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A B S T R A C T

This work develops digital entities of a commercial Fresnel Solar Collector (FSC) installed in an absorption
cooling plant. The objective is to create and validate models that describe the FSC dynamics across its whole
operation range during the day and the night. Thus, the temperatures range between operation temperature of
180 ◦C and almost ambient temperature due to overnight heat losses. In the same sense, the flow range between
zero to 13m3∕h. The idea is that the digital twin will aid start-up and shut-down optimization and control design
reliability. The paper employs two modeling approaches, then evaluates their twinning/adaptation time and
performance validation. One model uses phenomenological modeling through Partial Differential Equations
(PDE) and parameters identification, and another uses a data-driven technique with Adaptive Neuro-Fuzzy
Inference Systems (ANFIS). The available measurement data sets comprise 25 days of operation with a sampling
time of 20 s which, after outlier removal, filtering and treatment, resulted in 108416 samples. The validation
considers six separate operating days. Results show that both models can twinning/adapt considering measured
data. The models present pretty good results and are suitable for control and optimization. Besides, this is the
first paper considering the FSC mirror defocus action on dynamic modeling and validation.
1. Introduction

The solar power that daily strikes planet earth is the driving en-
ergy that sustains all life that evolved to an intricate and delicate
equilibrium. Therefore, knowing how to harness this power source in
a practical and versatile manner will pave the way for a sustainable
future. This work contributes to developing two adaptive models of
a Fresnel Solar Collector (FSC) in the framework of digital twins.
One uses data-driven neuro-fuzzy (NF) networks, and the other uses
phenomenological Partial Differential Equations (PDE) with parameter
identification. Both digital entities will plan, integrate, and control the
absorption plant installed at the Escuela Tecnica Superior de Ingenieria -
ETSI, Seville, Spain, to increase renewable energy use in future studies.

Policies have been increasing investments and knowledge devel-
opment to solve the energy problem, considering fossil fuel burning
continues to worsen the climate crisis. The reason is that CO2 emissions
from the energy and industry sectors have increased by 60% despite the
United Nations Framework Convention on Climate Change in 1992 [1].
The energy sector is the primary source of global emissions, accounting
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for approximately 60% of global greenhouse gas emissions [2], and the
building sector uses 40% of the world’s energy production, which 5%
is for cooling. Furthermore, the cooling demand tends to grow due to
a hotter climate [3]. In this line, investments of 7.4 trillion euros are
estimated, in the next 25 years, for the deployment of technologies that
eliminate net CO2 emissions [3]. Therefore, solar cooling technologies
development is a clever way to reduce the CO2 emissions while enhanc-
ing cooling plants’ technological maturity and economic viability [4].
Thus, solar cooling technology has received much attention [5].

Solar absorption plants produce cold from a solar-heated source
through an absorption thermodynamic cycle [6]. It has the feature
of having solar energy availability following the cooling demand. The
problem is that using solar energy as the primary source adds the com-
plexity of having a process that is intermittent during the day, night,
and year seasons. Besides, solar irradiance that strikes the absorber
is subject to clouds that strongly affect the plant’s dynamic behavior.
Thus, generating a stable heat source for the absorption chiller is
critical.
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Several concentrating solar collector types harvest thermal solar
energy. Parabolic Trough Collectors (PTC) and Fresnel Solar Collectors
(FSC) are among the line focus systems. Despite PTC’s technological
maturity and higher efficiency, the FSC has advantages compared to
PTC [7], mainly cheaper production resulting in equivalent Levelized
Cost of Electricity. Besides, FSC has room for further technological
development [5,7]. In this way, improving the technological/economic
performance of these systems [8] is highly desirable [9]. This work
seeks to improve FSC operation through its Digital Twin formulation
for future control and optimization studies.

From the whole plant control perspective, a hierarchical structure
typically solves the scheduling (integration), optimizing (plan), and
controlling problems, separating them into layers considering the com-
putation effort and operation horizon of each one [10]. The upper
optimization layers minimize a given cost function and send the op-
timal schedule or operation points solution to the control layer. The
control layers seek stable operation, reference tracking, and distur-
bance rejection. The optimization layers typically use the Real-Time
Optimization (RTO) technique [11], while the multivariable control
layer uses Model-based Predictive Control (MPC) techniques [12]. Both
run models continuously in a feedback loop. Therefore, the model’s
accuracy directly impacts the control, optimization, thus, the process
operation.

Specifically for concentrating solar collectors that operate inter-
mittently, with a wide operational range, and present slow and fast
dynamics, a typical RTO with non-linear steady-state models and a
linear MPC with dynamic models presents limitations [13–15]. With
this, the dynamic models resulting from this work are accurate for
both steady-state and dynamic optimizations with low computational
burden, enabling assets for control and optimization [16,17]. These
models facilitate more advanced techniques realizations, feasible in
shorter sampling times, such as DRTO [18], Economic MPC [19], or
hybrid approaches [20].

A Digital Twin (DT) has many definitions. In a review study,
Rasheed et al. [21] state that a Digital Twin is a ‘‘virtual representation
of a physical asset enabled through data and simulators for real-
time prediction, optimization, monitoring, controlling, and improved
decision making’’. Although the concept, its definition, and the related
studies continue to evolve in many areas [22]. Digital Twin is one of the
most promising enabling technologies for Industry 4.0 viability, already
having applications in the industry through publications, patents, and
best practices of leading companies. The applications cover product
lifecycle, product design, reliable/flexible production, prognostics, and
health management [23]. The application of DT in the energy sector
is relatively scarce. Rasheed et al. [21] compiles DT contributions
to the energy sector, having studies on asset maintenance, energy
saving, improving efficiency in smart factories aiming to reduce both
production costs and greenhouse gas emissions, design, construction,
and performance of residential buildings. Although, only one study
published a full-scale DT of a district heating and cooling network. As
can be seen, a core DT enabling technology is the modeling, simulation,
verification, and validation.

This paper develops both physical and data-driven models of the
Fresnel Solar Collector (FSC) of Escuela Técnica Superior de Ingeniería
de Seville (ETSI), Spain, to compose its DT. A validation states their
performances considering the computational execution time and sta-
tistical indexes. The plant location is on the roof of the ETSI building.
It aims to supplement the air conditioning system with chilled water to
reduce electric consumption, CO2 emissions, and operating costs [24].

he plant is a multi-energy system once it transforms solar irradiance
nto internal thermal energy, hot water into chilled water (thermal
o thermal), and gas chemical energy into internal thermal energy.
his system is also complex, highly non-linear, and dynamic, switching
etween electric, gas, and solar resources according to meteorology and
emand profiles. The objective is to integrate and enhance the energy
2

ystem with control [25], and optimization techniques [26].
It is worth noting that the ETSI plant is a physical entity. It has
computers, servers, and industrial communication structures to connect
virtual and physical spaces. Thus, the only asset not available for the
ETSI absorption plant DT is its adaptive virtual entity or its adaptive
dynamic model. This work seeks to expand the ETSI FSC model with
the following specifications:

1. To consider the transitory regime, the continuous focus/defocus
of the mirrors, and the cleanliness factor.

2. To have defined accuracy and precision indexes through valida-
tion with a representative amount of data.

3. To run fast enough to be used in Model Predictive Control (MPC)
techniques.

4. To describe transients, and part-load, during the day and night
for control, optimization, and what-if decisions.

5. To adapt and cope with the aging of the FSC for updated plant
operation, long-term, and lifecycle assessment.

These specifications have the following justification. Describing
the solar collector considering day and night is especially important
because solar plants are intrinsically intermittent and have apprecia-
ble heat losses during the night. Thus, this model feature can aid
start-up/shut-down decision-making, contributing to optimal thermal
storage strategy formulation [24]. The focus/defocus action is critical
for the safety [27] and control [28] of FSC. However, to the best
of the authors’ knowledge, there is no FSC validated model with the
defocus feature. The cleanliness factor is related to thermal efficiency
and varies over time. Thus, a model that can adapt such parameters
is necessary to predict when to stop the FSC for maintenance and
cleaning [27]. Stating the model’s accuracy and precision with mean
error and standard deviation, among other statistical indexes, gives
information about the models’ confidence and the fidelity level of DT’s
simulations and what-if analysis [21,29–31]. The updating/adapting
procedure of the virtual entities/models is called twinning. The twining
is synchronizing the virtual and physical entities [29], measuring the
physical entity state, and updating the virtual entity to reduce the
difference between them. This process can occur either from physical-
to-virtual or virtual-to-physical spaces, in a closed loop, with a twinning
rate. To the authors’ best knowledge, no published FSC dynamic model
is available considering such features. A specific literature review about
the available modeling of FSC on the ETSI absorption plant leads to the
following works:

Robledo et al. [32] develop a phenomenological lumped parameter
dynamic model considering the optical and thermal models and an
ordinary differential equation. The authors used least-squares methods
to identify the model’s parameters. The validation considered four
operation days data, with a 7.5 h duration each. The validation outlet
temperature range is from 85 to 165 ◦C, and the results are qualitatively
presented, contrasting the actual data and model output plots.

Spoladore et al. [33] develop a phenomenological, distributed pa-
rameters, dynamic model, considering the optical and thermal mod-
els and Partial Differential Equations (PDE). The authors used least-
squared methods to identify the global heat loss and the metal-fluid
heat transmission coefficients considering second-degree polynomial
functions. The validation considered two operation days data from
11:00 to 18:00, on May 27, 2010, and November 17, 2009. The outlet
temperature ranges from 100 to 180 ◦C, with a maximum error of 8
◦C. The authors present qualitative comparison plots between model
prediction and actual data.

Pino et al. [27] develop phenomenological, steady-state, thermal,
and optical models using algebraic equations that account for the focus
of the mirrors. The validation considers the mirror’s rows inclinations,
absorbed heat, and outlet temperature during operation between 13:00
and 15:30 on May 27, 2009. The validated outlet temperature range is
from 147 to 168.5 ◦C, with relative errors of less than 1%.

Chicaiza et al. [34] develop data-driven dynamic models based on

Adaptive Neuro-Fuzzy Inference System (ANFIS) to compose a DT. The
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ANFIS training considers two days of actual and artificial data from PDE
models. The validated outlet temperature range is from 40 to 180 ◦C in
hree days of actual data. The authors present qualitative plots between
easured and model outlet temperatures and calculate the Root Mean

quared Error (RMSE) and the Mean Absolute Percentage Error (MAPE)
or each day. The worst-case RMSE = 12.96 ◦C and MAPE = 8.54%,
hile the best-case RMSE = 3.67 ◦C and MAPE = 2.27%.

Considering the previous works on the ETSI FSC modeling, this
aper has the following contributions.

1. It develops dynamic models using both ANFIS [35] and PDE [36]
to generate a transparent model with explicit equations and
expand FSC models capabilities. This work uses 25 days of
operation data with a sampling time of 𝑡𝑠 = 20 s, with continuous
data between day and night.

2. The ANFIS twinning (training and checking) and validation con-
sider 19 days of measured data. On the other hand, identifying
PDE model parameters uses four days of measurement data re-
sampled every 5 s to avoid numerical integration instability.
The massive amount of data in twinning results in generalized
dynamic models of both ANFIS and PDE.

3. The validation procedure considers six days of actual operation
data, three in June and three in October. The validation results
indicate that the models can adequately represent the behavior
of the FSC outlet in a wide temperature range, from 40 to 180 ◦C.

4. The models describe operations continuously during day and
night, part-load operations, or overnight, with heat losses.

5. To the best authors’ knowledge, this work presents the first
FSC-validated dynamic models that describe the mirror’s fo-
cus/defocus action.

6. Lastly, this work contributes to testing the computational speed
of resulting dynamic models during twinning and simulation,
setting the execution time limits of the models regarding MPC
and dynamic optimization techniques.

The organization of the rest of the paper is as follows. Section 2
efines the FSC process and presents the actual data preparation and
ts correlation analysis, closing with the FSC operation description.
ection 3 presents the FSC phenomenological distributed parameters
odeling and its identification. Section 4 states the ANFIS architecture

nd defines its training procedure. Section 5 defines the simulation
lanning with the model structure definition and data sets preparation.
ection 6 states the results divided into two parts, the first is the
winning time of both models (training and identification), and the
econd is devoted to validation results and indexes considering actual
ata. Lastly, Section 7 shows the findings of this work and closes the
aper.

. Fresnel solar collector process

The Fresnel solar collector (FSC) installed at ETSI was constructed
y PSE AG, which activities have passed to Mirrox Gmbh, and today is
ndustrial Solar [37]. Fig. 1 depicts the referred Fresnel concentrating
olar collector that generates heat for an absorption chiller that, in its
urn, supplements the building air conditioning system with a renew-
ble primary energy source. The solar field has an 18◦ orientation in
he east–west direction, a total area of 352 m2, where 11 mirror rows
nd 16 modules compose the optical system, summing 64 m of length,
hich focus the solar irradiance to the receiver as depicted in Fig. 2.
he receiver, in its turn, is composed of a secondary reflector and an
bsorber tube, where glass thermal insulation equips both. Steel DNI
.4541 (AISI321) composes the SCHOTT PTR70 [38] absorber tube,
nstalled 4 meters above the mirror’s plane.

Water is the heat transfer fluid and flows inside the absorber tube,
ith 13 bar and 180 ◦C of nominal pressure and temperature, respec-

ively. Table 1 presents the main characteristics of the Fresnel solar
3

ollector.
Table 1
ETSI Fresnel solar collector characteristics [24,38].

Parameter (symbol) Value Unit

Total area 512 m2

Total mirror area (𝐴𝑡) 352 m2

Absorber length 64 m
Absorber height 4 m
Mirror unitary length 4 m
Mirror unitary width 0.5 m
Total Mirror aperture (𝐺) 5.5 m
Mirrors rows 11 –
Number of mirrors 176 –
Absorber tube specific mass (𝜌𝑚) 8027 kg∕m3

Absorber tube external diameter 0.07 m
Absorber internal diameter 0.066 m
Absorber tube specific heat (𝑐𝑚) 500 J∕(kg ◦C)
Receiver cavity aperture 0.3 m
Heat transfer fluid Water –
Nominal temperature 180 ◦C
Nominal pressure 13 bar
Nominal thermal power 120 kW

The FSC objective is to generate a hot outlet temperature flow. The
incident irradiance and the inlet temperature are critical disturbances
of the solar collector process because they fastly and widely affect the
outlet temperature. The plant start-up occurs when the solar irradiance
reaches a minimum, starting the pump, mirror’s sun tracking, and
focusing the solar beam into the absorber tube. After this beginning,
the controller manipulates the flow and the mirror’s focus to regulate
the outlet temperature of the collector with the objectives of reference
tracking and disturbance rejection. The plant’s shut-down occurs when
irradiance reaches a given minimum value.

2.1. Data preparation

Neuro-fuzzy (NF) and Partial Differential Equations (PDE) models
are identified and validated using actual data for predicting the FSC
dynamic behavior. Therefore, an identified model is only as good as the
data used to fit/train it [39]. The impact of feeding the identification
system and validating with poor-quality data is low accuracy and
veracity, leading to pointless work and unuseful results that, if used,
would result in economic and safety losses [40]. Thus, data preparation
means the model is built right [41].

Data quality assessment uses accuracy, completeness, consistency,
and timeliness classifications [42]. This work executes the follow-
ing preparation seeking these classifications: filtering instrumentation
noise, homogenizing sampling times, excluding data garbage, and
carefully choosing variables that affect the process. The preparation
strongly affects the model’s accuracy in the results section.

This work employs raw data from the solar absorption plant’s
SCADA system that stores measurements in Excel data sheets daily.
Each file has 18 variables (columns) imported to Matlab as timetables
with the respective headers or variable names. An algorithm tests each
Excel sheet header to maintain the same variables’ order names to
avoid mixing different variables in one array. Then each available
day of operation was concatenated by time, considering consecutive
days. Data inspection indicates incomplete data, missing measurement
values, and irregularly sampled data.

The data preparation consists of re-sampling the initial timetables
using linear interpolation, defining the new sample as the statistic mode
of raw data sampling times, which is 𝑡𝑠 = 20 s. It is worth noting that
he sampling time of 20 s repeats in more than 96% of the raw data.
herefore, the plant’s automation system has this sampling time which
he authors maintained for homogenization. After the data import and
e-sample procedure, it passes through a concatenation, resulting in
ight regular timetables: from June 9th to 12th, 23rd to 26th, 29th to
0th, August 11st to 12th, 14th to 17th, September 2nd to 3rd, 22nd to
5th, and October 14th to 16th, totaling 25 days of operational data.
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Fig. 1. Fresnel solar collector installed at ETSI absorption solar plant [34].
Fig. 2. Fresnel solar collector model installed at ETSI absorption solar plant [37].
Next, a moving mean filter with a 6 min window was applied to
remove outliers from data sets. The window was chosen by trial and
error for proper outliers detection and substitution considering a series
of visual inspections of the raw data and the outliers’ clean data. In
addition, a one-by-one evaluation substituted negative pressures, flows,
and inconsistent variables by the minimum or maximum absorption
solar collector operation range considering the manufacturer’s data-
sheet [37]. The variable-by-variable inspection also led to the discovery
of empty columns that were further deleted.
4

Furthermore, pressure and flow variables were smoothed using
Gaussian interpolation with a 15 sampling window. The sampling
window was chosen by trial and error, considering a good compromise
between lag and dynamic information loss (long window) and noise
(short window). As a result, 14 variables compose the final data set
with 108 416 samples.

It is worth saying that the previous literature on the modeling of
the FSC on the ETSI does not discuss the experimental data quality,
the preprocessing, or the data preparation procedure for simulation
reproducibility nor considers the intermittent operation of the plant
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with the same amount of data points. These differences highlight an
important improvement in FSC modeling in this work. The following
section presents the data selection based on correlation maps.

2.2. Correlation analysis of FSC field I/O variables

The correlation coefficient measures the association between vari-
ables, the most widely used is the linear correlation coefficient. Pear-
son’s correlation coefficient (𝜌) for pairs of variables (𝐱, 𝐲) with 𝑛
samples 𝐱 = [𝑥1,1,… , 𝑥𝑛,1] and 𝐲 = [𝑦1,1,… , 𝑦𝑛,1] is given by

𝜌(𝑥, 𝑦) = 1
𝑛 − 1

𝑛
∑

𝑖=1

(𝑥𝑖,1 − 𝜇𝑥
𝜎𝑥

)( 𝑦𝑖,2 − 𝜇𝑦
𝜎𝑦

)

, (1a)

𝜇𝑥 = 1
𝑛

𝑛
∑

𝑖=1
𝑥1,𝑖, (1b)

𝜎𝑥 =

√

√

√

√

1
𝑛 − 1

𝑛
∑

𝑖=1
(𝑥1,𝑖 − 𝜇𝑥)2, (1c)

where 𝜇𝑥 and 𝜎𝑥 are the mean and standard deviation of the samples of
𝐱, respectively, and 𝜇𝑦 and 𝜎𝑦 are the mean and standard deviation of 𝐲.
The values that 𝜌 can take are between [−1, 1], where 𝜌 = −1 represents
a complete negative correlation, 𝜌 = 1 represents a complete positive
correlation, and a value of 𝜌 = 0 indicates that the variables (𝐱, 𝐲) are
uncorrelated.

The correlation coefficient matrix (𝐑) of the random variables 𝑀 is
𝐑 ∈ ℜ𝑀×𝑀 for each combination of pairwise variables. Only for 𝑥 and
𝑦, result in the following matrix 𝐑 ∈ ℜ2×2:

𝐑 =
(

𝜌(𝑥, 𝑥) 𝜌(𝑥, 𝑦)
𝜌(𝑦, 𝑥) 𝜌(𝑦, 𝑦)

)

=
(

1 𝜌(𝑥, 𝑦)
𝜌(𝑦, 𝑥) 1

)

. (2)

The next step is sorting the input variables in a degree of relationship.
The sort evaluates the degree of correlation for each input regarding
the desired output to analyze which variables impact the model output
concerning a threshold. In the case of FSC, the desired output is the
outlet temperature 𝑇𝑓2. Fig. 3 shows the correlation coefficient matrix
of the actual Fresnel solar field data. Where 𝑓 is the mirrors’ focus,
varying between 0 for full defocus to 1 for complete focus; 𝑞 is the
volumetric flow, 𝑃 is the hydraulic pressure, 𝑇𝑓1 and 𝑇𝑓2 are the
inlet and outlet temperatures, respectively; 𝑤𝑠 is the wind speed, 𝐼
is the solar irradiance, 𝐻 is the humidity, 𝑇 𝑎𝑚𝑏 is the environment
temperature. 𝐸𝑓𝑓𝑂𝑝𝑡 is the optical efficiency accordingly to Brandão
et al. [43], and 𝑇𝑓1 𝑑𝑒𝑙𝑎𝑦 is the delayed inlet temperature calculated
accordingly to Normey-Rico et al. [44].

2.3. FSC operation

Fig. 4 depicts the main operation variables from the prepared data
considering two operation days: from June 24, 06:00, to June 26,
00:00, 2009. It is worth saying that the validation section uses the same
exact actual data.

By inspecting Fig. 4.a, one can see two days of irradiance profile.
The irradiance profile (continuous yellow line) of June, 24, is smooth,
with the sunrise at about 06:00, a peak at 15:00, and the sunset at
22:00. The operation stages follow the irradiance profile, where the
start-up occurs when there is enough irradiance, 𝐼 ≥ 200 (W/m2),
at almost 09:00 turning on the pump, see Fig. 4.b. Note that the
flow goes from 0 to 13 m3/h together with the mirror’s focus from
0 to 100%. Next, the heating phase occurs with the FSC increasing
its temperature from 09:00 to 12:00. Then, the absorption chiller
consumes the FSC thermal power. It generates a sudden temperature
drop followed by a temperature increase return between 12:00 and
14:00. The temperature drop results from the absorption chiller’s lower
internal temperature injection in the FSC hydraulic loop. After a re-
covery period, the temperature increases again due to the gas boiler
operation.
5

After the absorption chiller start-up, aided by the backup gas boiler
from 12:00 to 14:00, the boiler is shut-down. The plant operates
roughly at the nominal point with solar irradiance only, producing
chilled water for the ESTI air conditioning system. Note that the
temperatures are highly oscillatory from 14:00 to 20:00 due to the
absorption chiller on–off controller operation. The two-position valve
effect is evident in the hydraulic loop flow (blue dotted line) in Fig. 4.b,
where 𝐹 varies between two levels during operation. This bi-stable
event happens because when the controller feeds the chiller High
Temperature Generator, a heat exchanger with long tubes generates
a pressure drop reflecting the flow changes in Fig. 4.b. For further
information on the whole plant control logic, refer to [28].

When the irradiance is too low, that is I ≤ 200 (W/m2), the flow
and mirror’s focus go to zero. That is why the plant shuts down at
20:00. Then, from June 24, 22:00, to 25, 09:00, the FSC temperatures
decrease overnight, see Fig. 4.a. After these heat losses, the operation is
re-started on June 25, at 09:00, where the sequence of the same events
as the previous day happens. It is worth noting that the irradiance
profile of June 25, unlike the previous day, is very oscillatory.

Fig. 4 depicts the operation data of the ETSI absorption plant. The
process is complex, highly non-linear, and intermittent, with a broad
operational range of the variables, such as temperatures, flows, and
solar irradiance. Thus, developing the FSC digital twin is not trivial, and
the respective models must cope with and describe such a wide range of
operations and phenomena to reflect the dynamic behavior of the FSC.
After the FSC digital twin creation, it allows for optimizing the start-up,
operation, and shut-down, considering changing meteorological and
plant conditions while offering accurate predictions for model-based
predictive control techniques. The following sections present the two
model structures used in this work.

3. Phenomenological - PDE modeling

Partial differential Eqs. (3) and (4) describe mathematically the
Fresnel’s temperature distributed in time and space [36].

𝜌𝑚𝑐𝑚𝐴𝑚
𝜕𝑇𝑚
𝜕𝑡

(𝑡, 𝑥) = �̇�𝑠𝑢𝑛(𝑡) − �̇�𝑎(𝑡, 𝑥) − �̇�𝑓 (𝑡, 𝑥), (3)

𝑓 𝑐𝑓𝐴𝑓
𝜕𝑇𝑓
𝜕𝑡

(𝑡, 𝑥) + 𝜌𝑓 𝑐𝑓 𝑞(𝑡)
𝜕𝑇𝑓
𝜕𝑥

(𝑡, 𝑥) = �̇�𝑓 (𝑡, 𝑥), (4)

where the sub-indexes 𝑚, 𝑓 , 𝑠𝑢𝑛, and 𝑎 refer to the metal absorber tube,
fluid, the sun, and the environment, respectively. The variable 𝜌 is the
specific mass (kg/m3), 𝑐 is the specific heat (J/(kg ◦C)) and 𝑞 is the
volumetric flow (𝑚3∕ℎ). Variable 𝑇 , is the temperature (◦C), 𝑡 is the
time (s), 𝑥 ∈ [0, 𝐿], with 𝐿 > 0, is the space (m), �̇�𝑠𝑢𝑛 is the sun heat
rate (W) that flows from the sun to the solar collector, �̇�𝑎 represents
the thermal losses (W) to the ambient, and �̇�𝑓 is the heat rate (W) that
relates to the mass flow. Eq. (5) gives the boundary condition of Eq. (3),

𝑇 (𝑡, 0) = 𝑇𝑓1(𝑡), (5)

where 𝑇𝑓1 is the Fresnel inlet temperature. Finally, the initial condi-
tions of the system are given by Eq. (6)

𝑇𝑚(0, 𝑥) = 𝑇 0
𝑚(𝑥), 𝑇𝑓 (0, 𝑥) = 𝑇 0

𝑓 (𝑥), (6)

where 𝑇 0
𝑚 and 𝑇 0

𝑓 are functions that satisfy the steady state condition

f Eqs. (3) and (4).
Papers in literature use the system of Eqs. (3)–(6) for both parabolic

hrough and Fresnel collectors. The difference among the different solar
ollector’s equations is mainly in calculating the optical efficiency 𝜂𝑜𝑝𝑡
nce each type of solar collector has a specific primary and secondary
irrors scheme [45]. The optical efficiency is in the inlet solar heat

erm, �̇�𝑠𝑢𝑛, which Eq. (7) describes,

̇
𝑄𝑠𝑢𝑛 = 𝜂𝑇 𝜂𝑜𝑝𝑡𝐴𝑡𝐼(𝑡), (7)
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Fig. 3. Correlation coefficients matrix of the prepared ETSI FSC field data.
Fig. 4. FSC consecutive days operation actual data. a. The FSC outlet temperature 𝑇𝑓2 is the controlled variable, while the inlet temperature 𝑇𝑓1 and Irradiance 𝐼 are the
prominent disturbances. b. The FSC installed at ETSI has two manipulated variables, the typical flow 𝑞, and the mirror’s focus 𝑓 .
where 𝜂𝑇 and 𝜂𝑜𝑝𝑡 are the thermal and optical efficiency, respectively,
𝐴𝑡(m2) is the total area of collector’s mirrors, and 𝐼 is the solar
irradiance per mirror length in W/m2.

A Fresnel efficiency has both variable and constant parameters in
time. For example, having a given collector’s orientation and solar time
enables one to calculate the solar beam’s incidence angles and the
respective reflection cosine losses. However, the reflexivity and other
characteristics of the mirrors vary with plant aging, dirt accumulation,
and water condensations in the mirrors. Thus, this work considers that
the variable 𝜂𝑜𝑝𝑡 contains the deterministic and constant parameters,
which are calculated accordingly to Brandão et al. [43], considering
the geometrical relation between the mirrors and absorber. With 𝜂
6

𝑜𝑝𝑡
is possible to calculate the equivalent irradiance that arrives in the
absorber tube 𝐼𝑒𝑞 = 𝐼(𝑡)𝜂𝑜𝑝𝑡. The time-varying and, a priori, unknown
efficiency-related parameters are embedded in one unique parame-
ter called thermal efficiency 𝜂𝑇 , which this work estimates using an
identification technique.

This work applies Euler’s finite differences discrete approximation,
according to Fig. 5 schematic, to solve Eqs. (3) and (4), that are
continuous in time and space. The spatial derivative in a given time
instant is given by

𝜕𝑇𝑓 (𝑡, 𝑥) ≈
𝑇𝑓 (𝑡, 𝑛) − 𝑇𝑓 (𝑡, 𝑛 − 1)

,

𝜕𝑥 𝛥𝑥
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here 𝛥𝑥 = 𝐿∕𝑆 is the length of the spatial discretization, 𝑆 is the
umber of points, and 𝑛 ∈ {1,… , 𝑆} is the respective given volume.
ote that 𝑇𝑡,0 = 𝑇𝑓1(𝑡), as Eq. (5) presents.

Constant time intervals, 𝑀 , composes the whole time horizon 𝑡 ∈
0, 𝑡𝑓 ], where 𝑡𝑓 is the final time, such that 𝜏𝑘 ∈ [0, 𝑡𝑓 ], 𝑘 = {1,… ,𝑀},

are points in the discretization mesh concerning the time, with

0 = 𝜏1 < ⋯ < 𝜏𝑀−1 < 𝜏𝑀 = 𝑡𝑓 .

This discretization is considered equidistant for simplicity. Thus,

𝛥𝑡 =
𝑡𝑓

𝑀 − 1
, 𝜏𝑘 = (𝑘 − 1)𝛥𝑡, 𝑘 ∈ {1,… ,𝑀}.

and the time derivatives approximations are
𝜕𝑇𝑚
𝜕𝑡

(𝑡, 𝑥) ≈
𝑇𝑚(𝑘 + 1, 𝑥) − 𝑇𝑚(𝑘, 𝑥)

𝛥𝑡
,

𝜕𝑇𝑓
𝜕𝑡

(𝑡, 𝑥) ≈
𝑇𝑓 (𝑘 + 1, 𝑥) − 𝑇𝑓 (𝑘, 𝑥)

𝛥𝑡
.

The derivative approximations in time and space above transform
Eqs. (3)–(4) in algebraic discrete Eqs. (8) and (9)

𝑇𝑚(𝑘 + 1, 𝑛) = 𝑇𝑚(𝑘, 𝑛)

+ 𝛥𝑡

(

�̇�𝑠𝑜𝑙(𝑘)
𝜌𝑚𝑐𝑚𝐴𝑚

−
�̇�𝑎(𝑘, 𝑛)
𝜌𝑚𝑐𝑚𝐴𝑚

−
�̇�𝑓 (𝑘, 𝑛)
𝜌𝑚𝑐𝑚𝐴𝑚

)

, (8)

𝑇𝑓 (𝑘 + 1, 𝑛) = 𝑇𝑓 (𝑘, 𝑛)

+ 𝛥𝑡

(

𝑞(𝑘)
𝐴𝑓

𝑇𝑓 (𝑘, 𝑛) − 𝑇𝑓 (𝑘, 𝑛 − 1)
𝛥𝑥

+
�̇�𝑓 (𝑘, 𝑛)
𝜌𝑓 𝑐𝑓𝐴𝑓

)

, (9)

where

�̇�𝑎 = 𝐷𝑚𝜋[𝑎(𝑇𝑚(𝑘, 𝑛) − 𝑇𝑎(𝑘))3 + 𝑏(𝑇𝑚(𝑘, 𝑛) − 𝑇𝑎(𝑘))], (10)

�̇�𝑓 = 𝐷𝑓𝜋𝐻𝑡(𝑇𝑚(𝑘, 𝑛) − 𝑇𝑓 (𝑘, 𝑛)), (11)

𝐷𝑚(𝑚) is the equivalent diameter of the tube walls, 𝐷𝑓 (𝑚) the internal
tube diameter, 𝑎 and 𝑏 are the coefficients of heat losses of the absorber
polynomial function, and 𝐻𝑡(W∕(m ◦C)) the coefficient of heat transfer
between the tube walls and the fluid.

It is worth noting that this paper proposes a third-order heat loss
polynomial function to describe the heat losses coefficient, Eq. (10),
instead of fourth and second-order polynomials that are typically
used [32,33]. The third-order polynomial is employed because it be-
comes possible to change the sign of �̇�𝑎 of Eq. (10), and consequently,
the heat losses term of Eq. (8). That is, by using a third-order polyno-
mial, the tube model can also represent the case where the heat enters
the tube instead of exiting. The case where the tube receives heat occurs
if the plant does not operate for days. Therefore, the tube’s temperature
tends to be ambient temperature. In this case, it is possible that 𝑇𝑚 < 𝑇𝑎.
Thus, the model can reproduce the plant’s dynamic behavior in real-
time, becoming a tool for what-if analysis of the start-up and shut-down
of the plant independently of the state of the process after day and night
of operation.

To integrate Eqs. (8) and (9), it is necessary to iterate 𝑇𝑚(𝑘 + 1, 𝑛)
and 𝑇𝑓 (𝑘+1, 𝑛) from the initial and boundary conditions given in 𝑇 (0, 𝑛)
and 𝑇 (𝑘, 0), respectively, from n = 1 to n = S, and from k = 1 until k =
M. This work employs the ode45 package of MATLAB [46] to integrate
7

the phenomenological model.
3.1. Identification

The previous section has presented the FSC’s model considering
phenomenological concepts and, therefore, the main dynamics that
occur in the plant. The model has thermodynamical characteristics such
as specific mass, specific heat, and heat transfer coefficients between
the heat transfer fluid, the metallic tube, and the environment. Despite
knowing these parameters for pure substances and materials references,
the values can vary sensibly due to the plant aging, corrosion, mirror
soiling, and internal pipe walls crusting. Thus, these parameters are
time-varying; thus, it is necessary to identify their values to plug in
the model for representing the process in a given time regarding the
data used for identification.

One advantage of Eqs. (8) and (9) is the possibility to estimate the
parameters’ values by comparing the model output with experimental
data. The estimation employs a quadratic non-linear minimization
algorithm through Eq. (12) to adjust the proposed model parameters.
The cost function is the sum of the normalized quadratic error between
the Fresnel model predicted outlet temperature, 𝑇𝑓 (𝑘, 64), and the
measured outlet temperature, 𝑇 ∗

𝑓 (𝑘). The model’s parameters are the
decision variables of the optimization problem, with the initial points
and maximum bounds set considering experimental and manufacturer
data.

For 𝑛 ∈ {1,… , 𝑆}, Eq. (12) defines the optimization problem:

min
𝜂𝑇 ,𝜌𝑓 ,𝑐𝑓 ,𝑎,𝑏,𝐻𝑡

𝑀
∑

𝑘=1

(𝑇𝑓 (𝑘, 64) − 𝑇 ∗
𝑓 (𝑘))

2

𝑇 ∗
𝑓 (𝑘)

2

ubject to,
q. (8),
q. (9),

𝑚(0, 𝑗) = 𝑇 0
𝑚(𝑗),

𝑓 (0, 𝑗) = 𝑇 0
𝑓 (𝑗),

𝑓 (𝑘, 0) = 𝑇𝑓1(𝑘),

≤ 𝜂𝑇 ≤ 1,

00 ≤ 𝜌𝑓 ≤ 1000,

200 ≤ 𝑐𝑓 ≤ 4500,

≤ 𝑎 ≤ ∞,

≤ 𝑏 ≤ ∞,

353 ≤ 𝐻𝑡 ≤ 2500,

(12)

where 𝑀 = 207 605 is the number of measurements, the lower and
upper bounds were chosen based on the materials’ physical parameters
and properties tables. Each Eq. (12) iteration integrates Eqs. (8) and
(9) along the tube, from 1 to 𝑆, and the time, from 1 to 𝑀 . The
code execution continues until the stopping criteria condition. Such
conditions are the maximum number of iterations and the objective
function derivative convergence to a minimum constant value.

The fmincon [47] Matlab’s algorithm solves the model parameter
identification problem. The decision variables are the thermal effi-
ciency 𝜂𝑇 , the specific mass of the fluid 𝜌𝑓 , the polynomial coefficients 𝑎
and 𝑏 of thermal losses regarding Eq. (10). Lastly, 𝐻𝑡 is the heat transfer

coefficient between the metal and water. The identification procedure
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Fig. 6. Adaptive Neuro-fuzzy Inference System (ANFIS) architecture [35].
w
h
𝑔
p
a
t
f

t
w
A
𝑇
o
t
b
a
a
t
a
p
a
p

o
s
t
g
i
T
g

𝑅

considers that all parameters are equal along the tube length. Besides,
the simulation considers steps of 5 s to avoid numerical instability;
therefore, it is necessary to interpolate the input data accordingly.
Section 6.1 discusses the identification results of the FSC parameters.

4. Neuro-fuzzy modeling

The modeling of a system to faithfully represent its behavior has
a certain level of complexity due to the random dynamics of the
unknown nature of the process, making it a challenge to describe its
behavior utilizing mathematical equations. Often an accurate model
will be represented by several mathematical equations. However, a
model supported by mathematical tools (e.g., differential equations) is
only sometimes adequate to deal with uncertain systems. In addition,
developing control and optimization strategies using nonlinear models
to obtain the system prediction implies a high computational burden.
It is the principal hindrance if the problem must be solved in a given
constrained time, considering the sampling time, so a fast model is
indispensable.

Fuzzy models have proven to be an effective technique for modeling
and controlling nonlinear systems, successfully expressing the original
nonlinear model as a set of local linear models interpolated by a mem-
bership function containing the nonlinearities of the original model.
In addition, fuzzy inference systems (FIS) describe the behavior of a
process based on rules with linguistic labels from human language.
Thus, FIS represents the qualitative aspects of human knowledge and
reasoning processes, avoiding precise quantitative analyses.

The ANFIS architecture [35], also called the Neuro-Fuzzy (NF)
system, is an artificial intelligence (AI) technique. One ANFIS has five
layers, as depicted in Fig. 6, where the nodes of the first (I) and
fourth layers (IV) have adaptive (square blocks) parameters, and the
remaining layers have fixed parameters (circle blocks). The first layer
contains the fuzzification interface, which transforms a crisp input into
linguistic labels with a certain degree of membership, forming the
fuzzy sets [48,49] characterized by the membership functions (MF).
The parameters are adaptive and are called antecedent parameters. The
second layer outputs the product of the incoming signals from each
fixed node and represents the firing strength of each node rule. The
third layer normalizes the output of each node, calculated as the ratio
of the firing strength of the node’s rule to the sum of all the firing
strengths of each node rule. In the fourth layer is the defuzzification
interface, and each node function provides the weighting of a first-order
polynomial crisp function, whose parameters are called consequent
parameters. Lastly, the fifth layer contains a single node aggregating
all rule outputs. For a detailed description of the ANFIS architecture
network, refer to [35,50].
8

4.1. Training of ANFIS

The resulting FIS, after training, contains a set of rules of Takagi–
Sugeno [51] type as the following:

𝙸𝙵 𝑥1 𝚒𝚜 𝐹1𝑗 𝚊𝚗𝚍 𝑥2 𝚒𝚜 𝐹2𝑗 𝚊𝚗𝚍 𝑥𝑖 𝚒𝚜 𝐹𝑖𝑗 ,

𝚃𝙷𝙴𝙽 ∶ 𝑓𝑗 (𝑥) = 𝑔0𝑗 + 𝑔1𝑗𝑥1 +⋯ + 𝑔𝑖𝑗𝑥𝑖.

Each rule has an antecedent and consequent parameter. The fuzzy
sets 𝐹𝑖𝑗 of each crisp entry 𝑥𝑖 consist of Gaussian membership functions
of the type:

𝜇𝐹𝑖𝑗 (𝑥𝑖) =
1

1 +

[

(𝑥𝑖 − 𝑐𝑖𝑗
𝑎𝑖𝑗

)2
]𝑏𝑖𝑗

(13)

here {𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗} are the antecedents parameters that define the mean,
eight, and width of the Gaussian used to vary the MFs,1 and the terms
𝑖𝑗 ∈ ℜ of each first-order polynomial function are the consequent
arameters. The learning process of the ANFIS neuronal architecture
dapts both parameters. The output of each rule 𝑓𝑗 is a linear combina-
ion of input variables added to a constant term. The final output of the
uzzy inference system is the weighted average of each rule’s output.

The learning process of the ANFIS network architecture uses the
raining and checking sets to capture better the system’s dynamics,
hich allows for an acceptable model that predicts its behavior. The
NFIS uses as inputs the variables {𝐼, 𝐸𝑓𝑓𝑂𝑝𝑡, 𝑓 , 𝑇𝑎𝑚𝑏, 𝑞, 𝑇 𝑓1, 𝑤𝑠,𝐻, 𝑃 ,
𝑓1 𝑑𝑒𝑙𝑎𝑦} and as output 𝑇𝑓2, thus constructing a mapping of the input–
utput variables that represent the behavior of the solar field. Initially,
he subtractive clustering (SC) method [52] is used to estimate the num-
er and initialization centers of the Gaussian MF of the fuzzy rules. In
ddition, learning employs a hybrid learning method. The method runs
back-propagation algorithm [53] to obtain the parameters defining

he MF of each fuzzy set (antecedents parameters). Next, the learning
lso executes a least-squares to estimate the terms of the first-order
olynomial function (consequent parameters) of the output of each rule
t each epoch. An epoch, or sweep, is one forward and backward
arameter update.

The checking procedure evaluates the error between the ANFIS
utput and the actual output of the checking data set (a new data
et not used in training). The checking runs after each epoch during
he training and aims to evaluate if the ANFIS training results in
eneralized learning. If the ANFIS output has low errors with unknown
nputs, then it is said that the ANFIS model had general learning.
ypically, the checking considers the root mean squared error (RMSE)
iven by Eq. (14)

𝑀𝑆𝐸 =

√

∑𝑁
𝑖=1(𝑥𝑖,𝑗 − �̂�𝑖,𝑗 )2

𝑁
, (14)

1 The value that the function 𝜇𝐹𝑖𝑗
takes for a given 𝑥𝑖 is known as the degree

of membership of 𝑥 for the fuzzy set 𝐹 .
𝑖 𝑖𝑗
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Fig. 7. a - SFC outlet heat-transfer fluid temperature PDE model. b - SFC outlet heat-transfer fluid temperature ANFIS model.
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Table 2
ANFIS parameters.

Description ANFIS

MF type: Gaussian
Number MFs: 4
Number rules: 4
Influence range 0.8
Epoch number: 1500

Table 3
Simulation planning.

Schematic Fig. 7.a Fig. 7.b Fig. 7.b
Structure PDE(dt = 5) ANFIS(dt = 5) ANFIS(dt = 20)
no inputs variables 6 10 10
no outputs variables 𝑇𝑓 and 𝑇𝑚 𝑇𝑓2 𝑇𝑓2

Twinning Par. identification Learning Learning
Method LSa LS and GDb LS and GD
Data-set 𝐺𝑇𝑤𝑖𝑛𝑛𝑖𝑛𝑔

𝑃𝐷𝐸 𝐺𝑇𝑤𝑖𝑛𝑛𝑖𝑛𝑔
𝑁𝐹 𝐺𝑇𝑤𝑖𝑛𝑛𝑖𝑛𝑔

𝑁𝐹
Data-set size 4 days 19 days 19 days
Data-set samples 14 188 311 666 78 032
Sampling time (s) 5 5 20
Stopping criteria Eq. (12) nRMSEc nRMSE

Simulation ODE45 1◦ polynomial 1◦ polynomial
Data-set 𝐺𝑉 𝑎𝑙1, 𝐺𝑉 𝑎𝑙2 𝐺𝑉 𝑎𝑙1, 𝐺𝑉 𝑎𝑙2 𝐺𝑉 𝑎𝑙1, 𝐺𝑉 𝑎𝑙2

Data-set size 6 days of 2009 6 days of 2009 6 days of 2009
Data-set samples 95 282 95 282 23 822
Integration step (dt) 5 5 20
Validation Table 5 Table 5 Table 5

aLS - Least-squares.
bGD - Gradient Descent.
cnRMSE - Normalized Root Mean Squared Error.

where 𝑥𝑖,𝑗 is a given actual variable j with 𝑁 samples, and �̂�𝑖,𝑗 is
the output of the predicted variable. This work considers normalized
outputs (𝑧𝑖,𝑗 ) for training and checking. Therefore, the normalized

MSE, given by Eq. (15), is used.

𝑅𝑀𝑆𝐸 =

√

∑𝑁
𝑖=1(𝑧𝑖,𝑗 − �̂�𝑖,𝑗 )

𝑁
. (15)

Table 2 presents the parameters of the ANFIS that capture the fluid
utlet temperature behavior.

. Simulations planning

This section describes the FSC PDE, and NF models structure with
nputs/outputs, their twinning/updating characteristics, and validation
pecifications. The input selection considers the prepared data sorted
ccordingly to the outlet temperature 𝑇𝑓2 correlation coefficients,
escribed in the Correlation Matrix in Fig. 3. Thus, the PDE and NF
odels have the structure, inputs, and characteristics summarized in
.a and .b, respectively.

Table 3 compares Fig. 7.a PDE model and Fig. 7.b model with two
ifferent integrations steps of 5 s and 20 s. The PDE model has six
9

i

nputs, while the NF model has ten inputs. This difference happens
ecause, on the one hand, the PDE model does not describe meteoro-
ogical variables such as wind speed 𝑤𝑠, humidity 𝐻 , and hydraulic
ircuit pressure 𝑃 . On the other hand, it is easy to add these input
ariables to the NF model. The wind speed and air humidity affect
he heating process of the Heat Transfer Fluid, changing the convective
eat coefficient between the absorber tube and the environment, refer
o Fig. 3. In addition, the PDE model intrinsically describes the FSC inlet
emperature dead time; thus, the delayed inlet temperature 𝑇𝑓1 𝑑𝑒𝑙𝑎𝑦
s employed only in the NF model. Besides, the model outputs are
ifferent. While the PDE model has two outputs vectors 𝑇𝑓 (𝑘) and 𝑇𝑚(𝑘)
hat describe the temperature gradient along the absorber tube length,
he NF model has a scalar outlet temperature output 𝑇𝑓2. It is worth
oting that the PDE outputs are arrays with 16 values, where the last
alue represents the outlet temperature 𝑇𝑓2 = 𝑇𝑓 (16, 𝑘);

After defining the models’ structure, the next step is twinning them
o adjust their parameters to follow the plant’s actual data. The PDE
odel is updated using least squares (LS), while the NF model uses

S and Gradient Descent (GD). The PDE model employs 𝐺𝑇𝑤𝑖𝑛𝑛𝑖𝑛𝑔
𝑃𝐷𝐸 as

winning data set with four days of measurement, totaling 14 188
amples. While the NF model twinning data set is 𝐺𝑇𝑤𝑖𝑛𝑛𝑖𝑛𝑔

𝑁𝐹 , which uses
9 days of data, totaling 311 666 and 78 032 samples, for sampling
imes of 5 s and 20 s, respectively. Refer to the middle section of Table 3
or details.

The twinning rate of a given digital twin is the updating rate of a
odel. Thus, knowing the twinning time of a given model is essential to
efining the twinning rate of the virtual entity once the twinning rate
ust be lower than the models’ twinning time. The twinning time is

he processing time the model’s twinning takes to converge the model
rror to a given minimum stopping criteria tolerance.

The twining data reduction for the PDE model is because the
omputational burden of the PDE parameter identification is high. In
reliminary tests, the identification leads to more than one week of
rocessing using the whole available twinning data set, which results
n impractical twinning rates of the FSC. In addition, the sampling time
as reduced to five seconds to avoid numerical instability of the PDE

ntegration, increasing the total number of samples—see Table 3.
The re-sampling of 𝐺𝑇𝑤𝑖𝑛𝑛𝑖𝑛𝑔

𝑃𝐷𝐸 , further PDE model updating and sim-
lation would lead to unfair execution times compared to the NF
odel. Note that the latter model was initially updated and simulated,

onsidering the prepared data with a sampling time of 20 s. Therefore,
o compare the PDE and NF models updating performance, the NF
odel twinning is run with sampling times of 5 s, which is the same

e-sampled data of the PDE model. Each column of Table 3 describes
ach situation, with the first column representing the PDE model with
ntegration steps of dt = 5 s in four days of actual data, while the second
nd third columns have the NF model with dt = 5 s and the NF model
ith dt = 20 s, specifications, respectively. Both NF models use the

ame 19 days of actual data operation. The performance indexes for
winning are the total twinning time 𝑡𝑡𝑤, which is the total time that
t takes to update the model, the twining time per sample, 𝑡 ∕𝑠𝑎𝑚𝑝𝑙𝑒,
𝑡𝑤
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and twinning time per day of operation, 𝑡𝑡𝑤∕𝑑𝑎𝑦, given by Eqs. (16) and
(17), respectively.

𝑡𝑡𝑤∕𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑡𝑡𝑤
𝑡𝑠

, (16)

𝑡𝑡𝑤∕𝑑𝑎𝑦 =
𝑡𝑡𝑤

86400𝑡𝑠
, (17)

where 86 400 is one day in seconds. Section 6.1 presents the models’
performance on twinning.

After the twinning is necessary to validate the models to evaluate
their performances, Table 3 summarizes the validation procedure. The
NF model simulation considers MATLAB’s ODE package and 𝐺𝑉 𝑎𝑙1

and 𝐺𝑉 𝑎𝑙2 data set that comprise almost six days of actual data. The
simulations with integration steps of dt = 5 s have 95 282 samples,
while the NF model simulation with dt = 20 s has 23 822 samples. It is
worth noting that the NF model that uses the twinning data set with 𝑡𝑠
= 5 s is not run in validation. Only the training procedure is done with
𝑡𝑠 = 5 s to give a fair twinning time comparison between the models.

The validation procedure compares the model’s outputs with a new
validation data set of actual data, neither used for the ANFIS training
nor the PDE parameter identification. The objective is to evaluate the
model’s ability to predict outputs, and the results are the accuracy and
precision indexes of the final model. The arithmetic error mean is an
index that evaluates the accuracy, or the distance between the error
points and their actual center value; it is given by Eq. (18)

�̄� =
∑𝑁

𝑖=1(𝑥𝑖,𝑗 − �̂�𝑖,𝑗 )
𝑁

, (18)

and the standard deviation quantifies precision; therefore, Eq. (19)
gives the dispersion of the error,

𝜎𝐸 =

√

∑𝑁
𝑖=1(𝐸𝑖,𝑗 − �̄�)2

𝑁
. (19)

This study considers other statistical validation indexes as the stan-
ard mean error (SE), which is another measure of precision given by
q. (20),

𝐸 =
𝜎𝐸
√

𝑁
, (20)

where SE measures how the number of samples 𝑁 affects the dispersion
of different datasets; as the size of the data increases, the SE decreases.
Mean Absolute Percentage Error (MAPE), accordingly to Eq. (21),

𝑀𝐴𝑃𝐸 =

∑𝑁
𝑖=1

|(𝑥𝑖,𝑗−�̂�𝑖,𝑗 )|
𝑥𝑖,𝑗

𝑁
× 100%, (21)

where it is a measure of the precision of a predictive system considering
absolute prediction errors, |(𝑥𝑖,𝑗 − �̂�𝑖,𝑗 )|, relative to the actual measured
data, 𝑥𝑖,𝑗 . And the coefficient of determination 𝑅2, given by Eq. (22)

𝑅2 = 1 −
𝑁
∑

𝑖=1

(𝑥𝑖,𝑗 − �̂�𝑖,𝑗 )2

(𝑥𝑖,𝑗 − �̄�𝑖,𝑗 )2
. (22)

here �̄� is the mean value of the data. 𝑅2 is a number between 0 and
that measures how well a statistical model predicts an outcome. If
2 = 0, the model does not describe the outputs. If 0 < 𝑅2 < 1, the

model partially predicts the outputs, and if 𝑅2 = 1 the model perfectly
predicts the outputs.

It is worth pointing out that the NF model validation with integra-
tion steps of dt = 5 s considers the trained model using the dataset
sampled with 𝑡𝑠 = 20 s. As will be seen in Section 6.2, this difference
in sampling time of NF model twinning does not affect its accuracy.

6. Fresnel solar collector digital twins

This section presents the models’ twinning results, mainly the twin-
ning time. Then, the validation section discusses the models’ perfor-
mance through qualitative comparison between the models’ outputs
and actual data from six days of operation. Then, the performances are
summarized and described using the statistical indexes presented in the
previous section.
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Table 4
Twinning times.

PDE(dt = 5 s) NF(dt = 5 s) NF(dt = 20 s)

𝑡𝑡𝑤 (h) 52.34 6.88 2.36
𝑡𝑡𝑤∕𝑠𝑎𝑚𝑝𝑙𝑒 (s) 2.73 0.08 0.11
𝑡𝑡𝑤∕𝑑𝑎𝑦 (min) 785.01 22.53 7.71

6.1. Twinning

Table 4 presents the twinning results of the models.
The NF model updated with input data sampled each 20 s has the

short twinning, taking 2.36 h to update, followed by the NF model with
re-sampled input data of 5 s, and finally the PDE model—see Table 4.
The PDE model parameter identification is the slowest among the
models, despite having fewer input data and a lower number of samples
than both NF models. The PDE model’s twinning time per input sample
is 2.73 s, more than 20 times greater than the NF models. Updating
the models with one day of operational data results in 7.71 min for
the NF model with dt = 20 s, 22.53 min for the NF model with dt =
5, and 785.01 min for the PDE model. The NF model has appreciable
advantages concerning mirroring the models with actual plant data. For
example, updating the NF model daily at night is possible because it
takes less than 7 h to do the procedure. The same does not occur for the
PDE model that needs more than two days for twinning. Thus, the PDE
model can be updated weekly, starting on Friday after the operation,
resulting in an updated model early on Monday.

6.2. Validation and discussion

Fig. 8.a depicts the validation results for data set 1. It consists of
comparing the actual measured data set 𝐺𝑉 𝑎𝑙1 (continuous black line)
to the PDE model (dashed red line) and to the NF model (dotted blue
line).

Note on Fig. 8.a that the ETSI absorption plant has intermittent
operation day and night. By inspecting Fig. 8.a, the PDE and NF models
can follow the measured data profile during three days of operation.
The maximum values refer to operation with sun irradiance absorption
and temperature increase, while the minimum values refer to overnight
heat loss and temperature decrease.

Fig. 8.b presents in detail the June 24 start-up box shown in Fig. 8.a.
The plant starts when 𝐼 > 200 [W∕m2], which typically occurs between
08:00 and 09:00 for all validation days, starting the pump that gener-
ates flow inside the absorber tube. The reason for strong oscillations
in Fig. 8.b, and other day start-ups, is that the water inside the tube
has a temperature gradient along the tube length that flows towards
the outlet temperature sensor. This temperature distribution is affected
by the day before the shut-down condition and overnight heat losses.
Fig. 8.b shows that the PDE model presents less error just before the
start-up than the NF model, and both models fail to represent the first
start-up peak. Although after the first oscillation, the two models can
successfully cope with measured data with lower error for the NF model
and practically the same standard deviation among the models.

After the start-up oscillations, the outlet temperature 𝑇𝑓2 increases
with the solar irradiance in the morning. The absorption chiller starts
when 𝑇𝑓2 reaches the thermal load preset temperature. Feeding the
chiller causes a sudden drop in the temperature ramp. See 𝑇𝑓2 profile
in Fig. 8.a, before noon. The plant thermal gradient along the tubes
oscillates due to the closed hydraulic loop and the absorption chiller
on–off control [28]. Fig. 8.c presents the Fresnel outlet temperature
profile during nominal plant operation. By inspection, the NF model has
a slightly lower error, and both models have similar standard deviation
ranges.

Fig. 8.d presents the plant shut-down that occurs at sunset when I
< 200 [W/m2]. The outlet temperature presents an atypical oscillation
during operation on June 26 due to an absorption chiller’s gas boiler
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Fig. 8. a. Validation results considering data set 1 measured data (black continuous line), PDE model (red dashed line), and NF model (blue dotted line), outputs. The bottom
figures b, c, and d refer to zooming the boxes at plot a. Red and blue shaded areas depict the standard deviation with 95% confidence interval (𝑇𝑓2(t) ± 2𝜎) of each model.
Fig. 9. a. Validation results considering data set 2 measured data (black continuous line), PDE model output (red dashed line), and NF model (blue dotted line) outputs. The
bottom figures b, c, and d refer to the zoom boxes in plot a. Red and blue shaded areas depict the model’s standard deviation with 95% confidence interval (𝑇𝑓2(t) ± 2𝜎) of
each model.
use along this day. At 19:00, the 𝑇𝑓2 slope changes, and the temper-
ature decreases more rapidly because the pump is off, and the flow
goes to zero. Both models can follow the measured data, but, differently
from the previous figures, the NF model has a more significant error,
presenting an unusual peak oscillation at 20:00.

Fig. 9.a presents the results of validation data set 2. Compared
to validation 1, validation 2 has lower maximum 𝑇𝑓2 values and
oscillations amplitudes, contrast Figs. 8.a and 9.a. This difference oc-
curs because the irradiance power is greater in June than in October.
Despite different days, irradiance, and meteorological values, both
models follow the measured variables on validation 2, see Fig. 9.a.
A proper dynamic representation of both models in different year
periods indicates that they can represent the plant dynamics in a wide
operational range, from 40 to 180 ◦C.

Fig. 9.b presents the October 14 start-up with the same oscillatory
behavior as in Fig. 8.b. The NF model is the only one capable of
11
describing the first peak oscillation on October 14, 09:15. The NF model
has lower errors than the PDE model during the start-up, operation, and
shut-down. See Fig. 9.b, .c, and .d, respectively. Also, the NF model
has an appreciably narrow standard deviation than the PDE model.
Compare the red and blue bands, and note that the 𝜎 NF model is less
than the 𝜎 PDE model.

Once both PDE and ANFIS models are obtained, they could be
combined to learn from each other to enhance PDE model precision.
However, an identified/trained consequent model with previous model
outputs will have an accuracy equal to or lower than the previous
model. Therefore, this work did not consider using the models to learn
from each other because (i) actual data is available, (ii) one objective is
to describe FSC transients accurately, (iii) the standard deviations are
adequate, with the worst case of ±5.1 ◦C (Table 5).

Table 5 compiles the overall Validation 1 and Validation 2 model’s
index results. Note that the NF model was subject to two validation
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Table 5
Validation index results.

PDE(dt = 5) NF(dt = 5) NF(dt = 20)

�̄� (◦C) −0.36 0.51 0.51
𝜎 (◦C) 2.18 2.55 2.55
2𝜎 (◦C) 4.37 5.09 5.09
SE (◦C) 0.01 0.02 0.02
MAPE (%) 1.92 2.49 2.49
RMSE (◦C) 2.18 2.54 2.54
𝑅2 0.997 0.996 0.996

𝑡∕𝑑𝑡 (s) 0,0197 0.0034 0.0013
𝑡∕𝑑𝑎𝑦 (s) 340.28 59.14 5.79

considering different input data sampling times, one with 20 and
another with 5 s. These two analyses of the NF model give a fair
comparison between the simulation times regarding the PDE model that
must run with integration steps of 5 s to avoid numerical problems.
Note that the NF model has the same error performance despite using
different integration steps, which indicates that 𝑡𝑠 does not affect the
results. The following section discusses the PDE and NF modeling error
indexes.

Based on the mean error, �̄�, it is possible to infer that while
the PDE model sub-estimates the outlet temperature for validation 1,
the NF model super-estimates the 𝑇𝑓2 value, once �̄� is positive and
negative, respectively. The models do not present a sensible difference
in the standard deviation 𝜎, assuming a normal error distribution.
The differences are almost 0.30 ◦C and 0.60 ◦C, considering 68%
and 95% confidence intervals, respectively. The massive amount of
samples results in low SE values, showing that the validation has an
adequate number of analysis points. Lastly, the Root Mean Squared
Error of PDE is 2.18 ◦C and for the NF is 2.49 ◦C, which are low
alues considering that the Fresnel collector has a nominal operating
emperature of 180 ◦C. This fact is reflected in low values of Mean
bsolute Percent Error of 1.92% and 2.30% for the PDE and NF,
espectively. Now, closing the validation indexes discussion, the linear
egression between predicted and actual FSC outlet temperatures gives
oefficients of determination 𝑅2 ≥ 0.996 for both models. All in all,
oth PDE and NF models have similar error values.

Note on Table 5 that the execution time per integration step, 𝑡∕𝑑𝑡,
nd execution time to simulate one day of samples 𝑡∕𝑑𝑎𝑦, show ap-
reciable differences among the models. The PDE model takes 0.0197
seconds to integrate one step, while the NF model, with the same

ntegration time of 𝑑𝑡 = 5, takes 0.0034 s. Thus, the NF model shows
lmost six times faster integration step time than the PDE. These
ntegration step times result in 61.92 s for the PDE model to simulate
ne day of operation, while the NF model takes 20.50 s. Thus, the NF
odel is three times faster. An interesting feature of the NF model is

hat it presents the same error levels when using integration steps of
or 20 s. Table 5 indicates that the NF model with a simulation step

f 20 s is the faster model, simulating one day of operation more than
en times faster than the NF model using dt = 5 s and almost 60 times
aster than the PDE model.

. Conclusion

This work has developed the digital twin of a commercial Fresnel
olar Collector (FSC) installed on the roof of the ETSI building in
eville, Spain. The authors seek to create models to simulate what-
f analysis, model predictive control improvements, and optimizations
hrough virtual and physical entities exchange. This paper has devel-
ped two generalized dynamic models, one using ANFIS systems and
nother using phenomenological modeling using Partial Differential
quations (PDE) and parameter identification tools. The models de-
cribe the FSC outlet temperature day and night during plant start-up,
peration, and shut-down. The total available data consists of 25 days
12

f measurement data with a sampling time of 𝑡𝑠 = 20 s, resulting in S
01 854 total samples. The twinning process for the ANFIS is its training
nd checking, while for the PDE model is the identification procedure.
he PDE model identification procedure has a higher computational
urden than the ANFIS. Thus, it was necessary to reduce the PDE model
winning input data, resulting in four days for identification, while the
NFIS model utilizes 19 days for training and checking. The developed
odels have shown the following features:

1. The models are validated and have defined accuracy and pre-
cision indexes accordingly to error mean, standard deviation,
standard error, and mean absolute percentage error considering
six days of operation data and 23 822 samples.

2. All models follow actual measurement trends during the day
and night with a worst-case mean error of 0.51 ◦C, a worst-case
standard deviation of 5.09 ◦C (95% confidence interval), and a
worst-case mean absolute percentage error of 2.49%

3. The models consider the primary mirrors variable focus as model
inputs; therefore, this work states and validate the first FSC
dynamic model with the focus/defocus effect on the outlet tem-
perature.

4. PDE model and NF model with integration steps of 5 s run one
day of operation in 340.28 s and 59.14 s, with a simulation time
step of 19.7 ms and 3.4 ms, respectively; therefore, fast enough
to be used in Model Predictive Control (MPC) techniques.

5. The NF model with integration steps of 20 s runs one day of
operation in 5.79 s and one simulation step in 1.3 ms. Therefore,
almost three times faster than the NF with dt = 5 s and more than
fifteen times faster than the PDE.

6. The models run a twinning, coping with plant aging or process
modifications because the neuro-fuzzy ANFIS is an adaptive
technique, and the identification procedure can update the PDE
model parameters.

7. The PDE model takes 785.01 min twinning one day of operation
data, while the NF model takes 22.53 min, considering 𝑡𝑠 = 5
s. The NF model twinning with 𝑡𝑠 = 20 s takes 7.71 min. Thus,
the ETSI solar absorption plant twinning can occur at night or
on the weekend when the plant is off.

In conclusion, this work contributes to the dynamic modeling of
n FSC, considering its further use as a digital entity on a digital
win framework. Future works will further model the long pipes that
onnect the absorption chiller and the FSC to consolidate the whole
lant’s digital twin. Furthermore, the plant DT will unlock control
nd optimization investigations, offering several possibilities for the
peration of the plant enhancements and scientific contributions.
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be found in https://data.mendeley.com/datasets/rzggrvczf6/1 [54].
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