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José M. Aguilar-López∗, Ramón A. Garćıa, Adolfo J. Sánchez, Antonio J.3

Gallego, Eduardo F. Camacho4
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Abstract7

This paper presents a mobile sensor system to detect and estimate low di-
rect normal irradiance (DNI) areas caused by clouds shadows. This work
proposes using a team of unmanned aerial vehicles (UAVs) to localise and
characterise the shadow of mobile clouds. This information can be used by
the plant control system to minimise its effects over a solar plant.
Simulations to test and discuss the algorithm are presented. The work pre-
sented here obtains a similar degree of precision as far as the estimation of the
shape of the cloud shadow is concerned but with a much faster computational
time than other algorithms described in literature.

Keywords:8

Spatial solar radiation estimation, Mobile Sensor, DNI, Multi-robot, UAV.9

1. Introduction10

The reduction of greenhouse gas emissions to the atmosphere is a priority11

for the future of the planet. In particular, solar energy is the most abundant12

energy source (Kannan and Vakeesan, 2016; Blanco and Santigosa, 2017).13

Increasing the competitiveness and efficiency of solar energy plants is one14

of the main challenges described by the National Academy of Engineering15

(Academy, 2008) for the 21st century. This problem is also pointed out by16

the European Commission (European Commission, 2014, 2015).17
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Nomenclature

Acronyms

UAV Unmanned aerial vehicle.

ACO Ant colony optimisation.

DNI Direct normal irradiance.

CSP Concentrated solar power
plant.

PV Photovoltaic.

GPC Generalised predictive con-
trollers.

Hybrid Algorithm

A Surveillance area.

N , M Area grid rows and columns.

r, c Cell grid rows and columns.

τij Repellent on cell ij.

dij Distance between cells i, j.

pτij Probability based on repellent.

pdij Probability based on the dis-
tance.

I, I(x), Ith Irradiance map, irradi-
ance at x and irradiance
threshold.

Clouds Shadow Model

C Clouds shadow.

(x0, y0) C center coordinates.

a, b Semi-major and semi-minor
axes of the ellipse.

θ Rotation angle of the ellipse.

εe Eccentricity of the ellipse.

Shadow Estimation Algorithm

H,K Polytope definition matrices.

n, m Polytope number of restric-
tions and dimension.

Q, Qc Polytope and polytope enve-
lope of C.

ε Ellipsoid.

Oε Center of the ellipsoid.

E Positive definite symmetric
matrix m×m.

ν m-dimensional unit ball vol-
ume.

V olε Volume of the ellipsoid.

‖·‖ Euclidean norm.

x, xt 2D point and 2D point at time
t.

V Vertices of the polytope.

NV Number of vertices of the poly-
tope.

δ Sigmoid function variable.

aσ, bσ, cσ Sigmoid function parame-
ters.

s Discrete derivative step.

−→
VC Cloud velocity vector.
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The need to reduce the environmental impact of fossil energies has in-18

creased the interest in renewable energy sources during the past years. In19

particular, solar energy has experienced a great impulse since the beginning20

of the century. The increase of the size of commercial solar energy plants and21

the need to make the operation as efficient as possible give rise that obtaining22

an adequate estimation of the direct solar radiation distribution becomes a23

crucial issue.24

The use of renewable energy sources to produce electricity has received25

considerable attention for the last 20 years. Many solar power plants have26

been built and commissioned around the world (Camacho et al., 2019). For27

instance, the three 50 MW Solaben and the two 50 MW Solacor parabolic28

trough plants of Atlantica Yield in Spain, or the SOLANA and Mojave Solar29

parabolic trough plants located in Arizona and California, each of 280 MW30

power production (Islam et al., 2018; Solar Millennium, 2018).31

One of the main drawbacks when operating solar thermal plants is that32

the primary energy source, solar irradiance, cannot be manipulated. It de-33

pends on several factors. Some of them are predictable using mathematical34

models, such as the hour or location (Besharat et al., 2013). However, some35

of them such as meteorological factors, are intermittent. The effect of pass-36

ing clouds is very difficult to be anticipated because many variables have to37

be known a priori: the position of the clouds (including height), wind speed38

and its direction, or their genera (such as cirrus, stratus, or cumulonimbus)39

as showed in (Matuszko, 2012).40

One of the control objectives of thermosolar energy plants is to main-41

tain the average temperature of the solar field around a set-point despite42

the strong disturbances (Camacho et al., 2012; Andrade et al., 2013). The43

effect of abrupt variation of the direct normal irradiance (DNI) affects that44

objective. The size of the current commercial solar plants (covering up to45

780 hectares) requires predicting the future evolution of the clouds passing46

over the field to take adequate anticipative actions. The research done in47

(Camacho and Gallego, 2013; Sánchez et al., 2018b) shows that significant48

production and revenues can be obtained by changing the operating tem-49

perature taking into account the DNI levels. Furthermore, in (Camacho50

et al., 2019) a case study considering a large-scale solar trough plant shows51

the importance of knowing the spatial distribution of DNI. Estimating the52

spatial distribution of the DNI is one of the main objectives posed in the53

Advanced Grant OCONTSOLAR (European Commission, 2018) funded by54

the European Research Council.55
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There are many methods to measure or forecast spatial DNI. In (Der-56

sch et al., 2019), ground-based measurements, forecast datasets provided57

from the European Centre for Medium-Range Weather Forecast, and a new58

method combining differents nowcasting methods are used and evaluated to59

study their impact on annual revenues of a concentrated solar power plant60

(CSP). Other works, such as (Minis et al., 2019), use photovoltaic (PV) pan-61

els as local insolation sensors combined with a few more fixed ones to obtain62

a spatial DNI measurement. A method based on sky imaging is described63

in (Quesada-Ruiz et al., 2014) to forecast the intra-hour DNI. Cameras have64

been used to detect shadows and generate irradiance map, as in (Kuhn et al.,65

2017). Despite many of these methods depend on sensors fixed to the ground66

or at the top of buildings like towers, they can be used with the alternative67

presented in this work to improve the results combining their data.68

In recent years, the significant development of unmanned aerial vehicles69

(UAVs) and their characteristics, such as their manoeuvrability, reduced di-70

mensions, capacity for using different devices (a wide range of sensors, cam-71

eras, or more specific tools, such as fumigation sprayers), speed, along with72

others, has allowed their use in various applications. Beyond military pur-73

poses, they have been used in fields such as agriculture (Rokhmana, 2015),74

area surveillance (Gu et al., 2018), as a camera tool for the film industry75

(Mademlis et al., 2019), or for safety and rescue tasks (Silvagni et al., 2017),76

among others. They have also been used in PV solar plants to inspect and77

monitor operations through thermal and visual cameras (Quater et al., 2014;78

Grimaccia et al., 2015).79

This paper presents a mobile sensor system to detect and estimate DNI80

in areas with low DNI values due to the effect of clouds shadows. This81

work makes use of a multi-UAV system or a team of UAVs equipped with82

lightweight, cheap, low energy consumption sensors to measure DNI to lo-83

cate and characterise the shadow of moving clouds, both its dimensions and84

its sun-blocking characteristics. The proposed algorithm is tested and dis-85

cussed in simulations. The sun-blocking characteristics of the clouds shadow86

are modelled with a sigmoid-based function, which parameters are computed87

using the measurements taken by the UAVs. In summary, the main contribu-88

tions are to provide an estimation of the drop of DNI caused by the effects of89

clouds shadows based on measurements, after locate and track the shadow,90

and how it affects the output temperature of a solar power plant.91

The paper is organised as follows. Section 2 describes the problem under92

consideration. Section 3 presents the proposed solution, tested by simulations93
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in Section 4. Finally, some conclusions and remarks are drawn in Section 5.94

2. Problem overview95

The objective of this work is to estimate the DNI in the area of a solar96

power plant in presence of moving clouds. This paper is based on the work97

presented in (Aguilar-Lopez et al., 2021) to locate and characterised the98

shape of a shadow of a static cloud.99

A set of U = {u1, u2, ..., unu} UAVs is deployed to achieve this task,100

equipped with lightweight low-energy consumption sensors to measure DNI101

(Solar Mems Technologies, 2019), as the shown in Figure 1. UAVs are as-102

sumed to move at a constant average speed based on commercial UAVs as103

DJI Phantom 3 (DJI Technology Inc., 2015). The control architecture of104

the multi-UAVs system is a centralised topology: all UAVs send their state105

and measurements to a ground station computer. This ground station makes106

computations and commands new actions. To avoid collisions between the107

UAVs, each one flies 5 meters higher over the previous one.108

Figure 1: NANO-ISSX sun sensor from Solar Mems.

The moving clouds are assumed to project an elliptical shadow C over the109

ground as a result of their sun-blocking characteristics over the DNI. Clouds110

velocity is computed from the wind speed and direction, which are known111

5



at ground level and adjusted to clouds level by using cameras looking both112

at the sky and the projected cloud shadow. The sun-blocking characteristics113

are modelled as a sigmoid function (see Figure 2a) that assigns a reduction114

factor over clear-sky DNI to every position under the influence of the shadow115

depending on the distance to the ellipse centre (see Appendix A for more116

details). The reduction factor is in the range [0, 1], being 1 a clear-sky ir-117

radiance and 0 when the position receives no DNI. An example of the DNI118

losses due to clouds is depicted in Figure 2b.119

3. Proposed solution120

The solution proposed is divided into three stages:121

1. The search of the clouds shadow: the objective of this stage is to122

locate positions with low values of DNI in the area of interest, i.e., to123

find the clouds shadow. A covering area problem is solved through an124

hybrid algorithm. This stage is described in Subsection 3.1.125

2. The characterization of the clouds shadow: in this stage the126

UAVs take measurements of the clouds shadow. These measurements127

are used to create a polytope envelope to estimate the parameters of128

the elliptical shape, and also with a non-linear least squares method to129

estimate the DNI distribution. This stage is explained in Subsection130

3.2.131

3. The follow-up of the clouds shadow: the last stage is to track132

the clouds shadow while it affects the solar plant performance. As the133

shadow moves, an adjustment of past measurements is made with the134

wind data. This procedure is detailed in Subsection 3.3.135

3.1. Hybrid algorithm136

The algorithm has three parts: the extension of the field, the ACO in-137

spired motion, and the Boustrophedon motion. They are briefly commented138

below.139

Extended field for searching and area decomposition140

The UAVs search low DNI points in an auxiliary region A around the solar141

field to locate and characterize the shadow C before it enters the solar field.142

As the wind speed and direction are known, the clouds shadow approached143

direction is inferred from them, so A does not have to be significantly large144
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Figure 3: Overview of the auxiliary region for searching the clouds shadow, represented
by the dashed line and the striped background. The Extresol-I power plant (ACS/Cobra
Group, 2010) is used here as an example.

and the UAVs do the search in the portion of A where the clouds come into145

the field. Figure 3 shows an example of this auxiliary region A.146

The hybrid algorithm decomposes the area into two layers which are ex-147

plored differently. This first layer is a grid of N rows and M columns, and148

it is inspected with an algorithm inspired by the ACO algorithm, detailed in149

Subsection 3.1. The second layer is a decomposition of each one of the N×M150

cells of the first layer into a grid of r × c meters, where the DNI measure-151

ments taken by the UAVs are stored, and it is explored with a Boustrophedon152

motion explained in Subsection 3.1.153

Summarising, the algorithm is two-steps: first, the UAV chooses a cell i154

from the N ×M grid, through the ACO-inspired algorithm. Once the UAV155

reaches that cell, a sweep of the area is made with a Boustrophedon motion.156

After that, the algorithm starts again with the first step.157

UAVs are continuously taking irradiance measurements, I(x), at their158

positions, x. This seeking mode continues until any UAV detects a low DNI159

measurement, I(x) < Ith, being Ith a threshold value based on the clear-sky160

irradiance.161
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ACO inspired algorithm162

The original ACO algorithm deploys numerous virtual ants to connect the163

starting node with the destination node. These ants travel along the nodes164

of the optimisation problem to conform possible solutions. After evaluate165

the solutions with a cost function, ants drop an amount of pheromones in166

the nodes directly proportional to the quality of their solution. This way,167

iteration after iteration, the nodes with more pheromones are more likely to168

be chosen, and the best solution is found.169

In the ACO inspired algorithm, the UAVs are the virtual ants, the cells170

of the first layer are the nodes and instead of pheromones the UAVs drop171

repellent. The repellent works contrary to pheromones : the more repellent a172

cell has, the less probable it is to be visited. This way, UAVs travel cell after173

cell of the first layer in a probabilistic manner, generally avoiding the already174

visited ones, though repetition is permitted as new clouds can come in after175

a while. The probability to choose a cell by the repellent on it is expressed176

as (1):177

pτij = 1− τij∑N
k

∑M
l τkl

, (1)

where τij is the amount of repellent on the cell ij.178

Additionally, to achieve an efficient coverage, UAVs should avoid each179

other to explore different regions of the area. The probability of visiting a180

cell taking into account this consideration is defined as:181

pdij =
dij∑N

k

∑M
l dkl

, (2)

where dij is the distance between the position of the UAV to avoid and the182

cell ij. The final probability to choose a cell is obtained with (3).183

pij =
pτijp

d
ij∑N

k

∑M
l pτklp

d
kl

. (3)

Boustrophedon motion184

The Boustrophedon motion creates a back and forth path to cover the185

second layer. It is important to remark that not every cell of the second layer186

is inspected: this would be inefficient because very small cloud shadows do187

not affect the plant behaviour significantly. A minimum wide of the corridor188

for the Boustrophedon motion is pre-settled to sweep the area and find the189
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shadows of interest in a short time. Figure 4a depicts the ACO inspired190

algorithm and the Boustrophedon motion.191

Remark. As the communication with the ground station is constant, any192

possible failure of any UAV in completing its task is assumed to be noticed193

and compensated by the ground station with the remaining UAVs.194

3.2. Clouds shadow characterisation195

This stage is divided into two phases: the objective of the first phase is196

to delimit the contour of the shadow, and the objective of the second phase197

is to estimate the parameters of the ellipse and the irradiance distribution.198

Measuring the DNI199

Once a location with a DNI value under the threshold Ith is detected,200

all UAVs are called to take measurements of the region. The first step is to201

describe the border of the shadow to get an approximation of its size, and the202

second step is to take samples of the inner DNI to get a proper distribution203

of the DNI.204

KX =

 −1 0 1
−2 0 2
−1 0 1

 , (4a)

205

KY =

 1 2 1
0 0 0
−1 −2 −1

 . (4b)

The UAVs compute an irradiance gradient to follow the perpendicular206

vector to it, i.e., the irradiance isoline, and take measurements of the border.207

When an UAV comes to the region with low DNI values, it does an initial208

inspection following a quadratic spiral path, see Figure 4b. Using the mea-209

surements taken in this path, an irradiance map Imap is created, and then it210

is convolved with the kernels of the Sobel operator, see (4a) and (4b), to get211

the discrete approximation of the derivatives in each position, see (5a) and212

(5b). The mean gradient of Imap is used as the searched irradiance gradient.213

Ix =
δI

δx
= KX ∗ I, Iy =

δI

δy
= KY ∗ I, (5a)

214

∇I =

[
Ix
Iy

]
. (5b)
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The direction of the irradiance isoline is computed and the UAVs follow it215

taking DNI measurements. For a proper DNI distribution estimation, when216

two or more UAVs are in the cloud shadow region, one of them follows the217

irradiance gradient instead of the isoline to take inner DNI measurements.218

Estimation of the shape of the shadow219

Polytope envelope.220

The estimated shape of the shadow is characterised by a polytope. This221

polytope is defined by the convex hull of the positions with a solar irradiance222

value under the threshold Ith.223

The inequation (6) defines the polytope Q:224

Hx 6 K, (6)

where H ∈ Rn×m, K ∈ Rn and x ∈ Rm, being n the number of restrictions225

that defines the region of the polytope and m the coordinates dimension. As226

the shadow is a projection over the ground, m = 2. If any point x satisfies227

the inequation (6), then x ∈ Q, otherwise x /∈ Q.228

Figure 5: Polytope envelope.

As it was mentioned before, the UAVs explore the area looking for loca-229

tions with irradiance values under Ith. When the UAVs find at least three230

points x/ I(x) < Ith, the clouds shadow polytope Qc is defined by the ver-231

tices set V = {x1, x2, x3}. Successive positions xi/ I(xi) < Ith are evaluated232

with (6) defined for Qc, and if xi /∈ Qc, it is included in the vertices set233
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V = {x1, x2, ..., xn} and the polytope Qc is redefined. The cloud shadow234

polytope Qc envelope or convex hull, as depicted in Figure 5, is computed235

with the polytope class of the MATLAB Multi-Parametric Toolbox (Herceg236

et al., 2013).237

Convex hull conversion to ellipse.238

Qc convex hull is used to obtain the parameters of the elliptical shape ap-239

proximation of the shadow. These parameters are: the centre Oest
ε , the semi-240

major axis aest, the semi-minor axis best, and the rotation angle θest. An241

ad-hoc purely geometrical heuristic method to compute these parameters is242

proposed and compared with two algorithms of the literature: one that solves243

the inner Löwner-John ellipsoid (Zhang, 2020), named here as the internal244

method; and another one that solves the outer Löwner-John ellipsoid (Li,245

2020), denoted here as the external method.246

The Löwner-John ellipsoids (Henk, 2012) are the maximum volume ellip-247

soid inscribed in a polytope and the minimum volume ellipsoid circumscribed248

about a polytope. These ellipsoids are computed by the internal and the ex-249

ternal methods mentioned above . Let Q be a polytope defined as (6), and250

let ε be the ellipsoid defined as (7):251

ε(Oε, E) = { x | x = Eµ+Oε, µ ∈ Rm, ‖ µ ‖≤ 1}, (7)

where ‖ · ‖ is the euclidean norm, Oε the centre of the ellipsoid and E a252

positive definite symmetric matrix m × m. Being ν the volume of the m-253

dimensional unit ball, the volume of the ellipsoid ε is:254

Volε = ν det(E). (8)

Thus, the Löwner-John minimum volume ellipsoid circumscribed problem255

can be written as (9).256

min − log det(E),

s.t. K −HEµ−HOε ≥ 0,

E ≥ 0.

(9)

For the inner Löwner-John ellipsoid, let ε′ be the ellipsoid defined as (10)257

and the polytope Q′ be defined by its vertices set Q′ = {x1, x2, . . . , xn}. The258

maximum volume ellipsoid inscribed problem can be written as (11).259

ε′(Oε′ , E
′) = { x | ‖ E ′(x−Oε′) ‖6 1}, (10)
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max det(E ′),

s.t. ‖ E ′(xi −Oε′) ‖6 1,

E ′ ≥ 0.

(11)

Both problems are solved with the algorithms mentioned above, which260

implement the works of (Khachiyan, 1996) and (Zhang and Gao, 2003). For261

the problem of this paper, the dimension of the ellipsoid is 2, i.e., an ellipse.262

263

Our ad-hoc heuristic method is based on geometric operations. First, it264

computes the estimated centre Oest
ε of the ellipse as:265

Oest
ε =

∑NV
i=1 xi
NV

, (12)

where xi are the NV vertices of the polytope Qc. Then, the distance between266

every vertex and this estimated centre is computed with the Euclidean norm.267

The nearest vertex to the centre is xnearest. It is defined the straight line line1268

between the estimated centre and xnearest. To find the cut points between269

line1 and the polytope envelope, a set of candidate points xcandidate points is270

computed as show (13a) and (13b), where a point is defined as x = (χ1, χ2).271

line1 ≡ χ2 = q1χ1 + q2, H

[
χ1

χ2

]
=

[
h11 h12
h21 h22

] [
χ1

q1χ1 + q2

]
=

[
k1
k2

]
= K,

(13a)272

xcandidate points = (χ1, χ2) =

(
ki − hi2 q2
hi1 + hi2 q1

, q1
ki − hi2 q2
hi1 + hi2 q1

+ q2

)
. (13b)

273

Evaluating xcandidate points with (6) as strict equality (14) the two cut points274

xcut points are found as they are the only ones that fulfil all restrictions.275

HQcxcut points = KQc . (14)

The estimated centre Oest
ε is adjusted being the middle point between276

these xcut points . The process is repeated but searching the farthest point277

xfarthest, that defines the line line2 with Oest
ε . To estimate the semi-major278

axis, a group of lines is defined rotating line2 around Oest
ε a couple of degrees.279

The cut points between these lines and the polytope envelope define another280

set of points, and the two farthest among are called xa1 and xa2. Half the281

14



distance between xa1 and xa2 is the estimated semi-major axis aest. The282

estimated semi-minor axis best is computed identically but rotating line1283

around Oest
ε .284

Finally, the estimated rotation angle of the ellipse θestε is found as the285

angle between the x-axis and the vector that connects xa1 and xa2, as shows286

(15).287

−−−→xa1xa2 = (χ1v, χ2v), θest = arctan
χ2v

χ1v

. (15)

Sun-blocking characteristics.288

As it was mentioned in Subsection 3.2, to determine the sun-blocking char-289

acteristics of the clouds shadow, one of the UAVs takes irradiance measure-290

ments while travelling along the irradiance gradient direction in the down-291

ward sense.292

Using these irradiance measurements, a model of the cloud sun-blocking293

characteristics is computed with a variation of the sigmoid function, given in294

(16):295

f(δ) =
1

1 + eaσδ+bσ
+ cσ, (16)

where parameters aσ, bσ and cσ determine the inflection point, slope, and296

the offset. This function gives the sun-blocking characteristics of a position297

xi depending on its normalised distance to the centre of the ellipse, as it was298

explained in Section 2, and more detailed in Appendix A. The sun-blocking299

characteristics of any position in the cloud obtained this way resulting in a300

function as depicted in Figure 2.301

To determine the values of aσ, bσ and cσ a non-linear least squares problem302

is solved. The measurements conform an array of pair values (δi, Ii), where303

Ii is the irradiance value of a position at a normalised distance δi. (17) shows304

the problem.305

min
aσ ,bσ ,cσ

∑
i

[F (aσ, bσ, cσ, δi)− Ii]2. (17)

306

The initial solution (aσ0, bσ0, cσ0) is computed through an equation sys-307

tem, so three points are needed. Two of them are the maximum irradiance308

value, corresponding to the maximum distance inside the ellipse, i.e., the309

semi-major axis, δ = a, and the minimum irradiance value, corresponding310
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to the minimum distance, δ = 0. The last one is the most interesting point311

between the maximum and the minimum, that is, the point where the sig-312

moid changes its tendency and starts to grow fast. This point is the one with313

the maximum value of the second derivative, computed with the discrete314

expression (18), where s is the discrete step.315

f ′′(δ0) ≈
f(δ0 + s)− 2f(δ0) + f(δ0 − s)

s2
. (18)

3.3. Following the clouds shadow316

In contrast to the problem in (Aguilar-Lopez et al., 2021), now the cloud317

shadow is non-static, and the same shadow point can be measured more318

than once in various locations according to the shadow motion. The pro-319

posed solution is to adapt the past shadow polytope points, xi as shows (19),320

assuming the speed of the shadow
−→
VC can be estimated from the wind:321

xt = x0 + (t− t0) ·
−→
VC , (19)

being xt the point adapted to instant t and x0 the point at instant t0.322

4. Simulations results323

This section is divided into two parts. In the first one, simulation results324

about the performance of the proposed algorithm are depicted. In the second325

part, the effects of the clouds shadow over a power plant are shown.326

4.1. Results of clouds shadow detection and description327

The developed work to estimate the effects of the shadow of moving clouds328

in the DNI has been tested in two scenarios. In both cases, the extended area329

A and the layout of the solar plant size together 2130 m× 1300 m, see Fig-330

ure 3. The grid decomposition of the ACO-inspired algorithm is of 10 × 10331

cells. We have assumed that the minimum size of a cloud shadow that af-332

fects the solar plant efficiency is 20 m for the minor semi-axis, so the wide333

of the corridor of the Boustrophedon motion is set to that value. To locate334

and characterise the shadow 6 UAVs are commanding by the ground station335

computer. UAVs are assumed to have neither restrictions in movement nor336

energy, keeping an average constant speed of 8 m/s at any given time. See337

Conclusions Section for some comments about these asumptions. As men-338

tioned before in Section 2, this speed is based on a commercial UAV (DJI339
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Technology Inc., 2015). Their initial positions are equidistant around the340

perimeter of the area to surveil.341

Each case simulates a different day. Table 1 shows the parameters of the342

cloud shadow in each case. The DNI over the clouds for both simulations is343

of 750 W/m2, and the irradiance threshold Ith is a 97% of the DNI to avoid344

considering a shadowless point as a cloud shadow point.345

Table 1: Cloud shadow parameters of both simulations.

Parameter First cloud shadow Second cloud shadow
Semi-major axis (m) 75 75
Semi-minor axis (m) 45 60
Rotation angle (o) 30 45

Movement direction −→s = (sx, sy) (1, 0) (3,−1)
Speed (m/s) 1 1

The estimation results of the parameters of the shape of the shadow are346

depicted in Figures 6 and 7. Figures 8 and 9 show the estimated irradiance347

map. The first portion of the cloud shadow came into the area A after 25 sec-348

onds. The UAVs found the shadow after 129 seconds, and they estimated its349

shape and sun-blocking characteristics completely after another 50 seconds.350

As a reference, the cloud shadow reaches the plant layout at second 325.351

In Subsection 3.2 it was explained that UAVs take irradiance measurements352

of the inner region of the cloud shadow. These measurements are used to353

compute the irradiance function distribution and obtain a proper estimation354

of the DNI in the area. Until the UAV responsible for taking the measure-355

ments has not finished this task, the cloud shadow region is assumed to have356

constant sun-blocking characteristics equal to the minimum irradiance value357

found.358

The evolution of the mean error in the region affected by the cloud shadow359

depending on the number of UAVs flying over the area is depicted in Figure360

10. There is a significant difference in the time to find and describe the cloud361

shadow between a team of 3 UAVs and one of 6 UAVs, but this difference is362

less significant between the 6-UAVs team and the 12-UAVs team.363

Results of the second case are very similar and are shown in Figures 11364

and 12. The evolution of the error for this case is depicted in Figure 13. In365

both simulation cases, the mean error is approximately of 15-20 W/m2.366

To compare the three methods proposed in Subsection 3.2, the measure-367

ments of the first simulation were computed with the three of them. Table368
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Figure 6: Semi-axes estimated size of the elliptical shape in the first simulation case.
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Figure 7: Estimated rotation angle and centre of the elliptical shape in the first simulation
case.
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(b) 30 seconds after the cloud is found.

Figure 8: Initial and intermediate estimated irradiance map and estimated elliptical shape
of the shadow.
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Figure 9: 50 seconds after the cloud is found the final estimated irradiance map and the
estimated elliptical shape of the shadow are obtained.
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Figure 11: Semi-axes estimated size of the elliptical shape in the second simulation case.
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Figure 12: Estimated rotation angle and centre of the elliptical shape in the second simu-
lation case.
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Figure 13: Mean error in the region affected by the cloud shadow in the second simulation
case.

2 shows the results. The external method is the best one, though the others369

got estimation near the real value.370

To study the computational time cost of every method, another type of371

simulation has been done. Twelve sets of 1000 randomly generated ellipses372

have been created. Each set differs from the others in the number of points373

that define each ellipse: the first set contains ellipses defined by 25 points, the374

second one ellipses defined by 50 points, and this progression continues up375

to 300 points. An example of these randomly generated ellipses is depicted376

in Figure 14a. This test aims to measure how much time each method takes377

to compute the ellipse properties and check if the number of points that378

defines the ellipses affects the results. Figure 14b and Table 3 expose the379

results. The external ellipse algorithm is the slowest one, while the ad-hoc380

heuristic is the fastest one. The reason for the better computational time381

performance of the ad-hoc heuristic method is that, while the other ones have382

to compute operations as inverse matrices, the proposed one only uses simpler383

operations as multiplications. Finally, the number of points that define the384

ellipses makes the methods take more computation time but do not change385

which one is the slowest or fastest one. To summarise, the proposed ad-hoc386

algorithm has the less computational time result with similar estimation to387

the external method, making it preferable to use with less computational388
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capable systems.389

Table 2: First simulation case results. The final ellipse parameters estimation and their
oscillations are shown.

Real value Ad-hoc External Internal
Semi-major axis (m) 75 74.46 ± 0.21 74.92 ± 0.11 72.92 ± 0.76
Semi-minor axis (m) 45 44.79 ± 0.10 45.01 ± 0.01 43.52 ± 0.23
Rotation angle (o) 30 31.09 ± 1.23 30.01 ± 0.05 24.65 ± 0.25

Centre x-coordinate deviation (m) - 1.13 ± 0.53 0.07 ± 0.03 0.19 ± 0.49
Centre y-coordinate deviation (m) - 1.41 ± 0.66 0.02 ± 0.01 0.01 ± 0.15

Table 3: Computational time test results

Method Time (s) Method time/Ad-hoc time
Ad-hoc 2.24 · 10−4 ± 1.54 · 10−4 1

External 2.71 · 10−3 ± 4.72 · 10−4 12.10
Internal 9.71 · 10−4 ± 2.10 · 10−4 4.33

4.2. Clouds shadow effects simulation390

In this section, simulations of two cases of isolated clouds passing through391

the field on two different summer days with medium radiation are presented.392

Both clouds are equal in size to the detected in the previous section, but with393

a slower motion since this increases their effect on the solar plant. The simu-394

lated effect of the clouds on the solar field is exposed. The plant model used395

is a 50 MW plant with 90 loops (Sánchez et al., 2019), with an approximate396

length of 600 m each. Every loop is divided into two rows of 300 m each397

(row 1: collectors 1 and 2, row 2: collectors 3 and 4) with an approximate398

separation of 17 m between the rows of mirrors (Montes et al., 2009).399

The simulated field structure is composed of an upper and a lower solar400

field with 45 loops each and the steam stage located in the centre, see Figure401

15. The approximate length of each solar field is approximately 1530 m,402

while the width of each field corresponds to the length of the two collectors,403

namely, 300 m. For these simulations, the control strategies for solar field404

temperature tracking and defocusing using generalised predictive controllers405

(GPCs) presented in (Sánchez et al., 2018a) have been used, with a defocusing406

temperature set at 396 ◦C.407
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Figure 15: Solar field structure used for simulation

Figure 16: Horizontal Cloud (left to right). Speed = 0.2 m/s. Upper and Lower solar
fields are marked with a black rectangle.
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Figure 17: Diagonal Cloud (left to right). Speed = 0.2 m/s. Upper and Lower solar fields
are marked with a black rectangle.

Figures 16 and 17 show the two clouds that have been simulated. Both408

have a speed of 0.2 m/s. The smaller one has 75 meters of semi-major axis,409

45 meters of semi-minor axis, and a horizontal movement that only affects410

the lower field. The second and larger one, corresponding to another summer411

day, has 75 meters of semi-major axis, 60 meters of semi-minor axis, and a412

diagonal movement, affecting first the upper field and later the lower field.413

28



10 11 12 13 14 15 16 17 18

Time (hour)

370

380

390

400

ºC

T
out-field

T
in-field

+90

T
Ref

10 11 12 13 14 15 16 17 18

Time (hour)

2600

2800

3000

m
3
/h

600

700

800

W
/m

2

Q

I
eff

Figure 18: Horizontal Cloud (left to right). Speed = 0.2 m/s. Solar field temperatures,
flow-rate and effective DNI.

Figure 19: Horizontal Cloud (left to right). Speed = 0.2 m/s. Loops’ temperatures, upper
and lower fields.

In Figures 18 and 19 it can be seen how the small horizontal cloud affects414

only the lower solar field. However, since it is a small-sized cloud, the outlet415

temperature of the lower field loops affected does not suffer an excessively416

abrupt drop. Due to the small size of the cloud, only a small number of loops417
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are subjected to the said cloud at any time instant. The simulations show the418

effective DNI, which includes the geometric efficiency, that is, Ieff = I · no.419
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Figure 20: Diagonal Cloud (left to right). Speed = 0.2 m/s. Solar field temperatures,
flow-rate and effective DNI.

Figure 21: Diagonal Cloud (left to right). Speed = 0.2 m/s. Loops temperatures, upper
and lower fields.

By increasing the size of the cloud, and diagonally, it can be seen how420
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the effect on the loops is greater but also different because not all loops have421

the same area covered. This simulation is shown in Figures 20 and 21. In422

this case, the drop in temperature is more important, and this can be seen423

in Figure 21 and corroborated by looking at Figure 20 where, unlike the424

small horizontal cloud, now the flow has had to be decreased much earlier to425

maintain the nominal temperature set-point of the plant, 393 ◦C (Sánchez426

et al., 2018a). The problem with clouds is they cause the temperature drop427

off part of the solar field. This causes the field outlet temperature to drop,428

causing the flow controller to lower the flow-rate to maintain this tempera-429

ture. This causes a portion of the field to heat up with the need to defocus430

when it might not be necessary. This effect may occur on days where the431

radiation is greater than that presented in these simulated scenarios. Other432

factors to also consider are the state of the loops, reflectivity, loop activated433

or deactivated, loop being cleaned, etc.434

It is essential to have prior knowledge of the cloud as far as possible:435

its size, sun-blocking radiation characteristics, and speed. Very fast clouds436

barely affect the field, as well as very small clouds or clouds that pass only437

through a small portion of the field.438

Given that each cloud affects the field differently, an effort should be made439

to analyse which types of clouds are the ones that should be estimated or440

not. This will enable us to make a proper adjustment of the plant and avoid441

defocusing parts of the field that are hotter than others where the cloud is442

passing, avoiding drops in flow-rate and, consequently, in electrical produc-443

tion. Besides, it is also necessary to include the possibility of lowering the444

field temperature set-point and operating, at least momentarily, at temper-445

atures lower than nominal to maintain stable electrical production. This is446

especially desirable in renewable generation plants since a stable production447

is important to maintain the stability of the electrical network.448

5. Conclusions449

This paper has presented a multi-UAV system to locate and estimate re-450

gions with a low DNI value caused by the shadows of clouds. The UAVs take451

measurements of the irradiance values in the area of interest with cheap,452

lightweight, and low energy consumption sensors, and then the measure-453

ments are used to obtain an estimation of the shadow shape and its sun-454

blocking characteristics. The shape computation is made through three dif-455

ferent methods tested by simulation and later discussed and compared. The456
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sun-blocking characteristics function of the cloud is modelled as a sigmoid457

function, which parameters are estimated from the DNI measurements. Ul-458

timately, the effects of two clouds detected by this method over a parabolic459

trough solar power plant are discussed by simulations.460

The solution proposed has proved to locate and characterise the clouds461

shadow in the extended searching area A in approximately two minutes,462

before the shadow reaches the solar plant. The estimated irradiance map has463

a mean error of approximately 20 W/m2. About the three methods employed464

to compute the parameters of the ellipse approximation, the Löwner-John465

minimum volume ellipsoid circumscribed about a polytope method has been466

demonstrated to be the most accurate one, but also the slower one. The ad-467

hoc heuristic method proposed by the authors has shown to be the fastest468

one, with similar results of accuracy.469

The simulations of the effects of the clouds shadow over a solar power470

plant showed that the temperature drop depends on the size, speed, and471

sun-blocking characteristics. The flow adjustment could lead to a heat-up472

of some parts of the solar field, with the need to defocus to avoid it. By473

knowing the characteristics of the incoming shadow, the defocusing and the474

consequent drop of electrical production can be prevented.475

Plans for further research include modifying the algorithm to describe476

non-convex or non-elliptical cloud shadows or estimating the variable speed477

of the blast of wind. An important issue to address is the energy consumption478

of the UAVs depending on their path. Based on (Liu et al., 2017; Dorling479

et al., 2016), in this work we have assumed that the energy consumption is480

constant independently of the type of movement due to the low UAVs speeds,481

but future studies on energy optimal paths are needed. The analysis of which482

types of shadows are interesting is also an important question to tackle.483

Given that there are a limited number of UAVs with a limited operational484

flight time capacity, it is necessary to choose the cloud shadows that would485

be most interesting or important to estimate to make adjustments through486

advanced predictive controllers in the plant. In future works, the authors will487

analyse the cloud shadows to improve estimations and predictions through488

an optimal path planning strategy for UAVs. Another subject of study will489

be the use of control strategies as model predictive control to maintain the490

power production of the plant by using the information given by estimations491

and predictions.492
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Appendix A. Variable change for distance in the ellipse-circumference498

conversion499

The reduction of the solar irradiance caused by C, namely, the sun-500

blocking characteristics of C, is modelled with a sigmoid function, such as501

the one depicted in Figure 2a. The domain of the sigmoid is [0, 1] (blue502

segment) and it is dependent of δ, defined as (A.1).503

δ =
radiusp

semi-major axis
, (A.1)

where radiusp is computed through the circumference equation (A.2). This504

equation is derived from the rotated ellipse equation (A.3a) applying the505

transformation described in (A.3b) and depicted in Figure A.22, compound506

of a displacement, a rotation and a scale in the y coordinate.507

x22 + y22 = radius2p, (A.2)

[(x− x0) cos(θ) + (y − y0) sin(θ)]2

a2
+

[(x− x0) sin(θ)− (y − y0) cos(θ)]2

b2
= 1,

(A.3a)
508 [

x2
y2

]
=

[
1 0
0 1

λ

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x− x0
y − y0

]
, (A.3b)

λ2 = 1− ε2, (A.3c)
509

radiusp = a, (A.3d)

with a, b being the semi-axes in x and y of the ellipse centered in (x0, y0) and510

rotated θ degrees with excentricity ε. This way, each position p = (xp, yp)511

has a corresponding radiusp and a sun-blocking characteristics. The resulting512

sun-blocking characteristics of the cloud is depicted in Figure 2b.513
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Figure A.22: Transformation from ellipse to circumference.
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