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Abstract
Service providers compose services in service chains that require deep integra-
tion of core operational information systems across organizations. 
Additionally, advanced analytics inform data-driven decision-making in 
corresponding AI-ena-bled business processes in today’s complex 
environments. However, individual partner engagements with service 
consumers and providers often entail individu-ally negotiated, highly customized 
Service Level Agreements (SLAs) comprising engagement-specific metrics that 
semantically differ from general KPIs utilized on a broader operational (i.e., 
cross-client) level. Furthermore, the number of unique SLAs to be managed 
increases with the size of such service chains. The resulting complexity pushes 
large organizations to employ dedicated SLA management sys-tems, but such 
‘siloed’ approaches make it difficult to leverage insights from SLA evaluations 
and predictions for decision-making in core business processes, and vice versa. 
Consequently, simultaneous optimization for both global operational process 
efficiency and engagement-specific SLA compliance is hampered. To address these 
shortcomings, we propose our vision of supplying online, AI-supported SLA analyt-
ics to data-driven, intelligent core workflows of the enterprise and discuss current 
research challenges arising from this vision. Exemplified by two scenarios derived 
from real use cases in industry and public administration, we demonstrate the need 
for improved semantic alignment of heavily customized SLAs with AI-enabled 
operational systems. Moreover, we discuss specific challenges of prescriptive SLA 
analytics under multi-engagement SLA awareness and how the dual role of AI in 
such scenarios demands bidirectional data exchange between operational processes 
and SLA management. Finally, we discuss the implications of federating AI-sup-
ported SLA analytics across organizations.
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1 Introduction

Information systems in organizations face a new reality where the traditional 
boundaries of applications are blurred to rather create ecosystems of services that 
are orchestrated in highly data-driven, intelligent workflows. M uch l ike s upply 
chains, these service chains (a.k.a. service supply chains; Baltacioglu et al. 2007) 
can transcend organizational boundaries and require deep integration of business 
processes and information systems across organizations. As the complexity of 
such engagements increase, decision making to drive core operational processes 
becomes ever more challenging: Decision factors originating from across the ser-
vice chain—typically represented by (intra- and inter-organizational) operational 
key performance indicators (KPIs) – need to be taken into account in order to 
improve operational efficiency (cf. Wang et al. 2015). Here, operational efficiency 
is assessed/measured based on the values of the realizations of the different afore-
mentioned KPIs related to the operations of the underlying systems.

Additionally, advanced analytics and artificial i ntelligence ( AI) b ased o n 
detailed monitored data from core operational information systems oftentimes 
provide crucial information for controlling data-driven decision-making in cor-
responding business processes in real-time (cf. Forrester Research 2017). By AI-
enabled service chains we refer to service chains infused with AI technologies 
that take advantage of the significant amount of data associated with the myriad 
of above-described decision factors that affect operational efficiency.

However, large engagements between consumers and providers of services that 
entail unique, highly customized service level agreements (SLAs) require organi-
zations to employ dedicated SLA management systems to account for the specific 
metrics and measurement rules specified in those SLAs (cf. Sfondrini et al. 2015; 
Mubeen et  al. 2017). The highly engagement-specific a nd i nconsistent s eman-
tics of these SLAs leads to a ‘disconnect’ between the domains of SLA man-
agement on the one side and operational monitoring and decision making with 
standardized KPIs on the other side. In other words, informing AI-enabled busi-
ness processes with data points from either domain is challenging. As a result, 
two equally important aspects of high-quality service delivery—namely, dynamic 
customization/optimization of processes and on-point SLA compliance - are not 
jointly considered, despite the potential synergies arising from their combination.

In such a context, our main aim is to pave the way to a new generation of Infor-
mation Systems that provide support to engagement-specific, h ighly customized 
SLAs within AI-enabled service chains. Specifically, i n t his v ision p aper, o ur 
guiding questions are twofold: (i) Which are the main elements and perspectives 
to be taken into account when building such Information Systems? and (ii) Which 
are the research directions that could establish a potential roadmap to solve the 
problems involved in building those Information Systems?



It is important to note that this aspect of considering engagement-specific, 
highly customized SLAs within AI-enabled service chains has not been a pri-
mary focus in current literature. To the best of our knowledge, this aspect and its 
associated problems have not been stated before. Thus, there is no chance to find 
a specific baseline against which to compare our proposal. Furthermore, closer 
proposals to inspire a solution approach, such as trying to adapt negotiation or 
provide specific templates to harmonize the outcomes, helps to solve the prob-
lem’s symptoms or effects, but not the problem itself. Consequently, we address 
the root of the problem by extending the notion of operational efficiency by multi-
engagement SLA-awareness: We define it as the joint consideration of the afore-
mentioned general factors for operational decision making together with engage-
ment-specific, potentially heavily customized SLAs such that the global outcome 
- i.e., the result on organizational and/or supra-organizational levels across ser-
vice chains—is optimal. Following this notion, we present our vision of providing
detailed insights from online, AI-supported SLA analytics to data-driven, intelli-
gent core workflows of the enterprise. The goal is to enable core operational (AI)
systems to reason with a more comprehensive view of the state of business pro-
cesses that extends beyond the typically collected cross-client data points to oper-
ational KPIs at any point in time. In particular, we suggest to integrate the real-
time state and predictions from detailed SLA analytics across multiple individual
partner engagements with heavily customized SLAs into operational decision-
making algorithms. We envision that this will enable optimization algorithms that
focus on overall (i.e., cross-client) operational efficiency to pursue simultaneous
optimization of both global operational process efficiency and engagement-spe-
cific SLA compliance across multiple individual partner engagements with highly
individualized SLAs. Furthermore, we suggest to establish bi-directional infor-
mation exchange between AI models employed in SLA management systems and
operational processes, respectively, in order to enable truly prescriptive (cf. Bert-
simas and Kallus 2020) SLA analytics. Finally, we discuss the potential benefits
and implications of the federation of SLA analytics across organizational and
departmental boundaries across highly integrated service chains.

The remainder of this paper is organized as follows: In Sect. 2, we elaborate on 
current trends in industry and academia that motivate the vision presented in this 
paper. In Sect. 3, we present two scenarios derived from real use cases that will 
serve as running examples throughout the rest of the paper. This is followed by a 
description of research challenges that arise from and in our vision in Sect. 4. We 
conclude the paper in Sect. 5.

2  Background and state of the art

In the following, we elaborate on three current trends in industry and academia 
that motivate the vision presented in this paper: (i) The permeation of AI technol-
ogies into the core operational processes of the enterprise and the corresponding 



need for (big) data; (ii) The complexity of customer-based SLAs frequently 
encountered in large business engagements between service providers and con-
sumers; and (iii) The increasingly complex composition and orchestration of ser-
vices in inter-organizational service chains.

2.1  AI technologies and core operational efficiency

The role of AI to drive better and deeper customer experiences within digital pro-
cesses is widely recognized today (cf. Martorelli and Stroud 2017), and AI tech-
nologies are used to actively optimize business processes in real-time (e.g., Veit 
et al. 2017). For instance, AI-generated insights may be used to dynamically assign 
human jobs through algorithms and tracking data (Lee et  al. 2015); for enabling 
interactive visual exploratory data analysis applications that can help service manag-
ers reveal the low-level root causes of high-level business phenomena (Caron and 
Daniels 2008); to control automated industrial processes (Pasic et  al. 2019); or to 
dynamically route ships for fuel efficiency on a real-time basis (Beşikçi et al. 2016), 
to just give a few examples.

In typical enterprise settings, core operational IT systems include business pro-
cess management (BPM) and workflow management systems (WfMS), enterprise 
resource planning (ERP) systems, application performance monitoring (APM) solu-
tions, and custom-built applications, to name a few. Such core operational IT sys-
tems provide the abundance of data that is needed to train machine learning (ML) 
models and prescriptive analytics (optimization and recommendation models) that 
control decision points and customization options in intelligent workflows. The data 
feeding into ML models may be structured or unstructured, and often includes KPIs 
that monitor business processes in the enterprise (cf. e.g., Márquez-Chamorro et al. 
2018; Pérez-Álvarez et al. 2018). In some cases, KPIs represent cross-organizational 
(Wetzstein et al. 2009) or inter-organizational (Krathu et al. 2013) measures. In the 
remainder of this paper, we refer to KPIs that inform such AI-enabled business pro-
cesses and whose semantics are defined on an (intra-, inter- or cross-)organizational 
or departmental level as operational KPIs. Note that even though operational KPIs 
may be evaluated for individual clients, by definition their s emantics are consist-
ent across different clients, and therefore not client-specific. This contrasts with 
individually negotiated service level indicators (SLIs) in customer-based SLAs, as 
described in the following section.

2.2  Complexity of bilateral SLAs in large business engagements

Service level management (SLM) is a critical part of service delivery and modern 
frameworks for SLM emphasize the need to customize SLAs for individual clients. 
For example, the ITIL 4 framework for IT service management (ITSM) emphasizes 
that SLM should “[f]ocus on outcomes for the service consumer organization and 
on user experience more than on technical details and associated metrics” (Agut-
ter 2020). (Conger et al. 2008) add that ITSM “focuses on defining, managing, and 



delivering IT services to support business goals and customer needs, usually in IT 
operations”. Given this need for customization, SLAs of large service consumer/
provider engagements are typically extensively negotiated between the collaborating 
parties on a per-deal basis (MarketsAndMarkets.com 2017, p. 18) and require exten-
sive bilateral human interaction (cf. Butler et al. 2011; Wieder 2006; Megahed et al. 
2020). The resulting complex, natural-language bilateral SLAs (a.k.a. customer-
based SLAs Comuzzi et al. 2013) are highly customized and stand in stark contrast 
to the universality of well-known examples of general, published SLAs for public 
cloud services which are essentially unilaterally imposed (“take it or leave it”).

Service level indicators (SLIs) are carefully defined quantitative measures of 
some aspect of the level of service that is provided (Beyer et al. 2016, pp. 37–40). 
It is understood that any pair of similar, but customer-specific SLIs of different 
engagements may differ with respect to targeted service levels. However, an often 
overlooked, but significant property of bilateral SLAs is that otherwise similar SLIs 
often differ in their semantics in the context of different engagements. In particular, 
customer-specific SLIs and their constituent metrics may semantically differ from 
the ‘bulk’ monitoring data that is collected on the organizational (i.e., cross-client) 
level and aggregated into operational KPIs (cf. Sect. 2.1). Such semantic differences 
may include:

• Customer-specific rules for measurement, (algebraic) computation, time win-
dows for validity or guarantee intervals, or units of measurement (cf. Longo
et al. 2018)

• Customer-specific categorization/classification systems for datapoints (cf. Engel
et al. 2018)

• Customer-specific inclusion and exclusion rules
• Customer-specific SLIs that are truly unique to a customer’s SLA (e.g., “percent-

age of minutes of meetings emailed within 3 business days”)

For instance, a frequently cited case study conducted at the Eindhoven University of 
Technology on the elicitation and specification of SLA terms regarding IT services 
for student notebooks, including incident management, defines incident priorities 
based on a distinction between the different types and different periods of usage, 
such as lectures, tutorials, self-study and examinations (Trienekens et al. 2004). This 
specific definition of incident priorities then becomes part of the terms of the over-
all SLA by its employment in corresponding definitions of metrics and SLIs/SLOs 
related to incident resolution times. In other words, the SLA terms are highly spe-
cific to both customer and the type of market in this example, and their definitions 
most likely semantically differ from typical generic operational KPIs used by e.g., 
an IT outsourcing provider. Another example for similar, but semantically differ-
ent SLIs for service availability is given in Longo et al. (2018) and reproduced in 
Table 1. Further examples are given in the scenarios depicted in Sect. 3.

Organizations which sign into significant numbers of such complex, bilateral SLAs 
employ dedicated SLA management approaches to deal with the resulting management 
complexity (Sfondrini et al. 2015). Current SLA management approaches, which have 
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been well studied in the current literature (cf. Mubeen et  al. 2017), provide formal-
isms to define generic constructs like metrics, SLIs and SLOs, classification systems 
(cf. Engel et  al. 2018), inclusion/exclusion rules, penalties/rewards (cf. García et  al. 
2017; Muller et al. 2018), etc. to model the natural language SLAs. The objective is to 
represent the SLAs as concisely and accurately as possible while enabling their utmost 
automation in terms of monitoring and management. We refer to such efforts of man-
aging bilateral SLAs across multiple partner engagements as multi-engagement SLA 
management. In many cases, organizations not only aim at achieving and monitoring 
SLA compliance (cf. Müller et al. 2014), but also at avoiding over-fulfillment of SLOs 
to proactively contain costs in the context of overall quality management strategies. 
Moreover, in some cases different conflicting strategies with regard to quality manage-
ment are weighed against each other, e.g., to minimize or maximize (intra-engagement 
or cross-engagement) compensations (i.e., penalties or rewards; Muller et al. 2018).

2.3  Inter‑organizational service chains

Orthogonal to the trend towards using AI technologies for informing and controlling 
core business processes, organizations employ increasingly complex orchestrations of 
both internal and external (e.g., outsourced) services in service chains (cf. Cho et al. 
2012; Baltacioglu et al. 2007) to provide higher-level services to their customers. In 
the traditional industrial landscape, by effectively managing a supply chain, firms can 
benefit from reduced costs, boosted revenues, increased customer satisfaction, improve-
ments in delivery and product or service quality (Baltacioglu et al. 2007). However, 
because of a higher degree of substitution, perishability and non-trivial over-capacity 
cost, service chains behave substantially differently than physical goods supply chains 
(Prasad and Shankar 2018). The notion of a service chain has been analyzed mainly 
from business-oriented perspectives and has been specifically developed in the field of 
management for logistics (Zhong et al. 2020), goods (Fernández et al. 2015), healthcare 
(Baltacioglu et al. 2007) and finance (Hofmann et al. 2017) domains. However, most 
existing approaches do not deal with the intricacies of the integration challenges that 
information systems face to orchestrate the behavior of the chain participants. Those 
aspects become crucial in software intensive domains. For example, in the well-known 
cloud computing domain, the software as a service (SaaS) paradigm relies on a support-
ing service chain composed by two other levels defined in the cloud computing model: 
platform as a service (PaaS) and infrastructure as a service (IaaS), whereas these dif-
ferent levels are often, if not typically, provided by different organizations. Given the 
reliance on real-time monitoring data to drive corresponding AI-enabled business pro-
cesses in the back-end, such service chains require deep integration of business pro-
cesses and information systems across organizational boundaries. For example, predic-
tions regarding anticipated usage spikes generated by an application on the SaaS level 
managed by a particular organization may be used for pro-active elastic (cf. Muñoz-
Escoí and Bernabéu-Aubán 2017) (and potentially SLA-aware) resource provisioning 
tasks on the PaaS and IaaS levels managed by another organization.



3  Motivating scenarios

In this section, we present two scenarios derived from real use cases in industry and 
public administration. These scenarios serve as running examples and for motivating 
the vision presented in this paper. Scenario 1, presented in Sect. 3.1, is derived from 
a typical large-scale client engagement of a leading global IT service provider (cf. 
Megahed et al. 2020) in combination with modern AI-enabled approaches to inci-
dent management (cf. Lerner 2017; Masood and Hashmi 2019; Levin et al. 2019; 
Chen et  al. 2020). Scenario 2, depicted in Sect.  3.2, is derived from a real-world 
deployment of the Governify framework described in Gamez-Diaz et  al. (2019) 
within a European public administration entity. Both scenarios have been specifi-
cally selected to highlight and exemplify the key aspects of the research challenges 
presented in this paper. Finally, Sect. 3.3 contrasts the two scenarios regarding the 
implications on SLA management complexity in their corresponding service chains.

3.1  Scenario 1: large outsourced IT service management provider

Company A, a large IT Service Management (ITSM) provider, delivers IT services 
to a number of large enterprise clients (i.e., its customers). We denote the set of cus-
tomers by I and each customer would be C

i
∈ I , where i ∈ {1,… , |I|} and |I| is the 

cardinality of set I. Services rendered include provisioning of IT resources, incident 
management, change management, etc. The size of the majority of the contracts is 
large (i.e., multi-million dollar range). For the purposes of this scenario, in the fol-
lowing we focus on the aspect of incident management at A—both with respect to 
incidents occurring within A and subsequently affecting one or more customers C

i
 

(e.g., cloud service outage) as well as incidents whose origin may lie within opera-
tions of a customer C

i
 (e.g., network router outage at a client’s site).

When new incidents occur, they are generally assigned to, and handled by, inter-
nal incident response teams (1st level support or ‘helpdesk’ services); however, in 
order to handle seasonal peaks in incident prevalence across its customer base, A 
outsources part of its 1st level support services to incident response teams at out-
sourcing provider P. This is done in a transparent manner regarding customers C

i
 . In 

other words, the service provided by the external incident response teams is essen-
tially the same as the service that is provided by the internal teams. However, vari-
ous performance-related KPIs for the outsourced teams may differ from the internal 
ones (e.g., average incident resolution time).

For improving operational efficiency, A has adopted an AIOps approach for its 
operations: “AIOps platforms utilize big data, modern machine learning and other 
advanced analytics technologies to directly and indirectly enhance IT operations 
(monitoring, automation and service desk) functions with proactive, personal and 
dynamic insight.” (cf. Lerner 2017; Levin et  al. 2019). In particular, A’s incident 
management processes have been heavily automated using AI techniques such that 
initial incident categorization, triaging and assignment (“routing”) to either inter-
nal teams at A or outsourced teams at P is largely automated based on evidence 
found in structured and unstructured data from corresponding tickets (cf. Frick et al. 



2019). The AIOps solution at A takes many factors into account for making rout-
ing decisions. Among these factors is A’s internal notion of incident severity that 
defines four different severity levels (“P1”, “P2”, “P3”, or “P4”). All correspond-
ing internal KPIs (e.g., incident resolution time) are organized around the notion of 
these four categories. However, due to the large sizes of the engagements between 
companies A and C

i
 as well as A and P, respectively, the corresponding SLAs in all 

of the aforementioned business engagements are the result of extensive negotiations 
during contract closure, and are correspondingly complex. Consequently, A employs 
a dedicated SLA management system using some modern SLA formalism from cur-
rent literature (e.g., L-USDL or ysla; García et al. 2017; Engel et al. 2018) for man-
agement and monitoring of these SLAs. In particular, the custom SLAs reflect the 
specific notions of incident severity1 for each of the customers C

i
 and at P:

• Customers C
i
 all have their own notion of incident priority. For instance, a given

customer uses an arbitrary matrix relating notions of urgency and impact of an
incident to an assigned severity, as shown in Table 2. For example, high-urgency
(1) and medium-impact (B) incidents are assigned to high incident severity (P1).
Another customer only distinguishes two urgency levels ("Urgent", "Normal")
instead of four different levels (1, 2, 3, 4); yet another customer uses another sys-
tem for incident severity classification that factors in risk of event re-occurrence
in addition to urgency and impact.

• Outsourcing provider P manages incidents by classifying them into one of “low
severity”, “medium severity”, and “high severity”.

Since A and any of C
i
 have different notions of incident severity and different 

classification criteria, the customer-specific SLIs for incident resolution time defined 
in the corresponding formal SLA documents are based on custom metrics using the 
arbitrary priority classes of each customer C

i
 rather than the four severity classes 

used by the internal monitoring systems of A.2 Moreover, some of the constituent 

Table 2  Example of an incident 
severity classification matrix 
used by some customer C

i

Incident priority classes 
matrix

Urgency

1 2 3 4

Impact
A P1 P1 P1 P1
B P1 P1 P2 P3
C P3 P3 P3 P3
D P3 P3 P3 P3

1 The reader is referred to Sect. 2.2 for real-world examples of arbitrary notions of incident severity doc-
umented in current literature.
2 See e.g., Engel et al. (2018) for an example of how different incident classes can be modeled in a for-
mal SLA representation.



metrics of these customer-specific SLIs involve notions of arbitrary concepts such as 
urgency or risk of event re-occurrence. As a result, at A the SLIs for incident resolu-
tion time all have different semantics than the internal KPI for incident resolution 
time; in other words, the semantics depend on whether this metric is regarded in 
the context of A’s internal monitoring efforts or in the context of SLA compliance 
regarding any particular customer C

i
 . In the case of SLO misses (i.e., SLA non-com-

pliance), A is responsible for paying penalties to its customers.

3.2  Scenario 2: large service aggregator

A public administration wishes to implement and evolve a citizen application (app) 
to act as a single entry point aggregating various different services provided by mul-
tiple and diverse departments. In such a context, a service governance committee is 
established to design and operate an application programmable interface (API) gate-
way that would act as a mediator between the citizen app and the different micro-ser-
vices deployed in the departments’ infrastructures with different scalability models.

In order to provide the desired service levels to their citizens, the governance 
committee wishes to establish a minimal SLA that all provided services should ful-
fill. The minimal SLA is composed of two SLIs: monthly availability and daily aver-
age response time. The SLIs are characterized by two activity periods during the 
day: high activity (9:00-22:00) and low activity (22:00-9:00). Consequently, each 
department should establish a specific SLA with the governance committee. In such 
a context, multiple complications can arise:

• The need for a common understanding of monthly availability and daily response
time and how to measure it. Since multiple infrastructures come into play, the
monitoring should be integrated and homogenized with an accurate definition.

• As is common in micro-service architectures, a significant set of services pro-
vided rely on other services such that a graph of dependencies is established. In
such a context, the capability for analyzing and reasoning about the root cause of
a given behavior observed could be crucial.

• The global scalability of the system as a whole should be harmonized and con-
sistent among the different departments’ infrastructures. To address this chal-
lenge, it would require a shared predictive model joint with an explicit and
dynamic set of expectations for each infrastructure that would drive distributed
scalability operations.

3.3  Service chain complexity

The scenarios presented above correspond to focused views of potentially large ser-
vice chains that span across organizations and/or departments and highlight two dif-
ferent types of complexity growth (as depicted in Fig. 1):

On the one hand, Scenario 1 motivates a dynamic growth of the chain towards 
the service consumer based on the different customer needs that define different cus-
tomer-based SLAs, while having a common supporting SLA from an outsourcing 



service provider. In contrast, Scenario 2, motivates the need of growth towards the 
service providers having a common (i.e., service-based) SLA on the side of the ser-
vice consumer (i.e., the citizens). Moreover, the two scenarios exemplify different 
organizational boundaries that can appear. In Scenario 1, all organizations corre-
spond to different stakeholders in a potential industrial market. In Scenario 2, a sin-
gle organization (the public administration) structures its services in different inter-
nal departments and exposes those services externally as a one-stop shop (Wimmer 
and Tambouris 2002) to service consumers. In this context, it is important to high-
light that real service chains could have a combination of both types of complexity 
growth and, hence, the need for advanced SLA analytics would be further amplified.

4  Research challenges

The two scenarios described in Sect. 3 highlight, motivate, and inspire the need to 
provide operational processes with sufficient information from SLA management: 
For achieving optimal operational efficiency, decision making in intelligent work-
flows must not only account for the optimization of internal processes with respect 
to operational KPIs, but also take into account downstream implications regarding 
actual or predicted SLA compliance and/or over-fulfillment under multi-engagement 
SLA awareness.

In the following, we identify four research challenges that are motivated spe-
cifically by the dual role of AI in the context of the problem at hand: On the one 
hand, increasingly data-driven, AI-enabled service chains represent a significant 
reason why as much relevant information as possible needs to be provided from 
multi-engagement SLA management systems to core operational information sys-
tems (cf. Research Challenge 1). On the other hand, AI technologies are a necessary 

Fig. 1  Service chains represented by our scenarios



component of modern SLA management systems to provide predictive and prescrip-
tive information for forward-looking operational decision-making. However, this 
comes with its own set of challenges regarding multi-engagement SLA awareness 
(cf. Research Challenge 2). Because of this dual role of AI, achieving optimal oper-
ational efficiency requires deep integration and bidirectional flow of information 
between AI models in both domains (cf. Research Challenge 3). Finally, we discuss 
the benefits and implications of applying pervasive AI-enabled SLA management 
across inter-organizational service chains, including data confidentiality concerns 
(cf. Research Challenge 4).

4.1  Research challenge 1: fine‑granular semantic alignment between SLIs 
and operational KPIs

To inform decision making in core operational processes, actual insights from SLA 
analytics need to be made accessible to the systems managing those processes. 
Rather than (only) top-level SLA evaluation results, these insights need to include 
detailed intermediate (historic or real-time) computation results (e.g., low-level met-
ric values feeding into some aggregated SLI) to reason on the level of root causes, 
rather than symptoms, of high-level phenomena on the SLI/KPI level. Because such 
intermediate computation results can vary in semantics on all aggregation levels 
(e.g., employed classification systems, measurement periods, units of measurement, 
inclusion/exclusion rules, etc.; cf. Sect. 2.2), this underscores the need to close the 
semantic gaps between the specific SLIs from SLAs and the operational KPIs in a 
fine-granular and non-trivial manner. Specifically, given such fine-grained seman-
tic differences between KPIs and SLIs as described above, it is necessary to devise 
methods that enable the translation of these different semantics into a single global 
reference space (e.g., SLIs need to be aligned with a ‘reference KPI‘) such that they 
can be subsequently used to inform the numerous constraints and objective func-
tions in complex multi-objective optimization problems that model the notion of 
operational efficiency on a global level. Notably, the challenge extends beyond that 
of ‘traditional‘ schema matching and mapping: Differing semantics on different 
aggregation levels need not only be ‘matched‘, but reconciled in a way that allows 
to effectively reason on how different values compare in the context of different time 
frames, units of measurement, scopes, etc. While the problem of data availability 
in a broader sense has been extensively studied in the current literature on schema 
matching and ontology matching (e.g., Shvaiko and Euzenat 2005; Noy 2004; Bern-
stein et  al. 2011), the more specific problem of mapping SLIs to KPIs in a fine-
granular manner and including the ability to reason on the differences between 
intermediate computation results in different stages of aggregation has been largely 
overlooked so far, except for some works in early stages (cf. Longo et al. 2018) or in 
the context of specific use cases (e.g., Bellini et al. 2018).

For instance, in Scenario 1, the differences in classification systems for inci-
dent severity that exist between A and its customers and providers regarding the 
semantic definition for SLI incident resolution time poses a major challenge for 
the AIOps solution at A that attempts to proactively manage incidents according 



to A’s own notion of incident severity. When it comes to precisely meeting (i.e., 
neither failing nor over-fulfilling) service level objectives for incident resolution 
time defined in the SLA documents between A and any customer C

i
 , the employed 

AIOps approach is unable to resolve the semantics of that SLI, and therefore 
unable to proactively manage SLA compliance (e.g., when triaging and ranking 
incident response resources across the entire customer base to minimize global 
SLA penalties). Analogously, due to the different notion of incident severity at P, 
assignment of incidents to either internal (A) or external resources (P) requires 
custom coding and mapping of incidents due to the semantic heterogeneity. To 
better enable the AIOps solution to efficiently manage incidents, it would need 
to ‘understand’ how to map the classification systems for incidents from the SLI 
definitions to the general KPI definition. In addition to the different classifica-
tion systems used, other semantic differences may add difficulty to the task, such 
as unaligned measurement periods. These KPI/SLI alignment challenges arising 
from Scenario 1 are illustrated in Fig. 2.

For the challenge at hand, we suggest to represent the formal semantics of both 
SLIs and KPIs as directed relational networks where the entities are constituent 
metrics, classification systems, algebraic expressions, thresholds, etc. Hence, we 
hypothesize that the mapping problem may be approached by regarding it as an 
instance of the class of entity alignment for knowledge graphs (e.g., ontology match-
ing; Euzenat et al. 2007) problems. As such, it may be potentially solved with tech-
niques involving varying degrees of automation:

• Regarding mostly automated approaches, a recent benchmarking study under-
scores the high efficacy of embedding-based entity alignment techniques (e.g.,
Sun et al. 2020), and corresponding techniques have been developed to map rela-
tionships between entities from one domain to another (e.g., Chen et al. 2017).
Other works have employed traditional network analysis techniques to relate dif-
ferent KPIs and their constituent components to each other (e.g., Krathu et  al.
2015). Similar approaches may prove useful for mapping SLIs to KPIs, and vice
versa.

Fig. 2  Challenges arising in Scenario 1 regarding the alignment of SLIs and KPIs used by A, P and an 
exemplary customer C

i



• Regarding semi-automated approaches, prior works have focused on modeling
SLAs in OWL and applying Logic Programming (i.e., Prolog) to reason about
different semantic definitions of SLIs among different SLAs with the goal of
facilitating their comparison (Longo et al. 2018). Such approaches may be poten-
tially extended to inform and aid semi-automated methods for mapping SLIs to
KPIs.

• Regarding manual approaches, extending current SLA formalisms with new con-
structs (e.g., annotations) that allow for manually provided mapping ‘hints’ may
provide a certain degree of inter-operability between SLA analytics and opera-
tional systems. The approach followed in Estrada-Torres et al. (2019) for meas-
uring performance in knowledge-intensive processes may be a suitable starting
point for such an effort. However, the usual drawbacks of manual methods apply,
such as the challenge that dynamic changes to either SLIs or KPIs would require
manual reconfiguration.

4.2  Research challenge 2: integration of predictive SLA analytics with AI‑enabled 
operational decision‑making

In addition to historic and real-time fine-granular monitoring data, it is necessary 
to provide operational processes with predictions of future values, (non-)compli-
ance events, looming penalties, etc., to be able to prevent undesired outcomes by 
taking appropriate actions. Several approaches for predictive SLA analytics and/or 
corresponding SLA violation prevention have been proposed in the current litera-
ture (e.g., Leitner et al. 2013; Márquez-Chamorro et al. 2017; Nawaz et al. 2018). 
In terms of generic approaches that are reusable across different domains, typically 
there is some mechanism for predicting the future state of SLIs/SLOs (e.g., time 
series analysis, machine learning, hand-written rules by domain experts, etc.) that 
is used in conjunction with some formalisms for specifying remedial or preventive 
actions to be taken when such a prediction suggests that an SLA violation is immi-
nent or at least probable. However, such policy-based approaches (cf. Sloman 1994) 
exhibit two limitations that we explain below.

Firstly, as has been recognized in the current literature (e.g., Faniyi and Bahsoon 
2015), they become infeasible when the inter-dependencies between actions and 
other actions (such as common in multi-engagement, multi-SLA settings), as well 
as global (optimal) outcomes compared to local (optimal) outcomes become too 
complex. In other words, in complex settings with multiple engagements and cor-
responding independent SLAs, multiple ‘independent’ control loops on the basis of 
SLI predictions may interfere with each other in an uncontrolled manner. The under-
lying optimization problem(s) we refer to here is related to the decision making of 
the operational aspects of the underlying system; in particular, to optimize the adher-
ence to SLA requirements under the constraints of feasibility of such actions and the 
seamless orchestration of the different parts of the system. Solving the whole prob-
lem as one optimization problem to find the ‘global’ optimal solution is often com-
putationally intractable for realistic-sized instances. Nevertheless, our problem here 
has a particular structure that has been studied in the operations research literature 



and efficient solution procedures/algorithms have been successfully proposed for 
solving it. The structure we are referring to can be described as follows: We have 
multiple optimization problems that are independent/separable except for linking 
variable(s), i.e., decision variables/actions that exist in many/all problems and cause 
them to have some overlap, leading to the aforementioned problem; a local opti-
mal solution for each problem separately is not necessarily the global optimal solu-
tion for the whole problem. Rather than solving one considerable intractable global 
problem, some approaches have been proposed to use this structure and solve the 
problem more efficiently. The most notable of these approaches is the ‘Dantzig-Wolf 
decomposition approach/algorithm (cf. Vanderbeck and Savelsbergh 2006). It has 
been successfully applied to multiple domains and applications, such as production 
planning (e.g., Wu et al. 2020), stochastic capacity planning problems (e.g., Singh 
et al. 2009), and logistics/routing problems (e.g., Petersen et al. 2008). To the best of 
our knowledge, it has not been applied to a SLA context like our research challenge 
here, and thus, there is a clear interesting research direction here of applying it to 
this challenge.

Secondly, with the currently available SLA formalisms, it is difficult to model 
feedback loops, i.e., a situation where the outcome of an action can indirectly influ-
ence a corresponding predictor. This problem, again, resembles a class of problems 
in the stochastic operations research literature, sometimes referred to as ‘stochastic 
programs with decision-dependent uncertainty’ (e.g., Goel and Grossmann 2006). 
Another opportunity here, therefore, is applying some of the advances in this area to 
solve this second limitation.

Consequently, assuming that the semantic heterogeneity between different SLIs 
and KPIs can be overcome as described in Research Challenge 1 (cf. Sect. 4.1), the 
question arises as to how one can provide a general framework and/or formalism for 
SLA management that facilitates the identification and provision of relevant predic-
tions for SLIs from all available data (i.e., including both SLIs and metrics local 
to the SLA at hand, but also SLIs from other SLAs as well as operational KPIs) 
under consideration of the expected downstream impact of subsequent actions on 
the operational layer reflected in operational KPIs and the predictions of the same, 
or other, SLIs. Moreover, such a general framework or formalism for SLI prediction 
should provide a means for integrating contextual information in model learning 
(e.g., Márquez-Chamorro et al. 2020). This holds especially true in service chains, 
where each ‘link/service’ has its own context.

For instance, in the context of Scenario 2 it may be desirable to establish SLA-
aware coordinated elasticity management (cf. Müller et al. 2016; Muñoz-Escoí and 
Bernabéu-Aubán 2017) such that the elastic models and rules of each service could 
be aligned to optimize a more fluid global operation. We could assume an elastic 
behavior in each component that analyzes the overall operation and allocates the 
optimal amount of resources to provide a given service at a point in time. For exam-
ple, to drive SLA-driven elasticity of service infrastructures, a rule-based frame-
work to orchestrate the service delivery as proposed in Müller et al. (2016) could 
be employed. In this case, predictions on SLA compliance regarding service avail-
ability inform the elasticity management component. However, for the case where 
resources are shared among different departments and providing different services 



(such as, for instance, a centralized database, storage system or network backbone), 
a more sophisticated strategy for resolving these inter-dependencies across resources 
and engagement-specific SLAs may need to be modeled due to the possible interfer-
ence of prescribed actions stemming from different engagement-specific policies.

Analogous to the above described example regarding service elasticity, in Sce-
nario 1, the AIOps solution at A makes decisions about triaging and routing of inci-
dents. In this case, human-staffed incident response teams represent the resources 
that are to be ‘elastically’ managed. In the context of such human-supported ser-
vices, an elastic and dynamic model that takes into account the SLAs to create and 
manage the team commitments that will deliver the service as proposed in Fernán-
dez et al. (2015), could be employed. If the deployment of team commitments, how-
ever, has side effects such as altering the predictions of outcomes for different tasks 
of involved team members, then the currently available formalisms for modeling 
those inter-dependencies quickly reach their limits.

4.3  Research challenge 3: end‑to‑end prescriptive SLA analytics

First, we note that given the resemblance between service chains and physical sup-
ply chains, there is a research direction/opportunity to leverage the comprehensive 
literature on physical supply chain planning and optimization when prescribing 
actions in service chains. Optimization and operations research work has been done 
for physical supply chains management and planning for decades (cf. Huan et  al. 
2004; Ayyildiz and Gumus 2021; Kouvelis et al. 2006; Hassini 2008; Stadtler 2008; 
Chopra et al. 2013). Additionally, relevant work done on such systems under uncer-
tainty has picked attention more recently (cf. Peidro et al. 2009; Morteza and Kuan 
2012; Lee 2014).

In addition, recent multidisciplinary research results at the interface of the fields 
of operations research and machine learning strongly suggest that the flow of infor-
mation between SLA management systems and operational processes needs to be 
bidirectional: When predicting SLA compliance and/or related time series, it is 
important to train the corresponding ML models for prediction in a way that takes 
into account the characteristics of the actual task control and planning problem that 
is subsequently being addressed on the operational level (cf. Donti et  al. 2017). 
In other words, instead of solving the prediction problem separately and using its 
output independently in a task optimization model that recommends the optimal 
actions, the two problems should be solved simultaneously with the goal of finding 
and focusing on the relevant data to a task optimization model that does the recom-
mendation of the optimal actions.

For instance, let us consider how different routing decisions by the AIOps solu-
tion in Scenario 1 may affect the outcome of SLA compliance and the correspond-
ing penalties to be paid by A. The ‘traditional’ approach to optimizing those deci-
sions would be to use predictions regarding SLA compliance stemming from ML 
models that have been simply trained for overall prediction accuracy. In other words, 
the training objective of these models would be to maximize the number of accu-
rately predicted SLA compliance events. Let us assume that the actual optimization 



objective of the AIOps solution at A is to minimize overall operational cost for 
A, including (but not limited to) the accumulated cost from penalties. Let us fur-
ther assume that there are ten different potential SLA non-compliance events with 
associated penalties, where the penalty of one (the first) of them is more expensive 
than the penalties of the other nine non-compliance events combined. After model 
training solely with the objective of maximizing the average prediction accuracy, a 
trained ML model Model

1
 might—by chance - not correctly predict the first (expen-

sive) event, but correctly predict the remaining nine (less expensive) events. Such 
Model

1
 would show high overall prediction accuracy (90%). Now let us consider 

another model Model
2
 that predicts the first event correctly, but fails to predict the 

other nine events. While Model
2
 has only 10% overall prediction accuracy, due to 

the uneven distribution of penalties among the non-compliance events, it would 
actually perform better in the optimization context where the ultimate goal is to keep 
total costs low. Clearly, Model

2
 should be used instead of Model

1
 , but it can only 

be selected as the ‘better model’ by the SLA analytics system if it ‘knew’ that the 
goal is to keep the cost down, and how much cost the different SLA non-compli-
ance events would cause, during the training phase of the prediction model. In other 
words, the SLA analytics system needs to receive information from the AIOps solu-
tion about the goals of the underlying optimization task, as well as any data points 
that are necessary to appropriately weigh the non-compliance events for model 
training (e.g., current exchange rates if some penalties are paid in foreign currency).

We argue that to enable such end-to-end learning between operational processes 
and SLA analytics, there is a need to devise general frameworks that facilitate the 
bidirectional exchange of the information necessary to train predictive models on 
the SLA analytics level under consideration of the specifics of the subsequent opti-
mization tasks on the operational level. For example, a corresponding framework 
could provide a means for supplying parameters and data points to SLA analytics 
systems for adjusting loss functions used during the training of predictive models. 
However, it should be noted that the above-described approach of end-to-end learn-
ing is an active area of research, and significantly more sophisticated approaches can 
and should be considered (e.g., Elmachtoub et al. 2020; El Balghiti et al. 2019).

4.4  Research challenge 4: federation of SLA analytics across service chains

We envision that hypothetical solutions to Research Challenges 2 and 3 (cf. 
Sects. 4.2 and 4.3) would allow organizations to jointly optimize local (or locally 
controlled inter-organizational) operational processes while considering overall 
organization-local multi-engagement SLA compliance. However, in today’s com-
plex inter-organizational service chains, the scope of such optimization efforts may 
be expanded across organizational boundaries with the goal of optimizing the entire 
service chain with these objectives. While the topic of digital supply chain integra-
tion has been well studied in current literature (e.g., Korpela et al. 2017), to the best 
of our knowledge prior works in this field have not investigated deep integration 
of digital supply chains with current SLA management approaches (as well as pre-
scriptive SLA analytics according to Research Challenge 3), and in particular their 



federation. This has the potential to allow for the simultaneous optimization of inter-
organizational operational processes considering the overall multi-engagement SLA 
compliance across the service chain. Hence, we suggest that suppliers who are situ-
ated ‘deeper’ in a service chain could help enable better prescriptive SLA analytics 
in the subsequent stages of the chain by providing them with insights from their 
own predictive SLA analytics models. For instance, if we consider again the exam-
ple of service elasticity in the context of Scenario 2, as service chains can grow and 
span departments and even organizations, it may be necessary to coordinate elastic-
ity across the entire service chain while considering the set of SLAs involved. Since 
SLA management systems may be distributed across the service chain, their respec-
tive insights from SLA analytics need to be shared across the service chain as well.

This proposed federation model for SLA analytics may be particularly feasible 
and useful in situations where multiple departments of a larger, decentralized organ-
ization operate independent SLA management systems, but work towards a com-
mon goal (e.g., in the context of one-stop shop system designs). For example, in 
Scenario 2, the SLA management system of Dept. A may realize that Service A2 is 
about to miss the monthly availability SLO at a particular point in time in the future. 
By propagating this insight to the SLA management system at the service govern-
ance committee, the ability of the respective predictive SLA analytics models to pre-
dict compliance levels for the citizen SLA at that point in the service chain might 
increase significantly.

Taking this idea even further, it may prove useful to not only share operational 
data and SLA analytics insights across organizations, but also predictive/prescrip-
tive ML models (or aspects thereof) themselves. In other words, sharing of ‘expe-
rience’ on the level of ML models regarding the ability to predict SLA outcomes 
could further be leveraged to improve the overall business outcome of a service 
chain. For instance, some operational KPIs relate to objects or processes that are 
shared across entire supply chains (cf. Wetzstein et al. 2009) rather than local opera-
tional processes (e.g., time series representing the trend of the temperature of refrig-
erated goods over time). In these settings, SLA management systems at any point in 
the service chain may benefit from knowledge from their collaboration partners in 
the form of ML models on how to predict future values of such time series such that 
their own predictive/prescriptive analytics models can be improved. In  situations 
where either actual data points or ML models3 should not be shared across organiza-
tions for confidentiality reasons, privacy-preserving federated learning technologies 
as proposed in Truex et al. (2019) can help protect confidential business information 
while using data from multiple different organizations for model training.

As an example, in the context of Scenario 2 a predictive model could be trained 
in each device running the citizen app, so the system could predict the expected 
behavior of a given user; those models could be then aggregated in an anonymized 
fashion to produce a general predictive model of the expected load for the whole 
set of citizens in a certain period. Consequently, the load prediction model could 
then be shared across the chain using federated learning technologies for guiding 

3 ML models may inadvertently leak detailed information about training data (cf. Nasr et al. 2019).



the elasticity rules that will be used to govern the service deployments so that they 
can be ready to attend and react to the expected loads—without compromising the 
privacy of individual citizens. Note that the aforementioned example in the context 
of Scenario 2 can be regarded as a variation of the IaaS/PaaS/SaaS coordination 
problem for SLA-aware elasticity management introduced in Sect. 2.3: The different 
layers of the service chain are managed by different organizations and require shared 
knowledge about anticipated usage spikes on the SaaS level to enable efficient and 
effective SLA-aware resource elasticity management on the PaaS and IaaS levels.

5  Conclusion

In this paper, we presented our vision of supplying online AI-supported SLA analyt-
ics to the core workflows of organizations involved in complex AI-enabled service 
chains with highly customized, bilateral SLAs. We exemplified the need for improv-
ing operational efficiency under multi-engagement SLA awareness by describing 
two scenarios derived from real use cases in industry and public administration cor-
responding to both human-supported services and software services. We presented 
four specific research challenges, motivated by the dual role of AI technologies in 
the problem at hand, and grounded in the current state of the art of AI techniques 
and SLA management: (i) Devising methods for fine-grained semantic alignment 
between SLIs and operational KPIs to have a consistent description of metrics 
across different SLAs and operational systems in complex multi-engagement scenar-
ios; (ii) Developing general frameworks for providing predictive insights from SLA 
analytics to core operational processes under multi-engagement SLA conditions; 
(iii) Establishing bi-directional flow of information for enabling truly prescriptive
SLA analytics based on ML models that are trained with the actual planning and
control tasks in mind; and (iv) Enabling the federation of SLA analytics across
inter-organizational service chains to enable optimization on a supply chain-level
rather than on an intra-organizational level. These four research challenges repre-
sent increasingly comprehensive approaches to AI-enabled operational process opti-
mization under multi-engagement SLA awareness. While the latter three of these
research challenges can be tackled independently, the first (i.e., semantic alignment
of SLIs with operational KPIs) is foundational to the latter three, and, hence, needs
to be the starting point for realizing the vision presented in this paper. In addition,
it could be interesting to analyze how the potential environmental conditions in a
real setting (different regulations, cultural challenges, etc.) have an impact on the
vision; as an example, privacy regulations across regions would affect how an inter-
national service chain would implement the flow of sensitive data across organiza-
tional boundaries.

It is important to highlight an intrinsic limitation derived from the visionary 
nature of the current work: the presented scenarios and challenges are derived from 
an argumentative analysis and our past subjective experience over real scenarios. 
From this perspective, there is no certainty that our arguments prove to be valid in 
all practical situations or scenarios. In contrast, those challenges are to be seen as 
exploration areas and our discussion over them as potential hints to find appropriate 



solutions or frameworks to address the challenges. Nevertheless, we envision that 
novel technical and organizational approaches stemming from the aforementioned 
research challenges can potentially enable a comprehensive global view of the trade-
offs between overall operational efficiency across inter-organizational service chains 
and on-point SLA compliance across multiple individual partner engagements with 
heavily customized SLAs. Such a comprehensive global view could in turn lead to 
unprecedented levels of operational efficiency in such dynamically managed, com-
plex business environments.
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