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Graph-Theoretic Approach for Self-Testing in Bell Scenarios
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Self-testing is a technology to certify states and measurements using only the statistics of the exper-
iment. Self-testing is possible if some extremal points in the set BQ of quantum correlations for a Bell
experiment are achieved, up to isometries, with specific states and measurements. However, BQ is diffi-
cult to characterize, so it is also difficult to prove whether or not a given matrix of quantum correlations
allows for self-testing. Here, we show how some tools from graph theory can help to address this prob-
lem. We observe that BQ is strictly contained in an easy-to-characterize set associated with a graph,�(G).
Therefore, whenever the optimum over BQ and the optimum over �(G) coincide, self-testing can be
demonstrated by simply proving self-testability with �(G). Interestingly, these maxima coincide for the
quantum correlations that maximally violate many families of Bell-like inequalities. Therefore, we can
apply this approach to prove the self-testability of many quantum correlations, including some that are not
previously known to allow for self-testing. In addition, this approach connects self-testing to some open
problems in discrete mathematics. We use this connection to prove a conjecture [M. Araújo et al., Phys.
Rev. A, 88, 022118 (2013)] about the closed-form expression of the Lovász theta number for a family of
graphs called the Möbius ladders. Although there are a few remaining issues (e.g., in some cases, the proof
requires the assumption that measurements are of rank 1), this approach provides an alternative method to
self-testing and draws interesting connections between quantum mechanics and discrete mathematics.
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I. INTRODUCTION

A. Self-testing in Bell scenarios

Quantum systems render a distinct advantage over
classical systems in many quantum information
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processing tasks. Spurred by this observation, there
has been a rapid development of quantum technolo-
gies with potentially new real-world communication and
computation applications. We have also recently wit-
nessed “quantum supremacy” [1,2] and early hints of
the quantum internet [3]. With the increasing impor-
tance of quantum technologies, it becomes pertinent to
develop tools for certifying, verifying, and benchmark-
ing quantum devices with minimal assumptions regard-
ing their inner working mechanisms [4]. This is a
challenging task due to the exploding dimensionality of
the Hilbert space associated with many-body quantum
systems.
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In the classical system, any certification requires trusted
measurement devices. However, for quantum systems, it is
possible to provide certification with untrusted measure-
ment devices. This relaxation in the requirement is yet
another quantum advantage over classical systems. Such
a device certification is called self-testing [5]. The idea
of self-testing is to certify the underlying quantum states
and measurement settings based solely on the measure-
ment statistics. We do not need to trust the state nor the
measurement device in self-testing, whereas conventional
verification needs to trust either the measurement device or
the state [6]. Self-testing was initially put forward for Bell
nonlocal correlations. The concept has since been extended
to any prepare-and-measure scenarios [7,8], contextuality
[9,10], and steering [11–13]. Self-testing has also been
applied to quantum gates and circuits [14,15]. A great
amount of work has also been done in making self-testing
protocols robust against experimental noise [16–19]. For
example, while Mayers and Yao [5] considered the noise-
less case for Clauser-Horne-Shimony-Holt (CHSH) self-
testing, McKague et al. [16] extended it to the noisy case.
Hayashi and Hajdušek [20] proposed a blended scheme,
juxtaposing the CHSH test and the stabilizer test. The
blended version has a better noise tolerance than the CHSH
test. McKague [21] proposed a robust self-testing method
for graph states. There, the number of required copies
increases with order O(n22), where n is the number of
qubits of one graph state. To improve the scaling, Hayashi
and Hajdušek [20] proposed another self testing method
for the same setting with O(n4 log n) copies. Furthermore,
Hayashi and Koshiba [22] proposed a robust self-testing
protocol for Greenberger-Horne-Zeilinger (GHZ) states.
Self-testing with Bell states of higher dimensions has been
studied in Refs. [23,24]. In Ref. [25], the tripartite Mermin
inequality was used for robust self-testing of the three-
party GHZ state. Robust self-testing protocols based on
chained Bell inequalities have been investigated in Ref.
[11]. Comprehensive studies have been carried out for self-
testing of a single quantum device based on contextuality
[9,10] and via computational assumptions [26]. The idea
of self-testing has been used for device-independent ran-
domness generation [11,27–29], entanglement detection
[30,31], delegated quantum computing [32,33], and in sev-
eral computational complexity proofs, such as the recent
breakthrough result of MIP* = RE [34]. For a thorough
review of self-testing, see Ref. [35].

B. An interesting observation

The crucial observation that motivates this work is the
following: given a Bell scenario, a set of quantum corre-
lations, BQ, is difficult to characterize [36]. Consequently,
it is also difficult to prove whether or not a given matrix
of quantum correlations allows for self-testing. To address
this problem, we focus on the uniqueness of the solution

of semidefinite programming. We consider the maximiza-
tion of a linear function using semidefinite matrices under
linear constraints. When the solution of the dual prob-
lem is nondegenerate, the solution of the primal problem
is unique [37]. Because of this property, when a state
achieves the maximum value of the above semidefinite
programming, the state is guaranteed to be unitarily equiv-
alent to a certain state. Hence, if the set of quantum
correlations, BQ, realizes the above linear constraints, it
also realizes a self-testing method.

To find such a set of quantum correlations BQ, we focus
on its exclusivity graph. That is, we employ the theta body
[38] of the graph of exclusivity Gex(V, E) of all the events
of the scenario, where V is the set of vertices and E is the
set of edges. The vertices in Gex(V, E) represent the events
produced in the scenario [39]. The edges in Gex(V, E) con-
nect the nodes corresponding to mutually exclusive events.
Using the normalization conditions, every Bell nonlocality
witness can be written as S =∑wipi, where wi > 0 and pi
are probabilities of events. Therefore, S can be associated
with a vertex-weighted graph (G, w) where weights corre-
spond to the wi and G is an induced subgraph of Gex(V, E)
[39]. The quantum maximum of S must be in the theta body
of G, a set which is even easier to characterize, as G is a
subgraph of Gex(V, E). Therefore, for the cases where the
quantum maximum of a Bell nonlocality witness is equal
to the maximum of the theta body of G, one can prove the
self-testing of the Bell inequality by analyzing the theta
body of G.

Interestingly, these cases have high relevance within
the landscape of Bell inequalities, as they include the
quantum correlations maximally violating many families
of Bell and Bell-like inequalities, including the CHSH
Bell inequality [40], all chained Bell inequalities [41,42],
all Svetlichny inequalities to detect true n-body nonsep-
arability [43,44], all Mermin-Ardehali-Belinskiı̆-Klyshko
Bell inequalities [45–47], all Bell inequalities associated
with all-versus-nothing proofs and producing fully non-
local correlations [48,49], all Bell inequalities for graph
states [50–52], Abner Shimony (AS) Bell inequalities [53],
and Bell inequalities obtained from Kochen-Specker sets
[54].

C. Structure of the paper

The paper is organized as follows. In Sec. II, we review
some concepts from different areas used within the arti-
cle. In Sec. III, we detail the assumptions and present our
results. In Sec. IV, we apply the graph-theoretic approach
to some test cases. Specifically, we discuss the CHSH,
chained, Mermin, and AS Bell inequalities. Application to
the case of chained Bell inequalities allows us to prove a
conjecture made in Ref. [67], and application to the AS
Bell inequalities allows us to identify new quantum cor-
relations, allowing for self-testing. In Sec. V, we compare
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our results with existing results. In Sec. VII, we summarize
our results and point out some remaining issues and open
problems. In addition, some technical details are discussed
in several appendices.

II. PRELIMINARY CONCEPTS

A. The graph of exclusivity framework

A measurement, M , together with its outcome, a, is
called a measurement event (or event for brevity) and
denoted (a|M ). Two events, ei and ej , are mutually exclu-
sive (or exclusive for brevity) if there exists a measurement
M such that ei and ej correspond to different outcomes of
M . To any set of events {ei}N

i=1, we associate a simple undi-
rected graph Gex = ([N ], E), where [N ] refers to the set
{1, 2, . . . , N }. This graph, referred to as the graph of exclu-
sivity, has vertex set [N ] and two vertices i, j are adjacent
(denoted i ∼ j ) if the corresponding events ei and ej are
exclusive.

We now consider theories that assign probabilities to
events. A behavior for Gex is a mapping p : [N ] → [0, 1],
such that pi + pj ≤ 1 for all i ∼ j , where we denote p(i)
by pi. Here, the non-negative scalar pi ∈ [0, 1] encodes
the probability that event ei occurs. The linear constraint
pi + pj ≤ 1 enforces that if pi = 1 then pj = 0.

Behavior p : [N ] → [0, 1] is deterministic noncontex-
tual if all events have predetermined binary values (0 or
1) that do not depend on the occurrence of other events. In
other words, a deterministic noncontextual behavior p is
a mapping p : [N ] → {0, 1}, such that pi + pj ≤ 1 for all
i ∼ j . A deterministic noncontextual behavior can be con-
sidered a vector in R

N . The convex hull of all deterministic
noncontextual behaviors is called the set of noncontextual
behaviors, denoted PNC(Gex). The set PNC(Gex) is a poly-
tope with its vertices being the deterministic noncontextual
behaviors. Behaviors that do not lie in PNC(Gex) are called
contextual. It is worth mentioning that, in combinatorial
optimization, one often encounters the stable set polytope
of a graph Gex, STAB(Gex) (see Definition 9 in Appendix
A). It is quite easy to see that stable sets of Gex (a subset
of vertices, where no two vertices share an edge between
them) and noncontextual behaviors coincide.

Lastly, behavior p : [N ] → [0, 1] is called quantum
behavior if there exists a quantum state |ψ〉 and projectors
�1, . . . ,�N acting on a Hilbert space H such that

pi = 〈ψ |�i|ψ〉 for all i ∈ [N ] and tr(�i�j ) = 0

for i ∼ j . (1)

We refer to the ensemble |ψ〉, {�}N
i=1 as a quantum real-

ization of behavior p . The set of all quantum behaviors is
a convex set, denoted PQ(Gex). It turns out that PQ(Gex)

is also a well-studied entity in combinatorial optimiza-
tion, namely the theta body, denoted �(Gex) and formally
defined in Definition 14 in Appendix A.

Now, suppose that we are interested in the maximum
value of the sum S = w1p1 + w2p2 + · · · + wN pN , where
wi ≥ 0 are weights for i ∈ [N ] and

1. p ∈ PNC(Gex) is a noncontextual behavior (see
Definition 10 in Appendix A); in this case, the max-
imum (henceforth referred to as the classical bound)
is given by the independence number of the ver-
tex weighted graph of exclusivity, α(Gex, w), that
is, the size of the largest clique in the complement
graph, where w refers to the N -dimensional vector
of non-negative weights;

2. p ∈ PQ(Gex) is a quantum behavior; in this case,
the maximum (henceforth referred to as the quan-
tum bound) is given by the Lovász theta number of
the vertex weighted graph of exclusivity, ϑ(Gex, w),
defined by the semidefinite program (SDP)

ϑ(Gex, w) = max
N∑

i=1

wiXii (2a)

such that Xii = X0i for all i ∈ [N ], (2b)

Xij = 0 for all i ∼ j , (2c)

X00 = 1, X ∈ S
1+N
+ , (2d)

where S
1+N
+ denotes positive semidefinite matrices of size

(N + 1)× (N + 1). From the definition of the theta body
and Lemma 4 (see Appendix A), one can note that pi = Xii
for all i ∈ [N ].

Proofs of the above statements follow quite straightfor-
wardly from the definitions and were first observed in Ref.
[39]. The Gram-Schmidt decomposition of matrix X cor-
responding to Eq. (2) gives the quantum realization for
the underlying behavior p [9] (see Appendix A for the
definition of the Gram-Schmidt decomposition). Note that,
for a fixed X , its different Gram-Schmidt decompositions
are related to one another via isometry.

Definition 1 (Noncontextuality inequality): For a given
graph of exclusivity Gex, a noncontextuality inequality
corresponds to a half space that contains the set of non-
contextual behaviors, i.e.,

∑

i

wipi ≤ α(Gex, w) for all p ∈ PNC(Gex), (3)

and wi ≥ 0 for all i ∈ [N ].
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B. The CHSH experiment in the graph of exclusivity
framework

In the CHSH Bell experiment, an arbitrator generates
two maximally entangled quantum systems and transmits
them to two spatially separated parties: Alice and Bob.
Alice has two measurement settings, x = 0 and x = 1, and
Bob has likewise two measurement settings, y = 0 and
y = 1. These local measurements are binary observables,
each having outcomes, say 0 and 1. Each party (Alice
and Bob) measures in every round in either the 0 or the
1 setting. The selections of settings made by each party
must be random and independent of those of the other
party. Let (a, b|x, y) represent the event where Alice mea-
sures in setting x, Bob measures in setting y, and they
get a ∈ {0, 1} and b ∈ {0, 1}, respectively. Let the prob-
ability of the corresponding event be p(a, b|x, y). There
are sixteen different events corresponding to all possible
combinations of inputs and outputs. They repeat this exer-
cise a considerable enough times, once they are finished,
to determine the probabilities of these events.

In the CHSH test, eight out of the sixteen events are
of relevance, as one is interested in maximizing the Bell
witness given by

SCHSH = p(0, 0|0, 0)+ p(1, 1|0, 1)+ p(1, 0|1, 1)

+ p(0, 0|1, 0)+ p(1, 1|0, 0)+ p(0, 0|0, 1)

+ p(0, 1|1, 1)+ p(1, 1|1, 0). (4)

Note that the aforementioned witness necessitates Alice
and Bob to output the same answers unless they are both
asked x = y = 1. In cases where they are asked x = y = 1,
they should give opposite answers. The graph of exclusiv-
ity corresponding to these eight events is shown in Fig. 1,
and is denoted Ci8(1, 4). The weights on each of the ver-
tices is 1 and thus the weight vector is an eight-dimensional
all-1 vector. Note that α[Ci8(1, 4)] = 3 and, thus, the clas-
sical bound of SCHSH ≤ 3. However, ϑ[Ci8(1, 4)] = 2 +√

2 ≈ 3.414 (see Ref. [39]), and therefore the quantum
bound of SCHSH ≤ 2 + √

2.

C. Self-testing

Bell inequalities are special instances of noncontex-
tuality inequalities. Consider an n-partite Bell scenario,
characterized by a number n of distant observers or parties,
their respective measurement settings, and their possible
outcomes. Suppose that party j possesses kj different set-
tings with Kj different outcomes for each measurement. In
such a scenario, one can compute the probability of a par-
ticular string of outcomes given a string of measurements,
that is, p[a1, a2, . . . , an|x1, x2, . . . , xn], where aj ∈ [Kj ] and
xj ∈ [kj ] for all j ∈ [n]. We use the notation �a to refer to
the n-tuple string a1, a2, . . . , an. Similarly, we use �x for the
measurement settings. An n-partite Bell inequality is of the

FIG. 1. Induced subgraph (of the 16-vertex graph of exclusiv-
ity of the events in the CHSH scenario) corresponding to the
eight events involved in the expression of the Bell witness given
by Eq. (4). This graph is called the eight-vertex circulant graph
(1, 4) and is denoted Ci8[1, 4] (see Definition 7 in Appendix A for
a definition of circulant graphs), and is isomorphic to the Möbius
ladder graph of order 2.

form
∑

�a,�x
s�a
�x p[�a|�x] ≤ SL (5)

for some coefficients s�a
�x and where SL is the largest possible

value allowed in local hidden variable (LHV) models [68].
The quantum supremum of the Bell expression, i.e., the
left-hand side of Eq. (5), denoted SQ, is the largest possible
value of the above expression when p[�a|�x] ranges over the
set of quantum behaviors, i.e.,

p[�a|�x] = 〈ψ |
n⊗

j =1

M j
aj |xj

|ψ〉 (6)

for a shared quantum state |ψ〉 ∈ H1 ⊗ H2 ⊗ · · · ⊗ Hn

and quantum projective measurements {M j
aj |xj

} acting on
Hj for all j ∈ n. We collectively refer to the state and the
set of measurements that reproduce the quantum behavior
as a quantum realization.
Definition 2 (Bell self-testing): The quantum supremum
SQ of a Bell inequality is a self-test for the realization
(|ψ〉, {M j

aj |xj
}j ) if, for any other realization (|ψ〉′, {M ′j

aj |xj
})

that also attains SQ, there exists a local unitary V = V1 ⊗
V2 ⊗ · · · ⊗ Vn and an ancilla state |junk〉 such that

V|ψ ′〉 = |junk〉 ⊗ |ψ〉,

V
( n⊗

j =1

M ′j
aj |xj

)

|ψ ′〉 = |junk〉 ⊗
( n⊗

j =1

M j
aj |xj

)

|ψ〉. (7)

030344-4



GRAPH-THEORETIC APPROACH FOR SELF-TESTING... PRX QUANTUM 3, 030344 (2022)

D. Concepts from semidefinite programs

Definition 3 (Semidefinite programs): A pair of primal
and dual SDPs is given by an optimization problem of the
form

sup
X

{〈C, X 〉 : X ∈ Sn
+, 〈Ai, X 〉 = bi (i ∈ [m])}, (8)

inf
y,Z

{ m∑

i=1

biyi :
m∑

i=1

yiAi − C = Z ∈ Sn
+

}

, (9)

where C, Ai (for all i ∈ [m]) are Hermitian n × n matrices
and b ∈ C

m.
We have introduced the primal formulation of the

Lovász theta SDP (2). The dual formulation for Eq. (2) is
given by

min
{

t
∣
∣
∣
∣ tE00 +

n∑

i=1

(λi − 1)Eii −
n∑

i=1

λiE0i

+
∑

i∼j

μij Eij ≡ Z � 0
}

, (10)

where Eij = (eieT
j + ej eT

i )/2. We make crucial use of the
following theorem due to Alizadeh et al. [37, Theorem 4]
to show that the optimizer of Eq. (2) is unique.

Theorem 1 (Ref. [37]): Let Z∗ be a dual optimal and non-
degenerate solution of a semidefinite program. Then there
exists a unique primal optimal solution for that SDP.

The notion of dual nondegeneracy is given by the
following definition.
Definition 4 (Dual nondegeneracy): Let Z∗ be an opti-
mal dual solution, and let M be any symmetric matrix. If
the homogeneous linear system

MZ∗ = 0, (11)

tr(MAi) = 0 for all i ∈ [m], (12)

only admits the trivial solution M = 0, then Z∗ is said to
be dual nondegenerate.

A key ingredient for proving the results in this paper is
the following lemma.

Lemma 1 (Ref. [9]): Let X ∗ be the unique optimal
solution for the primal, and let {|ui〉〈ui|}n

i=0 be a quan-
tum realization achieving the maximum quantum value
of
∑n

i=1 wipi : p ∈ Pq(Gex). Then the noncontextuality
inequality

∑n
i=1 wipi ≤ Bnc(Gex, w) for all p ∈ Pnc(Gex) is

a self-test for the realization {|ui〉〈ui|}n
i=0.

III. RESULTS

We are given a Bell inequality of the form (5). We con-
sider the set of events p[�a|�x] such that s�a

�x �= 0. We index
this set by i and denote the corresponding event as ei.
Then we can write the Bell witness as B =∑i wipi with
wi > 0 and pi = p(ei). In addition, we are given a quantum
realization (|ψ〉, {M j

aj |xj
}j ) (let us call this the reference

system) that achieves the quantum supremum SQ of B. Let
(Gex, w) be the weighted graph capturing the weights {wi}
and mutual exclusivity relationships among the events {ei}
in B.

A. Assumptions

We enforce two sets of assumptions. The first one is the
following.

Assumption 1: (i) It holds that SQ = ϑ(Gex, w).
(ii) The Lovász theta SDP (2) corresponding to (Gex, w)

has a unique maximizer. This is a consequence of (i) for
the scenarios of interest in this paper.

We consider two types of sets of indices, I and
I0 = I ∪ {0}. We consider the matrix Xij := 〈ψ |�j�i|ψ〉,
where �i is a projection and �0 is the identity operator.
We set n := |I|. Assumption 1(ii) means that the following
SDP has a unique solution:

ϑ(Gex, w) = max
∑

i∈I
wiXii (13a)

such that Xii = X0i for all i ∈ [n], (13b)

Xij = 0 for all i ∼ j , (13c)

X00 = 1, X ∈ S
1+n
+ . (13d)

The second set of assumptions depends on the scenario
under study, so we detail them in each of the scenarios
discussed.

B. Results

Our results can be summarized in several theorems
(Theorems 2, 3, 4, and 5 below).

1. Bipartite case

Suppose that the unique optimal maximizer X ∗ = (Xij )

is given by ηiηj 〈vj , vi〉 with the following. For i =
(iA, iB) ∈ I ,

vi = aiA ⊗ biB , (14)

where aiA ∈ HA = C
dA , biB ∈ HB = C

dB . Also, for sim-
plicity, aiA and biB are assumed to be normalized and
ηi > 0. Now, we consider a state |ψ ′〉 on H′

A ⊗ H′
B, and
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projections �A
iA and �B

iB on H′
A and H′

B. Here, when iA =
i′A (iB = i′B) for i �= i′, �A

iA = �A
i′A

(�B
iB = �B

i′B
). Then, we

define the projection �i := �A
iA ⊗�B

iB ,
In the following, we discuss how the state |ψ ′〉 is locally

converted to |ψ〉 when the vectors �i|ψ ′〉 realize the opti-
mal solution in SDP (13). We define |v′

i〉 := η−1
i �i|ψ ′〉.

First, we consider the case that the ranks of the pro-
jections �A

iA and �B
iB are one. We introduce the following

conditions.

(A1) The set {vi}i∈I0 of vectors spans the vector space
HA ⊗ HB.

(A2) There exists a subset IB of indices of the space HB
with |IB| = dB = dimHB and dB sets {IA,iB}iB∈IB of
indices of the space HA |IA,iB | = dA = dimHA to
satisfy the following (B1)–(B4) conditions.

(B1) We have
⋃

iB∈IB
IA,iB × {iB} ⊂ I .

(B2) The set {biB}iB∈IB spans the space HB.
(B3) The set {aiA}iA∈IA,iB

spans the space HA for any iB ∈
IB.

(B4) We define the graph on IB in the following way.
The node iB ∈ IB is connected to i′B ∈ IB when the
following two conditions hold.

(B4-1) The relation 〈biB , bi′B〉 �= 0 holds.
(B4-2) The relation IA,iB ∩ IA,i′B �= ∅ holds.

Note that this refers not to an exclusivity graph but
to another graph defined on the nodes iB.

In the two-qubit case if the set {vi}i∈I of vectors contains
the following four vectors then the conditions (A1) and
(A2) hold:

a0 ⊗ b0, a1 ⊗ b0, a0 ⊗ b1, a2 ⊗ b1, (15)

with a0 �= a1, a2, 〈b0, b1〉 �= 0.
Under the above conditions and the rank-1 condition,

the following theorem guarantees the existence of local
isometries to realize the desired structure.

Theorem 2: Assume that the optimal maximizer given in
Eq. (14) satisfies conditions (A1) and (A2) and that the vec-
tors (�i|ψ ′〉)i∈I realize the optimal solution in SDP (13).
In addition, the ranks of the projections �A

iA and �B
iB are

assumed to be one. Then there exist isometries VA from HA
to H′

A and VB from HB to H′
B such that

VA ⊗ VB|ψ〉 = |ψ ′〉, (16)

VA ⊗ VB|vi〉 = |v′
i〉, (17)

for i ∈ I .

Proof. See Appendix E 1. �

Now we consider the general case. In addition to (A1)
and (A2), we assume the following conditions.

(A3) Ideal systems HA and HB are two dimensional.
(A4) Each system has only two measurements. That

is, the set ĪA (ĪB) of all indices of the space HA (HB)
is composed of four elements. For any element iA ∈ ĪA
(iB ∈ ĪB), there exists an element i′A ∈ ĪA (i′B ∈ ĪB) such
that 〈aiA |ai′A〉 = 0 (〈biB |bi′B〉 = 0).

When conditions (A3) and (A4) hold, ĪA (ĪB) is written
as BA,0 ∪ BA,1 (BB,0 ∪ BB,1), where BA,j = {(0, j ), (1, j )}
[BB,j = {(0, j ), (1, j )}] and 〈a(0,j )|a(1,j )〉 = 0 (〈b(0,j )|b(1,j )〉
= 0) for j = 0, 1.

We also consider the following condition for �i =
�A

iA ⊗�B
iB .

(C1) When iA, i′A ∈ ĪA (iB, i′B ∈ ĪB) satisfy 〈aiA |ai′A〉 = 0
(〈biB |bi′B〉 = 0), we have �A

iA +�A
i′A

= I (�B
iB +�B

i′B
= I ).

Then, we have the following extension of Theorem 2
without the rank-1 condition under the above additional
conditions.

Theorem 3: Assume that the optimal maximizer given
in Eq. (14) satisfies conditions (A1)–(A4), the vectors
(�i|ψ ′〉)i∈I realize the optimal solution in SDP (13), and
that condition (C1) holds. Then there exist isometries VA
from HA ⊗ KA to H′

A and VB from HB ⊗ KB to H′
B such

that

VA ⊗ VB|ψ〉 ⊗ |junk〉 = |ψ ′〉, (18)

VA ⊗ VB|vi〉 ⊗ |junk〉 = |v′
i〉, (19)

for i ∈ I , where |junk〉 is a state on KA ⊗ KB.

Proof. See Appendix E 1 a. �

2. Tripartite case

We assume that the unique optimal maximizer X ∗ =
(Xij ) is given by ηiηj 〈vj , vi〉 with the following. For i =
(iA, iB, iC) ∈ I ,

vi = aiA ⊗ biB ⊗ ciC , (20)

where aiA ∈ HA = C
dA , biB ∈ HB = C

dB , ciC ∈ HC =
C

dC . Also, for simplicity, aiA , biB , and ciC are assumed
to be normalized and ηi > 0. Now, we consider a state
|ψ ′〉 on H′

A ⊗ H′
B ⊗ H′

C, and projections �A
iA , �B

iB , �C
iC on

H′
A, H′

B, and H′
C. Then, we define the projection �i :=

�A
iA ⊗�B

iB ⊗�B
iC .
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In the following, we discuss how state |ψ ′〉 is locally
converted to |ψ〉 when the vectors �i|ψ ′〉 realize the opti-
mal solution in SDP (13). We define |v′

i〉 := η−1
i �i|ψ ′〉.

We consider the case in which the ranks of the pro-
jections �A

iA , �B
iB , and �C

iC are one. We introduce the
following conditions.

Definition 5: Three distinct elements i, j , k ∈ I are called
linked when the following two conditions hold.

(C1) The relations 〈vi, vk〉 �= 0, 〈vi, vj 〉 �= 0, and 〈vj , vk〉
�= 0 hold.

(C2) Vectors vi, vj share a ti,j th common element for
ti,j ∈ {A, B, C}. Other components of vi, vj are different.
That is, when ti,j = A, iA = jA, iB �= jB, and iC �= jC.
Vectors vi, vk share a ti,kth common element for ti,k ∈
{A, B, C} \ {ti,j }. Vectors vj , vk share a tj ,kth common ele-
ment for tj ,k ∈ {A, B, C} \ {ti,j , ti,k}. In this case, there exist
elements xA, x′

A, xB, x′
B, xC, x′

C such that i, j , k ∈ {xA, x′
A} ×

{xB, x′
B} × {xC, x′

C}.

In addition, two distinct elements xA, x′
A for index of the

vectors of C
dA are called connected when there exist three

linked elements i, j , k ∈ I such that the first components
of i, j , k ∈ I are xA, x′

A.
For iB, iC, we use the notation

ψ(iB,iC) := biB ⊗ ciC . (21)

Then, we introduce the following conditions for the opti-
mal maximizer given in Eq. (20).

(A5) The vectors {vi}i∈I0 span the vector space HA ⊗
HB ⊗ HC.

(A6) There exists a subset IA of indices of the space
HA with |IA| = dA and dA sets IBC,iA for iA ∈ IA of
indices of the space HB ⊗ HC to satisfy the following
conditions. The set {aiA}iA∈IA spans the space HA. The
set {ψiBC}iBC∈IBC,iA

spans the space HB ⊗ HC and I0 =
⋃

iA∈IA
({iA} × IBC,iA). We consider the graph GA with the

set IA of vertices such that the edges are given as the pair of
all connected elements in IA in accordance with Definition
5. The graph GA is not divided into two disconnected parts.

(A7) The vectors {biB ⊗ ciC}(iB,iC)∈
⋃

iA∈IA
IBC,iA

satisfy
condition (A2) by substituting ciC into aiA . That is, there
exist a subset IB of the second indices and subsets IC,iB
of the third indices such that they satisfy conditions
(B1)–(B4). We denote the graph defined in this condition
by GB.

Under the above conditions and the rank-1 condition,
the following theorem guarantees the existence of local
isometries to realize the desired structure in the tripartite
case.

Theorem 4: Assume that the optimal maximizer given in
Eq. (20) satisfies conditions (A5)–(A7) and that the vectors
(�i|ψ ′〉)i∈I realize the optimal solution in SDP (13). In
addition, the ranks of the projections �A

iA , �B
iB , and �C

iC
are assumed to be one. Then there exist isometries VA from
HA to H′

A, VB from HB to H′
B, and VC from HC to H′

C such
that

VA ⊗ VB ⊗ VC|ψ〉 = |ψ ′〉, (22)

VA ⊗ VB ⊗ VC|vi〉 = |v′
i〉, (23)

for i ∈ I .

Proof. See Appendix E 2 a. �
Now we consider the general case. We define |v′

i〉 :=
η−1

i �A
iA ⊗�B

iB ⊗�C
iC |ψ ′〉. Let ĪA, ĪB, ĪC be the sets of

indices of the spaces HA,HB,HC.
We introduce other conditions for the optimal maxi-

mizer given in Eq. (20) as a generalization of (A3) and
(A4).

(A8) Ideal systems HA, HB, and HC are two dimen-
sional.

(A9) Each system has only two measurements. That is,
the sets ĪA, ĪB, and ĪC are composed of four elements.
For any element iA ∈ ĪA (iB ∈ ĪB, iC ∈ ĪC), there exists an
element i′A ∈ ĪA (i′B ∈ ĪB, i′C ∈ ĪC) such that 〈aiA |ai′A〉 = 0
(〈biB |bi′B〉 = 0, 〈ciC |ci′C〉 = 0).

When (A3) and (A4) hold, ĪA (ĪB, ĪC) is written
as BA,0 ∪ BA,1 (BB,0 ∪ BB,1, BC,0 ∪ BC,1), where BA,j =
{(0, j ), (1, j )} [BB,j = {(0, j ), (1, j )},BC,j = {(0, j ), (1, j )}]
and 〈a(0,j )|a(1,j )〉 = 0 (〈b(0,j )|b(1,j )〉 = 0, 〈c(0,j )|c(1,j )〉 = 0)
for j = 0, 1.

We also consider the following condition for �i =
�A

iA ⊗�B
iB ⊗�C

iC .

(C1) When iA, i′A ∈ ĪA (iB, i′B ∈ ĪB, iC, i′C ∈ ĪC) satisfy
〈aiA |ai′A〉 = 0 (〈biB |bi′B〉 = 0, 〈ciC |ci′C〉 = 0), we have�A

iA +
�A

i′A
= I (�B

iB +�B
i′B

= I , �C
iC +�C

i′C
= I ).

Then, we have the following extension of Theorem 4
without the rank-1 condition under the above additional
conditions.

Theorem 5: Assume that the optimal maximizer given in
Eq. (20) satisfies conditions (A5)–(A9) and that the vectors
(�i|ψ ′〉)i∈I realize the optimal solution in SDP (13). Then
there exist isometries VA from HA ⊗ KA to H′

A, VB from
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HB ⊗ KB to H′
B, and VC from HC ⊗ KC to H′

C such that

VA ⊗ VB ⊗ VC|ψ〉 ⊗ |junk〉 = |ψ ′〉, (24)

VA ⊗ VB ⊗ VC|vi〉 ⊗ |junk〉 = |v′
i〉, (25)

for i ∈ I , where |junk〉 is a state on KA ⊗ KB ⊗ KC.

Proof. See Appendix E 2 b. �

IV. TEST CASES

Here, we apply our techniques to the CHSH, chained,
Mermin, and AS Bell inequalities; see Table I.

A. CHSH self-testing

Self-testing is known to hold for the maximum quan-
tum violation of the CHSH inequality [5]. Here, we
study the CHSH inequality in the graph of exclusivity
framework [39].

Recall that the graph of exclusivity corresponding to the Bell witness given by Eq. (4) is given by the Ci8(1, 4) graph (see
Fig. 1). We claim that the optimal solution to dual (10) for Ci8(1, 4) is given by

ZCHSH =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 + √
2 −1 −1 −1 −1 −1 −1 −1 −1

−1 1 h 0 0 k 0 0 h
−1 h 1 h 0 0 k 0 0
−1 0 h 1 h 0 0 k 0
−1 0 0 h 1 h 0 0 k
−1 k 0 0 h 1 h 0 0
−1 0 k 0 0 h 1 h 0
−1 0 0 k 0 0 h 1 h
−1 h 0 0 k 0 0 h 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (26)

where k = 3 − 2
√

2 and h = 2 − √
2. The Lovász theta SDP has zero duality gap, that is, the primal optimal solution

and optimal dual solution yields the same program value. It can be easily verified that Eq. (26) is a feasible solution to
Eq. (10) for the graph Ci8(1, 4). The dual solution (26) achieves 2 + √

2 and is thus dual optimal. In order to show the
uniqueness of the primal optimal, we show that ZCHSH is nondegenerate. This requires us to show that M = 0 is the only
symmetric 9 × 9 matrix satisfying Eqs. (11) and (12) corresponding to the Lovász theta SDP. That is, the linear system

M00 = 0, M0i = Mii, Mij = 0 for all i ∼ j , MZ∗ = 0 (27)

has a unique solution M = 0. Barring the MZ∗ = 0 constraint, the rest of the constraints already guarantee that several
entries of M must be zeros. Thus, the M matrix has the form

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 m1 m2 m3 m4 m5 m6 m7 m8

m1 m1 0 m9 m15 0 m20 m23 0
m2 0 m2 0 m10 m16 0 m21 m24

m3 m9 0 m3 0 m11 m17 0 m22

m4 m15 m10 0 m4 0 m12 m18 0
m5 0 m16 m11 0 m5 0 x13 m19

m6 m20 0 m17 m12 0 m6 0 m14

m7 m23 m21 0 m18 m13 0 m7 0
m8 0 m24 m22 0 m19 m14 0 m8

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (28)

It can be easily checked that the only solution to the system of linear equations M × ZCHSH = 0 is M = 0.
The optimal solution for primal (2) is given by
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TABLE I. Summary of test cases. This table summarizes what
theorem guarantees the self-testing for each Bell inequality.
Some of our results assume the rank-1 condition, i.e., the pro-
jection operator is assumed to be rank 1. The column “Rank 1”
shows the requirement for this condition.

Inequality Approach Rank 1

CHSH Theorem 3 No
Mermin Theorem 5 No
Chained Bell inequality Theorem 2 Yes
AS Theorem 2 Yes

PCHSH =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 χ χ χ χ χ χ χ χ

χ χ 0 1
2χ ξ 0 ξ 1

2χ 0
χ 0 χ 0 1

2χ ξ 0 ξ 1
2χ

χ 1
2χ 0 χ 0 1

2χ ξ 0 ξ

χ ξ 1
2χ 0 χ 0 1

2χ ξ 0
χ 0 ξ 1

2χ 0 χ 0 1
2χ ξ

χ ξ 0 ξ 1
2χ 0 χ 0 1

2χ

χ 1
2χ ξ 0 ξ 1

2χ 0 χ 0
χ 0 1

2χ ξ 0 ξ 1
2χ 0 χ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (29)

where χ = (2 + √
2)/8 and ξ = (1 + √

2)/8. The config-
urations corresponding to the primal optimal matrix PCHSH
correspond to different Gram decompositions of PCHSH
and are related to each other via global isometry. A quan-
tum realization is achieved with the two-qubit maximally
entangled state |ψ〉 = (1/

√
2, 0, 0, 1/

√
2)T and the vectors

corresponding to the eight projective measurements given
by

|v1〉 = |A1,0〉 ⊗ |B1,1〉, (30a)

|v2〉 = |A0,0〉 ⊗ |B1,0〉, (30b)

|v3〉 = |A0,1〉 ⊗ |B0,1〉, (30c)

|v4〉 = |A1,0〉 ⊗ |B0,0〉, (30d)

|v5〉 = |A1,1〉 ⊗ |B1,0〉, (30e)

|v6〉 = |A0,1〉 ⊗ |B1,1〉, (30f)

|v7〉 = |A0,0〉 ⊗ |B0,0〉, (30g)

|v8〉 = |A1,1〉 ⊗ |B0,1〉, (30h)

where the kets corresponding to the local measurements
are given by

|A0,0〉 = (1, 0)T,

|A0,1〉 = (0, −1)T,

|A1,0〉 = (a, a)T,

|A1,1〉 = (a, −a)T,

|B0,0〉 = (c, d)T,

|B0,1〉 = (d, −c)T,

|B1,0〉 = (c, −d)T,

|B1,1〉 = (−d, −c)T,

with a = 1/
√

2, c = cos(π/8), and d = sin(π/8).
For the CHSH case, the vector vi corresponds to |vi〉.

The dimension of the canonical realization is 4 with d1 =
d2 = 2. The CHSH inequality satisfies conditions (A1) and
(A2), which can be checked by choosing the vectors in
Eq. (15) as

a0 = |A0,0〉, a1 = a2 = |A0,1〉, (31)

b0 = |B0,0〉, b1 = |B1,0〉. (32)

Moreover, the local measurements for the CHSH case sat-
isfy conditions (A3), (A4), and (C1) as well. Thus, the
CHSH case satisfies all the conditions for Theorem 3,
which implies that there exist isometries VA from HA ⊗ KA
to H′

A and VB from HB ⊗ KB to H′
B such that

VA ⊗ VB|ψ〉 ⊗ |junk〉 = |ψ ′〉, (33)

VA ⊗ VB|vi〉 ⊗ |junk〉 = |v′
i〉, (34)

for i ∈ I , where |junk〉 is a state on KA ⊗ KB.
Therefore, any two tensored realizations attaining the

maximum quantum violation of the CHSH inequality are
related via local isometries.

B. Mermin self-testing

Here, we examine the case of Mermin’s Bell inequality
for three parties [45]. As detailed in Appendix C, the Bell
witness of this inequality includes 16 events. Their graph
of exclusivity, denoted GM , is shown in Fig. 2.

The primal optimal for the SDP corresponding to the
quantum violation of the Mermin inequality for three
parties is given by

PMermin =
[

1 aeT
16

ae16 aI16 + bEGM

]

∈ R
(17×17), (35)

where a = 0.25, b = 0.125, e16 is the all one column
vector of size 16, EGM

is the adjacency matrix of the com-
plement of GM , and I16 is the identity matrix of size 16. The
proof of the uniqueness of the primal optimal PMermin is
trivially similar to the CHSH case. The quantum state and
measurement settings can be obtained via Gram decompo-
sition of PMermin. A quantum realization is achieved with
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FIG. 2. Graph of exclusivity of the 16 events in the Bell wit-
ness (C5) of the Mermin inequality. Here, Z and X are denoted 0
and 1, respectively, while −1 and 1 are denoted 0 and 1, respec-
tively. We refer to this graph as GM . It is the complement of the
Shrikhande graph [69].

the three-qubit GHZ state |u0〉 = (|000〉 + |111〉)/√2 and
the projective measurements

|u1〉 = |Z〉 ⊗ |P〉 ⊗ |P〉,
|u2〉 = |O〉 ⊗ |M 〉 ⊗ |P〉,
|u3〉 = |O〉 ⊗ |P〉 ⊗ |M 〉,
|u4〉 = |Z〉 ⊗ |M 〉 ⊗ |M 〉,
|u5〉 = |P〉 ⊗ |Z〉 ⊗ |P〉,
|u6〉 = |M 〉 ⊗ |O〉 ⊗ |P〉,
|u7〉 = |M 〉 ⊗ |Z〉 ⊗ |M 〉,
|u8〉 = |P〉 ⊗ |O〉 ⊗ |M 〉,
|u9〉 = |P〉 ⊗ |P〉 ⊗ |Z〉,

|u10〉 = |M 〉 ⊗ |M 〉 ⊗ |Z〉,
|u11〉 = |M 〉 ⊗ |P〉 ⊗ |O〉,
|u12〉 = |P〉 ⊗ |M 〉 ⊗ |O〉,
|u13〉 = |O〉 ⊗ |O〉 ⊗ |O〉,
|u14〉 = |Z〉 ⊗ |Z〉 ⊗ |O〉,
|u15〉 = |Z〉 ⊗ |O〉 ⊗ |Z〉,
|u16〉 = |O〉 ⊗ |Z〉 ⊗ |Z〉,

where |Z〉 = |0〉, |O〉 = |1〉, |P〉 = (|0〉 + |1〉)/√2, and
|M 〉 = (|0〉 − |1〉)/√2. This quantum realization achieves
the quantum bound of the Bell witness [given by Eq. (C5)
in Appendix C], i.e., 4, which is equal to the Lovász theta
number of GM (Fig. 2). The local bound is 3 and is equal
to the independence number of GM . We can check that
local measurement settings for the tripartite Mermin case

satisfy conditions (A5)–(A7) as follows. In this example,
aO, bO, cO means |O〉. This notation is applied to Z, P, M .

We choose the subset IA := {O, P}. We then have

IBC,O = {(O, O), (Z, Z), (M , P), (P, M )}, (36)

IBC,P = {(Z, P), (P, Z), (O, M ), (M , O)}. (37)

Two elements O, P ∈ IA are connected in the sense
given at the end of Definition 5 by choosing {i, j , k} =
{(P, Z, P), (O, Z, Z), (O, M , P)}. Based on Eqs. (36) and
(37), we choose the subsets IB, IC,Z , and IC,P as

IB := {Z, P}, IC,Z := {Z, P}, IC,P := {Z, M }.
(38)

The subsets IB, IC,Z , and IC,P satisfy conditions
(B1)–(B4). The Mermin case satisfies conditions (A8) and
(A9) in addition to conditions (A5)–(A7). In short, it satis-
fies all requirements of Theorem 5. Thus, given the vectors
(�i|ψ ′〉)i∈I that realize the optimal solution in SDP (13),
there exist isometries VA from HA ⊗ KA to H′

A, VB from
HB ⊗ KB to H′

B, and VC from HC ⊗ KC to H′
C such that

VA ⊗ VB ⊗ VC|ψ〉 ⊗ |junk〉 = |ψ ′〉, (39)

VA ⊗ VB ⊗ VC|vi〉 ⊗ |junk〉 = |v′
i〉, (40)

for i ∈ I , where |junk〉 is a state on KA ⊗ KB ⊗ KC.
Since PMermin is a Gram matrix of vectors |u0〉, |u1〉, . . . ,

|u16〉, the rank of PMermin is equal to the dimension of the
span of |u0〉, |u1〉, . . . , |u16〉. As it turns out, the rank of
PMermin is 7. Thus, a seven-dimensional configuration can
achieve the maximal violation of the Mermin inequality.
We append a seven-dimensional configuration correspond-
ing to PMermin in Appendix D. In the tripartite Bell scenario,
one obtains maximal violation of the Mermin inequality
using three qubits and thus a Hilbert space of dimen-
sion eight. This is purely because the seven-dimensional
state cannot be realized as a tensor product of three two-
dimensional subsystems. Moreover, as one expects, the
dimension of the span of the measurement settings in
the tensored case, i.e., dim(span(|u0〉, |u1〉, . . . , |u16〉)), is
still 7.

The graph GM is the complement of the Shrikhande
graph [69]. Since the Shrikhande graph is vertex transitive,
it implies that GM is also vertex transitive. We observe that
there is a unique behavior in QSTAB(GM ) (see Definition 16
in Appendix A) that achieves α�(GM ). Moreover, by ver-
tex transitivity in the theta body, we also observe that there
is a unique behavior that achieves ϑ(GM ).
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C. Self-testing chained Bell inequalities

The chained Bell inequalities [41,42] are defined for the
bipartite Bell scenario with N dichotomic measurements
per party. In terms of correlations between the observables
of Alice and Bob, the chained Bell inequality for N settings
is given by

I Bell
N = 〈A1B2〉 + 〈A5B4〉 + · · · + 〈A3B2〉 + 〈A3B4〉

+ 〈A2N−1B2N 〉 − 〈A1B2N 〉
≤LHV 2N − 2. (41)

Here, “LHV” indicates that the local hidden variable bound
is 2N − 2. The observables Ai and Bj , measured by Alice
and Bob, respectively, have outcomes 1 or −1. The cor-
relation terms 〈AiBj 〉 denote the expectation value of the
product of outcomes for Ai and Bj . The maximum quantum
value of I Bell

N is 2N cos(π/2N ).
Suppose that Alice measures Ax on her particle and

obtains a. Similarly, assume that Bob measures By on
his particle and obtains b. The probability for the afore-
mentioned event is denoted P(a, b|x, y). We can use these
probabilities to re-express the correlations as

〈AiBj 〉 = 2P(1, 1|i, j )+ 2P(−1, −1|i, j )− 1, (42)

−〈AiBj 〉 = 2P(1, −1|i, j )+ 2P(−1, 1|i, j )− 1. (43)

Using Eqs. (42) and (43), we can re-express the inequality
in Eq. (41) as

I CSW
N = P(1, 1|1, 2)+ P(−1, −1|1, 2)+ P(1, 1|3, 2)

+P(−1, −1|3, 2)+ · · · + P(1, 1|2N −1, 2N )

+ P(−1, −1|2N − 1, 2N )+ P(1, −1|1, 2N )

+ P(−1, 1|1, 2N )

≤LHV N − 1, (44)

where CSW means Cabello-Severini-Winter. The graph
of exclusivity for the events in I CSW

N is Ci4N (1, 2N ) and
is isomorphic to the Möbius ladder graph of order 4N .
The independence number of Ci4N (1, 2N ) is 2N − 1. The
Lovász theta number, however, remains unknown and has
been conjectured [67,70] to be equal to

ϑ(Ci4N (1, 2N )) = N
[

1 + cos
(
π

2N

)]

. (45)

D. Proof of the conjecture of Araújo et al.

Here, we prove that the above conjecture is correct
by simple semidefinite programming duality arguments.
Moreover, we recover Bell self-testing statements for the

chained Bell inequalities for arbitrary N . For the purposes
of the proof, we introduce the matrix

Z�N =
⎡

⎣
N/l −eT

4N

−e4N lAC4N +
[

I2N f I2N
f I2N I2N

]
⎤

⎦

× ∈ R
(4N+1)×(4N+1), (46)

where e4N denotes the all-1s column vector of length
4N , k = cos(π/2N ), f = (1 − k)/(1 + k), l = 1/(1 + k),
AC4N is the adjacency matrix of the cycle graph C4N , and
I2N is a 2N × 2N identity matrix.

Lemma 2: It holds that Z�N � 0.

Proof. Taking the Schur complement of Z�N with respect to
its top left entry, we have

Z�N � 0 ⇐⇒ MN − l
N

e4N eT
4N � 0, (47)

where

MN = lAC4N +
[

I2N f I2N
f I2N I2N

]

.

To prove that Z�N is positive semidefinite, it remains to
show that the eigenvalues of MN − (l/N )e4N eT

4N are non-
negative. Note that e4N is a common eigenvector of MN
and e4N eT

4N as both matrices have the property that the sum
of the entries across a row is a constant. Hence, it suffices
to compute all the eigenvalues of MN . The eigenvalues of
a circulant matrix are well characterized. �

Fact 1: The eigenvalues of the circulant matrix

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c0 cn−1 . . . c2 c1
c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2
. . . . . . cn−1

cn−1 cn−2 . . . c1 c0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(48)

are given by

λj = c0 + cn−1ω
j + cn−2ω

2j + · · · + c1ω
(n−1)j ,

j = 0, 1, . . . , n − 1, (49)

where ω = exp(2π i/n) is the nth root of unity.

Note that matrix MN is a circulant matrix with n =
4N , c0 = 1, c1 = l, c2N = f , cn−1 = l, and ci = 0 for i /∈
{0, 1, 2N , n − 1}. Therefore, its eigenvalues are given by
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λj = 1 + l(ωj + ω(n−1)j )+ f ω2Nj for j = 0, 1, . . . , n − 1.
Simplifying this, we obtain

λj =

⎧
⎪⎨

⎪⎩

1 − f + 2l cos
π j
2N

if j is odd,

1 + f + 2l cos
π j
2N

if j is even.
(50)

When j is even, the minimum eigenvalue is when j = 2N ,
for which

λ2N = 1 + f − 2l = 1 + 1 − k
1 + k

− 2
1 + k

= 0. (51)

When j is odd, the minimum eigenvalue is when j = 2N −
1, for which

λ2N−1 = 1 − f + 2l cos
(
(2N − 1)π

2N

)

= 1 − f − 2l cos
(
π

2N

)

= 1 − f − 2lk

= 1 − 1 − k
1 + k

− 2k
1 + k

= 0. (52)

Finally, note that the eigenvalue of MN corresponding to
the eigenvector e4N is 1 + 2l + f . Whereas (l/N )e4N eT

4N
is a rank-1 matrix with eigenvector e4N with eigenvalue
(l/N )× 4N = 4l. Therefore, the eigenvalue of MN −
(l/N )e4N eT

4N corresponding to the eigenvector e4N is
1 + 2l + f − 4l = 1 + f − 2l = 1 + (1 − k)/(1 + k)− 2/
(1 + k) = 0. The rest of the eigenvalues of MN −
(l/N )e4N eT

4N are the same as those of MN and are non-
negative as shown above. Hence, all the eigenvalues are
non-negative.

Claim 1: The dual optimal corresponding to optimization
program (10) for Ci4N (1, 2N ) is Z�N (Eq. (46)).

Proof. We need to show that

1. Z∗
N is dual feasible for the program in Eq. (10).

2. Z�N corresponds to the dual optimal value.

To show feasibility, we need to show that Z�N is of form
(10), that is, Z�N = tE00 +∑n

i=1(λi − 1)Eii −∑n
i=1 λiE0i +∑

i∼j μij Eij . This is indeed true for the following choice of
values: t = N/l, λi = 2 for i = 1, 2, . . . , 4N and μij = 2l
whenever i and j share an edge in C4N , and μij = 2f for
|i − j | = 2N . Finally, using Lemma 2, we have Z�N � 0.

Using the measurement settings for chained Bell
inequalities in Ref. [67], one obtains the output of the pri-
mal SDP (2) for I CSW

N equal to N [1 + cos(π/2N )]. Strong

duality for SDP (2) implies that Z�N corresponds to the dual
optimal value. �

The proof of the uniqueness of the primal optimal is sim-
ilar to the proof corresponding to n-cycle graphs in Ref.
[9]. Chained Bell inequalities satisfy conditions (A1) and
(A2), and this can be checked by choosing the vectors in
Eq. (15) as follows:

a0 = |A1 = 1〉, a1 = |A3 = 1〉, a2 = |A2N−1 = −1〉,
b0 = |B2 = 1〉, b1 = |B2N = −1〉.

(53)

Here, |A1 = 1〉 expresses the eigenvector of A1 with eigen-
value 1. This notation applies to other observables. The
optimal maximizer given in Eq. (14) satisfies conditions
(A1) and (A2) and the vectors (�i|ψ ′〉)i∈I realize the opti-
mal solution in SDP (13). In addition, the ranks of the
projections �A

iA and �B
iB are assumed to be one. Thus, due

to Theorem 2, there exist isometries VA from HA to H′
A and

VB from HB to H′
B such that

VA ⊗ VB|ψ〉 = |ψ ′〉, (54)

VA ⊗ VB|vi〉 = |v′
i〉, (55)

for i ∈ I . This completes the proof of self-testability for
the chained Bell inequalities for rank-1 projectors.

Since Z�N corresponds to the dual optimal value, we
have ϑ(Ci4N (1, 2N )) = N [1 + cos(π/2N )] as conjectured
in Ref. [70].

E. AS self-testing

The AS Bell inequalities [53] refer to a bipartite Bell
scenario with an even number n of measurement settings
per party. Each measurement has two outcomes. It can be
written as

Asn =
∑

i+j<n

〈AiBj 〉 −
∑

i+j =n

min{i − 1, j − 1}〈AiBj 〉

LHV≤ n(n + 2)
4

. (56)

By taking into account the facts that

〈AiBj 〉 = 2[P(0, 0|i, j )+ P(1, 1|i, j )] − 1, (57)

−〈AiBj 〉 = 2[P(0, 1|i, j )+ P(1, 0|i, j )] − 1, (58)

Eq. (56) can be rewritten as

Ac
sn

=
∑

i+j<n

[P(0, 0|i, j )+ P(1, 1|i, j )]

+
∑

i+j =n

min{i − 1, j − 1}[P(0, 1|i, j )+ P(1, 0|i, j )]

LHV≤ n(n + 1)
2

. (59)
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For example, for the case n = 4,

Ac
s4

= P(0, 0|0, 0)+ P(1, 1|0, 0)+ P(0, 0|0, 1)

+ P(1, 1|0, 1)+ P(0, 0|0, 2)+ P(1, 1|0, 2)

+ P(0, 0|0, 3)+ P(1, 1|0, 3)+ P(0, 0|1, 0)

+ P(1, 1|1, 0)+ P(0, 0|1, 1)+ P(1, 1|1, 1)

+ P(0, 0|1, 2)+ P(1, 1|1, 2)+ P(0, 0|1, 3)

+ P(1, 1|1, 3)+ P(0, 0|2, 0)+ P(1, 1|2, 0)

+ P(0, 0|2, 1)+ P(1, 1|2, 1)+ 2[P(0, 0|2, 2)

+ P(1, 1|2, 2)] + P(0, 0|3, 0)+ P(1, 1|3, 0)

+ P(0, 0|3, 1)+ P(1, 1|3, 1). (60)

The (vertex-weighted) graph of exclusivity of the 26
events in Eq. (60) is shown in Fig. 3 and has α(G, w) = 10,
ϑ(G, w) = 7 + 5

√
6/3, and α∗(G, w) = 14. Note that the

vertex weight is 2 for events [0, 0|2, 2] and [1, 1|2, 2] and 1
otherwise. We have

|w1〉 = |A0〉 ⊗ |A0〉, |w2〉 = |B0〉 ⊗ |B0〉, (61a)

|w3〉 = |A0〉 ⊗ |A1〉, |w4〉 = |B0〉 ⊗ |B1〉, (61b)

|w5〉 = |A0〉 ⊗ |A2〉, |w6〉 = |B0〉 ⊗ |B2〉, (61c)

|w7〉 = |A0〉 ⊗ |A3〉, |w8〉 = |B0〉 ⊗ |B3〉, (61d)

|w9〉 = |A1〉 ⊗ |A0〉, |w10〉 = |B1〉 ⊗ |B0〉, (61e)

|w11〉 = |A1〉 ⊗ |A1〉, |w12〉 = |B1〉 ⊗ |B1〉, (61f)

|w13〉 = |A1〉 ⊗ |A2〉, |w14〉 = |B1〉 ⊗ |B2〉, (61g)

|w15〉 = |A1〉 ⊗ |A3〉, |w16〉 = |B1〉 ⊗ |B3〉, (61h)

|w17〉 = |A2〉 ⊗ |A0〉, |w18〉 = |B2〉 ⊗ |B0〉, (61i)

|w19〉 = |A2〉 ⊗ |A1〉, |w20〉 = |B2〉 ⊗ |B1〉, (61j)

|w21〉 = |A2〉 ⊗ |A2〉, |w22〉 = |B2〉 ⊗ |B2〉, (61k)

|w23〉 = |A3〉 ⊗ |A0〉, |w24〉 = |B3〉 ⊗ |B0〉, (61l)

|w25〉 = |A3〉 ⊗ |A1〉, |w26〉 = |B3〉 ⊗ |B1〉. (61m)

The violation of the Bell inequality Ac
s4

can achieve
ϑ(G, w) by choosing as the initial state

|s〉 = cos t(|00〉 − |11〉)+ sin t(|01〉 − |10〉), (62)

and as local measurements

Ai = |m(αi)〉, Bi = |m(π/2 + αi)〉 (63)

FIG. 3. Vertex-weighted graph of exclusivity for the events in
the Bell inequality As4 in Eq. (60). There are 26 events. Black
nodes represent vertices with weight 2 in Eq. (60) and white
nodes represent vertices with weight 1.

with i = 0, 1, 2, 3, m(α) = cosα|0〉 + sinα|1〉, and

α0 = 0, α1 = arcsin
(

1√
6

)

(64a)

α2 = 1
2

(

π − arctan
(
√

5
√

145
8

+ 77
8

))

, (64b)

α3 = 1
2

(

π − arctan
(

48

√
2

275
√

145 + 3317

))

, (64c)

t = 1
8

(

α2 + 2α4 − π

2

)

. (64d)

The primal optimal for the SDP corresponding to the quan-
tum violation of Ac

s4
can be obtained by the state and

measurement directions given in Eqs. (62)–(64). Here, we
omit its full expression, as it is straightforward, albeit
lengthy and complex. The proof of the uniqueness of the
primal optimal is similar as in previous cases.

The local projective measurements satisfy conditions
(A1) and (A2), which can be checked by choosing the
vectors in Eq. (15) as

a0 = |A2 = 0〉, a1 = a2 = |A3 = 0〉,
b0 = |B0 = 0〉, b1 = |B1 = 0〉. (65)

Here, |A1 = 1〉 expresses the eigenvector of A1 with eigen-
value 1. This notation is applied to other observables. The
optimal maximizer given in Eq. (14) satisfies conditions
(A1) and (A2) and the vectors (�i|ψ ′〉)i∈I realize the opti-
mal solution in SDP (13). In addition, the ranks of the
projections �A

iA and �B
iB are assumed to be one. Therefore,
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due to Theorem 2, there exist isometries VA from HA to H′
A

and VB from HB to H′
B such that

VA ⊗ VB|ψ〉 = |ψ ′〉, (66)

VA ⊗ VB|vi〉 = |v′
i〉, (67)

for i ∈ I . This completes the proof of self-testability for
the Ac

s4
Bell inequality for rank-1 projectors.

V. COMPARISON WITH EXISTING
SEMIDEFINITE PROGRAMMING APPROACHES

The importance of semidefinite programming for study-
ing the set of quantum correlations for Bell experiments
was stimulated by Tsirelson’s work [55] and developed in
Refs. [36,56]. Most studies rely on the Navascués-Pironio-
Acín (NPA) hierarchy of SDPs.

The first important observation is that the theta body of
G defined before is not one of the levels of the NPA hier-
archy [36]. See Appendix B for an overview of the NPA
hierarchy. The NPA hierarchy includes the no-signaling
and normalization conditions, which induce linear con-
straints in the corresponding SDPs. The aforementioned
linear constraints are absent in the maximization over the
theta body of G. Note that, e.g., the all-zero behavior
(0, 0, . . . , 0, 0, 0) belongs to the theta body, but it is not in
any of the levels of NPA hierarchy since it does not satisfy
the normalization constraints.

The relevance of the theta body for the study of quantum
correlations was pointed out in Ref. [39]. Graph-theoretic
techniques to study sets of quantum correlations have also
been used in Refs. [57,58]. Regarding self-testing, the
techniques in Ref. [39] have been used to provide robust
self-testing schemes in the framework of noncontextu-
ality inequalities tested in experiments with sequential
measurements on indivisible systems [9].

The second important observation is that, in contrast to
existing methods of studying self-testing in Bell scenar-
ios, which rely on the NPA hierarchy (e.g., Refs. [59–65])
and where semidefinite programming is used to get robust-
ness curves, our work uses semidefinite programming to
obtain rigorous analytical results. The only work that we
are aware of that uses semidefinite programming to get
Bell self-testing statements analytically is Ref. [66]. How-
ever, there the self-testing statements are only up to global
isometries, while here we harness linear algebra argu-
ments to provide self-testing statements up to local isome-
tries. Moreover, our approach allows us to systematically
obtain self-testing statements and allows us to establish
connections with problems in discrete mathematics.

VI. ROBUSTNESS

Since our self-testing approach is based on SDP, the
partial answer to the question regarding the robustness of

our scheme is provided by the following lemma that was
first used as a part of a proof in Ref. [9]. This lemma can
be used to bound the distance between X opt, the unique
optimal solution of SDP (13), and X , which is any ε-
suboptimal solution of the same SDP, i.e.,

∑
i∈I wiXii ≥

ϑ(Gex, w)− ε. The Frobenius norm is used as a distance
measure here, which is defined as

‖A‖F =
√

tr(AH A), (68)

where AH is the conjugate transpose of A.

Lemma 3 (Robustness): If a matrix X achieves an ε-
suboptimal value in SDP (13) and X opt is the unique
solution then we can upper bound the Frobenius-norm
distance between X opt and X as

‖X opt − X ‖F ≤ O(ε). (69)

The proof of this lemma can be found in Appendix B of
Ref. [9] under the section titled “Step 2.” Equation (B4) of
Ref. [9] therein is essentially the above lemma.

Note that this is not the complete answer to the robust-
ness question as further work is required to translate the
result at the level of measurement settings and states. Apart
from analytical approaches, one can always use numerical
methods such as SWAP [60] to analyze the robustness of our
scheme.

VII. SUMMARY AND OPEN PROBLEMS

We have shown how, by combining ideas from graph
theory and SDP, we can obtain a new perspective on the
problem of self-testing quantum states and measurements
in Bell scenarios. The motivation for our approach was the
observation that the set of quantum correlations for a Bell
scenario is difficult to characterize, while, using ideas from
Ref. [39], one can provide an easy to characterize single
SDP-based relaxation of this set. Then, by proving self-
testing for the maximizer of a Bell inequality with respect
to the aforementioned set, we furnish self-testing for the set
of quantum correlations for the underlying Bell scenario.

There is a requirement that is inherent to the method:
that the maximum quantum violation of the Bell inequality
is equal to the Lovász theta number of the correspond-
ing graph. Interestingly, this is frequently the case and the
maximum quantum violation of many fundamental Bell
and Bell-like inequalities satisfy this condition. An inter-
esting open problem though is understanding whether there
is a fundamental physical reason why this condition holds
for some Bell inequalities but not for others. At first sight,
the only reason is that, for some Bell inequalities, the con-
straints introduced by the Bell scenario (see Ref. [71, Secs.
II G and IV G] for details) do not forbid the quantum set
achieving the Lovász theta number of the corresponding G,
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while others do. In general, the simpler the Bell inequality
is, the less likely it is that the constraints of the scenario
prohibit reaching Lovász’s theta number. However, this
point may require further investigation.

Our results for bipartite and tripartite cases have been
stated as Theorems 2, 3, 4, and 5. In addition, we have
applied our techniques to quantum correlations maximally
violating the CHSH [40], chained [41,42], three-party
Mermin [45], and AS [53] Bell inequalities.

For the CHSH and tripartite Mermin Bell inequalities,
we recovered self-testing statements for projectors of arbi-
trary rank. Interestingly, for the Mermin inequality, the
rank of the primal optimal matrix is seven, indicating that
the self-testing preparation dimension can be seven (rather
than eight, which is the minimum quantum dimension to
accommodate a tripartite quantum system).

For the chained and AS Bell inequalities, we proved a
self-testing statement for local measurements represented
by rank-1 projective measurements. To our knowledge,
this is the first time that the AS inequality has been
proven to allow for self-testing. However, an open prob-
lem is whether the assumption of rank-1 projectors can be
removed. This is an interesting challenge for future work.

Arguably, the most unexpected result is the proof, using
our approach to the chained Bell inequalities, of a con-
jecture [67,70] about the closed-form expression for the
Lovász theta number for Möbius ladder graphs [72]. This
illustrates, on the one hand, that the interplay of ideas from
graph theory and quantum mechanics can be useful for
solving problems in both areas. In addition, it vindicates
the independent interest of our approach, as the standard
one based on the NPA hierarchy would not have allowed
for such a proof.

Self-testing of multipartite Bell inequalities is more
interesting and challenging than that of bipartite and tri-
partite Bell inequalities. We believe that the self-testing
statement pertaining could be recovered after additional
work using the techniques developed in this study.

To conclude, the aim of this article has been to show
that combining methods from graph theory and Bell non-
locality is useful to solving problems in both areas. In
future developments it would be interesting to apply this
approach to identify new quantum correlations allowing
for self-testing and open problems in graph theory that may
benefit from these methods, improve some of the proofs
of self-testing by removing additional assumptions, and
generalize the approach to include the effect of noise.
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APPENDIX A: GRAPH THEORY BASICS

A graph G = (V, E) consists of a set of vertices V and
edges E [73]. Two vertices are adjacent if they share an
edge between them. The complement graph Ḡ has the same
vertices as G, but its edge set is complement to set E. A
clique of a graph is a set of pairwise adjacent vertices. The
complement of a clique is a set of vertices that are pairwise
nonadjacent. A natural generalization of a graph is a hyper-
graph with generalized edges connecting more than two
vertices. These generalized edges are called hyperedges.
Definition 6 (Cyclic graph): A graph with n vertices such
that every ith vertex of the graph is connected to [(i + 1)
mod n]th and [(i − 1) mod n]th vertices is called a cyclic
graph and denoted Cn.

An elegant generalization of the concept of a cyclic
graph is the concept of a circulant graph.
Definition 7 (Circulant graph): Given a list [L] of inte-
gers, a graph with n vertices where the ith vertex is
connected to [(i + l) mod n]th and [(i − l) mod n]th ver-
tices for all l ∈ [L] is called a circulant graph and denoted
Cin[L]. We call Cin[1] a cyclic graph.
Definition 8 (Orthonormal representation of a graph
[74]): An orthonormal representation of a graph is an
assignment of unit vectors |vi〉 ∈ R

d to every vertex i ∈ V
such that

〈vi|vj 〉 = 0 for all i, j /∈ E. (A1)

We use the notation OR(G) to represent the orthonormal
representation of G.
Definition 9 (Stable set): A stable set is a set of vertices
of a graph such that no two vertices that lie in it share an
edge.
Definition 10 (Independence number): The independence
number of a graph is the cardinality of the largest stable set
of the graph. It is denoted α(G).
Definition 11 (Convex hull): The convex hull of a set A is
the smallest convex set containing A.
Definition 12 (Incidence vector): An incidence vector of
a set B ⊂ A is a vector P ∈ R

|A|
+ such that, for every i ∈ A,

Pi =
{

1 if i ∈ B,
0 otherwise.

(A2)

030344-15



KISHOR BHARTI et al. PRX QUANTUM 3, 030344 (2022)

Definition 13 (Stable set polytope): The convex hull of all
the incidence vectors of stable sets of graph G is called a
stable set polytope of the graph. It is denoted STAB(G).
Definition 14 (Theta body): Let {|v〉i} correspond to the
orthonormal representation of Ḡ. Given a unit vector |φ〉 =
(1, 0, 0, . . . , 0) ∈ R

d with only first coordinate 1 and 0
elsewhere, the theta body of graph G is defined as

�(G) = {P ∈ R
|V| : Pi = |〈ψ |vi〉|2}. (A3)

Definition 15 (Lovász theta number [74]): The Lovász
theta number ϑ(G) of a graph G is defined as

ϑ(G) = max
|φ〉,{|vi〉}

∑

i

|〈φ|vi〉|2,

where |φ〉 is a unit vector and {|vi〉} is an orthonormal rep-
resentation of graph G. Vector |φ〉 is also known as the
handle.
Definition 16 (Fractional stable set polytope): The frac-
tional stable set polytope is given by

QSTAB(G) =
{

P ∈ R
|V|+ :
∑

i∈C

Pi ≤ 1

for every clique C of graph G
}

. (A4)

Definition 17 (Fractional packing number): The frac-
tional packing of a graph G is the value of the linear
program

α∗(G) = max
{ n∑

i=1

xi : x ∈ QSTAB(G)
}

. (A5)

Definition 18 (Gram matrix and Gram decomposi-
tion): Given a set of vectors v1, v2, . . . , vk in an inner
product space, the corresponding Gram matrix is a Her-
mitian matrix X , defined via their inner products such
that Xi,j = 〈vi, vj 〉 for i, j ∈ {1, 2, . . . , n}. It is important to
note that rank X = dim span(v1, v2, . . . , vk). Decompos-
ing Gram matrix X such that X = AA† is called the Gram
decomposition of X . The rows of A are related to vi up to
isometry.
Definition 19 (Vertex-transitive graph): A graph G =
(V, E) is called vertex transitive if, given any two vertices
v1, v2 ∈ V, there exists an automorphism h from V to V
such that h(v1) = v2.

Fact 2 (Ref. [74]): For a given graph G, α(G) ≤ ϑ(G) ≤
α∗(G).

It is worthwhile to note that STAB(G) ⊆ �(G) ⊆
QSTAB(G) [75]. An alternate formulation of the theta body

of a graph G = ([n], E) is given by

�(G) = {x ∈ R
n
+|∃X ∈ S

1+n
+ , X00 = 1, Xii = X0i,

Xij = 0 for all ij ∈ E}. (A6)

Lemma 4 (Ref. [76]): We have x ∈ �(G) if and only if
there exist unit vectors d, w1, . . . , wn such that

xi = 〈d, wi〉2 for all i ∈ [n] and 〈wi, wj 〉 = 0

for ij ∈ E. (A7)

APPENDIX B: NPA HIERARCHY BASICS

In this section, we review the basics of the semidef-
inite programming hierarchy of Navascués, Pironio, and
Acin, also referred to as the NPA hierarchy. This hierarchy
provides a uniform family of semidefinite programs that
converges to the commuting measurement value of any
nonlocal game. This section has been adapted from Ref.
[77]. For the details of NPA hierarchy, we refer the reader
to Refs. [36,78]. Let us consider a Bell scenario where two
spatially separated parties receive inputs x, y = 1, 2, . . . , m
and provide outputs a, b = 1, 2, . . . , d. The resulting corre-
lation P(a, b|x, y) is called quantum if there exist a bipartite
quantum state ρ and local operators Ax

a and By
b such that

P(a, b|x, y) = tr(ρAx
a ⊗ By

b).

We denote the set of resulting correlations by Q. With-
out loss of generality, the state ρ and the measurement
operators Ax

a and By
b can be taken as pure and projective,

respectively. Consequently, the conditions for the correla-
tion P(a, b|x, y) to be quantum is recast as follows. The
condition

P(a, b|x, y) ∈ Q
holds if and only if there exist a pure bipartite quantum
stateψ and local operators Ax

a and By
b such that the relations

P(a, b|x, y) = 〈ψ |Ax
a ⊗ By

b|ψ〉,
Ax

aAx
a′ = Ax

aδa,a′ , By
bBy

b′ = By
bδb,b′

hold for any elements x, a, a′, y, b, b′. Let us define the set
Sk as consisting of the identity operator and all products of
operators Ax

a and By
b up to degree k. For example, we have

S1 = {I}
⋃

a,x

{Ax
a}
⋃

b,y

{By
b}

and

Sk+1 = Sk

⋃

i,j

{S(i)k S(j )1 }.
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Here, S(i)k is the ith element of Sk. Using the elements of Sk,
we define a moment matrix �k of order k, with elements

�
(i,j )
k = 〈ψ |(S(i)k )

†S(j )k |ψ〉. (B1)

The moment matrix �k must satisfy three different kinds of
property.

1. Linear constraints.—These constraints arise from
normalization of the measurement operators, com-
mutation of Alice’s and Bob’s operators, and their
local orthogonality properties. These constraints can
be written as

Tr[�kGl] = 0

by using some fixed suitable matrices Gl with l ∈
Gk. That is, the set {Gl}l∈Gk of linear constraints
depends on k.

2. Observable probability property.—The moment
matrix �k contains some elements that correspond to
observable probabilities. For example, a correlation
P(a, b|x, y) = 〈ψ |Ax

aBy
b|ψ〉 is recovered from �k as

follows. Since Ax
a and By

b are elements of S1 ⊂ Sk+1,
we choose i(a, x) and j (b, y) as Ax

a = Si(a,x)
1 and

By
b = Sj (b,y)

1 . Then, a correlation is recovered as the
observable probability; P(a, b|x, y) = �

i(a,x),j (b,y)
k .

3. Positive semidefinite condition.—We have �†
k = �k

and �k � 0.

Suppose that we want to determine whether a correlation
P(a, b|x, y) is quantum, is highly nontrivial. The NPA hier-
archy provides an outer relaxation of the quantum set and
thus provides a way to tackle a relaxed version of the
aforementioned membership problem for the correlation
P(a, b|x, y). The NPA hierarchy at level k for a correlation
P(a, b|x, y) is given by

Find �k (B2)

such that

�k � 0, �
†
k = �k, �

(0,0)
k = 1,

Tr[�kGl] = 0 for all l ∈ G‖,

�
i(a,x),j (b,y)
k = P(a, b|x, y) for all a, b, x, y.

Let us refer to the set of correlations P(a, b|x, y) that have
a solution �k that satisfies the above feasibility problem
(B2) at the kth level as Qk. We get a sequence of SDPs,
each of which provides a relaxation to the membership
problem, i.e., the problem of deciding whether P ∈ Q.
Since the matrix given in Eq. (B1) satisfies the condi-
tion of Qk, the relation Q ⊆ Qk holds. Also, the relation
Qk+1 ⊆ Qk holds because we have the inclusion relation

{Gl}l∈Gk ⊂ {Gl}l∈Gk+1 for linear constraints by considering
�k as a submatrix of �k+1. Even though the membership
problem is hard, the relaxations are SDPs and hence easy to
solve. Although the membership problem of Qk is a relax-
ation of the membership problem of Q, we can get a tighter
approximation of Q by increasing k.

APPENDIX C: MERMIN INEQUALITY

Mermin’s Bell inequality [45] refers to an n-partite Bell
scenario (with n ≥ 3 odd; there is also a version for n even
[46], but we do not consider it here). The interest of this
Bell inequality is based on the fact that the Bell operator

Sn = 1
2i

[ n⊗

j =1

(σ (j )x + iσ (j )z )−
n⊗

j =1

(σ (j )x − iσ (j )z )

]

, (C1)

where σ (j )x is the Pauli matrix x for qubit j , has an eigen-
state with eigenvalue 2(n−1). In contrast, for LHV and
noncontextual hidden-variable (NCHV) theories,

〈Sn〉
LHV, NCHV≤ 2(n−1)/2. (C2)

For example,

S3 = σ (1)z ⊗ σ (2)x ⊗ σ (3)x + σ (1)x ⊗ σ (2)z ⊗ σ (3)x

+ σ (1)x ⊗ σ (2)x ⊗ σ (3)z − σ (1)z ⊗ σ (2)z ⊗ σ (3)z . (C3)

Therefore, we can write (using obvious notation),

〈S3〉 = 〈ZXX 〉 + 〈XZX 〉 + 〈XXZ〉 − 〈ZZZ〉. (C4)

Then, by taking into account the facts that

〈ZXX 〉 = P(Z = X = X = 1)+ P(Z = X = −X = −1)

+ P(Z = −X = X = −1)+ P(−Z = X = X

= −1)− P(Z = X = X = −1)− P(Z = X =
−X = 1)− P(Z = −X = X = 1)− P(−Z = X

= X = 1) = 2[P(Z = X = X = 1)

+ P(Z = X = −X = −1)+ P(Z = −X

= X = −1)+ P(−Z = X = X = −1)] − 1,
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〈XZX 〉 = P(X = Z = X = 1)+ P(X = Z = −X = −1)+ P(X = −Z = X = −1)

+ P(−X = Z = X = −1)− P(X = Z = X = −1)− P(X = Z = −X = 1)

− P(X = −Z = X = 1)− P(−X = Z = X = 1)

= 2[P(X = Z = X = 1)+ P(X = Z = −X = −1)+ P(X = −Z = X = −1)

+ P(−X = Z = X = −1)] − 1,

〈XXZ〉 = P(X = X = Z = 1)+ P(X = X = −Z = −1)+ P(X = −X = Z = −1)

+ P(−X = X = Z = −1)− P(X = X = Z = −1)− P(X = X = −Z = 1)

− P(X = −X = Z = 1)− P(−X = X = Z = 1)

= 2[P(X = X = Z = 1)+ P(X = X = −Z = −1)+ P(X = −X = Z = −1)

+ P(−X = X = Z = −1)] − 1,

−〈ZZZ〉 = P(Z = Z = Z = −1)+ P(Z = Z = −Z = 1)+ P(Z = −Z = Z = 1)

+ P(−Z = Z = Z = 1)− P(Z = Z = Z = 1)− P(Z = Z = −Z = −1)

− P(Z = −Z = Z = −1)− P(−Z = Z = Z = −1)

= 2[P(Z = Z = Z = −1)+ P(Z = Z = −Z = 1)+ P(Z = −Z = Z = 1)

+ P(−Z = Z = Z = 1)] − 1,

we can rewrite 〈S3〉 as a sum of the probabilities of 16 events. That is,

〈S3〉 = 2[P(Z = X = X = 1)+ P(Z = X = −X = −1)+ P(Z = −X = X = −1)

+ P(−Z = X = X = −1)+ P(X = Z = X = 1)+ P(X = Z = −X = −1)

+ P(X = −Z = X = −1)+ P(−X = Z = X = −1)+ P(X = X = Z = 1)

+ P(X = X = −Z = −1)+ P(X = −X = Z = −1)+ P(−X = X = Z = −1)

+ P(Z = Z = Z = −1)+ P(Z = Z = −Z = 1)+ P(Z = −Z = Z = 1)

+ P(−Z = Z = Z = 1)] − 4. (C5)

The graph of exclusivity of these 16 events is the complement of the Shrikhande graph [69]. This graph, shown in Fig. 2,
has α = 3 and ϑ = α∗ = 4. Similarly, one can obtain the graph corresponding to any 〈Sn〉.

APPENDIX D: SEVEN-DIMENSIONAL CONFIGURATION FOR THE MERMIN CASE

We have numerically obtained (rounded up to three digits after the decimal) the following seven-dimensional
configuration achieving the Lováz theta number of the graph in Fig. 2:

|u0〉 = (1, 0, 0, 0, 0, 0, 0)T,

|u1〉 = (0.25, −0.113, −0.241, 0.284, 0.088, 0.166, −0.029)T,

|u2〉 = (0.25, −0.110, −0.251, −0.120, 0.247, −0.021, −0.191)T,

|u3〉 = (0.25, −0.292, 0.079, 0.151, 0.075, −0.051, −0.255)T,

|u4〉 = (0.25, 0.182, −0.087, 0.003, 0.311, 0.215, 0.059)T,

|u5〉 = (0.25, −0.226, 0.069, 0.104, −0.227, 0.262, −0.021)T,

|u6〉 = (0.25, 0.223, −0.059, 0.300, 0.068, −0.075, 0.184, )T,
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|u7〉 = (0.25, −0.004, −0.232, 0.130, −0.298, 0.001, 0.167)T,

|u8〉 = (0.25, −0.247, 0.049, −0.152, 0.140, −0.278, 0.059)T,

|u9〉 = (0.25, 0.25, −0.059, −0.25, 0.019, 0.09, −0.22)T,

|u10〉 = (0.25, 0, −0.24, −0.27, −0.139, −0.186, 0.004)T,

|u11〉 = (0.25, 0.069, 0.27, 0.019, −0.15, 0.062, −0.285)T,

|u12〉 = (0.25, 0.044, 0.261, 0.167, 0.054, −0.29, −0.04)T,

|u13〉 = (0.25, 0.069, 0.22, −0.178, −0.004, 0.31, 0.067)T,

|u14〉 = (0.25, 0.045, 0.21, −0.030, 0.204, −0.04, 0.31)T,

|u15〉 = (0.25, −0.18, 0.039, −0.20, −0.16, 0.035, 0.293)T,

|u16〉 = (0.25, 0.29, −0.03, 0.046, −0.225, −0.199, −0.097)T.

APPENDIX E: PROOFS OF SELF-TESTING

We consider two types of sets of indices I and I0 = I ∪ {0}. We consider the matrix Xij := 〈ψ |�j�i|ψ〉, where �i
is a projection and �0 is the identity operator. We set n := |I|. Then, we assume that the following SDP has a unique
solution:

ϑ(Gex, w) = max
∑

i∈I
wiXii (E1a)

such that Xii = X0i for all i ∈ [n], (E1b)

Xij = 0 for all i ∼ j , (E1c)

X00 = 1, X ∈ S
1+n
+ . (E1d)

1. Bipartite case

We assume that the unique optimal maximizer X ∗ = (Xij ) is given by ηiηj 〈vj , vi〉 with the following. For i = (iA, iB) ∈
I ,

vi = aiA ⊗ biB , (E2)

where aiA ∈ HA = C
dA , biB ∈ HB = C

dB . Also, for simplicity, aiA and biB are assumed to be normalized and ηi > 0.
Now, we consider a state |ψ ′〉 on H′

A ⊗ H′
B, and projections �A

iA and �B
iB on H′

A and H′
B. Here, when iA = i′A (iB = i′B)

for i �= i′, �A
iA = �A

i′A
(�B

iB = �B
i′B

). Then, we define the projection �i := �A
iA ⊗�B

iB ,
In the following, we discuss how state |ψ ′〉 is locally converted to |ψ〉 when the vectors �i|ψ ′〉 realize the optimal

solution in SDP (E1). We define |v′
i〉 := η−1

i �i|ψ ′〉.
First, we consider the case that the ranks of the projections �A

iA and �B
iB are one. Now, we consider conditions (A1),

(A2), (B1)–(B4), which are introduced in the main text. To understand these conditions, we list several examples.
Example 1: The CHSH inequality satisfies conditions (A1) and (A2), which can be checked by choosing the vectors in
Eq. (15) as

a0 = |A0,0〉, a1 = a2 = |A0,1〉, (E3)

b0 = |B0,0〉, b1 = |B1,0〉.

For the canonical realization corresponding to the CHSH inequality, see Eqs. (30).
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Example 2: The chained Bell inequalities satisfy condi-
tions (A1) and (A2), which can be checked by choosing
the vectors in Eq. (15) as

a0 = |A1 = 1〉, a1 = |A3 = 1〉, a2 = |A2N−1 = −1〉,
(E4)

b0 = |B2 = 1〉, b1 = |B2N = −1〉.
In this example and the next example, |A1 = 1〉 expresses
the eigenvector of A1 with eigenvalue 1. This notation is
applied to other observables.
Example 3: AS self-testing satisfies conditions (A1) and
(A2), which can be checked by choosing the vectors in Eq.
(15) as

a0 = |A2 = 0〉, a1 = a2 = |A3 = 0〉,
b0 = |B0 = 0〉, b1 = |B1 = 0〉. (E5)

For the canonical realization corresponding to the AS
inequalities, see Eqs. (61).

Proof of Theorem 2. Since the vectors �i|ψ ′〉 realize the
optimal solution in SDP (E1), there exists an isometry V
from HA ⊗ HB to H′

A ⊗ H′
B such that

V�i|ψ〉 = �i|ψ ′〉 for i ∈ I . (E6)

We define �i|ψ ′〉 = ηi|a′
iA ⊗ b′

iB〉.
We fix an arbitrary element iB ∈ IB. For iA, i′A ∈ IA,iB ,

condition (A1) implies that

〈aiA , ai′A〉 = 〈aiA ⊗ biB , ai′A ⊗ biB〉
= 〈a′

iA ⊗ b′
iB , a′

i′A
⊗ b′

iB〉
= 〈a′

iA , a′
i′A
〉. (E7)

Hence, there exists an isometry VA,iB from HA to H′
A such

that

VA,iB |aiA〉 = |a′
iA〉 for iA ∈ IA,iB . (E8)

We choose two connected elements iB, i′B ∈ IB. For iA ∈
IA,iB ∩ IA,i′B , Eq. (E6) implies that

〈biB , bi′B〉 = 〈aiA ⊗ biB , aiA ⊗ bi′B〉
= 〈a′

iA ⊗ b′
iB , a′

iA ⊗ b′
i′B
〉

= 〈b′
iB , b′

i′B
〉. (E9)

Hence, for iA ∈ IA,iB and i′A ∈ IA,i′B , Eq. (E6) implies that

〈aiA , ai′A〉〈biB , bi′B〉 = 〈aiA ⊗ biB , ai′A ⊗ bi′B〉
= 〈a′

iA ⊗ b′
iB , a′

i′A
⊗ b′

i′B
〉

= 〈a′
iA , a′

i′A
〉〈b′

iB , b′
i′B
〉. (E10)

Since condition (B4-1) guarantees 〈biB , bi′B〉 �= 0, the com-
bination of Eqs. (E9) and (E10) implies that

〈aiA , ai′A〉 = 〈a′
iA , a′

i′A
〉. (E11)

Hence, we find that VA,iB = VA,i′B . Since the graph defined
in condition (B4) is not divided, all isometries VA,iB are the
same. We denote it by VA.

We arbitrarily choose two elements iB, i′B ∈ IB. We
choose elements iA ∈ IA,iB and i′A ∈ IA,i′B such that

〈aiA , ai′A〉 �= 0. (E12)

Condition (A1) implies that

〈aiA , ai′A〉〈biB , bi′B〉 = 〈aiA ⊗ biB , ai′A ⊗ bi′B〉
= 〈a′

iA ⊗ b′
iB , a′

i′A
⊗ b′

i′B
〉

= 〈a′
iA , a′

i′A
〉〈b′

iB , b′
i′B
〉

= 〈VAaiA , VAai′A〉〈b′
iB , b′

i′B
〉

= 〈aiA , ai′A〉〈b′
iB , b′

i′B
〉. (E13)

The combination of Eqs. (E12) and (E13) implies that

〈biB , bi′B〉 = 〈b′
iB , b′

i′B
〉. (E14)

Hence, there exists an isometry VB : HB → H′
B such that

VB|biB〉 = |b′
iB〉 for iB ∈ IB. (E15)

Since {aiA ⊗ biB}iA∈IA,iB ,iB∈IB spans HA ⊗ HB, we have
V = VA ⊗ VB. �

a. General case

We consider the general case. In addition to conditions
(A1) and (A2), we consider conditions (A3) and (A4). To
show Theorem 3, we prepare the following lemma.

Lemma 5: Assume that the vectors (�i|ψ ′〉)i∈I realize the
optimal solution in SDP (E1). Assume that a projection �
is commutative with �i for any i ∈ I . Also, assume that
�ψ ′ �= 0. Let ψ ′(�) be the normalized vector of �ψ ′.
Then the vectors �i|ψ ′(�)〉 realize the optimal solution
in SDP (E1).
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Proof. We have

∑

i

〈ψ ′|�i|ψ ′〉 =
∑

i

〈�ψ ′|�i|�ψ ′〉

+
∑

i

〈(I −�)ψ ′|�i|(I −�)ψ ′〉

= ‖�ψ ′‖2
∑

i

〈ψ ′(�)|�i|ψ ′(�)〉

+ ‖(I −�)ψ ′‖2
∑

i

〈ψ ′(I −�)|�i|ψ ′

(I −�)〉. (E16)

Since the vectors (�i|ψ ′(�)〉)i∈I and the vectors
(�i|ψ ′(I −�)〉)i∈I satisfy the condition of SDP (E1), Eq.
(E16) shows that either the vectors (�i|ψ ′(�)〉)i∈I or the
vectors (�i|ψ ′(I −�)〉)i∈I realize the optimal solution
in SDP (E1). Hence, the remaining (�i|ψ ′(�)〉)i∈I vec-
tors or (�i|ψ ′(I −�)〉)i∈I vectors also realize the optimal
solution in SDP (E1). �

Considering the contraposition of Lemma 5, we have the
following lemma.

Lemma 6: Assume that the vectors�i|ψ ′〉 realize the opti-
mal solution in SDP (E1). Assume that a projection � is
commutative with �i for any i ∈ I . Also, there exists an
element j ∈ I such that ��j = 0. Then �ψ ′ = 0.

Proof of Theorem 3. Step 1. Let PA,(0,0),(0,1) be the projec-
tion to the eigenspace of �A

(0,0)�
A
(0,1)�

A
(0,0) with one eigen-

value. Let PA,(0,0),(1,1) be the projection to the eigenspace
of �A

(0,0)�
A
(0,1)�

A
(0,0) with zero eigenvalue. Let {eA

jA} be the
orthogonal basis corresponding to the orthogonal eigen-
vectors of �A

(0,0)�
A
(0,1)�

A
(0,0) with other eigenvalues. We

define f A
jA as the normalized vector of �A

(0,1)e
A
jA . For

jA �= j ′
A, f A

jA is orthogonal to f A
j ′
A

due to the choice of

{eA
jA}. We define gA

jA as the normalized vector of f A
jA −

〈eA
jA , f A

jA 〉eA
jA . Vector gA

jA belongs to HA
(1,0). For jA �= j ′

A,
gA

jA is orthogonal to gA
j ′
A

because eA
jA and f A

jA are orthog-

onal to eA
j ′
A

and f A
j ′
A

, respectively. We define the projec-

tion �̄A
jA := |eA

jA〉〈eA
jA | + |gA

jA〉〈gA
jA |. For jA �= j ′

A, we have
�̄A

jA�̄
A
j ′
A

= 0. Projection �̄A
jA is commutative with �A

(0,0),

�A
(1,0), �

A
(0,1), and �A

(1,1). We define �A :=∑jA
�̄A

jA . Also,
projections �A, PA,(0,0),(0,1), and PA,(0,0),(1,1) are commuta-
tive with �A

(0,0), �
A
(1,0), �

A
(0,1), and �A

(1,1). Since (I −�A −
PA,(0,0),(0,1) − PA,(0,0),(1,1))�

A
(0,0) = 0, PA,(0,0),(0,1)�

A
(1,1) = 0,

and PA,(0,0),(1,1)�
A
(0,1) = 0, Lemma 6 implies that (I −

�A − PA,(0,0),(0,1) − PA,(0,0),(1,1))ψ
′ = 0, PA,(0,0),(0,1)ψ

′ = 0,
and PA,(0,0),(1,1)ψ

′ = 0. Hence, we have �Aψ ′ = ψ ′.

In the same way, we define the projections �̄B
jB and

�̄B. We define the projection �̄(jA,jB) := �̄A
jA�̄

B
jB . Projec-

tion �̄(jA,jB) is commutative with �i for i ∈ I . When
�̄(jA,jB)ψ

′ �= 0, we defineψ(jA,jB) := α(jA,jB)�̄(jA,jB)ψ
′, where

α(jA,jB) := ‖�̄(jA,jB)ψ
′‖−1.

Step 2. Because of Lemma 5, the vectors �iψ(jA,jB) =
�i�̄(jA,jB)ψ(jA,jB) realize the optimal solution in SDP (E1).
Also, �i�̄(jA,jB) is rank 1. Hence, we can apply Theorem
2 to the vectors �i�̄(jA,jB)ψ(jA,jB). Thus, there exist isome-
tries VA,(jA,jB) from HA to Im�A

jA and VB,(jA,jB) from HB to
Im�B

jB such that

VA,(jA,jB) ⊗ VB,(jA,jB)ψ = ψ(jA,jB)ηi(VA,(jA,jB)aiA)

⊗ (VB,(jA,jB)biB)

= VA,(jA,jB) ⊗ VB,(jA,jB)(ηiaiA ⊗ biB)

= �i�̄(jA,jB)ψ(jA,jB)

= �A
iA�̄

A
jA ⊗�B

iB�̄
B
jBψ(jA,jB).

As shown in step 3 below, for jB �= j ′
B, we have VA,(jA,jB) =

βjA,jB,j ′
B
VA,(jA,j ′

B)
with a constant βjA,jB,j ′

B
when�(jA,jB)ψ

′ �= 0
and �(jA,j ′

B)
ψ ′ �= 0. That is,

VA,(jA,jB) ⊗ VB,(jA,j ′
B)
ψ = βjA,jB,j ′

B
ψ(jA,j ′

B)
. (E17)

Then, for jA, we choose an element jB such that
�(jA,jB)ψ

′ �= 0. Then, we define VA,jA := VA,(jA,jB). Thus, for
elements j ′

A and j ′
B, there exists a constant βj ′

A,j ′
B

such that

VA,j ′
A

⊗ VB,j ′
B
ψ = βj ′

A,j ′
B
ψ(j ′

A,j ′
B)

= βj ′
A,j ′

B
α(j ′

A,j ′
B)
�̄(j ′

A,j ′
B)
ψ ′

= βj ′
A,j ′

B
α(j ′

A,j ′
B)
�̄A

j ′
A
�̄B

j ′
B
ψ ′.

Hence, we have

β−1
j ′
A,j ′

B
α−1
(j ′

A,j ′
B)

VA,j ′
A

⊗ VB,j ′
B
ψ = �̄A

j ′
A
�̄B

j ′
B
ψ ′. (E18)

We define the spaces KA and KB spanned by {|jA〉} and
{|jB〉}, respectively. We define the junk state on KA ⊗ KB
as

|junk〉 :=
∑

jA,jB

β−1
jA,jBα

−1
(jA,jB)

|jA, jB〉. (E19)

We define the isometries VA from HA ⊗ KA to H′
A and VB

from HB ⊗ KB to H′
B as

VA :=
∑

jA

VA,jA〈jA|, VB :=
∑

jB

VB,jB〈jB|. (E20)

The isometries VA and VB satisfy conditions (18) and (19).
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Step 3. We show the following fact: for jB �= j ′
B, we have

VA,(jA,jB) = βjA,jB,j ′
B
VA,(jA,j ′

B)
with a constant βjA,jB,j ′

B
when

�(jA,jB)ψ
′ �= 0 and �(jA,j ′

B)
ψ ′ �= 0.

We define aiA,jA,jB := VA,(jA,jB)aiA . Then, we have

�i�̄(jA,j ′
B)
ψ(jA,j ′

B)
= �A

iA�̄
A
jA ⊗�B

iB�̄
B
j ′
B
ψ(jA,j ′

B)
. (E21)

The above vector is a constant times ηiaiA,jA,jB ⊗
biB,jA,j ′

B
. Also, the vectors (ηiaiA,jA,jB ⊗ biB,jA,j ′

B
)i and

(�i�̄(jA,j ′
B)
ψ(jA,j ′

B)
)i are the unique optimal solution in SDP

(E1). Hence, there exists a constant βjA,jB,j ′
B

such that
ηiaiA,jA,jB ⊗ biB,jA,j ′

B
= βjA,jB,j ′

B
�i�̄(jA,j ′

B)
ψ(jA,j ′

B)
, which is the

desired statement. �

2. Tripartite case

We assume that the unique optimal maximizer X ∗ =
(Xij ) is given by ηiηj 〈vj , vi〉 with the following. For i =
(iA, iB, iC) ∈ I ,

vi = aiA ⊗ biB ⊗ ciC , (E22)

where aiA ∈ HA = C
dA , biB ∈ HB = C

dB , ciC ∈ HC =
C

dC . Also, for simplicity, aiA , biB , and ciC are assumed to
be normalized and ηi > 0.

Now, we consider a state |ψ ′〉 on H′
A ⊗ H′

B ⊗ H′
C, and

projections �A
iA , �B

iB , �C
iC on H′

A, H′
B, and H′

C. Then, we
define the projection �i := �A

iA ⊗�B
iB ⊗�B

iC .
In the following, we discuss how state |ψ ′〉 is locally

converted to |ψ〉 when the vectors �i|ψ ′〉 realize the opti-
mal solution in SDP (E1). We define |v′

i〉 := η−1
i �i|ψ ′〉.

a. Rank-1 case

We consider the case in which the ranks of projec-
tions �A

iA , �B
iB , and �C

iC are one. We focus on conditions
(C1), (C2), (A5)–(A7). The following is an example for
conditions (A5)–(A7).
Example 4: We can check that Mermin self-testing sat-
isfies conditions (A5)–(A7) as follows. In this example,
aO, bO, cO means |O〉. This notation is applied to Z, P, M .

We choose the subset IA := {O, P}. Then, we have

IBC,O = {(O, O), (Z, Z), (M , P), (P, M )}, (E23)

IBC,P = {(Z, P), (P, Z), (O, M ), (M , O)}. (E24)

Two elements O, P ∈ IA are connected in the sense
given at the end of Definition 5 by choosing {i, j , k} =
{(P, Z, P), (O, Z, Z), (O, M , P)}. Based on Eqs. (E23) and
(E24), we choose subsets IB, IC,Z , and IC,P as

IB := {Z, P}, IC,Z := {Z, P}, IC,P := {Z, M }.
(E25)

Subsets IB, IC,Z , and IC,P satisfy conditions (B1)–(B4).

To show Theorem 4, we prepare the following lemma.

Lemma 7: Assume that i, j , k ∈ I0 are connected by one
edge, i.e., they satisfy conditions (C1) and (C2). We choose
xA, x′

A, xB, x′
B, xC, x′

C in the way as condition (C2). We con-
sider three normalized vectors v′

i , v
′
j , v′

k, where

v′
l = alA ⊗ blB ⊗ clC (E26)

for l = i, j , k. We assume that 〈vl, vl〉 = 〈v′
l , v

′
l〉 for l, l′ =

i, j , k. Then we have

〈axA , ax′
A
〉 = 〈a′

xA
, a′

x′
A
〉, (E27)

〈bxB , bx′
B
〉 = 〈b′

xB
, b′

x′
B
〉, (E28)

〈cxC , cx′
C
〉 = 〈c′

xC
, c′

x′
C
〉, (E29)

or

〈axA , ax′
A
〉 = −〈a′

xA
, a′

x′
A
〉, (E30)

〈bxB , bx′
B
〉 = −〈b′

xB
, b′

x′
B
〉, (E31)

〈cxC , cx′
C
〉 = −〈c′

xC
, c′

x′
C
〉. (E32)

Proof. For simplicity, without loss of generality, we
assume that

i = (x′
A, xB, xC), j = (xA, x′

B, xC),

k = (xA, xB, x′
C). (E33)

Since

〈vi, vj 〉 = 〈v′
i , v

′
j 〉, 〈vi, vk〉 = 〈v′

i , v
′
k〉,

〈vk, vj 〉 = 〈v′
k, v′

j 〉,
we have

〈axA , ax′
A
〉〈bxB , bx′

B
〉 = 〈a′

xA
, a′

x′
A
〉〈b′

xB
, b′

x′
B
〉, (E34)

〈axA , ax′
A
〉〈cxC , cx′

C
〉 = 〈a′

xA
, a′

x′
A
〉〈c′

xC
, c′

x′
C
〉, (E35)

〈bxB , bx′
B
〉〈cxC , cx′

C
〉 = 〈b′

xB
, b′

x′
B
〉〈c′

xC
, c′

x′
C
〉. (E36)

Hence,

〈axA , ax′
A
〉2 = (〈axA , ax′

A
〉〈bxB , bx′

B
〉)(〈axA , ax′

A
〉〈cxC , cx′

C
〉)

× (〈bxB , bx′
B
〉〈cxC , cx′

C
〉)−1

= (〈a′
xA

, a′
x′

A
〉〈b′

xB
, b′

x′
B
〉)(〈a′

xA
, a′

x′
A
〉〈c′

xC
, c′

x′
C
〉)

× (〈b′
xB

, b′
x′

B
〉〈c′

xC
, c′

x′
C
〉)−1

= 〈a′
xA

, a′
x′

A
〉2,
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which implies Eq. (E27) or (E30). When Eq. (E27) holds,
we have Eqs. (E28) and (E29). When Eq. (E30) holds, we
have Eqs. (E31) and (E32). �

Proof of Theorem 4. Step 1. We fix an arbitrary element
iA ∈ IA. For iBC, i′BC ∈ IBC,iA , condition (A5) implies that

〈ψiBC ,ψi′BC
〉 = 〈aiA ⊗ ψiBC , aiA ⊗ ψi′BC

〉
= 〈a′

iA ⊗ ψ ′
iBC

, a′
iA ⊗ ψ ′

i′BC
〉

= 〈ψ ′
iBC

,ψ ′
i′BC

〉. (E37)

Hence, there exists an isometry VBC,iA from HB ⊗ HC to
H′

B ⊗ H′
C such that

VBC,iAψiBC = ψ ′
iBC

for iBC ∈ IBC,iA . (E38)

Step 2. We choose a subgraph GA,0 ⊂ GA to satisfy the fol-
lowing three conditions. (a) The vertices of GA,0 is IA, (b)
the subgraph GA,0 has no cycle, and (c) the subgraph GA,0
cannot be divided into two parts.

We fix the origin iA,0 ∈ IA. For any element iA ∈ IA, we
have the unique path to connect iA,0 and iA by using GA,0
because GA,0 has no cycle. We denote this path iA,0 − iA,1 −
· · · − iA,n = iA. We define α(iA) as

α(iA) :=
n∏

m=1

〈aiA,m−1 , aiA,m〉
〈a′

iA,m−1
, a′

iA,m
〉 . (E39)

Lemma 7 guarantees that α(iA) takes value 1 or −1.
Because of the above definition and the uniqueness of the
above path, we find that

α(iA,l) :=
l∏

m=1

〈aiA,m−1 , aiA,m〉
〈a′

iA,m−1
, a′

iA,m
〉 . (E40)

For iBC ∈ IBC,iA,l and i′BC ∈ IBC,iA,l+1 , we find that

〈aiA,l , aiA,l+1〉〈ψiBC ,ψi′BC
〉 = 〈aiA,l ⊗ ψiBC , aiA,l+1 ⊗ ψi′BC

〉
= 〈a′

iA,l
⊗ ψ ′

iBC
, a′

iA,l+1
⊗ ψ ′

i′BC
〉

= 〈a′
iA,l

, a′
iA,l+1

〉〈ψ ′
iBC

,ψ ′
i′BC

〉
= α(iA,l)α(iA,l+1)〈aiA,l , aiA,l+1〉

× 〈VBC,iA,lψiBC , VBC,iA,l+1ψi′BC
〉

= α(iA,l)α(iA,l+1)〈aiA,l , aiA,l+1〉
× 〈ψiBC , V†

BC,iA,l
VBC,iA,l+1ψi′BC

〉.
(E41)

Since 〈aiA,l , aiA,l+1〉 �= 0 and the sets {ψiBC}iBC∈IBC,iA,l
and

{ψi′BC
}i′BC∈IBC,iA,l+1

span the space C
dBdC , we find that

α(iA,l)α(iA,l+1)V
†
BC,iA,l

VBC,iA,l+1 is identity. Then, we find
that

VBC := VBC,iA,0 = α(iA,l)VBC,iA,l . (E42)

That is, we have

VBC = α(iA)VBC,iA . (E43)

Also, we define the isometry VA from HA to H′
A such that

VAaiA = α(iA)a′
iA for iA ∈ IA. (E44)

Therefore, for (iA, iBC) ∈⋃iA∈IA
({iA} × IBC,iA), we have

VaiA ⊗ ψiBC = a′
iA ⊗ ψ ′

iBC
= (VA ⊗ VBC)aiA ⊗ ψiBC .

(E45)

Since the set {aiA}iA∈IA spans the space C
dA , we have

V = VA ⊗ VBC. (E46)

Step 3. For iB ∈ IB and iC ∈ IC,iB , we choose iA such that
(iB, iC) ∈ IBC,iA . Then, we define β(iB, iC) := α(iA). We
fix an arbitrary element iB ∈ IB. For iC, i′C ∈ IC,iB , relation
(E43) implies that

〈ciC , ci′C〉 = 〈biB ⊗ ciC , biB ⊗ ci′C〉
= β(iB, iC)β(iB, i′C)〈b′

iB ⊗ c′
iC , b′

iB ⊗ c′
i′C

〉
= β(iB, iC)β(iB, i′C)〈c′

iC , c′
i′C

〉. (E47)

Hence, there exists an isometry VC,iB from HC to H′
C such

that

VC,iBciC = β(iB, iC)c′
iC for iC ∈ IC,iB . (E48)

Step 4. We choose a subgraph GB,0 ⊂ GB to satisfy the fol-
lowing three conditions. (a) The vertices of GB,0 is IB, (b)
GB,0 has no cycle, and (c) GB,0 cannot be divided into two
parts.

We fix the origin iB,0 ∈ IB. For any element iB ∈ IB,
we have the unique path to connect iB,0 and iB by using
GB,0 because GB,0 has no cycle. We denote this path iB,0 −
iB,1 − · · · − iB,n′ = iB. We choose a nonzero element iC,l ∈
IC,iB,l−1 ∩ IC,iB,l . We choose iA,l, i′A,l such that (iB,l−1, iC,l) ∈
IBC,iA,l and (iB,l, iC,l) ∈ IBC,i′A,l

. We define γ (iB) as
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γ (iB) :=
n′
∏

l=1

β(iB,l−1, iC,l)β(iB,l, iC,l). (E49)

Then, we have

〈biB,l−1 , biB,l〉 = 〈biB,l−1 ⊗ ciC,l , biB,l ⊗ ciC,l〉
= β(iB,l−1, iC,l)β(iB,l, iC,l)〈b′

iB,l−1
⊗ c′

iC,l
, b′

iB,l
⊗ c′

iC,l
〉

= β(iB,l−1, iC,l)β(iB,l, iC,l)〈b′
iB,l−1

, b′
iB,l

〉
= γ (iB,l−1)γ (iB,l)〈b′

iB,l−1
, b′

iB,l
〉. (E50)

For iC ∈ IC,iB,l and i′C ∈ IC,iB,l+1 , we find that

〈biB,l , biB,l+1〉〈ciC , ci′C〉 = 〈biB,l ⊗ ciC , biB,l+1 ⊗ ci′C〉
= β(iB,l, iC)β(iB,l+1, i′C)〈b′

iB,l
⊗ c′

iC , b′
iB,l+1

⊗ c′
i′C

〉
= 〈b′

iB,l
, b′

iB,l+1
〉β(iB,l, iC)β(iB,l+1, i′C)〈c′

iC , c′
i′C

〉
= γ (iB,l)γ (iB,l+1)〈biB,l , biB,l+1〉〈VC,iB,l ciC , VC,iB,l+1ci′C〉. (E51)

Since 〈biB,l , biB,l+1〉 �= 0 and the sets {ciC}iC∈IC,iB,l
and {ci′C}i′C∈IC,iB,l+1

span the space HC, we find that

γ (iB,l)γ (iB,l+1)V
†
C,iB,l

VC,iB,l+1 is identity. Then, we find that

VC := VC,iB,0 = γ (iB,l)VC,iB,l . (E52)

That is, we have

VC = γ (iB)VC,iB . (E53)

Step 5. For elements iB, i′B ∈ IB, the sets {ciC}iC∈IC,iB
and

{ci′C}i′C∈IC,i′B
span the space C

dC . We choose iC ∈ IC,iB and

i′C ∈ IC,i′B such that 〈ciC , ci′C〉 �= 0. We have

〈biB , bi′B〉〈ciC , ci′C〉 = 〈biB ⊗ ciC , bi′B ⊗ ci′C〉
= β(iB, iC)β(i′B, i′C)〈b′

iB ⊗ c′
iC , b′

i′B
⊗ c′

i′C
〉

= 〈b′
iB , b′

i′B
〉β(iB, iC)β(i′B, i′C)〈c′

iC , c′
i′C

〉
= 〈b′

iB , b′
i′B
〉γ (iB)γ (i′B)〈VCciC , VCci′C〉

= γ (iB)γ (i′B)〈b′
iB , b′

i′B
〉〈ciC , ci′C〉. (E54)

Since 〈ciC , ci′C〉 �= 0, we have

〈biB , bi′B〉 = γ (iB)γ (i′B)〈b′
iB , b′

i′B
〉. (E55)

Also, we define the isometry VB from HB to H′
B such that

VBbiB = γ (iB)b′
iB for iB ∈ IB. (E56)

Therefore, for (iB, iC) ∈⋃iB∈IB
({iB} × IC,iB), we have

VBCbiB ⊗ ciC = b′
iB ⊗ c′

iC = (VB ⊗ VC)biB ⊗ ciC . (E57)

Since the set {biB ⊗ ciC}(iB,iC)∈
⋃

iB∈IB
({iB}×IC,iB )

spans HB ⊗
HC, we have

VBC = VB ⊗ VC. (E58)

Combining Eqs. (E46) and (E58), we have

V = VA ⊗ VB ⊗ VC. (E59)

This completes the proof. �

b. General case

We consider the general case. We define |v′
i〉 :=

η−1
i �A

iA ⊗�B
iB ⊗�C

iC |ψ ′〉. Let ĪA, ĪB, ĪC be the sets of
indices of the spaces HA,HB,HC.

To show Theorem 5, we focus on conditions (A8) and
(A9) for the optimal maximizer given in Eq. (E22) as a
generalization of (A3) and (A4) as well as condition (C1),
which were introduced in the main text.

Proof of Theorem 5. Similar to the proof of Theorem 3 ,
we define orthogonal projections �̄X

jX on HX such that
the projection �X :=∑jX �̄

X
jA satisfies �Xψ ′ = ψ ′ for

X = A, B, C. Then, we define the projection �̄(jA,jB,jC) :=
�̄A

jA�̄
B
jB�̄

C
jC . In the same way as in the proof of Theorem 3,

we define α(jA,jB,jC), βjA,jB,jC , and VX ,jX for X = A, B, C.
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We define the space KX spanned by {|jX 〉} for X =
A, B, C. We define the junk state on KA ⊗ KB ⊗ KC as

|junk〉 :=
∑

jA,jB,jC

β−1
jA,jB,jCα

−1
(jA,jB,jC)

|jA, jB, jC〉. (E60)

We define the isometries VX from HX ⊗ KX to H′
X as

VX :=
∑

jX

VX ,jX 〈jX | (E61)

for X = A, B, C. The isometries VA, VB, and VC satisfy
conditions (39) and (40). �
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[30] J. Bowles, I. Šupić, D. Cavalcanti, and A. Acín, Device-
Independent Entanglement Certification of all Entangled
States, Phys. Rev. Lett. 121, 180503 (2018).
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