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Abstract

We construct new examples of bispectral dual Hahn polynomials, i.e., orthogonal polynomials with
respect to certain superposition of Christoffel and Geronimus transforms of the dual Hahn measure and
which are also eigenfunctions of a higher order difference operator. The new examples have the novelty
that they depend on an arbitrary number of continuous parameters. These are the first examples with
this property constructed from the classical discrete families.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction and results

The explicit solution of certain mathematical models of physical interest often depends on
the use of special functions. In many cases, these special functions turn out to be certain families
of orthogonal polynomials which, in addition, are also eigenfunctions of second order operators
of some specific kind. These families are the classical, classical discrete and g-classical families
of orthogonal polynomials. Besides the orthogonality, they are also common eigenfunctions of
a second order differential, difference or g-difference operator, respectively. In the terminology
introduced by Duistermaat and Griinbaum [5] (see also [23,25]), they are examples of the
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so-called bispectral polynomials, because with these families (g,(x)), of polynomials are
associated two operators with respect to which they are eigenfunctions: one acting in the
discrete variable n (the three term recurrence relation associated to the orthogonality with
respect to a measure in the real line) and the other in the continuous variable x.

As an extension of the classical families, more than eighty years ago H.L. Krall raised
the issue of orthogonal polynomials which are also common eigenfunctions of a higher order
differential operator. He obtained a complete classification for the case of a differential operator
of order four [36]. After his pioneer work, orthogonal polynomials which are also common
eigenfunctions of higher order differential operators are usually called Krall polynomials (they
are also examples of bispectral polynomials). Since the eighties a lot of effort has been
devoted to find Krall polynomials ([23,26,27,29,30,32-34,38,39,47], the list is by no mean
exhaustive). g-Krall polynomials were introduced by Griinbaum and Haine in 1996 [24] (see
also [1,28,31,44)).

The problem of finding Krall discrete polynomials was open for some decades. Richard
Askey explicitly posed in 1991 (see page 418 of [4]) the problem of finding orthogonal
polynomials which are also common eigenfunctions of a higher order difference operator (Krall
discrete polynomials) of the form

> s, s<rsrel (1.1)
I=s
where h; are polynomials and §; stands for the shift operator §,(p) = p(x + ).

The first examples of discrete Krall polynomials needed more than twenty years to be con-
structed: a huge amount of families of Krall discrete orthogonal polynomials were introduced
by the author by mean of certain Christoffel transforms of the classical discrete measures
of Charlier, Meixner, Krawtchouk and Hahn and dual Hahn (see [6,7,15,16]). A Christoffel
transform is a transformation which consists in multiplying a measure p by a polynomial r.
Families of Krall dual Hahn orthogonal polynomials were introduced in [11] also by mean
of certain Christoffel transforms of the dual Hahn measure. In the dual Hahn case, for a real
number v, we consider the linear space P* of polynomials in A(x) = x(x + v + 1):

P* = {p(r): p € P}.

The Krall dual Hahn polynomials as functions of A(x) are eigenfunctions of a higher order
difference operator of the form

.
> _his), (12)
J=s

where hj, j =s,...,r, s <r, are rational functions and the shift operator 5’} acts in P* and

it is defined by 5;(p()»(x))) = p(A(x + j)). We denote by A" the algebra formed by all the
operators T of the form (1.2) which maps P* into itself:

A* ={T : T is of the form (1.2) and T(P") c P*}. (1.3)

The reciprocal of the Christoffel transform is the Geronimus transform. Given a polynomial
r and a measure p, a Geronimus transform v of the measure v with respect to the polynomial
r satisfies rv = u. Note that a Geronimus transform of the measure p with respect to r is not
uniquely defined. Indeed, write a;, i = 1, ..., u, for the different real roots of the polynomial r,
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each one with multiplicity b;, respectively. It is easy to see that if v is a Geronimus transform of
w then the measures v+ 1| Z};’;Ol Vi, jéfl{ ) are also Geronimus transforms of j with respect
to r, where y; ; are real numbers which sometimes are called free parameters of the Geronimus
transform (52"' ) is the signed measure determined by the sequence of moments (m{;),,: m{l =0,
0<n<j—1and m{, =nn—1)---(n—j+1a""7, n> j). In the literature, Geronimus
transform is sometimes called Darboux transform with parameters (see, for instance, [45,46]).

Krall measures turn out to be Geronimus transforms of the Laguerre and Jacobi weights
when the Laguerre parameter o or one or both of the Jacobi parameters «, § are nonnegative
integers. As a consequence there are families of Krall measures depending on an arbitrary
number of continuous parameters. For example, for nonnegative integers k and m and real
parameters M;, i =0--- , k, the measures

k

ZMiS(()i) +x"e *dx, x>0,

i=0
are Krall measures [26]. In the same way, there are examples of g-Krall measures depending
on an arbitrary number of continuous parameters (because most of the g-Krall measures are
also Geronimus transform of g-classical measures). However, that did not seem to be the case
of the Krall discrete measures: they are Christoffel transform of discrete measures defined from
certain finite sets of positive integers, hence besides the continuous parameters of the associated
classical discrete measures, all the Krall discrete measures known up to now only depend on
an arbitrary number of discrete parameters. Here it is a typical example: for real numbers a, b,
a,b > —1, a positive integer N and a finite set F = {f; : i = 1, ..., k} of positive integers,
the measures

[ & =2 )pan-

feF

where p,p v 1S the dual Hahn measure (see (2.9)), are Krall discrete measures. Besides the
parameters a, b, N of the dual Hahn measures, we have an arbitrary number of discrete
parameters: the elements f;,i =1, ..., k, of the finite set F' which have to be positive integers.

The purpose of this paper is to introduce some new examples of Krall dual Hahn measures.
They depend on an arbitrary number of continuous parameters. Each Krall dual Hahn measure
is constructed by applying a certain Christoffel transform to a suitable Geronimus transform of
a dual Hahn measure with nonnegative parameters a and b. We guess that there are no Krall
Charlier, Meixner, Krawtchouk and Hahn measures depending on continuous parameters other
that the continuous parameters of the associated classical discrete measure.

The content of the paper is as follows.

In Section 4, we introduce what we call the “basic example”. Let a, b, N be positive integers
with 1 <b <a < N, and set

APy =x(x+a+b+1).

Write M = {M,, ..., M,_,} for a finite set consisting of b real parameters, M; # 0, 1. We
then define the discrete measure U%’ ~ supported in the finite quadratic net

APy i =—=b,...,N}
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by

™ i(2x+a+b+1)(N+l—x)x+b

Vv =
“oN (N +b+ Desari

Mx+b8A”»b(x) (14)

(N+1);, Z Pb.a.N(X)

S)La,h(x),
(b+1)ub P ta4i+Dx+b—i)

where p, 4 v is the dual Hahn measure (see (2.9)).
It is easy to check that the measure vé\”bl’ 18 positive if and only if the parameters in M

are positive. Notice that

b—1 b—1

[[e+a+i+Dex+b—i)=]]a""x)—r""G - b)).

i=0 i=0
and hence the measure v;\j‘], y 1s a Geronimus transform of the dual Hahn measure o, y
associated to the polynomial 1—[?;01 (x — A% — b)):

b—1

[ ] =246 = byl y =

i=0

(N + 1)}

—(b o Pb.a,N -

We find necessary and sufficient conditions for the existence of orthogonal polynomials with
respect to the measure v(%, ~ and construct them explicitly when they exist. We also prove
that they are eigenfunctions of a higher order difference operator of the form (1.2). For the
convenience of the reader we state here the result in full. To do that, we need to introduce some
auxiliary functions. As usual, [x7] denotes the ceiling function: [x] = min{n € Z : n > x},
and (x),,, m € N, denotes the Pochhammer symbol (x),, = x(x + 1)---(x +m — 1); we also
set (x, Y)m = (X)m(¥)m. For u € N, we define

—uu—s—a—b+1 —x
%bN(S x)=(—a+1, N)max(u,a+b—u—l)3F2< ;1>

—a—s+1 —N

Since u € N, except for normalization, ¢®” (s, x) is the Hahn polynomial h,9=5~%V(x)
(2.11). Hence as a function of x ¢ ab.N(g x) is a polynomial of degree at most u, and as a
function of s it is rational and analytic at s = 0 when u < a — 1.

We next define the sequence (Wg“’b N ;M)g of polynomials, W;*b N:Moof degree g, as follows

Lah 27N, x) = oo 210, %), (41 <g=<a-1,
(=1)"*8(g — b)!
X [(b +a—g— DI(=x)hy 0N —a) (1.5)
(§—a)(N+a+b+1-8)2g—a—pi1 1 —a.
e ety W] asgsath-L,
h_a’_b’_z_N(x), otherwise,

where h%%N denotes the nth Hahn polynomial (see (2.11)). Notice that only the polynomial
WiZN & depends on the parameter M;, i =0, ...,b — 1. In Section 3, we explain the way

in which we have found both, the measure va/f’bl’ N and the auxiliary polynomials (Wg'b’N ‘M)g.
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We finally define the sequence (®%>-N:M), by

1<j<a
LN M = [ TWaEbNM(—p 4 j — 1) . (1.6)
ge{b,b+1,...,a+b—1}
Throughout this paper, we use the following notation: given a finite set of numbers F =
{fi,..., fur} (we denote by ny the number of elements of the finite set X), the expression
B I<j=np
25 (.7
| feF

inside of a matrix or a determinant will mean the submatrix defined by

iR 2 Zfiap

anF,l Zf”F’z T an,:a”F

The determinant (1.6) should be understood in this form.

Theorem 1.1. Let a,b, N be nonnegative integers with 1 < b < a < N, and write
M = My, ..., My_1} for a finite set consisting of b real parameters, M; # 0, 1. Then the
measure v‘f‘,’b" ~ has a sequence of orthogonal polynomials if and only if

PeONM L0, n=0,....,N+b+1. (1.8)

In that case the sequence of polynomials (q%*N 3M),11V:0b defined by

(=nJ-! abN( ) .
.y BFN =1+ a1y n—j+1F l<j<a+1
4y (x) = W”bNM( n+j—2) ) (1.9
ge{bb+1 .,a+b—1}

is orthogonal with respect to the measure v% N» With norm

2 ga.b.N:M g5a.b.N:M
(P NM qab NiMy (N + o) a1 (1.10)
n I N (N+a—mIN+b—mIN+b—n+ 1)

(where R 0N denotes the nth dual Hahn polynomial (see (2.7)). Moreover, the polynomials
qy a,b,N; M()L“ b(x)), n > 0, are also eigenfunctions of a higher order difference operator of the
form (1.2) with —s =r = ab + 1.

In particular, if the measure va/f’bl. 18 positive (that is, all the parameters M;,i =0,...,b—1,
are positive) then the assumption (1.6) holds and we can construct orthogonal polynomials with
respect to v(%’N by using (1.9).

Given a finite set of complex numbers U such that u +v # —a — b — 1, u,v € U, we
consider in Section 5 the Christoffel transform of the measure v[{f’b‘, » defined by

vapw =[x = 22w v (1.11)

uelU
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We construct orthogonal polynomials (g?"M-U) ~with respect to vﬁ’% by mean of the

formula (compared with (1.9))

qa,b,N;M,U(x) (112)

(—1)j_lRZf,’L[l\]/_j+1(x) I<j<atny+1
(b+N—n—=ny+ Datny 41— WePNM(—n —ny + j —2)
gelb,b+1,...,a+b—1)}

[(—I)J‘R,‘jf,;f,’ (AP () }
uelU

[Tuev (x = 242 w))
(the renormalization is necessary to avoid division by zero). As noted before, ny denotes the
number of elements of the finite set U.
The more interesting cases of the Christoffel transforms (1.11) is when

APy e M) —b<i<—-20r0<i <N}, uel,

because they provide new examples of Krall discrete measures. We prove it in Section 6 and
to do that we find other determinantal formula for the orthogonal polynomials (g¢*-V:M-U),
different to (1.12) (see Theorem 6.1).

This property of having different and nontrivial determinantal representations is typical of
the Christoffel transform of classical discrete measures (see [13]). By nontrivial, we mean
that one of such representations cannot be transformed in other different representation just by
combining rows and columns in the corresponding determinants; in particular, the determinants
corresponding to two different representations can have rather different sizes. In Section 7 we
find other different determinantal representations for the families of the orthogonal polynomials
with respect to all the Christoffel transforms (1.11) (see Theorem 7.1). It is a challenge to
study whether these different nontrivial determinantal representations could be connected with
Selberg type formulas and constant term identities as it is the case for the other families of
Krall discrete polynomials (see [10]).

In Section 8, we consider the case when a < b.

The new examples of Krall dual Hahn orthogonal polynomials are also interesting for
the following reason. It has been shown in [12] that exceptional Hahn polynomials can
be constructed by applying duality (in the sense of [37]) to Krall dual Hahn orthogonal
polynomials. Passing then to the limit, exceptional Jacobi polynomials can be constructed.
Exceptional and exceptional discrete orthogonal polynomials p,, n € X & N, are complete
orthogonal polynomial systems with respect to a positive measure which in addition are
eigenfunctions of a second order differential or difference operator, respectively. They extend
the classical families of Hermite, Laguerre and Jacobi or the classical discrete families of
Charlier, Meixner and Hahn. The exceptional families have gaps in their degrees, in the sense
that not all degrees are present in the sequence of polynomials, being that the most apparent
difference with their classical counterparts. The last thirteen years have seen a great deal of
activity in the area of exceptional orthogonal polynomials (see, for instance, [3,8,9,12,17,19,20]
(where the adjective exceptional for this topic was introduced), [21,40-42], and the references
therein).

In all the examples appeared before 2015 apart from the parameters associated to the
classical and classical discrete weights, only discrete parameters appear in the construction
of each exceptional family. This scenario changed in 2015, when B. Bagchi, Y. Grandati

6
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and C. Quesne [2] and then Y. Grandati and C. Quesne [22] constructed exceptional Jacobi
polynomials depending on one continuous parameter. More recently, in 2021, M. A. Garcia Fer-
rero, D. Gémez-Ullate and R. Milson [18] have introduced exceptional Legendre polynomials
depending on an arbitrary number of continuous parameters. In a subsequent paper [14], we
construct new examples of exceptional Hahn and Jacobi polynomials using the new examples
of Krall dual Hahn polynomials introduced in this paper. These exceptional Hahn and Jacobi
polynomials will depend on an arbitrary number of continuous parameters and include as
particular cases all the families of exceptional Legendre polynomials constructed in [2,18,22].

We finish pointing out that the inclusion of the continuous parameters has needed of some
new ideas if we compare with some previous papers (especially [11,15]). Anyway, we have
omitted those proofs which are similar to some results in [15] or [11].

2. Preliminaries

Let u be a measure (positive or not) with finite moments f x"du,n =0,...,2K (K a
positive integer or infinity). We say that a sequence of polynomials (p,)X_, p, of degree n, is
orthogonal with respect to u, if

/ J =0, n#m,
Papmdiy o

For a discrete measure p = > \_ a,8(x) and u € N, we denote by 7, the translated measure

n—u

W= Y Arnudix). @

Similarly, given a polynomial », the measure rp is defined by

n

ro =) rO()as (). 22)

X=m

Consider the set T formed by all finite sets of positive integers:
T = {F : F is a finite set of positive integers}.
We consider the involution / in 1" defined by
I(F)={1,2,.... max F}\ {max F — f, f € F}. 2.3)

For F =, we define max F = min F' = —1, and so /({) = 0.
The definition of I implies that /> = Id.
The set I(F) will be denoted by G: G = I(F). Notice that

max F =max G, ng=maxF —np—+1, 2.4)

where nyp and ng are the number of elements of F' and G, respectively.

Given a finite set of numbers F' = {fi, ..., fu.}, fi < f;j if i < j, we denote by Vy the
Vandermonde determinant defined by
ve= ] -5 (2.5)
l=i<j=np
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2.1. Dual Hahn and Hahn polynomials

We include here basic definitions and facts about dual Hahn and Hahn polynomials, which
we will need in the following Sections.
For a and b real numbers, we write

2P =x(x+a+b+1). (2.6)
We write (R%?N), for the sequence of dual Hahn polynomials defined by
n . . j—1
N e (=) (=N + aj@+ j+ Daej . .
RS (x)_jzz;) DIt g(x—t(a+b+l+z)) 2.7)

(see [35], pp, 209-13). We have taken a different normalization that in [11] since we are going
to deal here with the case when a is a negative integer.
Notice that R%*-" is always a polynomial of degree n. Using that
j-1
1Y [P @) —ita+ b+ 1+ ) = (=x);(x +a + b+ 1);,
i=0
we get the hypergeometric representation

(a+ 1),(—N), -n —xx+a+b+1
RPN (AP (x)) = ———"3F. i1).
@b G0 (1) Sy il N
When a and b are positive integers, the following identity holds for a < n
R “>N(x +a+b) n—a) b Nea
v — = —— R ). 2.8)
12 x+a+b—2r"9703)) n!
When N is a positive integer and a, b # —1,—-2,...— N,a+b # —1,..., —2N — 1, the dual
Hahn polynomials R%*N, n =0, ..., N, are orthogonal with respect to the following measure

N
2x +a+b+1)(a+ 1)(=N),N!
PabN =Y Braby (2.9)

(=D +a+b+ Dyyr (b + Dyx!
(—N)2(“F™)

VL

(R®DN | RabNy — n=0,...,N. (2.10)
The measure p,, n 1s positive or negative only when either —1 < a,b or a,b < —N,
respectively.

If N is not a nonnegative integer and a,—b — N — 1 # —1,-2,..., the dual Hahn
polynomials (RZ””N ). are always orthogonal with respect to a signed measure.

We write (h%-V), for the sequence of Hahn polynomials defined by

ab.N(y _ _ —n,—x,x+a+b+1
hy” " (x) = (a + Di( N)n3F2< Gl N ,1) 2.11)
_ Z (—m)ja+b+n+1);(=N+ jujl@+j+ Dy j(—x);

1
j=0 J

We have taken a different normalization that in [11] since we are going to deal here with the
case when a is a negative integer (see [35], 204-8).

8
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The hypergeometric representation of the Hahn and dual Hahn polynomials show the duality,
n,m>0

(@4 Dn(=N)n

N ) = @+ D (=N RPN G o). (2.12)

Hahn polynomials are eigenfunctions of the second order difference operator

I'=a(x)8§; — (a(x) + b(x)So +b(x)S_1, RSPV (x) = 2 (m)h%>N(x),  (2.13)
where

a(x)=(x+a+ 1)(x — N),

bx)=x(x—b—N—1).
Hahn polynomials also satisfy the following identity.

(_l)nhz,b,N(x) — hZ’u’N(N _ x). (214)

3. Finding the pieces of the puzzle

In this Section, we explain the way in which we have found both, the measure v[f’b" y (1.4)
and the auxiliary polynomials (W;””N ;M)g (1.5).

In [11], we construct families of Krall dual Hahn polynomials by using Christoffel trans-
forms of the dual Hahn measure. Our starting point here is the following particular case of
these families. Let F be a finite set of positive integers. For real numbers a, b and a positive
integer N write

Gd=a-maxF—1, b=b—-maxF—1, N=N+maxF +1, (3.1)

and assume that either a,b € N,ora,b € N, a,b < N and a, b ¢ {—1, -2, ...}. Consider the
Christoffel transform ,o: bV of the dual Hahn measure p, ; v (2.9) defined by

phyn =Tmaxrst | [ [ = 2% (Fpai (3.2)
feF

(see (2.1) and (2.2)). We have modified the expression in [11] taking into account that
ATl (x) — A% (—max F — 1 + £) = A% (x + max F + 1) — 235 f).
Under the assumption that for 0 <n < N +ng + 1

1§j§nG
LN FE () = | [hgt 2N (—n 4 j — 1) #0, (3.3)
geG
where G = I(F), and [ is the involution defined in (2.3), we construct in [11] orthogonal
polynomials with respect to ,o[f ».v using the determinantal formula

(=11 a,b,N
bNF (b+N— n+])n n— ]+1(x) I<j<ng+1
a x)= ha —b, 25{’( n+j—2) . (3.4)
geCG

The assumption (3.3) is obviously equivalent to say that the polynomial g, b.N:F has degree
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The most interesting case is when ,0: p.y 18 @ positive measure, in which case the hypothesis
(3.3) holds.

The case when &,l; € {—1,-2,...} was not considered in [11] because the dual Hahn
measure 0, ; 5 is not well defined. Indeed, since the mass at A4t (x) of the measure p, b 18
given by (see (2.9))

Qx +a+b+ 1)@+ De(=N), N
(1 +a+b+ 1z, b+ D!’

the Pochhammer symbols (b + 1), and (x +a + b+ Dw41 in the denominator of p, b, ()
vanishes for x > —b and x =0,. ,—a—b—1, respectively. And, for N big enough, all the
points A%?(x), x > —b and x = 0, ...,—4 —b—1 are in the support of p; ; 5. Surprisingly
enough, for certain sets F, the measure (3.2) makes sense even when a, b e {—1,-2,...}.

Indeed, assume that a,b € N with 1 < b < a. For real numbers s, M > 0, with
0 < s < max{l, |[M|}, we define

a,=a—s/M, by;=>b+s, 3.5)
so that a;, by & 7, limy_,oa;, = a, limy_,ob; = b and hmHOZ —, = —1/M. When
Fy = {a,a+1,...,a 4+ b — 1}, it is not difficult to prove by a careful computation that

when s — 0 the measures pf;_ by.n (3.2) converges to the positive measure

L Qx4a+b+ DN +1—X)ip
_Cabz

= (N +b+ Dyas A2y
Cap(N + 1)} w Pb.aN(X) 5
Mb+ Dy S tati+Da+b—i)
where
(=D)*H (b — DN + b+ 1)?
Ca,b = ’

(@a—1)!

and pp 4 v(x) is the mass at A%?(x) of the dual Hahn measure p;, , v (see (2.9)). Note that since
24P (x) = AP(—x —a — b — 1), we can move in the measure y the mass at the point x to the
point —x —a —b — 1. Comparing with (1.4), we see that the limit measure u is the particular
case of the measure (f"}, N, when all the parameters in M are equal to M. This is the way

we have found the measure va, b (the first piece of the puzzle).

When 1 < b < a, it is not difficult to see that Fy = {a,a+1,...,a+ b — 1} is the minimal
set having the property that the measures pf; b,y have a limit as s — 0 even though the dual
Hahn measure p, ; 5 is not well defined.

When all the parameters in M are equal, orthogonal polynomials with respect to the
measure ch\,/b[, y can be constructed by taking limits in (3.4). Indeed, since Gy = I(Fp) =
{b,b+1,...,a+ b — 1}, we have that the polynomials

(=it Rbs:N
booN:M BN et () I<j<a+]
q;‘s, 5. N5 (x) — h;a+s/M,fb7s, 2 N(—I’l + ] _ 2) , (36)
ge{b,b+1,...,a+b—1}

are orthogonal with respect to the measure pai 0 b N (assuming (3.3)).

10
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However, we have to be very careful when taking limit in (3.6). Otherwise, by a direct
passing to the limit we would get the polynomials

_1yi-1
(=1)/ a,b,N (x)

(b+N—l:z+]2‘)m1¢1,j n—j+1 1<j<a+1 \;
e T ) : G.7
ge{b,b+1,...,a+b—1}

Under the hypotheses a,b ¢ N or a,b € N and a,b > max F + 1, each Hahn polynomial
hg”*’b”2’N , & € G, in (3.4) has degree g, and (3.4) provides orthogonal polynomials with
respect to the measure p(f .y (forget for a while the assumption (3.3)). But in our case, Fo =
{a,a+1,...,a+b—1}, a, b < max Fy and then some of the Hahn polynomials h;"'"’"z"v,
g=b,b+1,...,a+ b — 1, collapse to a polynomial of smaller degree or even to zero, with
the consequence that some of the polynomials in (3.7) can also collapse to zero. In order to
avoid that problem, we proceed as follows. Consider the sets Go = I(Fp) = {b,...,a+b—1}
and

b
Glzﬂral_ —‘,...,a—l}CGo, Gy={a,...,a+b—1} C Gy
(let us remind that 1 <b < a). If g € G| U G,, the Hahn polynomial hgf“”b"z’N has degree
g and the corresponding row in (3.7) will not produce any problem.

If g € Gy, then hg“*_b*_z_N = 0 and the corresponding row in (3.7) collapse to zero. We
avoid this by using the polynomial

1
}Ll;l‘(l) ;h;a-ﬁ-s/M,—b-ﬁ-s,—Z—N(x). (38)

It is easy to see that this is a polynomial of degree g. More precisely, a careful computation
shows that, except for the multiplicative constant M /(M — 1), the limit above coincides with
the combination of two Hahn polynomials in the identity (1.5). Note that, in (1.5) we have
taken an arbitrary parameter M,_, for each g, a < g < a + b — 1. Hence, we conclude

. M —a . 1 —a—+s — §,—2—
Wyt MO0 = g lim SR G, (3.9)

If ¢ € Gy, only the powers x/, j = —g+a+b,...,g, of h;* ">~V vanish. Moreover,
it is not difficult to see that then

—a,—b,—2—N
0 S L s
8 ~ ,—a,—b,—2—N —g+a+b—1 .
h_ " )
—g+a+b—1

Since g € Gy ifandonly if —g+a+b—1€ {b,..., {#] — 1} € Gy, the (g + 1)th and
(—g + a + b)th rows in (3.7) are proportional and hence the determinant will be zero. We
avoid this by changing the polynomial h;aﬂ/ M.=b=s.=2=N "0 ¢ G, in the (g + 1)th row of the

determinant (3.6) by the polynomial

—a+s/M,—b—s,—2—N
h—a+s/M,—b—s,—2—N _ hg (O) —a+s/M,—b—s,—2—N
8 h7a+s/M,7b7s,727N 0 —g+a+b—1 .
—g+a+b—1 ( )
: : —a+s/M,—b—s,—2—N .
Since the polynomial /_ e—a—b-1 defines the (—g—a—Db)th row of the determinant (3.6),
as,bg,N;M

the polynomial g remains the same. Hence, for g € G|, we consider the polynomial

—a+s/M,—b—s,—2—N
1 (h—a+s/M,—b—s,—2—N _hg 0) —a+s/M,—b—s,—2—N>
. )

lim —
—0 § a+s/M,—b—s,—2—N g—a
g hfgfafbfl (O)

11
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It is easy to see that this polynomial is equal to the polynomial

M .
7T W;,b,N,M(x)

(see (1.5)) when the set of parameters is M = {M,..., M} and f%} -1 <g<a-1
Obviously, the parameter M does not play any role in this case and we have

I 1 pa—s—b,—2-N h;a_s’_b'_z_N(O)h—a—s —b,—2-N WasbN;M (3.10)
im — 7 e,y Vet LA S =W :
P Al () B ‘

A careful computation gives the following explicit expression for the polynomial Wg“’b’N Min
(1.5) when [“H2] -1 <g=<a—1:
2g—a—>b

—8, —X - . .
M Z (J+2+N+a+b—g, j+b—g+ 1)g—vut—j (3.11)
=0

(—1)—s+a+h

» (—2¢g+a+b,—x+a+b—yg);
(—g+a+ b)(jﬂjb_g)
+“*b§“ (+2+ N, —a+j+ 1, j(~g.8—a—b+1,—x),
j=0 7!

’i Qg—a—b+1)

—(—g+iNg—a—b+1+1i)

(which shows that it is a polynomial of degree g).

This is the way we have found the polynomials Wéf"b’N M (the second piece of the puzzle).

When all the parameters in M are equal, orthogonal polynomials with respect to the measure
ch\,/b[, y can then be constructed using (1.9).

In the next Section, we prove that the determinantal formula (1.9) also works to construct
orthogonal polynomials with respect to the measure v(%, y in the general case of arbitrary
parameters M = {My, ..., M,_1}.

4. The basic example

In this Section, we prove Theorem 1.1. Our starting point are the two positive integers a, b
with 1 <b <a.

We need to introduce some auxiliary functions. Firstly, we define the polynomial P as
follows

a+b—1
Px)= [] @+2r%"(—j—1). (4.1)
j=b
It is easy to see thatif i = b,...,a—1, then —A%b(—i —1) is a double root of P. Define then

the polynomial P; by
2i+1—a—b)P(x)

Pi = . 4'2
) = i = Dy (42)
Since A“P(—i — 1) = A%*(i —a — b), we get that P, = —P,,_;_; when

eitheri =b,...,[“2] -2 ori = [“2] — 1 and a + b = 2[%$2]. 4.3)

12
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Define also the numbers u!*, m > 0, by

mOSP (i PP i) e 3
s PP , if i satisfies (4.3), (4.4)
0, otherwise.

For g =b,...,a+ b — 1, we finally define the sequences (W;")m as follows

(G4 (—g=1)" -+ ) Res_ap_,_1)(1/P)

: =b,..., [“L] 1,
Wg’h’N’M(O) 8 |- 2 -I
(b (—g—Dy™ _ rath _
Yy = Po(—1:b(—g—1)hg @27V () g=I%"1..a=1l 4.5)
040 (—g=1)"Res_ap_, 1)(1/P)
—r , =a,..., b—1,
Wab VM ) g=a a—+

where we denote by Res, (f) the residue of the meromorphic function f at the pole w.
The proof of Theorem 1.1 is based in the following identities, which we will prove later on.

Lemma 4.1. Let a,b, N be nonnegative integers with 1 < b < a < N, and write
M ={M,, ..., My_1} for a finite set consisting of b real parameters, M; % 0, 1. For 0 < n,
O<m<nandm—a+1<s <n we have

(_1)a+s+1 (R;l,h,N’ xm)u-’\’bl N at+b—1 .y
N —(b+N—s+1) mya b NM—g — 1, 4.6
PETTEI (b+N=s+1) ;vfg NMs =1, (46)
and forn =0,1,...,N +a
n+1 .b,N K
(DR 2 0 (=DM + ) @
(@a— DN +2)p_1(b+N—-n+a+1),_s (a—DAN+a—n) ‘
a+b—1
+ Y YW N Mg — 1),
g=b

As a consequence we have that @g‘b’N;M £ 0 (see (1.6)).

Proof of Theorem 1.1. We proceed in four steps.

Step 1. Assume first that @5 b.N;M # 0 for a certain n, 0 < n < N + b. Then the polynomial
g®PNiM(x) (1.9) has degree n, ¢@*NM(x) and x™, m = 0--- ,n — 1, are orthogonal with
respect to the measure v{% y and its norm is given by (1.10).

Indeed, since the leading coefficient of g&>-N:M j

1 .
g b M, (4.8)
b+ N—n+1l)n!

we deduce that the polynomial g%? ™M (x) has degree n. Then

(g VM), xm)

oM
a,b,N
(—1)/—1 b,N
m( Z ]+1(x) th%ﬂ 1<j<a+1
= W;,b,N;M(_n +] _ 2)
ge{b,b+1,...,a+b—1}

13
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Form =0,...,n—1,s =n— j+1, the identities (4.6) in Lemma 4.1 show that the first row
of the determinant above is a linear combination of the following rows. Hence, the determinant
vanishes and we deduce that

b, N; M —
(gp "V M), ") =0,

a,b,N; M
n

That is, the polynomials g
the measure v‘%’ Ne

For m = n, combining the rows of the determinant above using the identities (4.6) for
m=n,s=n—j+1land j=1,...,a, and (4.7) in Lemma 4.1, we get

(g VM), 2" M

and x™, m = 0,...,n — 1, are orthogonal with respect to

a,b,N
_ n!(N + b)1? Wb NM(_n 1§ —2) 1<j<a
A —_ ) 8
(N+a—n)!(N+a+b—n) |:ge{b,b+1,...,a+b—1} ]
n!(N + b)? a.b.N; M

’

" (N+ta—-m(Ntat+tb—n) "!
from where the identity (1.10) can be obtained by taking into account the expression (4.8) for
the leading coefficient of g%~ This proves the first step.

Step 2. If (1.8) holds then the polynomials g4V *“M(x) are orthogonal with respect to the
measure v{j‘j‘], N-

It is straightforward from Step 1.
Step 3. If the measure U%], n has a sequence (pn)f::r(]b
assumption (1.8) holds.

We prove it using induction on #.

Lemma 4.1 shows that @g’b’N;M # 0.

Assume now that @gﬁ’N M £ (. Using Step 1, we deduce that the polynomial ¢
has degree n, and hence

of orthogonal polynomials, then the

a,b,N; M

n

n—1

qz,b,N;M(x) — ;‘”pn(x) + Z é‘jpj(x)v

j=0

with ¢, # 0. Step 1 also gives that g**¥*™ and x™, m = 0--- ,n — 1, are orthogonal with
respect to the measure v;\j’ ~» and since the polynomials (p;); are also orthogonal, we get

a,b,NyM_a,b,N; M _ 2
(g, + 4y Wy = Sapns Padym O

a,b,N; M

Finally, Step 1 also says that the non null norm of g

deduce that also ¢%7;NM £ 0.

is given by (1.10), from where we

Step 4. The polynomials g®*NM(1%?(x)), n > 0 are eigenfunctions of a higher order
difference operator of the form (1.2) (where A(x) = x(x +a+b+ 1)) with —s =r =ab+ 1.
(Notice that now n runs over the nonnegative integers).

This is a direct consequence of [11, Theorem 3.1] (after a suitable renormalization of the
polynomials) and the formulas for the D-operators of the dual Hahn polynomials displayed
in [11, Section 6]. Indeed, assume that the sequence of polynomials (p,), are eigenfunctions
of an operator D € A, where A is an algebra of operators acting in the linear space of
polynomials. Assume also that the sequence (¢,), defines a D-operator for the sequence of

14
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polynomials (p,), and the algebra A (for the definition of a D-operator, see [7, Section 3], or
also [15, Section 3] or [11, Section 3.1]) and write &, ; = 1—[}—:10 €,—j. Then [15, Theorem 3.2]

(see also [11, Theorem 3.1]) states that for any finite set of polynomials Y;, i =1, ..., m, the
polynomials
(=1 Py 1 () /Ene jrtm—j41 1<jemt1
Py(x)=||Yi(n—j+1) 4.9)
i=1,...,m

are also eigenfunctions of an operator in A (which can be explicitly constructed). In our case,
(pu(x)), is the sequence of dual Hahn polynomials (Rz’b'N (A%P(x)))n, A is the algebra A*
(1.3), and

en=b+N—-n+1, &;,=b+N—n+1). (4.10)

Since the polynomials g, a.b.N:Myab(x)) n > 0, have the form (4.9), they are eigenfunctions
of an operator of the form (1.2). The order can be computed as in [11, Theorem 3.1].
The proof of Theorem 1.1 is now complete. [J

We illustrate Theorem 1.1 with an example. Consider the simplest case when a = b = 1.
Hence we have only one parameter M), and

(2x +3)(—=N),N!
¢ (=1 (x + Dyyax!
The measure is positive if and only if My > 0.

Writing Y (x) = WII’I’N;MO(—x D=x+1+:7"5 N+2 , the orthogonal polynomials (q,,

(1.9) with respect to the positive measure vfwl n can be expanded as the following linear
combination of two consecutive dual Hahn polynomials:
N+2

Mo
vy = N+25 2+(N+1)ZZ

x(x+3)-

1, N;MU)
n

| N+2
gl N Mo () = LRIV () + (n TR ) R, ().
0

+2 My —1

The second order difference operator with respect to which the dual Hahn polynomials
(RMN (), A(x) = x(x + 3) are eigenfunctions is (see [35, Page 209])

x(x +3+N) N (x +3)(N —x)
D=——7-—""§_ —5)— ———=8,.
4x +6 L0 4x +6 :
The D-operator associated to (4.10) is (see [11, Lemma 4.1])
x+3+N 1 N —x
D= ——5 + =5 Si.
4x +6 ot 270 + 4x + 6 !

Hence according to [11, Theorem 3.1], for each polynomial S, the polynomials (q,ll’l’N;MO(k)),,
are eigenfunctions of the difference operator

N +2
Ds = Ps(D)+ S(D)oDo (D +1+——).
o=

where Py is a polynomial satisfying Ps(x) — Ps(x — 1) = S(x — 1) (x + 4 N” ) (Actually, we

guess that this gives the whole algebra of difference operators of the form (1.3) with respect
to which the polynomials (q,t’l’N;MO(A)),, are eigenfunctions). Moreover Ds(q,l’l’N;Mo()L)) =
Ps(m)gn "M ().

15
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In particular for S(x) = 1, we have

(Mo +3+2N)x
P A~ A~ 9
SO= Tt T2 t€
where ¢ € R. Then the polynomials (q,ll’l’N;Mo(k)),, are eigenfunctions of the fourth order
difference operator

(Mo +3+2N) N +2
Ipp Wt 342N popy (1 D,
P 2M0—2 L G v

Mo+3+2N
with eigenvalues - C %

We complete thls Sectlon with the proof of Lemma 4.1.

Proof of Lemma 4.1. We first prove that & oM # 0. In order to do that we consider the
a x a matrices defined by

) b<g<a+b—1 5 1<i<a
v=| [y . D= | [WebNMA —1)
ie€fl,2,..., a) ge{b.b+1,...,a+b—1}

Comparing with (1.6), we deduce that det By = oy bNM

Using (4.6), we have on the one hand that the entry (z, ), 1 <1l < i < a, of the matrix
product ¥ @ is

a+b—1 A

> wet VM@ — 1) =0

g=b
(because —/ < —1 and then R“ BN — = 0). On the other hand, using (4.7), we have that the entry
(a,D,l=1,...,a, of the matrlx product ¥ @ is

a+b—1 a—1

aelrab.N:M (=D "(a - DN + 1)!
WooHM (] — 1) = 0.
gg; Ve g ( ) (a— DN + D! 7

Hence the matrix product ¥ @ is upper triangular with non null entries in its diagonal, and
then its determinant is different to zero. This implies that also 0 # det Py = P, blM

We next prove the identities (4.6) and (4.7).

Given a finite set F' of positive integers, under the assumption a, b > max F + 1, we proved
in [11, Theorem 5.1], the orthogonality of the polynomials (3.4) with respect to the measure
(3.2) by using the following identities (actually, the measure (3.2) is a very particular case
of [11, Theorem 5.1]). We first introduce some notation. Write p for the polynomial

pe) =[x+ 214" (=g = 1), @.11)
geG

where G = I(F) (see (2.3)). The assumption a, b > max F + 1 implies that the roots of p are
simple. Write ("), & € G, for the sequences defined by

mo_ (AP(—g = 1)"

§ T pl(=ab(—g — D N 0)
16
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Then forn =0,1,...,0<m <nand m —ng +1 <s < n, we have

(b+ N —s5+ Dy Sy —a—b—2—
Rty = Tty VT “-13)
a,o, geG

where
o GO b — max Pl paaN + D)
@b N (4 — max F)max p(N + max F + 112
and forn =0,..., N +ng, we have

n—n F a,b,N n
(D0, v R ng XD pE, (=1 0+ a — ng) (N + 1))
(b+N—n+ng+ Dy_pg—1 (@ — DN +ng —n)!

+ Y PN (i g — D).
geG

(4.14)

Identities of the type (4.13) and (4.14) appear in all the families of Krall-discrete polynomi-
als (see [15, p. 69, 77], [16, p. 380-381] for the Krall Charlier, Krall Meixner and Krall Hahn
polynomials, respectively). In each one of these identities appears certain family of polynomials
in the right hand side (the Hahn polynomials hg’””b*’z’N (—x —1) in the above identities (4.13)
and (4.14)). The polynomials in each one of these families are eigenfunctions of a second order
difference operator. These identities can then by proved from the case m = 0 by induction on m
using the associated second order difference operator (see [15, Section 4], especially Lemmas
4.1 and 4.2). In particular the identities (4.13) and (4.14) follows from the case m = 0, by
induction on m using that the Hahn polynomials h;”*‘b-_z_N (—x—1), g = 0, are eigenfunctions
of the second order difference operator (see (2.13))

D =AMXx)S_; + B(x)So+ C(x)S;, 4.15)
where

AX)=x+Dx—-b—-N), Cx)=x—-N—-1(x+a),
B(x)=—A(x—1)—C(x +1),

and D(h;“”b”z’N(—x — 1) = A%b(—g — l)h;“*’b"z’N(—x — 1) (note that the eigenvalues
A%b(—g — 1) define the polynomial p (4.11)).

The identities (4.6) and (4.7) in Lemma 4.1 can be proved in a similar way, but taking into
account the following two remarks (let us remind that in our case F = {a,a+1,...,a+b—1},
G=IF)={b,b+1,...,a+ b— 1}, and hence the assumption a, b > max F + 1 fails).

Remark 4.2. For g ¢ {(#1, ...,a — 1}, the polynomial P (4.1) plays in the sequences
(I//;")m (4.5) the same role played by the polynomial p (4.11) in the sequences (1/;;”),,, 4.12).
However, since P can have double roots (when b < a — 1), we have to consider in each double
root 7o of P the residue Res_,(1/P) instead of 1/p'(zo).

Remark 4.3. The polynomial Wg“*b'N “M (1.5) plays in the sequences (Yg')m (4.5) the same
role played by the Hahn polynomial h;“"h*_z_N in the sequences (&;")m (4.12). Since for
g {42, ....a+b—1}, Wé‘,’*b*NiM = h;“*_b*‘z_N, the polynomial Wg*b’N?M is also an
eigenfunction of the second order difference operator D (4.15):
DWPNM(—x = 1) = 1P (—g = DWEPNM(—x — 1),
17
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This also happens for g € {a, ..., a+b— 1} (it can be easily proved from the limit expression
(3.9) in Section 3).
However, for g € {[#], ...,a — 1}, a non linear term appears

DWy MM (—x — 1) = 2 (=g = DWgP N M (—xe = D+ ch 70N (—x = 1,

where ¢ =(a+b—2g—1)(b— g)2g—a—p+1(N +a~+b—g+1)re_q_py1 (this follows from the
limit expression (3.10), see again Section 3). Taking this into account, we have to introduce

the number uy in ¥', g € {D, ..., [#1 — 1}, and change the factor

Reska‘l7(7g71)(l/P)

Wg’b’N;M(O)
(which appears in ;' when g ¢ {f#}, ...,a — 1}) to the factor
1
Po(=2%(—g — kg™ 7277(0)
a+b

when g € {[*2],...,a — 1}.

Taking into account these remarks the induction to prove Lemma 4.1 works as in
[15, Lemma 4.1]. O

5. Christoffel transforms of the basic example

In this Section, we extend the formula (1.9) for orthogonal polynomials with respect to
Christoffel transforms of the measure v%, N-

Let U be a finite set of complex numbers with ny elements arranged in increasing
lexicographic order (as usual, we define the lexicographic order in C by u < w if either
Ru < Rw or Ru = Nw and Ju < Jw). We associate to U the Christoffel transform of the
measure U%, » defined by

vewh =[] = 2wt o (5.1)
uel

In order to avoid the polynomial [, v —2%P (1)) from having double roots, we assume along
this Section that

u+v#—-a—-b—-1, u,vel. 5.2)
Note that the support of v(%:% is the set
SEN = (A(i) i = —b, ..., N}\ (A%P(u) 1 u € U).

We denote by ng the number of elements of SZ’N, and assume that ng > 0.
It is easy to see that when u is in

Uy=UNl{—a—b+1,....,—a—1}U{-b,...,—1}], (5.3)

the factor x — A%*(u) kills the mass of v/} , at A%*(u). Hence if we write n_ for the number
of elements of U, the measure v%:% depends on the b —n_ continuous parameters M, where
JEU,and —b < j < —1.

18
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We define the sequence (@%0V:MU) by

1<j<a+ny
b+ N —n—ny+j+ Doy WENM—n —ny + j — 1)
pubNMU | |lee{b,b+1,...,a+b—1} ,
(=1 Ry (b (u))
uelU
5.4
@aﬁb,N;M,Q)
[lioi 0+ N—n+j+ Dy
avoid division by zero when U # (.
The main result of this Section is the following Theorem.

Note that ¢0-NM — . The renormalization is necessary to

Theorem 5.1. Let a,b, N be nonnegative integers with 1 < b < a < N, write M =
{My, ..., My_\} for a finite set consisting of b real parameters, M; # 0, 1, and U for a finite
set of complex numbers satisfying (5.2) and ng > 0. Then the measure vﬁ:% has a sequence
of orthogonal polynomials if and only if

@Z’b’N;M’U(I’l) # 0, n=0,... ,ng. (55)

a b N:MUYS L dofined by

In that case the sequence of polynomials (g}

(DI RESY () 1<j<atny+1
b+ N —=n—ny+ Datny+1-WgPNVM=n —ny +j —2)
ge{b,b+1,...,a+b—1}

[(—IV-‘Rsz;ﬁ (A w)) }
. uelU
qz,b,N,M,U(x) — — ,
[liev & = 242)
(5.6)
is orthogonal with respect to the measure vm:%, with norm
<qz,b,N;M,U7q:,h,N;/\/[,U>vijLIlV/ (57)
_ (=1D)"n!(N + b)*(N +a+b —n)* FabNMU ab N MU
n+n)!(N+a—-n)!(N+a+b—n) " ntl '

Proof. First of all, we note that g%**¥**-U(x) is a polynomial because the determinant in the
numerator of the right hand side of (5.6) vanishes for x = APu), ueU.
The proof is analogous to that of Theorem 1.1. We proceed in three steps.

Step 1. Assume first that ¢&>N: MU £ ( for a certain n, 0 < n < ng— 1. Then the polynomial
q@P N MU (x) (5.6) has degree n, it is orthogonal to x™, m =0--- ,n — 1, with respect to the
measure vﬂ:% and its norm is given by (5.7).

Indeed, since the leading coefficient of gV MU s
1 .
Z,b,N,M,U’ (58)
(n+ny)!
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: a,b,N; M, U
we deduce that the polynomial g, (x) has degree n. Then

b,N;M,U(x) xm)

a,
] MU
n Va.bN

j— .b,N m
(=1 I(R:lunufjurla X )v%,N I<j<a+ny+1
[(b +N ==y + Patng - WM =n —no + = 2) }
=l|lge{b,b+1,....,a+b—1}
f—l)fflR”""N (R ()
|: n+ny—j+1 i|
uel

Form =0,...,.n—1,5s =n+ny — j + 1, the identities (4.6) in Lemma 4.1 show that the
first row of the determinant above is a linear combination of the following a rows (the rows
defined by the polynomials W;*b’N M) So, the determinant vanishes and we deduce that

(gt MM @), 2 o = 0.
a,b,N
Hence, the polynomials g%?*M-U and x™, m =0, ...,n — 1, are orthogonal with respect to

the measure vﬁ:%.
The identity (5.7) for the norm can be proved similarly.

Step 2. If (5.5) holds then the polynomials g% VMU (x) are orthogonal with respect to the
measure v/ -
It is straightforward from Step 1.

Step 3. If the measure v‘%:% has a sequence (pn)Zszgl of orthogonal polynomials, then the
assumption (5.5) holds.

We prove it using induction on n.

For n = 0, we consider the ny x ny determinant defined by

ng—Jj
uelU

j=1
A= [(—l)fR“’"*”-(M»%u)) ]

It is not difficult to see that, up to a non null factor, A is equal to the Vandermonde determinant

Vy of the finite set X = {A*’(u) : u € U} (see (2.5)). The assumption (5.2) implies that this
a,b,N

Vandermonde determinant is different to zero, and hence A # 0. Since R i

=0 for j <0,
we deduce that

gpg,b,N;/\/l,U = (—=1)™4 @(L)z,b,N;MA 1_[(17 SN+ l)u_j’
Jj=1
and Lemma 4.1 gives @37V MU £,

The proof can now be completed as that of Step 3 in Theorem 1.1. [

Multiple roots of the polynomial [], ., (x — A**(u)) can be managed using derivatives of

RZf,’lZ 11t (w)) in the determinant (5.6).
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We next explicitly compute the three term recurrence formula for the orthogonal polynomials
(gt N MUY (it will be useful in [14]). We define

1<j<atny+1,j#2
(b+N—n—ny+ Datngr1-WEPNM(=n—ny +j -2)
A NMU | |e e bb+1,....a+bh—1)

(DI Ry ()
uel
(5.9
Corollary 5.2. In the hypothesis of Theorem 5.1, the orthogonal polynomials ("N MUY

satisfy the following three term recurrence formula

xqrtlz,b,N;M,U — an+lq’¢11,b,N;M,U + bnqg,b,N;M,U + qultlz,b,N;M,U’
where
a,b,N; M, U
a, = (n + ny)m,
bp=m+ny)b+N—-n—ny+1)+@+n+ny~+1)N—n—ny)

Aa,b,N;M,U
-4 ((” + ”U)ZTMU) ,
PPN

c,,=n(a+N—n+1)(a—|—b+N—n—|—1)<

a,b,N; M,U
¢n+l
@a,b,N;M,U ’

n

a+b+N—n “
a+b+N-—-n+1

X
where A denotes the first order difference operator Af = f(n+ 1) — f(n).

Proof. It is a matter of computation using the formulas (5.8) and (5.7) for the leading

a,b,N; M, U

coefficient and the norm of ¢,

, respectively. O

We complete this Section with a couple of remarks.

Remark 5.3. Note that only rational functions of N appear in the three term recurrence formula
in Corollary 5.2. Using standard analyticity arguments, we deduce that the three term recurrence
formula is also true for N € C except for the poles of @fl*b*N MU (as functions of N).

Remark 5.4. Lemma 4.1 allows us to extend Theorems 1.1 and 5.1 for other Christoffel
transforms of the measure v(%, ~- We just sketch the idea. Indeed, it is easy to see that we can
substitute in the identities (4.6) and (4.7) the power x™ for any polynomial r of degree m,
changing the number u]" (4.4) to

P/(—2%b(=i—1))
0, otherwise,

u = (5.10)

reaabe (_aabe_: . .
{’(Aa CIZDRAEEZD) G satisfies 4.3),
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and the sequences (W;")m to

(rO4P (—g— D ) Res_ya oy (1/P)

_ +b
REEay g=bo TS -
ro4h(—g=1) — ratb 1
Ve =] Rt gm0 g=1%" a1, (5.11)
rO4P(—g—D)Res_,qp_, 1 (1/P)

N , g=a,...,a+b—1.

Wg’h’N’M(O)
Consider now a set G, G C {b,...,a + b — 1}, define the finite set of positive integers

Hg=1{b,...,a+b—1}\G,
the polynomial
se@) = [ () = r“(—h — 1)),
heHg

and assume thatif h € Hg and b < h < (#] — 1, the multiplicity of —h — 1 as a root of sg
is bigger than 1. Then the polynomials

(—DITI RPN () 1<jng+1
G @ = [+ N =n+ jagi WebNM—n+j—2) |, (5.12)
geCG
are orthogonal with respect to the measure
[ &= 2"(=h = 1)w v (5.13)
heHg

Indeed, if we write r(x) = sg(x)x™, it is easy to see that w; =0,g¢G,g=b,...,a+b—1.
Using then the version of Lemma 4.1 provided by (5.10) and (5.11), the orthogonality of the
polynomials g™ ¢ with respect to the measure (5.13) can be proved proceeding as in the proof
of Theorem 1.1.

If we set Ug = {—h — 1; h € Hg}, this result is actually saying that (5.12) provides for
the orthogonal polynomials with respect to the measure (5.13) other determinantal expression
different to (5.6). However, there is a little improvement because Ug has not to satisfy (5.2). For
instance, fora = 5,b =2 and G = {3}, we get H; = {2, 4, 5,6} and Ug = {-7, —6, =5, —3}.
Hg does not satisfy (5.2) but (5.12) provided orthogonal polynomials with respect to the
measure (5.13).

We can also proceed as in Theorem 5.1. Indeed, consider a finite set U of complex number
satisfying (5.2). We can then prove as in Theorem 5.1 that the polynomials

i— a,b,N
(_l)j lRyH_nU_j_H(x) ' I<j<ng+ny+l1
[(b +N =1 =1y + Datny 1 WEPNM(—n —ny + j - 2) }
g€l
[(—D“R,‘jf,;Z (AP )) }
uelU
g, ) =

HueU(‘x - )\ub(u))
are orthogonal with respect to the measure
el = H(x — A%P@u)) ]—[ (x = 2P (—=h — DM
uel heHg
22
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providing that

) b N M l§{'§nG+nU
[(b+N—n—nU+J + Dagng WV M(—n —ny + j = 1)
geG
[(—1)1 Ryb (A0 (u)) ]
gmov _ 1L €Y £0.

[Tucv e = 242@)
The norm is then given by
(=1Y"Unl(n + Daeng(N +D)*(N +a + b —n)'c FMGU GM.GU
4+ n)N +ng —mN +ng +b—n) " e
There is again an improvement on Theorem 5.1, because now there can be double roots in the

polynomial

[Je = 2P@) [T =2 (=h —1)). (5.14)

uel heHg

That is the case, for instance, when ¢« = b = 2, G = {3} and U = {-—3}. Indeed, since
Hg = {2}, the polynomial (5.14) is then equal to (x — A%2(—3))%.

6. New Krall dual Hahn measures

The more interesting case of the Christoffel transforms studied in the previous Section is
when

APy e APy —b<i<—-20r0<i <N}, uel, (6.1)

because then the measure vﬁ:% (1.11) is a Krall measure.
Since A%?(u) = A%"(—u —a — b — 1), and we still have to assume (5.2), we can take

Uclii:—a—-b+1<i<—-a-1}U{i:1<i<N}. (6.2)
The measure vﬁ:% is supported in the finite sets of integers
(A4P@G@):ief{=b,...,N}\ U}

which has b + N + 1 — ny elements.

If we write n_ for the number of elements of {u € U : —a —b+1 <u < —a — 1}, the
measure vﬁ:% depends on the b — n_ continuous parameters M; with —b < j < —1 and
jEF-u—a—-b—-1uecl.

In this Section, we prove that under the assumption (6.1), the orthogonal polynomials with
respect to the measure vi/bl:% are eigenfunctions of a higher order difference operator of the
form (1.2). We prove this by constructing for these polynomials other determinantal formula
(different to (5.6)).

We need to introduce some notation. Define the numbers

ay =a+max(—1,maxU)+1, by =b+max(—1,maxU)+ 1 (6.3)
Ny =N —max(—1,maxU) — 1, sy = k“'b(max(—l, maxU) + 1), 6.4)
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and the finite sets of positive integers
Fy={a,...,a+b—1}U{a+b+u:ueclU}, (6.5)
Gy = I(Fy), (6.6)
where I is the involution defined by (2.3). The elements of Gy are arranged in increasing

order. Consider finally the sequence

. Isj=ngy
BtV () = [W;U’bU’Nu;M(—n—i- FE)) } : 6.7)
g €Gy

Theorem 6.1. Let a,b, N be nonnegative integers with 1 < b < a < N, write M =
{My, ..., My_1} for a finite set consisting of b real parameters, M; # 0,1, and U for a
finite set of integers satisfying (6.1). Then the measure v%, ~ has a sequence of orthogonal
polynomials if and only if

PrbNMUy £0, n=0,...,N+b—ny+1. (6.8)
In that case the sequence of polynomials (g&>": M, U)NH’ "U defined by

_1 ,ay.by .,
/'R YUY M (=)

. OHN=1+Png +1—; I=j=ng, +1
~a,b,N:M,U _ Gy ™~/
X) = . , 6.9
qn ( ) W;y,bU,NU,M(_n +] _ 2) ( )
g €Gy

is orthogonal with respect to the measure vévbl‘ll\/,, with norm

<qszMuqubNMU>uM = bNMU@ZleMU (610)

a,b,N
y (n+ny)(N +b)*(N + b —n)!
n(N+a—n—ny)(N+b—n+ng,)?*

Moreover the polynomials c]fj’b*N;M'U(k“U’bU (x)), n = 0, are eigenfunctions of a higher order
difference operator of the form (1.2) with

s =r= Zf—(”?)ﬂ

feFy
First of all, we explain how we have found the formula (6.9) for the orthogonal polynomials
with respect to the measure vﬁf,:%. For s small enough, write (in a similar form to (3.5) in
Section 3)

aUY=aU—s/M bUYZbU-FS

so that ay g, bys ¢ 7Z. Consider the measure an by Ny defined by (3.2). When all the
parameters in /\/l are equal, that is, M = {M,. M } a careful computation shows that
the measure ,oaU“ by o Ny CONVErges to vj\,/bl,,(\], as s — O. Since the determinantal formula (3.4)

provides orthogonal polynomials with respect to ,0:5 by Ny We can then construct orthogonal

polynomials with respect to va bN by taking limits in (3.4) as s — 0. As explained in Section 3,
in order to avoid the collapse of the determinant (3.4) when passing to the limit, we have to
change the Hahn polynomials /2; ““" """ ">"™ by the polynomials W¢V""V""*M (1 5) In doing
that we get the determinantal formula (6.9).
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Proof of Theorem 6.1. We first prove that the polynomials G¢--V:M-U(pav-bu (x)), n > 0, are
eigenfunctions of a higher order difference operator of the form (1.2). As in Theorem 1.1, this is
a consequence of the determinantal formula (6.9). Indeed, write p,(x) = RAU-PUNU () au by ()
and A for the algebra A* (1.3) with A(x) = x(x + ay + by + 1). Since by + Ny —n+1 =
b+ N —n + 1, we have again that €, = b+ N — n + 1 defines a D-operator for the sequence
of Hahn polynomials (RZU’bU’NU )» and the algebra A, and &,; = (b+ N —n + 1); (see Step
4 in the proof of Theorem 1.1). Hence, the polynomials (Z],?U’bU’NU;M’U(A“U U (x))),, have the
form (4.9) and, as a consequence, they are eigenfunctions of an operator of the form (1.2). The
order can be computed as in [11, Theorem 3.1].

The rest of the proof of Theorem 6.1 can be done as that of Theorem 1.1 but using the
following version of Lemma 4.1.

We start by extending the definitions previous to Lemma 4.1 to the new scenario. In order

to do that, we have to take into account that the parameters ay, by, Ny ((6.3) and (6.4)) play
~ay.,by ,Ny; M, U

in the polynomials g, "~ the role played by the parameters a, b, N in the polynomials
q,‘,’*”’N;M. In the same way, the set Gy plays now the role of {b, ..., a+b—1}. It is not difficult
to check that {by,by + 1,...,ay — 1} C Gy. Hence, we introduce the following auxiliary
functions.

We define the polynomial Py as follows (compare with (4.1))
Py(x)= [ x+rv" (=g —1).
geGy

It is not difficult to see that if i = by, ..., ay — 1, then —A%-2U(—j — 1) is a double root of
Py. Define then the polynomial Py ; by (compare with (4.2))

Qi+1—ay —by)Py(x)

Py i(x) = )
v.i(X) G+ 0o (=i — 1))
Since AU (—j — 1) = AW-PU(i — ay — by), we get that Py; = —Py ay+by—1-i When
either i = by, ..., [4FU] —2 6.11)

ori = [—“U‘Z”’U} —land ay +by = 2{—“”;””1.
Define also the numbers uy; ;, m > 0, by (compare with (4.4))

m(AU U (—i— 1)y Py (=20 PU (—i—1))
m o _ PL’]vi(—)L“U*bU(fifl)) ’

if i satisfies (6.11),
0, otherwise.

For g € Gy, we finally define the sequences (I/f("f, g)m as follows (compare with (4.5))

ay by (—o—1)Y" 4y
(()L U-bU (—g—1)) J”‘U,g)ReS,AanU(fgf])(l/PU) g = by [‘aU+bU‘| 1
, =by,....[75~ )

W;zU,bU.NU;M(O)
m (U -bU (—g— 1" _ ray+tby
= " S — - g—l' -|...L1U—1
Vo Py, (—3U-PU (—g—1yhg U0 TN ) 2 ey ’
(00 (—g =D Res_,ay by 1)1/ PU) otherwise
by Nijs M ’ .
W;U U-Nu (0)
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The following identities can be proved as (4.6) and (4.7) in Lemma 4.1. For0 <n,0 <m <n
andm—a+1<s<n

(Ny + DUR M (= 50), (2 = su)") v

(=1 v (ay — DIN + b)!
=B+ N—s+1), ) yp WebvNoeM g 1),
geG

and forn =0,1,...,a+ N —ny +1

(=1 Ny + DURIGEN (= s0). (= su)") mo

(ay — DN +b)i(b+ N —n+ngy + Dung,

m+ny)(N+a—n—ny+1), by Ny: M
_ 3y Wt NeEM (g 1), O
(—1)”+1(CZU — DI(Ny + 2)aU717nU geZG vs o

7. More pieces of the puzzle

When the finite set U satisfies (6.1), we have found two nontrivial determinantal represen-
tations for the orthogonal polynomials with respect to the Krall discrete measure vﬁ/bl:f\],.

We show in this Section that actually this is also the case for the families of orthogonal
polynomials with respect to each one of the Christoffel transforms studied in Section 5.
In particular, this includes other determinantal expression for a sequence of orthogonal
polynomials with respect to the basic example vaff’bl’ N

Theorem 7.1. Let a, b, N be nonnegative integers with 1 < b < a < N. For a finite set

= {My, ..., My_\} consisting of b real parameters, M; # 0, 1, write M~ for the set of
parameters M~ = {1/My, ..., 1/My,_1}. Let U be a finite set of complex numbers satisfying
(5.2) and ng > 0 and define the sequence (W;"b’N;M'U),, by

1<j<b+ny
(=N =@ = DYy WPV M L — D)
gabNMU fe{aa+1 La+b—1)
[Rf: N0 w) ]

(7.1)

Then the measure v[% has a sequence of orthogonal polynomials if and only if

gab MUy £0, n=0,...,ns. (7.2)
In that case the sequence of polynomials (r&->-V: M, U)"S : defined by

RN Zprjo1(0) 1 1<j<btny+1
{( N —a=byyj WPV MEN fa b b—n—j+1) ]

fefa,a+1,....,a+b—-1}
baN

n—b+j— 1()”“ b(u)) ]

pabNMU () = [”GU . (13)

[uev e =240 @u)
2
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is orthogonal with respect to the measure vaj\/bl‘ll\/,, with norm

b,N; M, U b, N; M, U
(rabNMU pab.N:M ) MU
tsz

nl(=N —a — b2(N + b + 1 — n), @@-b-NMU gab N MU -

- (—=1)yw+b(n 4+ ny)(N + b + 1)2 ’ '
Before going with the proof, we analyze the case U = J, that is, the basic example vaj\”bl’ N
As in the previous Section, we explain how we have found the formula (7.3) for the orthogonal

polynomials with respect to the measure v[%’ y- For Fo ={a,...,a+b— 1}, and for s small
enough, consider the numbers

ag=a—s/M, b;=by+s, a,=-b—s/M, by=—-a+s, N=N+a+b

(see (3.5) and (3.1) in Section 3). Consider the measure ,0 b, deﬁned by (3.2). Since this
measure is a Christoffel transform of the dual Hahn measure p ..by.;y (which it is well defined
because a,, by ¢ 7), we can construct a sequence of orthogonal polynomlals with respect to

,0:;0 b by mean of the formula (see [43, Theorem 2.5]):
Zi%l;s L (x ta+b)  i<j<rn
[ e G f) }
iefa,...,a+b—-1j}
Po= M (x +a+b—2dsb(fy) (1.5)
As explained in Section 3, when all the parameters in M are equal, that is, M = {M, ..., M},

the measure ,an0 b converges to U% n as s — 0. Since the determinantal formula (7.5)
55055 v
provides orthogonal polynomials with respect to ,oF" g We can then construct orthogonal

polynomials with respect to va by Dy taking limits i in (7 5)ass — 0.
On the one hand, a careful computation using the duality (2.12) and the identity (2.14)
shows that forb <mnanda < f <a+b—1

lim — ! R bo N (yasbs ( py) (7.6)

s—0 §
(I = MY(=N —a — b), Wb "2 N=a=b My g )
(=DM —b+ Dp(f —b)!(=N —a —b)s
On the other hand, using the identity (2.8), we have
R—h,—a,N+a+h(x +a+ b) 3 Rfbe(x)
[T c+a+b—aab(f)) (@—b+1)

Using (7.6) and (7.7) we see that for M = {M, ..., M} and U = @, the limit of the polynomials
(7.5) are the polynomials (7.3) (after renormalization). This is the way we have found (7.3).

7.7)

Proof. We first consider the basic example va/f/b" o1, U =0.
The key is again some identities of the kind displayed in Lemma 4.1. More precisely: define
the polynomial Q as follows
a+b—1
0w = J] 6 —a—b—21""(=j—1). (7.8)
j=a
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Note that the roots of Q are simple.
For f =a,...,a+ b — 1, we next define the sequences (w}")m as follows

(@+b+3(—f = 1)

W;’f B ab,—2—N—a—b; M1 . (7.9)
Q'(a+b+rvb(—f —1)HWe™ M GEN 4
We then have for 0 <n <b+N,0<m <nandn—-b+1=<s
(b— DUN +2)p—1(—a — b — N)s4p
R by - 7.10
< s ()C) (x+a+ ) )V%YN (_l)b(b+N+1)a ( )
a+b—1
X Z 1//m ab —2—N—a—b; M~ (Cl+N—S),
andf0r05n5N+b
RN n ”!(b+N+1—n)a(—a—b—N)ﬁ
’ b - 7.11
<nb (X+a+ )>UaN (b+N+1)(21 ( )
b—l!N—|—2___b_Nna+b71 e
( )( )h 1( a ) Z 1//?Wf'b’ 2N M l(a+b+N_n)

(—1P(b+ N + 1), =

As mentioned in the proof of Lemma 4.1, these kind of identities appear in all the families
of Krall-discrete polynomials (see [15, p. 69, 77], [16, p. 380-381] for the Krall Charlier,
Krall Meixner and Krall Hahn polynomials, respectively). The identities (7.10) and (7.11) are
completely similar to the identities (4.13) and (4.14) for the Dual Hahn polynomials and the
measure paF, bN (3.2) when the finite set F satisfies a, b > max F + 1. Indeed, on the one
hand, all the roots of the polynomial Q (7.8) are simple as those of the polynomial (4.11)
(compare with the situation in Lemma 4.1 explained in Remark 4.2). And, on the other hand,
proceeding as in Remark 4.3, one can see that the polynomials W“ b, =2=N—a—bM" (a +N —x),
a < f <a+b— 1, which appear in the right hand side of the 1dent1tles (7.10) and (7.11), are
eigenfunctions of the second order difference operator

D =A(Xx)S_; + B(x)So+ C(x)S;,
where

AxX)=x+1D)x—a—N), Ckx)=x—-—N-—1(x+b),
Bx)=—Ax—-1)—Cx+1),

and
—2-N—a—b; M~} a a.b,~2=N—a—b; M~
D(W;,b, 2N—ab M7 LN ) = A (— f — l)Wf’b’ IN=a=bMT L N — x)

(note that the eigenvalues ALl (— f — 1) define the polynomial Q (7.8)). D is the same second
order difference operator with respect to which the Hahn polynomials hf_.”'_h’N+”+b(a+N —X),
0 < f, are eigenfunctions (see (2.13)) (compare with the situation in Lemma 4.1 explained in
the Remark 4.3).

Taking this into account, the identities (7.10) and (7.11) can be proved in a similar way to
the identities (4.13) and (4.14).

The basic example v;\;“ y (.e., U = ¥) can now be managed as in Theorem 1.1, and the
general case when U # ) can be proved as Theorem 5.1. [
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We finish this Section pointing out that we have constructed three different determinantal
formulas for the orthogonal polynomials with respect to the Krall dual Hahn measure vﬁ:f{,
when U satisfies (6.1). The first one is (5.6) whose determinant has size a+ny + 1. The second
one is (6.9) whose determinant has size max{a+b—1,a+b+U}—ny+1 (for the computation
of the size we have used (2.4)). The third one is (7.3) whose determinant has size b +ny + 1.
Note, that the size of those determinants can be very different. For instance, fora =5, =2
and U = {-2,0, 1, 5, 6}, the size of the three determinants are 11, 9 and 8, respectively. None
of these three determinants can be transformed in some of the other determinants by combining
rows and columns.

8. The case a < b

In the previous Sections, we have assumed that b < a. As far as we know, the dual Hahn
polynomials do not have any symmetry between the parameters a and b, so the case a < b
needs some specific changes to be handled. Those changes are however rather natural: only
the basic measure v/} , and the polynomials (W->N:*), need to be slightly adapted.

When a < b, the set of real parameters is now M = {My, ..., M,_}, M; # 0, 1, and its
number of elements is a. The basic case corresponds with the discrete measure v%  supported
in the finite quadratic net -

(A**@):i=—a,...,N}
and defined by

Mo i Qx+a+b+DIN+1—x)p

= M 146, 8.1
va,h’N x=—a (N + b + 1)x+a+1 *HatAnw) ( )
(N + 1) Pb.a,N(X)
b Z (SAcz,b(x),
(b+1)ab O(x—i—a—i—z—i—l)(x—i—b i)

where pp 4y is the dual Hahn measure (see (2.9)).
We next define the polynomials (Wg“’b’N ;M)g.
For g € {F#T, ..., b — 1}, we use again the limit (3.10) and define

1 hfafs,fb,727N(_2 _ N)
Wa b,N; M()C)_llm h*d*S,*b,*Z*N(x) 8 :a s, b; 2—N(x) )
os P W =y e

The reason why we have substituted 0 by —2 — N in the previous limit with respect to (3.10)
is to preserve the symmetry of the Hahn polynomials with respect to the interchange of the
parameters a and b. Indeed, it is easy to see that

(_l)nwga,b,N,M(x) — W;,H,N;M_] (_2 — N — x)_ (8.2)
For g ¢ {(”%b], ..., b — 1}, we define Wé?'b’N;M as follows

(—1)P+¢(g — b)!
x[(b+a—g = D=0V - @)

8.3)

(=) (N+a+b+1—g)gq— a,—b,—2— (

G Mgblgzg b+lha+bgl N(x)] b<g<a+b—1,
h;“”””2’N(x), otherwise.

Notice that only the polynomial W;’;, b.N:M depends on the parameter M;, i =0,...,a — L.
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The finite set {b,b + 1,...,a + b — 1} which appears in the determinants (1.6) and (1.9)
remains the same (because of the same reasons explained in Section 3 for the case b < a).

With these changes, Theorem 1.1 works in the same way that for the case b < a. More
precisely:

Theorem 8.1. Let a,b, N be nonnegative integers with 1 < a < b < N, and write
M = {M,, ..., M,_\} for a finite set consisting of a real parameters, M; # 0, 1. Then the
measure va/\’;‘,’ y (8.1) has a sequence of orthogonal polynomials if and only if

I<j<a
PetNM = |TWebNM(—p 4 j — 1) #0, n=0,...,N+a+1.
ge{b,b+1,...,a+b—1}
In that case the sequence of polynomials (q,‘f””N ;M),]y;})“ defined by
(—=1)/~! a,b,N
N TVt e Bnljn1 () I<j<at]
gy (x) = Wg,b.N;M(_n +j-2) , (8.4)
gef{b,b+1,...,a+b—1}

is orthogonal with respect to the measure v[{\f, N> With norm

. . N+b !2 ¢a,b,N;M @tl,b,N;M
(UDNM gabNMy ( )= oy e 55

qn >y a’b’N_(N+a_n)!(N+b—n)!(N—|—b—n+1)5'

Moreover, the polynomials q,‘,”b’N;M(k“’b(x)), n > 0, are also eigenfunctions of a higher order
difference operator of the form (1.2) with —s =r = ab + 1.

All the results in Sections 5-7 can be adapted in the same form as Theorem 1.1, with the
only additional change of the assumptions (6.1) and (6.2) in Section 6 that have to be changed
to

APy e APy —a<i<—-20r0<i <N}, uel,
Uclii:—a—-b+1<i<-b—-1}U{i:1<i <N}

respectively.
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