vx io

vx iy − vyix

 , (23)

q (t) =

√
i2o

(
v2x + v2y

)
+

(
vx iy − vyix

)2
. (24)

Despite a reduction in the reactive power terms is not
achieved, its computation is simpler than in the abc frame
since the vo component is always null.
In the case of 5v and 5i are coincident, the component io

would be null. As a consequence, the instantaneous reactive
power is reformulated as q(t) = ∥qo(t)∥:

qo (t) = vx iy − vyix . (25)

This allows to represent the instantaneous active and reac-
tive power in a compact form as follows:[

p(t)
qo(t)

]
=

[
vx vy

−vy vx

] [
ix
iy

]
. (26)

Equation (26) allows to adopt a complex formulation simi-
lar to the one presented in [8], but extending its application to
voltages and currents including zero–sequence components:

p(t) + j qo(t) = v⋆xy(t) ixy(t), (27)

where

v⋆xy(t) = vx(t)−jvy(t),

ixy(t) = ix(t) + jiy(t).

III. CASE STUDIES
This section presents two case studies for evaluating the per-
formance of the RRF transform in comparison with the clas-
sical αβγ frame and the recent mno coordinates proposed by
Montanari and Gole [17]. For this, the 3-phase 4-wire circuit
depicted in Fig. 1 is analyzedwith voltage and load imbalance
conditions as reported in the following subsections.

A. VOLTAGE IMBALANCE
This case study considers a balanced load fed from an unbal-
anced voltage source. In this case, the line currents circulating
through the load can be computed as follows:IaIb

I c

 =
1

(R+ jX)

1 0 0
0 1 0
0 0 1

 V a
V b
V c

 , (28)

with

R+ jX = Z = ZejϕZ =

√
R2 + X2e

j
(
arctan X

R

)
. (29)

where it is observed that each current phasor is proportionally
scaled and delayed in an identical manner with respect to its
voltage phasor. Applying the RRF transformation, defined
in (7) and (8), to the voltage and current phasors in (28),
leads to:V x

V y
V o

 =
[
T extRv

] V a
V b
V c

 =

 VxejϕVx

Vyej(ϕVx−π/2)

0

 , (30)

I xI y
Io

 =
[
T extRv

] IaIb
I c

 =
1
Z

 Vxej(ϕVx−ϕZ )

Vyej(ϕVx−π/2−ϕZ )

0

 . (31)

The instantaneous voltage vxyo(t) and current ixyo(t) are
computed as:vx(t)vy(t)

vo(t)

 =

√
2Vx cos

(
ωt + ϕVx

)
√
2Vy sin

(
ωt + ϕVx

)
0

 , (32)

ix(t)iy(t)
io(t)

 =

√
2 (Vx/Z ) cos

(
ωt + ϕVx − ϕz

)
√
2

(
Vy/Z

)
sin

(
ωt + ϕVx − ϕz

)
0

 . (33)
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Note that the values of vo(t) and io(t) are null, therefore,
the voltage and current loci of the vectors v(t), i(t) are in the
same plane. As a result, it can be stated that irrespective of
the voltage imbalance, the 5v and 5i planes are coincident
when the load is balanced. In addition, V y and I y lag π/2 with
respect to V x and I x , respectively. This means that λv and
λi are two ellipses with aligned semi-major and semi-minor
axes. The eccentricity εv of λv is given by the amplitude of
vx(t) and vy(t):

εv =

√
1 −

(
Vy
Vx

)2

. (34)

Note that, considering (33), εv = εi. As a consequence, λv and
λi are concentric since both loci have the same semi-major
and semi-minor axes. This feature holds for balanced loads
irrespective of whether the voltage is balanced or not.

The formulation of the different power definitions provided
by (20), (21) and (26) can be particularized as a function of
the voltage, load impedance and eccentricity as follows:

P =

(
2 − ε2

) (
V 2
x /Z

)
cosϕZ , (35)

Q =

(
2 − ε2

) (
V 2
x /Z

)
sinϕZ , (36)[

p(t)
q(t)

]
=

[
P+ ε2

(
V 2
x /Z

)
cos

(
2ωt + 2ϕVx − ϕZ

)
∥2

√
1 − ε2

(
V 2
x /Z

)
sinϕZ∥

]
(37)

Note that q(t) has a constant value only affected by Vx , ϕZ
and ε. Whereas, p(t) is composed by a constant value P and
cosine function p̃ (t) with twice the angular frequency.
These theoretical analysis can be complemented in a

numerical way considering two test cases with different
voltage imbalances: (i) voltage with positive and negative
sequences (PNV case) and (ii) voltage with positive, negative
and zero sequences (PNVZ case). The symmetrical compo-
nents of the voltages for these two case studies are set as
follows:

VPNV
012 = V

 0
1
k k2

 , (38)

VPNZV
012 = V

k k01
k2
2

 , (39)

where {V , k0, k2} ∈ C are constant values, and k ∈ [0, 1)
is a sweep variable. Note that in this way, it is possible to
analyze how the variation of the voltage imbalance affects
the transformation results. The numerical analysis considers
{V , k0, k2} = {

224.4
√
2

̸ 0 V, 1̸ −
π
2 , 1 ̸ −

π
2 }. Figure 4 depicts

in the phasor domain the voltages VPNV
012 and VPNZV

012 for k =

{0, 0.25, 0.5, 0.75, 1}. These voltages are easily transformed
to the abc frame through the Fortescue Transform [28], [29]:

Vabc = [TF ]−1 V012 =

1 1 1
1 α2 α

1 α α2

V012, (40)

where α = ej
2π
3 .

FIGURE 4. Symmetrical components of PNV and PNZV source imbalance.

The numerical analysis presented in the next subsections
assume a balanced load for the PNV and PNVZ cases: Ra =

Rb = Rc = R = 120 �, Xa = Xb = Xc = X = 2π fL, with
f = 50 Hz and L = 1.2 H.

1) PNV VOLTAGE IMBALANCE
The PNV case aims to study how the negative sequence
affects the voltage and current loci within the αβγ , mno and
xyo reference frames. In this case, k is the ratio between the
positive and negative sequence components. The locus varia-
tion and voltages over time in the αβγ ,mno and xyo reference
frames for k = {0, 0.5, 1.0} in the PNV case are shown in
Fig. 5. The first row within Fig. 5 presents the results in the
αβγ and mno reference frames while the second row shows
the voltage in the xyo reference frame. In this figure, the first
column shows the voltage loci in each reference frame and
the rest of the columns present the voltage components for
the different unbalance parameter k .

Note that for k = 0, the voltage locus is circular in all
the reference frames, being the 5-plane, the αβ-plane and
mno-plane coincident. Moreover, themno axes have the same
orientation than the αβγ axes. This is because the objective
of themno transform is to contain the transformed-magnitude
locus within the αβ-plane. It is interesting to note that, due to
the circular voltage locus, it is possible to select the xyo to
be coincident with the αβγ and xyo reference frames, since
the semi-major and semi-minor axes have the same length.
As a result, the time evolution of the voltage components is
identical for all the reference frames, as shown in the second
column of the Fig. 5.

For k > 0, the locus eccentricity increases approaching
gradually to the linear locus. In these cases, a remarkable
difference between the transformations appears since theαβγ

and mno axis remains in the same position independently of
the imbalance type. On the contrary, the xyo axis are oriented
with the ellipse semi-major and semi-minor axes adapting
to the specific unbalance voltage. As a result, the voltage
components in the xyo axes remain with a phase difference
of π/2 radians while those of αβγ and mno depend on the
imbalance. Moreover, it is important to point out that the
mno transform is not defined for the linear locus, i.e. k = 1,
as shown in the fourth column of Fig. 5.
Finally, it is worth noting that, due to the absence of

zero-sequence components, the voltages related to γ and o

VOLUME 11, 2023 24595



F. Casado-Machado et al.: RRF Transformation Assessment in Unbalanced Three-Phase Four-Wire Systems

FIGURE 5. PNV voltage source imbalance. Voltage loci in αβγ , mno and xyo reference frames.

components are zero regardless of the negative sequence
imbalanced defined by k .
The current loci follows a similar trend than the voltage

one since, according to (33), the current components are just
scaled and delayed with respect to the voltages. Considering
voltage and current loci in each of the transformation axes,
the instantaneous values of p (t) and q (t), defined accord-
ing to (37), are presented in Fig. 6 for k = {0, 0.5, 1}.
As expected, constant values of p (t) and q (t) are obtained
for k = 0 due to the balanced conditions of voltage and load.
On the contrary, p (t) is no longer constant for k > 0, which
oscillates at 100 Hz. However, it is interesting to note that
q (t) is constant irrespective of the negative sequence content.
Moreover, q (t) is null for k = 1 since vxy (t) and ixyo (t) are
parallel each other (linear locus), being the cross product in
eq. (19) equal to zero.

2) PNZV VOLTAGE IMBALANCE
The PNZV case aims to study the influence of the zero
sequence component in αβγ , mno and xyo reference frames
considering constant positive and negative sequence compo-
nents. In this case, k is the ratio between the positive and zero
sequence components.

Fig. 7 illustrates the voltages in each of the analyzed ref-
erence frames. Note that the figure contains three rows since
the voltage loci within the mno reference frame is no longer
equal to the corresponding loci on in αβγ axes. The results
for k = 0 leads to the conclusions pointed out in the previous
subsection due to the absence of zero-sequence component.
The zero-sequence component is responsible of a non-null
γ component in the conventional αβγ reference frame as
shown in Fig. 7 for k > 0. On the contrary, the mno and xyo

FIGURE 6. PNV voltage source imbalance. Instantaneous power p(t), q(t)
(solid lines). Active and reactive powers P , Q (dashed lines). k = 0.0 (blue
color), k = 0.5 (orange color) and k = 1.0 (green color).

transformations are able to describe the imbalance voltage
just with two components due to their capability of adapting
to the voltage imbalance. With this regard, it can be stated
the superior performance of the xyo reference frame with
respect to the mno axes since the voltage components remain
always orthogonal irrespective of the zero-sequence voltage
content.

The active and reactive instantaneous power for this PNVZ
case are shown in Fig. 8. Evidently, the instantaneous active
power maintains the oscillatory component at 100 Hz while
the instantaneous reactive power remains constant. This is
because, as shown in (33), voltage and current loci have the
same eccentricity.

24596 VOLUME 11, 2023



F. Casado-Machado et al.: RRF Transformation Assessment in Unbalanced Three-Phase Four-Wire Systems

FIGURE 7. PNZV source imbalance. Voltages in αβγ , mno and xyo reference frames.

FIGURE 8. PNZV source imbalance. Instantaneous power p(t), q(t) (solid
lines). Active and reactive powers P , Q (dashed lines). k = 0.0 (blue
color), k = 0.5 (orange color) and k = 1.0 (green color).

B. LOAD IMBALANCE
This case considers balanced voltages and unbalanced loads
in the system depicted in Fig. 1. The load current can be

formulated in a matrix form as:

Iabc = Y abc Vabc, (41)

where Yabc is the admittance matrix. These currents can
be represented in the RRF applying the voltage-based
transformation matrix T extRv as:

Ixyo = T extRv Y abc
[
T extRv

]T Vxyo = Y xyo Vxyo. (42)

The relationship between the admittance matrices, Y , for-
mulated in the abc frame, symmetrical components and xyo
coordinates are illustrated in Fig. 9.

In case of a balanced voltage, the corresponding loci in the
RRF is circular and V x and V y are signals delayed π/2 radi-
ans with equal amplitude:[

vx(t)
vy(t)

]
=

[ √
2Vx cos

(
ωt + ϕVx

)
√
2Vx cos

(
ωt + ϕVx − π/2

)] . (43)

Moreover, it is worth noting to note that the x and y axes
can be located in multiple positions due to the circular loci
as shown Fig. 10. This figure also depicts a general case
where the current plane 5i is not oriented with the voltage

VOLUME 11, 2023 24597



F. Casado-Machado et al.: RRF Transformation Assessment in Unbalanced Three-Phase Four-Wire Systems

FIGURE 9. Y matrix transformations.

plane5v. With the aim of simplifying as much as possible the
mathematical formulation, the x and y axes are aligned with
the semi-major and semi-minor axis of the projected current
loci, projλi, in the voltage plane5v, as shown in Fig. 10. Note
that, in this way, the x and y current components are related
by the loci eccentricity in a similar manner than (34):

Iy = Ix
√
1 − ϵ2i . (44)

Therefore, the current formulated in the xyo coordinates can
be expressed as I xI y

Io

 = V x

yxx − jy
yx

y
xy

− jy
yy

y
xo

− jy
yo

 , (45)

and ix(t)iy(t)
io(t)

 =


√
2Ix cos

(
ωt + ϕIx

)
√
2Iy cos

(
ωt + ϕIx − π/2

)
√
2Io cos

(
ωt + ϕIo

)
 , (46)

where y
jk

with j, k ∈ {x, y, o} corresponds to the different
terms of the admittance matrix Y xyo. Note that the currents
ix(t) and iy(t) are in quadrature, and in addition, the current
Io is not null in a general case meaning that the current and
voltage loci are in different planes.

According (20), (21), (22) the power terms P, Q, p (t) only
depends on x and y components since the voltage vo is always
null. Therefore these power terms can be computed in this
particular case as follows:

P = VxIx

(
1 +

√
1 − ϵ2i

)
cosϕ, (47)

Q = VxIx

(
1 +

√
1 − ϵ2i

)
sinϕ, (48)

p(t) = P+ p̃(t), (49)

p̃(t) = VxIx

(
1 −

√
1 − ϵ2i

)
cos

(
2ωt + 2ϕVx − ϕ

)
, (50)

where

ϕ = ϕVx − ϕIx . (51)

FIGURE 10. Locus of current and its projection into the plane of voltages
for unbalanced load and balanced voltages.

On the other hand, q (t) is a function of io (t), as stated
in (24). For this particular case with balanced voltages, the
instantaneous reactive power can be formulated as:

q (t) = Vx
√
f1(t) + f2(t) + f3(t) + C1 + C2 + C3, (52)

where f1(t), f2(t), f3(t) are oscillatory terms andC1,C2,C3 are
constant terms:

f1(t) = 4 I2o cos
(
2ωt + 2ϕIo

)
,

f2(t) = 2 (sinϕ) (Ixϵi)2 sin
(
2ωt + 2ϕVx − ϕ

)
,
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FIGURE 11. Active and reactive power for the S-type and T-type loads
versus the imbalance factor k .

f3(t) =
−I2x
2

(
1 −

√
1 − ϵ2i

)2

cos
(
4ωt + 4ϕVx − 2ϕ

)
,

C1 = 2 I2o ,

C2 = (2 Ix sinϕ)2
√
1 − ϵ2i ,

C3 =

(
Ix

(
1 −

√
1 − ϵ2i

))2 (
1
2

+ sin2(ϕ)
)

.

Note that q (t) is periodic and non-negative.
In order to evaluate numerically the previous theoretical

formulation, two types of load imbalance, one that tends to
a single-phase load and other that tends to a two-phase load,
namely type S and type T respectively, are considered with
the following admittance matrices:

Y Sabc =
1

(R+ jX)

1 − k 0 0
0 1 − k 0
0 0 1 + 2k

 , (53)

and

Y Tabc =
1

(R+ jX)

1 − k 0 0
0 1 + k/2 0
0 0 1 + k/2

 , (54)

where k ∈ [0, 1) is a sweep variable which control the imbal-
ance degree. Note that for k = 0, type S and type T loads
perform like a perfectly balance load, while for k = 1 are
a single-phase and two-phase loads respectively as shown
in Fig. 11. This numerical analysis has been done assuming
a perfectly 50 Hz balanced three-phase voltage source with
amplitude 224.4 V, R = 120 � and L = 1.2 mH. Note that
in both cases the total active and reactive power load remain
constant but, depending on the imbalance degree, this load is
shared unevenly between the phases.

The next subsections are devoted to evaluate these
two types of load imbalance in the different reference
frames.

FIGURE 12. Voltages in αβγ and in xyo for any k value for load imbalance
type S.

1) S-TYPE LOAD IMBALANCE
This subsection analyzes the current loci in the αβγ , mno
and xyo reference frames for the S type load with k =

{0, 0.5, 1.0}. This analysis just refers to currents since the
voltage is assumed balanced and constant in all the analyzed
cases. In fact, the voltage locus and the voltage components
in each reference frame are exactly the same that the ones
shown in Fig. 12.

Given this voltage, the mno axes are the same than the
conventional αβγ ones. For this reason, the current loci and
the corresponding current components in these axes for any
unbalance factor k are exactly the same, as shown in Fig. 13.
Regarding the xyo transformation, the reference frame axes
are aligned with the semi-major and semi-minor axes of the
projection of the current loci on the voltage plane, as previ-
ously stated, to take advantage of the straightforward com-
putation of the power terms using (47)-(51). For this reason,
the current components in the x and y axes are delayed with
respect to their counterparts in the mno and αβγ axes.

If the load imbalance increases, k = 0.5, the current loci is
out of the voltage plane and, consequently the third current,
i.e. iγ and io, orthogonal to the voltage plane appears in all
the transformations. Moreover, the imbalance increases the
eccentricity of the current locus, which modifies the phase
difference between the current components in the mno and
αβγ reference frame. On the contrary, the current compo-
nents in the xyo frame remain with a phase difference of
π/2 radians due to a suitable axes alignment. Finally, in the
case of a single-phase load, i.e. k = 1, it is interesting to note
that iy = 0 in the xyo transformation being the current locus
described just with ix and io which are in phase denoting a
linear locus.

The power terms related to these current components for
the different unbalance degrees of the S-type load are shown
in Fig. 14. As expected, the instantaneous active power
remains constant for the balance case, k = 0, but starts
oscillating with the load imbalance, i.e. ϵi > 0, according
to (50). It is interesting to note that the total active power
is constant for all the cases, which is consistent with the
results shown in Fig. 11. Therefore, considering (44) and

(47), the term Ix

(
1 +

√
1 − ϵ2i

)
which is equal to Ix + Iy

is constant irrespective of the imbalance factor, as shown in
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FIGURE 13. Currents in αβγ , mno and xyo for the S-type load imbalance.

FIGURE 14. S-type load imbalance. Instantaneous power p(t), q(t) (solid
lines). Active and reactive powers P, Q (dashed lines). k = 0.0 (blue
color), k = 0.5 (orange color) and k = 1.0 (green color).

FIGURE 15. S-type load imbalance. Evolution of Ix , Iy and ϵi versus the
imbalance factor k .

Fig. 15. The eccentricity of the current locus increases with
the unbalance factor k which modifies the amplitudes of Ix

and Iy but their sum remains constant. Note that for k = 1
Iy = 0 as shown in the fourth column of Fig. 13. Finally,
the analysis of the reactive power deserve special attention.
On the one hand, the total reactive power remains constant
which can be justified in a similar manner than the previous
analysis for the total active power but considering (48). On the
other hand, the instantaneous reactive power is not constant
like in the previously analyzed case of unbalanced voltages
and balanced loads. Particularly, it is a periodic but non-linear
function which is consistent with (52). Moreover, it is worth
noting that the total reactive power Q is not the average value
of q (t) for k > 0.

2) T-TYPE LOAD IMBALANCE
This section analyzes the current loci in the different refer-
ence frames for the T-Type load imbalance with the results
shown in Fig. 16. Again, the αβγ and xyo axes are coincident
while the xyo ones adapt to the current imbalance. As a result,
x and y components are always orthogonal irrespective of
the current imbalance. However, it is worth noting that the
eccentricity of the projected current locus in the xyo reference
frame is lower than the one of the S-type load. Note that for
the S-type load and k = 1 the current locus is a line, as shown
in Fig. 13, while for the T-type load and k = 1 the current loci
is an ellipse, as depicted in the first column of Fig. 16.

The different power components follow a similar trend
than the ones previously presented as shown in Fig. 17 and,
therefore, similar conclusions can be drawn. However, the
main difference is related with the lower eccentricity of
the projected current loci. As a matter of fact, ϵ < 1 for the
T-type load and maximum imbalance degree k = 1 as shown
in Fig. 18. Therefore, considering a given unbalance factor k ,
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FIGURE 16. Currents in αβγ , mno and in xyo load imbalance type T.

FIGURE 17. T-type load imbalance. Instantaneous power p(t), q(t) (solid
lines). Active and reactive powers P, Q (dashed lines). k = 0.0 (blue
color), k = 0.5 (orange color) and k = 1.0 (green color).

FIGURE 18. S-type load imbalance. Evolution of Ix , Iy and ϵi versus the
imbalance factor k .

the power oscillating term of the instantaneous power is
lower than the corresponding one of the S-tpye load, which is

consistent with (46). Moreover, Fig. 18 also reveals the lower
difference between the values of Ix and Iy shown in Fig. 16.

IV. CONCLUSION
This paper has analyzed the performance of the RRF trans-
formation in different unbalance conditions of 3-phase and
4-wires systems. Particularly, this transform has been com-
pared to the classical αβγ and the recentmno transformations
to highlight its benefits in terms of imbalance classification
and computation of the different power terms. For this pur-
pose, two case studies with different imbalance conditions
are studied: (i) unbalance voltage with balanced load and
(ii) balanced voltage with unbalance load.

In the first case, the influence of the negative- and
zero-sequence voltage components have been studied sep-
arately. Regardless of the voltage imbalance, it has been
demonstrated that the voltage and the current planes are
coincident, and in addition, their loci are concentric due to
the balance characteristic of the load. Therefore, only two
coordinates are needed to work with voltages and currents.
Note that this is not the case for the αβγ , where a third voltage
component appears in case of zero-sequence voltage. In spite
of the mno component is able to transform the voltage within
a plane, even in case of zero-sequence voltages, it is worth
noting that voltage components do not maintain a constant
phase delay. In addition, this reference frame is not able to
represent some imbalance scenarios such as those leading
to a linear locus. On the contrary, the RRF transformation
adapts properly the reference axes to achieve a constant phase
π/2 delay between the voltage components irrespective of
the imbalance content. Regarding the power components, all
the power terms have been formulated as a function of some
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properties of the voltage locus (Vx and ε) and the load (Z and
ϕZ ). The major finding is that, in case of a balanced load, the
instantaneous reactive is constant irrespective of the voltage
imbalance. Moreover, the computation of all the power terms
is quite simple because just the x and y voltage and current
components have to be considered.

The second case has studied a system composed of a
balanced voltage source with two types of unbalanced loads,
i.e. S-type and T-type load reproducing the performance of
single- and two-phase load imbalance respectively. In this
case, the voltage and current planes are no longer the same
and, therefore, the third current component in the o axis
appears in a similar manner than in the αβγ and mno ref-
erence frame. However, the RRF still maintains the constant
π/2 phase lag between the x and y components in case of
aligning the axis with respect to the semi-major and semi-
minor axes of the projection of the current locus in the voltage
plane. Moreover, this selection of reference frame simplifies
notably the computation of the power terms p(t),P and Q.
These power terms are formulated as a function of the current
locus (Ix and ϵi) and the balance voltage (Vx). This is not the
case for the instantaneous reactive power q(t) which involves
the use of the o current component. On the contrary than in
the balanced load case, the instantaneous reactive power is
a periodic non-linear function with an average which is not
related to the total reactive power Q.
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