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Abstract

We construct new examples of bispectral dual Hahn polynomials, i.e., orthogonal polynomials with
espect to certain superposition of Christoffel and Geronimus transforms of the dual Hahn measure and
hich are also eigenfunctions of a higher order difference operator. The new examples have the novelty

hat they depend on an arbitrary number of continuous parameters. These are the first examples with
his property constructed from the classical discrete families.
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1. Introduction and results

The explicit solution of certain mathematical models of physical interest often depends on
he use of special functions. In many cases, these special functions turn out to be certain families
f orthogonal polynomials which, in addition, are also eigenfunctions of second order operators
f some specific kind. These families are the classical, classical discrete and q-classical families
f orthogonal polynomials. Besides the orthogonality, they are also common eigenfunctions of
second order differential, difference or q-difference operator, respectively. In the terminology

ntroduced by Duistermaat and Grünbaum [5] (see also [23,25]), they are examples of the
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so-called bispectral polynomials, because with these families (qn(x))n of polynomials are
associated two operators with respect to which they are eigenfunctions: one acting in the
discrete variable n (the three term recurrence relation associated to the orthogonality with
respect to a measure in the real line) and the other in the continuous variable x .

As an extension of the classical families, more than eighty years ago H.L. Krall raised
the issue of orthogonal polynomials which are also common eigenfunctions of a higher order
differential operator. He obtained a complete classification for the case of a differential operator
of order four [36]. After his pioneer work, orthogonal polynomials which are also common
eigenfunctions of higher order differential operators are usually called Krall polynomials (they
are also examples of bispectral polynomials). Since the eighties a lot of effort has been
devoted to find Krall polynomials ([23,26,27,29,30,32–34,38,39,47], the list is by no mean
exhaustive). q-Krall polynomials were introduced by Grünbaum and Haine in 1996 [24] (see
also [1,28,31,44]).

The problem of finding Krall discrete polynomials was open for some decades. Richard
Askey explicitly posed in 1991 (see page 418 of [4]) the problem of finding orthogonal
polynomials which are also common eigenfunctions of a higher order difference operator (Krall
discrete polynomials) of the form

r∑
l=s

hlsl , s ≤ r, s, r ∈ Z, (1.1)

where hl are polynomials and sl stands for the shift operator sl(p) = p(x + l).
The first examples of discrete Krall polynomials needed more than twenty years to be con-

structed: a huge amount of families of Krall discrete orthogonal polynomials were introduced
by the author by mean of certain Christoffel transforms of the classical discrete measures
of Charlier, Meixner, Krawtchouk and Hahn and dual Hahn (see [6,7,15,16]). A Christoffel
transform is a transformation which consists in multiplying a measure µ by a polynomial r .

amilies of Krall dual Hahn orthogonal polynomials were introduced in [11] also by mean
f certain Christoffel transforms of the dual Hahn measure. In the dual Hahn case, for a real
umber v, we consider the linear space Pλ of polynomials in λ(x) = x(x + v + 1):

Pλ = {p(λ) : p ∈ P}.

he Krall dual Hahn polynomials as functions of λ(x) are eigenfunctions of a higher order
ifference operator of the form

r∑
j=s

h jsλj , (1.2)

here h j , j = s, . . . , r, s ≤ r , are rational functions and the shift operator sλj acts in Pλ and
it is defined by sλj (p(λ(x))) = p(λ(x + j)). We denote by Aλ the algebra formed by all the
operators T of the form (1.2) which maps Pλ into itself:

Aλ
= {T : T is of the form (1.2) and T (Pλ) ⊂ Pλ}. (1.3)

The reciprocal of the Christoffel transform is the Geronimus transform. Given a polynomial
and a measure µ, a Geronimus transform ν of the measure µ with respect to the polynomial
satisfies rν = µ. Note that a Geronimus transform of the measure µ with respect to r is not
uniquely defined. Indeed, write ai , i = 1, . . . , u, for the different real roots of the polynomial r ,
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each one with multiplicity bi , respectively. It is easy to see that if ν is a Geronimus transform of
µ then the measures ν +

∑u
i=1
∑bi −1

j=0 γi, jδ
( j)
ai are also Geronimus transforms of µ with respect

to r , where γi, j are real numbers which sometimes are called free parameters of the Geronimus
transform (δ( j)

a is the signed measure determined by the sequence of moments (m j
n)n: m j

n = 0,
0 ≤ n ≤ j − 1 and m j

n = n(n − 1) · · · (n − j + 1)an− j , n ≥ j). In the literature, Geronimus
transform is sometimes called Darboux transform with parameters (see, for instance, [45,46]).

Krall measures turn out to be Geronimus transforms of the Laguerre and Jacobi weights
when the Laguerre parameter α or one or both of the Jacobi parameters α, β are nonnegative
integers. As a consequence there are families of Krall measures depending on an arbitrary
number of continuous parameters. For example, for nonnegative integers k and m and real
parameters Mi , i = 0 · · · , k, the measures

k∑
i=0

Miδ
(i)
0 + xme−x dx, x > 0,

are Krall measures [26]. In the same way, there are examples of q-Krall measures depending
n an arbitrary number of continuous parameters (because most of the q-Krall measures are
lso Geronimus transform of q-classical measures). However, that did not seem to be the case
f the Krall discrete measures: they are Christoffel transform of discrete measures defined from
ertain finite sets of positive integers, hence besides the continuous parameters of the associated
lassical discrete measures, all the Krall discrete measures known up to now only depend on
n arbitrary number of discrete parameters. Here it is a typical example: for real numbers a, b,
, b > −1, a positive integer N and a finite set F = { fi : i = 1, . . . , k} of positive integers,

he measures∏
f ∈F

(x − λa,b( f ))ρa,b,N ,

here ρa,b,N is the dual Hahn measure (see (2.9)), are Krall discrete measures. Besides the
arameters a, b, N of the dual Hahn measures, we have an arbitrary number of discrete
arameters: the elements fi , i = 1, . . . , k, of the finite set F which have to be positive integers.

The purpose of this paper is to introduce some new examples of Krall dual Hahn measures.
hey depend on an arbitrary number of continuous parameters. Each Krall dual Hahn measure

s constructed by applying a certain Christoffel transform to a suitable Geronimus transform of
dual Hahn measure with nonnegative parameters a and b. We guess that there are no Krall
harlier, Meixner, Krawtchouk and Hahn measures depending on continuous parameters other

hat the continuous parameters of the associated classical discrete measure.
The content of the paper is as follows.
In Section 4, we introduce what we call the “basic example”. Let a, b, N be positive integers

ith 1 ≤ b ≤ a ≤ N , and set

λa,b(x) = x(x + a + b + 1).

rite M = {M0, . . . ,Mb−1} for a finite set consisting of b real parameters, Mi ̸= 0, 1. We
hen define the discrete measure νMa,b,N supported in the finite quadratic net

{λa,b(i) : i = −b, . . . , N }
3
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νMa,b,N =

−1∑
x=−b

(2x + a + b + 1)(N + 1 − x)x+b

(N + b + 1)x+a+1
Mx+bδλa,b(x) (1.4)

+
(N + 1)2

b

(b + 1)a−b

N∑
x=0

ρb,a,N (x)∏b−1
i=0 (x + a + i + 1)(x + b − i)

δλa,b(x),

here ρb,a,N is the dual Hahn measure (see (2.9)).
It is easy to check that the measure νMa,b,N is positive if and only if the parameters in M

re positive. Notice that

b−1∏
i=0

(x + a + i + 1)(x + b − i) =

b−1∏
i=0

(λa,b(x) − λa,b(i − b)),

nd hence the measure νMa,b,N is a Geronimus transform of the dual Hahn measure ρb,a,N

ssociated to the polynomial
∏b−1

i=0 (x − λa,b(i − b)):

b−1∏
i=0

(x − λa,b(i − b))νMa,b,N =
(N + 1)2

b

(b + 1)a−b
ρb,a,N .

We find necessary and sufficient conditions for the existence of orthogonal polynomials with
respect to the measure νMa,b,N and construct them explicitly when they exist. We also prove
that they are eigenfunctions of a higher order difference operator of the form (1.2). For the
convenience of the reader we state here the result in full. To do that, we need to introduce some
auxiliary functions. As usual, ⌈x⌉ denotes the ceiling function: ⌈x⌉ = min{n ∈ Z : n ≥ x},
and (x)m , m ∈ N, denotes the Pochhammer symbol (x)m = x(x + 1) · · · (x + m − 1); we also
et (x, y)m = (x)m(y)m . For u ∈ N, we define

ϕa,b,N
u (s, x) = (−a + 1,−N )max(u,a+b−u−1)3 F2

(
−u u − s − a − b + 1 − x

−a − s + 1 − N
; 1
)
.

ince u ∈ N, except for normalization, ϕa,b,N
u (s, x) is the Hahn polynomial h−a−s,−b,N

u (x)
2.11). Hence as a function of x ϕa,b,N

u (s, x) is a polynomial of degree at most u, and as a
unction of s it is rational and analytic at s = 0 when u ≤ a − 1.

We next define the sequence (W a,b,N ;M
g )g of polynomials, W a,b,N ;M

g of degree g, as follows⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂sϕ

a,b,−2−N
g (0, x) −

∂
∂sϕ

a,b,−2−N
a+b−g−1 (0, x), ⌈

a+b
2 ⌉ ≤ g ≤ a − 1,

(−1)b+g(g − b)!

×

[
(b + a − g − 1)!(−x)aha,−b,−2−N−a

g−a (x − a)

+
(g−a)!(N+a+b+1−g)2g−a−b+1

Mg−a−1 h−a,−b,−2−N
a+b−g−1 (x)

]
, a ≤ g ≤ a + b − 1,

h−a,−b,−2−N
g (x), otherwise,

(1.5)

where ha,b,N
n denotes the nth Hahn polynomial (see (2.11)). Notice that only the polynomial

W a,b,N ;M
i+a depends on the parameter Mi , i = 0, . . . , b − 1. In Section 3, we explain the way

in which we have found both, the measure νM and the auxiliary polynomials (W a,b,N ;M) .
a,b,N g g

4
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We finally define the sequence (Φa,b,N ;M
n )n by

Φa,b,N ;M
n =

⏐⏐⏐⏐⏐⏐
1≤ j≤a[

W a,b,N ;M
g (−n + j − 1)

]
g ∈ {b, b + 1, . . . , a + b − 1}

⏐⏐⏐⏐⏐⏐ . (1.6)

Throughout this paper, we use the following notation: given a finite set of numbers F =

{ f1, . . . , fnF } (we denote by nX the number of elements of the finite set X ), the expression

1≤ j≤nF[
z f, j

]
f ∈ F

(1.7)

inside of a matrix or a determinant will mean the submatrix defined by⎛⎜⎝ z f1,1 z f1,2 · · · z f1,nF
...

...
. . .

...

z fnF ,1
z fnF ,2

· · · z fnF ,nF

⎞⎟⎠ .
he determinant (1.6) should be understood in this form.

heorem 1.1. Let a, b, N be nonnegative integers with 1 ≤ b ≤ a ≤ N, and write
= {M0, . . . ,Mb−1} for a finite set consisting of b real parameters, Mi ̸= 0, 1. Then the

easure νMa,b,N has a sequence of orthogonal polynomials if and only if

Φa,b,N ;M
n ̸= 0, n = 0, . . . , N + b + 1. (1.8)

n that case the sequence of polynomials (qa,b,N ;M
n )N+b

n=0 defined by

qa,b,N ;M
n (x) =

⏐⏐⏐⏐⏐⏐⏐
(−1) j−1

(b+N−n+ j)a+1− j
Ra,b,N

n− j+1(x) 1≤ j≤a+1[
W a,b,N ;M

g (−n + j − 2)
]

g ∈ {b, b + 1, . . . , a + b − 1}

⏐⏐⏐⏐⏐⏐⏐ , (1.9)

is orthogonal with respect to the measure νMa,b,N , with norm

⟨qa,b,N ;M
n , qa,b,N ;M

n ⟩νMa,b,N
=

(N + b)!2Φa,b,N ;M
n Φa,b,N ;M

n+1

(N + a − n)!(N + b − n)!(N + b − n + 1)2
a

(1.10)

where Ra,b,N
n denotes the nth dual Hahn polynomial (see (2.7)). Moreover, the polynomials

a,b,N ;M
n (λa,b(x)), n ≥ 0, are also eigenfunctions of a higher order difference operator of the
orm (1.2) with −s = r = ab + 1.

In particular, if the measure νMa,b,N is positive (that is, all the parameters Mi , i = 0, . . . , b−1,
re positive) then the assumption (1.6) holds and we can construct orthogonal polynomials with
espect to νMa,b,N by using (1.9).

Given a finite set of complex numbers U such that u + v ̸= −a − b − 1, u, v ∈ U , we
consider in Section 5 the Christoffel transform of the measure νMa,b,N defined by

ν
M,U
a,b,N =

∏
u∈U

(x − λa,b(u))νMa,b,N . (1.11)
5
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We construct orthogonal polynomials (qa,b,N ;M,U
n )n with respect to ν

M,U
a,b,N by mean of the

formula (compared with (1.9))

qa,b,N ;M,U
n (x) (1.12)

=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

(−1) j−1 Ra,b,N
n+nU − j+1(x) 1≤ j≤a+nU +1[

(b + N − n − nU + j)a+nU +1− j W a,b,N ;M
g (−n − nU + j − 2)

]
g ∈ {b, b + 1, . . . , a + b − 1}[
(−1) j−1 Ra,b,N

n+nU − j+1(λa,b(u))
]

u ∈ U

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐∏
u∈U (x − λa,b(u))

the renormalization is necessary to avoid division by zero). As noted before, nU denotes the
umber of elements of the finite set U .

The more interesting cases of the Christoffel transforms (1.11) is when

λa,b(u) ∈ {λa,b(i) : −b ≤ i ≤ −2 or 0 ≤ i ≤ N }, u ∈ U,

ecause they provide new examples of Krall discrete measures. We prove it in Section 6 and
o do that we find other determinantal formula for the orthogonal polynomials (qa,b,N ;M,U

n )n

ifferent to (1.12) (see Theorem 6.1).
This property of having different and nontrivial determinantal representations is typical of

he Christoffel transform of classical discrete measures (see [13]). By nontrivial, we mean
hat one of such representations cannot be transformed in other different representation just by
ombining rows and columns in the corresponding determinants; in particular, the determinants
orresponding to two different representations can have rather different sizes. In Section 7 we
nd other different determinantal representations for the families of the orthogonal polynomials
ith respect to all the Christoffel transforms (1.11) (see Theorem 7.1). It is a challenge to

tudy whether these different nontrivial determinantal representations could be connected with
elberg type formulas and constant term identities as it is the case for the other families of
rall discrete polynomials (see [10]).
In Section 8, we consider the case when a ≤ b.
The new examples of Krall dual Hahn orthogonal polynomials are also interesting for

the following reason. It has been shown in [12] that exceptional Hahn polynomials can
be constructed by applying duality (in the sense of [37]) to Krall dual Hahn orthogonal
polynomials. Passing then to the limit, exceptional Jacobi polynomials can be constructed.
Exceptional and exceptional discrete orthogonal polynomials pn , n ∈ X ⊊ N, are complete
orthogonal polynomial systems with respect to a positive measure which in addition are
eigenfunctions of a second order differential or difference operator, respectively. They extend
the classical families of Hermite, Laguerre and Jacobi or the classical discrete families of
Charlier, Meixner and Hahn. The exceptional families have gaps in their degrees, in the sense
that not all degrees are present in the sequence of polynomials, being that the most apparent
difference with their classical counterparts. The last thirteen years have seen a great deal of
activity in the area of exceptional orthogonal polynomials (see, for instance, [3,8,9,12,17,19,20]
(where the adjective exceptional for this topic was introduced), [21,40–42], and the references
therein).

In all the examples appeared before 2015 apart from the parameters associated to the
classical and classical discrete weights, only discrete parameters appear in the construction

of each exceptional family. This scenario changed in 2015, when B. Bagchi, Y. Grandati

6
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and C. Quesne [2] and then Y. Grandati and C. Quesne [22] constructed exceptional Jacobi
polynomials depending on one continuous parameter. More recently, in 2021, M.A. Garcı́a Fer-
ero, D. Gómez-Ullate and R. Milson [18] have introduced exceptional Legendre polynomials
epending on an arbitrary number of continuous parameters. In a subsequent paper [14], we
onstruct new examples of exceptional Hahn and Jacobi polynomials using the new examples
f Krall dual Hahn polynomials introduced in this paper. These exceptional Hahn and Jacobi
olynomials will depend on an arbitrary number of continuous parameters and include as
articular cases all the families of exceptional Legendre polynomials constructed in [2,18,22].

We finish pointing out that the inclusion of the continuous parameters has needed of some
ew ideas if we compare with some previous papers (especially [11,15]). Anyway, we have
mitted those proofs which are similar to some results in [15] or [11].

. Preliminaries

Let µ be a measure (positive or not) with finite moments
∫

xndµ, n = 0, . . . , 2K (K a
ositive integer or infinity). We say that a sequence of polynomials (pn)K

n=0, pn of degree n, is
rthogonal with respect to µ, if∫

pn pmdµ

{
= 0, n ̸= m,
̸= 0, n = m.

or a discrete measure ρ =
∑n

x=m axδλ(x) and u ∈ N, we denote by τuρ the translated measure

τuρ =

n−u∑
x=m−u

ax+uδλ(x). (2.1)

imilarly, given a polynomial r , the measure rρ is defined by

rρ =

n∑
x=m

r (λ(x))axδλ(x). (2.2)

Consider the set Υ formed by all finite sets of positive integers:

Υ = {F : F is a finite set of positive integers}.

e consider the involution I in Υ defined by

I (F) = {1, 2, . . . ,max F} \ {max F − f, f ∈ F}. (2.3)

or F = ∅, we define max F = min F = −1, and so I (∅) = ∅.
The definition of I implies that I 2

= I d.
The set I (F) will be denoted by G: G = I (F). Notice that

max F = max G, nG = max F − nF + 1, (2.4)

here nF and nG are the number of elements of F and G, respectively.
Given a finite set of numbers F = { f1, . . . , fnF }, fi < f j if i < j , we denote by VF the

andermonde determinant defined by

VF =

∏
( f j − fi ). (2.5)
1=i< j=nF

7
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2.1. Dual Hahn and Hahn polynomials

We include here basic definitions and facts about dual Hahn and Hahn polynomials, which
e will need in the following Sections.
For a and b real numbers, we write

λa,b(x) = x(x + a + b + 1). (2.6)

We write (Ra,b,N
n )n for the sequence of dual Hahn polynomials defined by

Ra,b,N
n (x) =

n∑
j=0

(−n) j (−N + j)n− j (a + j + 1)n− j

n!(−1) j j !

j−1∏
i=0

(x − i(a + b + 1 + i)) (2.7)

see [35], pp, 209-13). We have taken a different normalization that in [11] since we are going
o deal here with the case when a is a negative integer.

Notice that Ra,b,N
n is always a polynomial of degree n. Using that

(−1) j
j−1∏
i=0

(λa,b(x) − i(a + b + 1 + i)) = (−x) j (x + a + b + 1) j ,

e get the hypergeometric representation

Ra,b,N
n (λa,b(x)) =

(a + 1)n(−N )n

n!
3 F2

(
−n − x x + a + b + 1

a + 1 − N
; 1
)
.

hen a and b are positive integers, the following identity holds for a ≤ n

R−a,−b,N
n (x + a + b)∏a+b−1

i=b (x + a + b − λ−a,−b(i))
=

(n − a)!
n!

Ra,b,N−a−b
n−a (x). (2.8)

hen N is a positive integer and a, b ̸= −1,−2, . . .− N , a +b ̸= −1, . . . ,−2N −1, the dual
ahn polynomials Ra,b,N

n , n = 0, . . . , N , are orthogonal with respect to the following measure

ρa,b,N =

N∑
x=0

(2x + a + b + 1)(a + 1)x (−N )x N !

(−1)x (x + a + b + 1)N+1(b + 1)x x !
δλa,b(x), (2.9)

⟨Ra,b,N
n , Ra,b,N

n ⟩ =
(−N )2

n

(a+n
n

)(b+N−n
N−n

) , n = 0, . . . , N . (2.10)

he measure ρa,b,N is positive or negative only when either −1 < a, b or a, b < −N ,
espectively.

If N is not a nonnegative integer and a,−b − N − 1 ̸= −1,−2, . . ., the dual Hahn
olynomials (Ra,b,N

n )n are always orthogonal with respect to a signed measure.
We write (ha,b,N

n )n for the sequence of Hahn polynomials defined by

ha,b,N
n (x) = (a + 1)n(−N )n3 F2

(
−n,−x, x + a + b + 1

a + 1,−N
; 1
)

(2.11)

=

n∑
j=0

(−n) j (a + b + n + 1) j (−N + j)n− j (a + j + 1)n− j (−x) j

j !
.

e have taken a different normalization that in [11] since we are going to deal here with the
ase when a is a negative integer (see [35], 204-8).
8
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The hypergeometric representation of the Hahn and dual Hahn polynomials show the duality,
,m ≥ 0

(a + 1)n(−N )n

n!
ha,b,N

m (n) = (a + 1)m(−N )m Ra,b,N
n (λa,b(m)). (2.12)

ahn polynomials are eigenfunctions of the second order difference operator

Γ = a(x)s1 − (a(x) + b(x))s0 + b(x)s−1, Γ (ha,b,N
n (x)) = λa,b(n)ha,b,N

n (x), (2.13)

where

a(x) = (x + a + 1)(x − N ),
b(x) = x(x − b − N − 1).

ahn polynomials also satisfy the following identity.

(−1)nha,b,N
n (x) = hb,a,N

n (N − x). (2.14)

. Finding the pieces of the puzzle

In this Section, we explain the way in which we have found both, the measure νMa,b,N (1.4)
nd the auxiliary polynomials (W a,b,N ;M

g )g (1.5).
In [11], we construct families of Krall dual Hahn polynomials by using Christoffel trans-

orms of the dual Hahn measure. Our starting point here is the following particular case of
hese families. Let F be a finite set of positive integers. For real numbers a, b and a positive
nteger N write

â = a − max F − 1, b̂ = b − max F − 1, N̂ = N + max F + 1, (3.1)

nd assume that either a, b ̸∈ N, or a, b ∈ N, a, b ≤ N and â, b̂ ̸∈ {−1,−2, . . .}. Consider the
hristoffel transform ρF

a,b,N of the dual Hahn measure ρa,b,N (2.9) defined by

ρF
a,b,N = τmax F+1

⎛⎝∏
f ∈F

(x − λâ,b̂( f ))ρâ,b̂,N̂

⎞⎠ (3.2)

see (2.1) and (2.2)). We have modified the expression in [11] taking into account that

λa,b(x) − λa,b(− max F − 1 + f ) = λâ,b̂(x + max F + 1) − λâ,b̂( f ).

nder the assumption that for 0 ≤ n ≤ N + nG + 1

Φa,b,N ;F
n (x) =

⏐⏐⏐⏐⏐⏐
1≤ j≤nG[

h−a,−b,−2−N
g (−n + j − 1)

]
g ∈ G

⏐⏐⏐⏐⏐⏐ ̸= 0, (3.3)

here G = I (F), and I is the involution defined in (2.3), we construct in [11] orthogonal
olynomials with respect to ρF

a,b,N using the determinantal formula

qa,b,N ;F
n (x) =

⏐⏐⏐⏐⏐⏐⏐
(−1) j−1

(b+N−n+ j)nG +1− j
Ra,b,N

n− j+1(x) 1≤ j≤nG+1[
h−a,−b,−2−N

g (−n + j − 2)
]

g ∈ G

⏐⏐⏐⏐⏐⏐⏐ . (3.4)

The assumption (3.3) is obviously equivalent to say that the polynomial qa,b,N ;F
n has degree

n.
9
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The most interesting case is when ρF
a,b,N is a positive measure, in which case the hypothesis

(3.3) holds.
The case when â, b̂ ∈ {−1,−2, . . .} was not considered in [11] because the dual Hahn

measure ρâ,b̂,N̂ is not well defined. Indeed, since the mass at λâ,b̂(x) of the measure ρâ,b̂,N̂ is
given by (see (2.9))

(2x + â + b̂ + 1)(â + 1)x (−N̂ )x N̂ !

(−1)x (x + â + b̂ + 1)N̂+1(b̂ + 1)x x !
,

he Pochhammer symbols (b̂ + 1)x and (x + â + b̂ + 1)N+1 in the denominator of ρâ,b̂,N̂ (x)
anishes for x ≥ −b̂ and x = 0, . . . ,−â − b̂ − 1, respectively. And, for N big enough, all the
oints λa,b(x), x ≥ −b̂ and x = 0, . . . ,−â − b̂ − 1 are in the support of ρâ,b̂,N̂ . Surprisingly
nough, for certain sets F , the measure (3.2) makes sense even when â, b̂ ∈ {−1,−2, . . .}.

Indeed, assume that a, b ∈ N with 1 ≤ b ≤ a. For real numbers s,M > 0, with
< s < max{1, |M |}, we define

as = a − s/M, bs = b + s, (3.5)

o that as, bs ̸∈ Z, lims→0 as = a, lims→0 bs = b and lims→0
as−a
bs−b = −1/M . When

F0 = {a, a + 1, . . . , a + b − 1}, it is not difficult to prove by a careful computation that
hen s → 0 the measures ρF

as ,bs ,N (3.2) converges to the positive measure

µ =ca,b

−1∑
x=−b

(2x + a + b + 1)(N + 1 − x)x+b

(N + b + 1)x+a+1
δλa,b(x)

+
ca,b(N + 1)2

b

M(b + 1)a−b

N∑
x=0

ρb,a,N (x)∏b−1
i=0 (x + a + i + 1)(x + b − i)

δλa,b(x),

here

ca,b =
(−1)a+b+1(b − 1)!(N + b + 1)2

a

(a − 1)!
,

nd ρb,a,N (x) is the mass at λa,b(x) of the dual Hahn measure ρb,a,N (see (2.9)). Note that since
a,b(x) = λa,b(−x − a − b − 1), we can move in the measure µ the mass at the point x to the
oint −x − a − b − 1. Comparing with (1.4), we see that the limit measure µ is the particular
ase of the measure M

ca,b
νMa,b,N , when all the parameters in M are equal to M . This is the way

we have found the measure νMa,b,N (the first piece of the puzzle).
When 1 ≤ b ≤ a, it is not difficult to see that F0 = {a, a + 1, . . . , a + b − 1} is the minimal

set having the property that the measures ρF
as ,bs ,N have a limit as s → 0 even though the dual

Hahn measure ρâ,b̂,N̂ is not well defined.
When all the parameters in M are equal, orthogonal polynomials with respect to the

measure νMa,b,N can be constructed by taking limits in (3.4). Indeed, since G0 = I (F0) =

{b, b + 1, . . . , a + b − 1}, we have that the polynomials

qas ,bs ,N ;M
n (x) =

⏐⏐⏐⏐⏐⏐⏐
(−1) j−1

(bs+N−n+ j)m+1− j
Ras ,bs ,N

n− j+1 (x) 1≤ j≤a+1[
h−a+s/M,−b−s,−2−N

g (−n + j − 2)
]

g ∈ {b, b + 1, . . . , a + b − 1}

⏐⏐⏐⏐⏐⏐⏐ , (3.6)

are orthogonal with respect to the measure ρF0 (assuming (3.3)).
as ,bs ,N

10
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However, we have to be very careful when taking limit in (3.6). Otherwise, by a direct
assing to the limit we would get the polynomials⏐⏐⏐⏐⏐⏐⏐

(−1) j−1

(b+N−n+ j)m+1− j
Ra,b,N

n− j+1(x) 1≤ j≤a+1[
h−a,−b,−2−N

g (−n + j − 2)
]

g ∈ {b, b + 1, . . . , a + b − 1}

⏐⏐⏐⏐⏐⏐⏐ . (3.7)

nder the hypotheses a, b ̸∈ N or a, b ∈ N and a, b ≥ max F + 1, each Hahn polynomial
h−a,−b,−2−N

g , g ∈ G, in (3.4) has degree g, and (3.4) provides orthogonal polynomials with
respect to the measure ρF

a,b,N (forget for a while the assumption (3.3)). But in our case, F0 =

{a, a + 1, . . . , a + b − 1}, a, b ≤ max F0 and then some of the Hahn polynomials h−a,−b,−2−N
g ,

g = b, b + 1, . . . , a + b − 1, collapse to a polynomial of smaller degree or even to zero, with
the consequence that some of the polynomials in (3.7) can also collapse to zero. In order to
avoid that problem, we proceed as follows. Consider the sets G0 = I (F0) = {b, . . . , a +b −1}

nd

G1 =

{⌈
a + b

2

⌉
, . . . , a − 1

}
⊂ G0, G2 = {a, . . . , a + b − 1} ⊂ G0

let us remind that 1 ≤ b ≤ a). If g ̸∈ G1 ∪ G2, the Hahn polynomial h−a,−b,−2−N
g has degree

g and the corresponding row in (3.7) will not produce any problem.
If g ∈ G2, then h−a,−b,−2−N

g = 0 and the corresponding row in (3.7) collapse to zero. We
avoid this by using the polynomial

lim
s→0

1
s

h−a+s/M,−b+s,−2−N
g (x). (3.8)

t is easy to see that this is a polynomial of degree g. More precisely, a careful computation
hows that, except for the multiplicative constant M/(M − 1), the limit above coincides with

the combination of two Hahn polynomials in the identity (1.5). Note that, in (1.5) we have
taken an arbitrary parameter Mg−a for each g, a ≤ g ≤ a + b − 1. Hence, we conclude

W a,b,N ;M
g (x) =

Mg−a

Mg−a − 1
lim
s→0

1
s

h−a+s/M,−b+s,−2−N
g (x). (3.9)

If g ∈ G1, only the powers x j , j = −g + a + b, . . . , g, of h−a,−b,−2−N
g vanish. Moreover,

t is not difficult to see that then

h−a,−b,−2−N
g (x) =

h−a,−b,−2−N
g (0)

h−a,−b,−2−N
−g+a+b−1 (0)

h−a,−b,−2−N
−g+a+b−1 (x).

Since g ∈ G1 if and only if −g + a + b − 1 ∈ {b, . . . , ⌈ a+b
2 ⌉ − 1} ⊂ G0, the (g + 1)th and

−g + a + b)th rows in (3.7) are proportional and hence the determinant will be zero. We
void this by changing the polynomial h−a+s/M,−b−s,−2−N

g , g ∈ G1, in the (g + 1)th row of the
eterminant (3.6) by the polynomial

h−a+s/M,−b−s,−2−N
g −

h−a+s/M,−b−s,−2−N
g (0)

h−a+s/M,−b−s,−2−N
−g+a+b−1 (0)

h−a+s/M,−b−s,−2−N
−g+a+b−1 .

Since the polynomial h−a+s/M,−b−s,−2−N
−g−a−b−1 defines the (−g−a−b)th row of the determinant (3.6),

the polynomial qas ,bs ,N ;M
n remains the same. Hence, for g ∈ G1, we consider the polynomial

lim
s→0

1
s

(
h−a+s/M,−b−s,−2−N

g −
h−a+s/M,−b−s,−2−N

g (0)
−a+s/M,−b−s,−2−N h−a+s/M,−b−s,−2−N

−g−a−b−1

)
.

h
−g−a−b−1 (0)

11
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It is easy to see that this polynomial is equal to the polynomial
M

M − 1
W a,b,N ;M

g (x)

see (1.5)) when the set of parameters is M = {M, . . . ,M} and ⌈
a+b

2 ⌉ − 1 ≤ g ≤ a − 1.
bviously, the parameter M does not play any role in this case and we have

lim
s→0

1
s

(
h−a−s,−b,−2−N

g −
h−a−s,−b,−2−N

g (0)

h−a−s,−b,−2−N
−g+a+b−1 (0)

h−a−s,−b,−2−N
−g+a+b−1

)
= W a,b,N ;M

g . (3.10)

careful computation gives the following explicit expression for the polynomial W a,b,N ;M
g in

1.5) when ⌈
a+b

2 ⌉ − 1 ≤ g ≤ a − 1:

(−g,−x)a+b−g

(−1)−g+a+b

2g−a−b∑
j=0

( j + 2 + N + a + b − g, j + b − g + 1)2g−a−b− j (3.11)

×
(−2g + a + b,−x + a + b − g) j

(−g + a + b)
( j+a+b−g

j

)
+

a+b−g−1∑
j=0

( j + 2 + N ,−a + j + 1)g− j (−g, g − a − b + 1,−x) j

j !

×

j−1∑
i=0

(2g − a − b + 1)
(−g + i)(g − a − b + 1 + i)

which shows that it is a polynomial of degree g).
This is the way we have found the polynomials W a,b,N ;M

g (the second piece of the puzzle).
When all the parameters in M are equal, orthogonal polynomials with respect to the measure

M
a,b,N can then be constructed using (1.9).

In the next Section, we prove that the determinantal formula (1.9) also works to construct
rthogonal polynomials with respect to the measure νMa,b,N in the general case of arbitrary

parameters M = {M0, . . . ,Mb−1}.

4. The basic example

In this Section, we prove Theorem 1.1. Our starting point are the two positive integers a, b
with 1 ≤ b ≤ a.

We need to introduce some auxiliary functions. Firstly, we define the polynomial P as
follows

P(x) =

a+b−1∏
j=b

(x + λa,b(− j − 1)). (4.1)

It is easy to see that if i = b, . . . , a − 1, then −λa,b(−i − 1) is a double root of P . Define then
the polynomial Pi by

Pi (x) =
(2i + 1 − a − b)P(x)
(x + λa,b(−i − 1))2 . (4.2)

ince λa,b(−i − 1) = λa,b(i − a − b), we get that Pi = −Pa+b−1−i when

either i = b, . . . , ⌈ a+b
⌉ − 2 or i = ⌈

a+b
⌉ − 1 and a + b = 2⌈

a+b
⌉. (4.3)
2 2 2

12
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Define also the numbers um
i , m ≥ 0, by

um
i =

{
m(λa,b(−i−1))m−1 Pi (−λa,b(−i−1))

P ′
i (−λa,b(−i−1))

, if i satisfies (4.3),

0, otherwise.
(4.4)

For g = b, . . . , a + b − 1, we finally define the sequences (ψm
g )m as follows

ψm
g =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
(λa,b(−g−1))m

+um
g

)
Res

−λa,b (−g−1)(1/P)

W a,b,N ;M
g (0)

, g = b, . . . , ⌈ a+b
2 ⌉ − 1,

(λa,b(−g−1))m

Pg (−λa,b(−g−1))h−a,−b,−2−N
g (0)

, g = ⌈
a+b

2 ⌉, . . . , a − 1,

(λa,b(−g−1))m Res
−λa,b (−g−1)(1/P)

W a,b,N ;M
g (0)

, g = a, . . . , a + b − 1,

(4.5)

here we denote by Resw( f ) the residue of the meromorphic function f at the pole w.
The proof of Theorem 1.1 is based in the following identities, which we will prove later on.

Lemma 4.1. Let a, b, N be nonnegative integers with 1 ≤ b ≤ a ≤ N, and write
M = {M0, . . . ,Mb−1} for a finite set consisting of b real parameters, Mi ̸= 0, 1. For 0 ≤ n,
0 ≤ m ≤ n and m − a + 1 ≤ s ≤ n we have

(−1)a+s+1
⟨Ra,b,N

s , xm
⟩νMa,b,N

(a − 1)!(N + 2)b−1
= (b + N − s + 1)s

a+b−1∑
g=b

ψm
g W a,b,N ;M

g (−s − 1), (4.6)

and for n = 0, 1, . . . , N + a

(−1)n+1
⟨Ra,b,N

n−a , xn
⟩νMa,b,N

(a − 1)!(N + 2)b−1(b + N − n + a + 1)n−a
=

(−1)n+1n!(N + 1)!
(a − 1)!(N + a − n)!

(4.7)

+

a+b−1∑
g=b

ψn
g W a,b,N ;M

g (−n + a − 1).

As a consequence we have that Φa,b,N ;M
0 ̸= 0 (see (1.6)).

Proof of Theorem 1.1. We proceed in four steps.

Step 1. Assume first that Φa,b,N ;M
n ̸= 0 for a certain n, 0 ≤ n ≤ N + b. Then the polynomial

a,b,N ;M
n (x) (1.9) has degree n, qa,b,N ;M

n (x) and xm , m = 0 · · · , n − 1, are orthogonal with
respect to the measure νMa,b,N and its norm is given by (1.10).

Indeed, since the leading coefficient of qa,b,N ;M
n is

1
(b + N − n + 1)an!

Φa,b,N ;M
n , (4.8)

we deduce that the polynomial qa,b,N ;M
n (x) has degree n. Then

⟨qa,b,N ;M
n (x),xm

⟩νMa,b,N

=

⏐⏐⏐⏐⏐⏐⏐
(−1) j−1

(b+N−n+ j)a+1− j
⟨Ra,b,N

n− j+1(x), xm
⟩νMa,b,N

1≤ j≤a+1[
W a,b,N ;M

g (−n + j − 2)
]

g ∈ {b, b + 1, . . . , a + b − 1}

⏐⏐⏐⏐⏐⏐⏐ .

13



A.J. Durán Journal of Approximation Theory 283 (2022) 105811

o
v

T
t

m

f
t

S

h

w
r

F
d

For m = 0, . . . , n − 1, s = n − j + 1, the identities (4.6) in Lemma 4.1 show that the first row
f the determinant above is a linear combination of the following rows. Hence, the determinant
anishes and we deduce that

⟨qa,b,N ;M
n (x), xm

⟩νMa,b,N
= 0.

hat is, the polynomials qa,b,N ;M
n and xm , m = 0, . . . , n − 1, are orthogonal with respect to

he measure νMa,b,N .
For m = n, combining the rows of the determinant above using the identities (4.6) for
= n, s = n − j + 1 and j = 1, . . . , a, and (4.7) in Lemma 4.1, we get

⟨qa,b,N ;M
n (x), xn

⟩νMa,b,N

=
n!(N + b)!2

(N + a − n)!(N + a + b − n)!

⏐⏐⏐⏐⏐⏐
1≤ j≤a[

W a,b,N ;M
g (−n + j − 2)

]
g ∈ {b, b + 1, . . . , a + b − 1}

⏐⏐⏐⏐⏐⏐
=

n!(N + b)!2

(N + a − n)!(N + a + b − n)!
Φa,b,N ;M

n+1 ,

rom where the identity (1.10) can be obtained by taking into account the expression (4.8) for
he leading coefficient of qa,b,N ;M

n . This proves the first step.

tep 2. If (1.8) holds then the polynomials qa,b,N ;M
n (x) are orthogonal with respect to the

measure νMa,b,N .
It is straightforward from Step 1.

Step 3. If the measure νMa,b,N has a sequence (pn)N+b
n=0 of orthogonal polynomials, then the

assumption (1.8) holds.
We prove it using induction on n.
Lemma 4.1 shows that Φa,b,N ;M

0 ̸= 0.
Assume now that Φa,b,N ;M

n ̸= 0. Using Step 1, we deduce that the polynomial qa,b,N ;M
n

as degree n, and hence

qa,b,N ;M
n (x) = ζn pn(x) +

n−1∑
j=0

ζ j p j (x),

ith ζn ̸= 0. Step 1 also gives that qa,b,N ;M
n and xm , m = 0 · · · , n − 1, are orthogonal with

espect to the measure νMa,b,N , and since the polynomials (p j ) j are also orthogonal, we get

⟨qa,b,N ;M
n , qa,b,N ;M

n ⟩νMa,b,N
= ζ 2

n ⟨pn, pn⟩νMa,b,N
̸= 0.

inally, Step 1 also says that the non null norm of qa,b,N ;M
n is given by (1.10), from where we

educe that also Φa,b,N ;M
n+1 ̸= 0.

Step 4. The polynomials qa,b,N ;M
n (λa,b(x)), n ≥ 0 are eigenfunctions of a higher order

difference operator of the form (1.2) (where λ(x) = x(x + a + b + 1)) with −s = r = ab + 1.
(Notice that now n runs over the nonnegative integers).

This is a direct consequence of [11, Theorem 3.1] (after a suitable renormalization of the
polynomials) and the formulas for the D-operators of the dual Hahn polynomials displayed
in [11, Section 6]. Indeed, assume that the sequence of polynomials (pn)n are eigenfunctions
of an operator D ∈ A, where A is an algebra of operators acting in the linear space of

polynomials. Assume also that the sequence (ϵn)n defines a D-operator for the sequence of

14
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polynomials (pn)n and the algebra A (for the definition of a D-operator, see [7, Section 3], or
lso [15, Section 3] or [11, Section 3.1]) and write ξn,i =

∏i−1
j=0 ϵn− j . Then [15, Theorem 3.2]

see also [11, Theorem 3.1]) states that for any finite set of polynomials Yi , i = 1, . . . ,m, the
olynomials

Pn(x) =

⏐⏐⏐⏐⏐⏐
(−1) j−1 pn− j+1(x)/ξn− j+1,m− j+1 1≤ j≤m+1[
Yi (n − j + 1)

]
i = 1, . . . ,m

⏐⏐⏐⏐⏐⏐ (4.9)

re also eigenfunctions of an operator in A (which can be explicitly constructed). In our case,
pn(x))n is the sequence of dual Hahn polynomials (Ra,b,N

n (λa,b(x)))n , A is the algebra Aλ

1.3), and

ϵn = b + N − n + 1, ξn,i = (b + N − n + 1)i . (4.10)

ince the polynomials qa,b,N ;M
n (λa,b(x)), n ≥ 0, have the form (4.9), they are eigenfunctions

f an operator of the form (1.2). The order can be computed as in [11, Theorem 3.1].
The proof of Theorem 1.1 is now complete. □

We illustrate Theorem 1.1 with an example. Consider the simplest case when a = b = 1.
ence we have only one parameter M0, and

ν
M0
1,1,N =

M0

N + 2
δ−2 + (N + 1)2

N∑
x=0

(2x + 3)(−N )x N !

(−1)x (x + 1)N+3x !
δx(x+3).

he measure is positive if and only if M0 > 0.
Writing Y (x) = W 1,1,N ;M0

1 (−x −1) = x +1+
N+2

M0−1 , the orthogonal polynomials (q1,1,N ;M0
n )n

1.9) with respect to the positive measure νM0
1,1,N can be expanded as the following linear

ombination of two consecutive dual Hahn polynomials:

q1,1,N ;M0
n (x) =

n +
N+2

M0−1

N − n + 2
R1,1,N

n (x) +

(
n + 1 +

N + 2
M0 − 1

)
R1,1,N

n−1 (x).

he second order difference operator with respect to which the dual Hahn polynomials
R1,1,N

n (λ))n , λ(x) = x(x + 3) are eigenfunctions is (see [35, Page 209])

D = −
x(x + 3 + N )

4x + 6
s−1 +

N
2
s0 −

(x + 3)(N − x)
4x + 6

s1.

he D-operator associated to (4.10) is (see [11, Lemma 4.1])

D = −
x + 3 + N

4x + 6
s−1 +

1
2
s0 +

N − x
4x + 6

s1.

Hence according to [11, Theorem 3.1], for each polynomial S, the polynomials (q1,1,N ;M0
n (λ))n

are eigenfunctions of the difference operator

DS = PS(D) + S(D) ◦ D ◦

(
D + 1 +

N + 2
M0 − 1

)
,

here PS is a polynomial satisfying PS(x) − Ps(x − 1) = S(x − 1)
(

x +
N+2

M0−1

)
. (Actually, we

guess that this gives the whole algebra of difference operators of the form (1.3) with respect
to which the polynomials (q1,1,N ;M0

n (λ))n are eigenfunctions). Moreover DS(q1,1,N ;M0
n (λ)) =

P (n)q1,1,N ;M0 (λ).
S n

15
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In particular, for S(x) = 1, we have

PS(x) =
x2

2
+

(M0 + 3 + 2N )x
2M0 − 2

+ c,

where c ∈ R. Then the polynomials (q1,1,N ;M0
n (λ))n are eigenfunctions of the fourth order

ifference operator

1
2

D2
+

(M0 + 3 + 2N )
2M0 − 2

D + D ◦ D +

(
1 +

N + 2
M0 − 1

)
D,

with eigenvalues n2

2 +
(M0+3+2N )n

2M0−2 .
We complete this Section with the proof of Lemma 4.1.

Proof of Lemma 4.1. We first prove that Φa,b,N ;M
0 ̸= 0. In order to do that we consider the

× a matrices defined by

Ψ =

⎛⎝ b≤g≤a+b−1[
ψa−i

g

]
i ∈ {1, 2, . . . , a}

⎞⎠ , Φ̃0 =

⎛⎝ 1≤l≤a[
W a,b,N ;M

g (l − 1)
]

g ∈ {b, b + 1, . . . , a + b − 1}

⎞⎠ .
Comparing with (1.6), we deduce that det Φ̃0 = Φa,b,N ;M

0 .
Using (4.6), we have on the one hand that the entry (i, l), 1 ≤ l < i ≤ a, of the matrix

roduct ΨΦ̃0 is

a+b−1∑
g=b

ψa−i
g W a,b,N ;M

g (l − 1) = 0

because −l ≤ −1 and then Ra,b,N
−l = 0). On the other hand, using (4.7), we have that the entry

l, l), l = 1, . . . , a, of the matrix product ΨΦ̃0 is

a+b−1∑
g=b

ψa−l
g W a,b,N ;M

g (l − 1) =
(−1)a−l(a − l)!(N + 1)!

(a − 1)!(N + l)!
̸= 0.

ence the matrix product ΨΦ̃0 is upper triangular with non null entries in its diagonal, and
hen its determinant is different to zero. This implies that also 0 ̸= det Φ̃0 = Φa,b,N ;M

0 .
We next prove the identities (4.6) and (4.7).
Given a finite set F of positive integers, under the assumption a, b ≥ max F +1, we proved

n [11, Theorem 5.1], the orthogonality of the polynomials (3.4) with respect to the measure
3.2) by using the following identities (actually, the measure (3.2) is a very particular case
f [11, Theorem 5.1]). We first introduce some notation. Write p for the polynomial

p(x) =

∏
g∈G

(x + λa,b(−g − 1)), (4.11)

here G = I (F) (see (2.3)). The assumption a, b ≥ max F + 1 implies that the roots of p are
imple. Write (ψ̃m

g )m , g ∈ G, for the sequences defined by

ψ̃m
g =

(λa,b(−g − 1))m

′ a,b −a,−b,−2−N . (4.12)

p (−λ (−g − 1))hg (0)

16
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Then for n = 0, 1, . . ., 0 ≤ m ≤ n and m − nG + 1 ≤ s ≤ n, we have

⟨Ra,b,N
s , xm

⟩ρF
a,b,N

=
(b + N − s + 1)s+1

(−1)scF
a,b,N

∑
g∈G

ψ̃m
g h−a,−b,−2−N

g (−s − 1), (4.13)

here

cF
a,b,N =

(−1)nG+1(b − max F)N+max F+2(N + 1)!
(a − max F)max F (N + max F + 1)!2

;

nd for n = 0, . . . , N + nG , we have

(−1)n−nG cF
a,b,N ⟨Ra,b,N

n−nG
, xn

⟩ρF
a,b,N

(b + N − n + nG + 1)n−nG−1
=

(−1)n+1(n + a − nG)!(N + 1)!
(a − 1)!(N + nG − n)!

(4.14)

+

∑
g∈G

ψ̃n
g h−a,−b,−2−N

g (−n + nG − 1).

Identities of the type (4.13) and (4.14) appear in all the families of Krall-discrete polynomi-
ls (see [15, p. 69, 77], [16, p. 380–381] for the Krall Charlier, Krall Meixner and Krall Hahn
olynomials, respectively). In each one of these identities appears certain family of polynomials
n the right hand side (the Hahn polynomials h−a,−b,−2−N

g (−x −1) in the above identities (4.13)
nd (4.14)). The polynomials in each one of these families are eigenfunctions of a second order
ifference operator. These identities can then by proved from the case m = 0 by induction on m
sing the associated second order difference operator (see [15, Section 4], especially Lemmas
.1 and 4.2). In particular the identities (4.13) and (4.14) follows from the case m = 0, by
nduction on m using that the Hahn polynomials h−a,−b,−2−N

g (−x−1), g ≥ 0, are eigenfunctions
f the second order difference operator (see (2.13))

D = A(x)s−1 + B(x)s0 + C(x)s1, (4.15)

here

A(x) = (x + 1)(x − b − N ), C(x) = (x − N − 1)(x + a),
B(x) = −A(x − 1) − C(x + 1),

nd D(h−a,−b,−2−N
g (−x − 1)) = λa,b(−g − 1)h−a,−b,−2−N

g (−x − 1) (note that the eigenvalues
a,b(−g − 1) define the polynomial p (4.11)).

The identities (4.6) and (4.7) in Lemma 4.1 can be proved in a similar way, but taking into
ccount the following two remarks (let us remind that in our case F = {a, a+1, . . . , a+b−1},

G = I (F) = {b, b + 1, . . . , a + b − 1}, and hence the assumption a, b ≥ max F + 1 fails).

emark 4.2. For g ̸∈ {⌈
a+b

2 ⌉, . . . , a − 1}, the polynomial P (4.1) plays in the sequences
ψm

g )m (4.5) the same role played by the polynomial p (4.11) in the sequences (ψ̃m
g )m (4.12).

owever, since P can have double roots (when b < a −1), we have to consider in each double
oot z0 of P the residue Resz0 (1/P) instead of 1/p′(z0).

emark 4.3. The polynomial W a,b,N ;M
g (1.5) plays in the sequences (ψm

g )m (4.5) the same
ole played by the Hahn polynomial h−a,−b,−2−N

g in the sequences (ψ̃m
g )m (4.12). Since for

g ̸∈ {⌈
a+b

2 ⌉, . . . , a + b − 1}, W a,b,N ;M
g = h−a,−b,−2−N

g , the polynomial W a,b,N ;M
g is also an

eigenfunction of the second order difference operator D (4.15):

D(W a,b,N ;M(−x − 1)) = λa,b(−g − 1)W a,b,N ;M(−x − 1).
g g

17



A.J. Durán Journal of Approximation Theory 283 (2022) 105811

w
l
t

(

[

5

C

l
ℜ

m

I
t

N

W

t
o

This also happens for g ∈ {a, . . . , a +b −1} (it can be easily proved from the limit expression
(3.9) in Section 3).

However, for g ∈ {⌈
a+b

2 ⌉, . . . , a − 1}, a non linear term appears

D(W a,b,N ;M
g (−x − 1)) = λa,b(−g − 1)W a,b,N ;M

g (−x − 1) + ςh−a,−b,−2−N
a+b−g−1 (−x − 1),

here ς = (a + b − 2g − 1)(b − g)2g−a−b+1(N + a + b − g + 1)2g−a−b+1 (this follows from the
imit expression (3.10), see again Section 3). Taking this into account, we have to introduce
he number um

g in ψm
g , g ∈ {b, . . . , ⌈ a+b

2 ⌉ − 1}, and change the factor

Resλa,b(−g−1)(1/P)

W a,b,N ;M
g (0)

which appears in ψm
g when g ̸∈ {⌈

a+b
2 ⌉, . . . , a − 1}) to the factor

1

Pg(−λa,b(−g − 1))h−a,−b,−2−N
g (0)

when g ∈ {⌈
a+b

2 ⌉, . . . , a − 1}.

Taking into account these remarks the induction to prove Lemma 4.1 works as in
15, Lemma 4.1]. □

. Christoffel transforms of the basic example

In this Section, we extend the formula (1.9) for orthogonal polynomials with respect to
hristoffel transforms of the measure νMa,b,N .

Let U be a finite set of complex numbers with nU elements arranged in increasing
exicographic order (as usual, we define the lexicographic order in C by u < w if either
u < ℜw or ℜu = ℜw and ℑu < ℑw). We associate to U the Christoffel transform of the
easure νMa,b,N defined by

ν
M,U
a,b,N =

∏
u∈U

(x − λa,b(u))νMa,b,N . (5.1)

n order to avoid the polynomial
∏

u∈U (x −λa,b(u)) from having double roots, we assume along
his Section that

u + v ̸= −a − b − 1, u, v ∈ U. (5.2)

ote that the support of νM,U
a,b,N is the set

Sb,N
U = {λa,b(i) : i = −b, . . . , N } \ {λa,b(u) : u ∈ U }.

e denote by nS the number of elements of Sb,N
U , and assume that nS > 0.

It is easy to see that when u is in

Up = U ∩ [{−a − b + 1, . . . ,−a − 1} ∪ {−b, . . . ,−1}], (5.3)

he factor x − λa,b(u) kills the mass of νMa,b,N at λa,b(u). Hence if we write n− for the number
f elements of Up, the measure νM,U

a,b,N depends on the b−n− continuous parameters M j , where
j ̸∈ U and −b ≤ j ≤ −1.
p

18
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We define the sequence (Φa,b,N ;M,U
n )n by

Φa,b,N ;M,U
n =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
1≤ j≤a+nU[

(b + N − n − nU + j + 1)a+nU − j W a,b,N ;M
g (−n − nU + j − 1)

]
g ∈ {b, b + 1, . . . , a + b − 1}[
(−1) j Ra,b,N

n+nU − j (λ
a,b(u))

]
u ∈ U

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
.

(5.4)

Note that Φa,b,N ;M
n =

Φa,b,N ;M,∅
n∏a

j=1(b + N − n + j + 1)a− j
. The renormalization is necessary to

avoid division by zero when U ̸= ∅.
The main result of this Section is the following Theorem.

Theorem 5.1. Let a, b, N be nonnegative integers with 1 ≤ b ≤ a ≤ N, write M =

M0, . . . ,Mb−1} for a finite set consisting of b real parameters, Mi ̸= 0, 1, and U for a finite
et of complex numbers satisfying (5.2) and nS > 0. Then the measure νM,U

a,b,N has a sequence
f orthogonal polynomials if and only if

Φa,b,N ;M,U
n (n) ̸= 0, n = 0, . . . , nS. (5.5)

n that case the sequence of polynomials (qa,b,N ;M,U
n )nS−1

n=0 defined by

qa,b,N ;M,U
n (x) =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

(−1) j−1 Ra,b,N
n+nU − j+1(x) 1≤ j≤a+nU +1[

(b + N − n − nU + j)a+nU +1− j W a,b,N ;M
g (−n − nU + j − 2)

]
g ∈ {b, b + 1, . . . , a + b − 1}[
(−1) j−1 Ra,b,N

n+nU − j+1(λa,b(u))
]

u ∈ U

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐∏
u∈U (x − λa,b(u))

,

(5.6)

s orthogonal with respect to the measure νM,U
a,b,N , with norm

⟨qa,b,N ;M,U
n , qa,b,N ;M,U

n ⟩
ν
M,U
a,b,N

(5.7)

=
(−1)nU n!(N + b)!2(N + a + b − n)a

(n + nU )!(N + a − n)!(N + a + b − n)!
Φa,b,N ;M,U

n Φa,b,N ;M,U
n+1 .

roof. First of all, we note that qa,b,N ;M,U
n (x) is a polynomial because the determinant in the

umerator of the right hand side of (5.6) vanishes for x = λa,b(u), u ∈ U .
The proof is analogous to that of Theorem 1.1. We proceed in three steps.

tep 1. Assume first that Φa,b,N ;M,U
n ̸= 0 for a certain n, 0 ≤ n ≤ nS −1. Then the polynomial

a,b,N ;M,U
n (x) (5.6) has degree n, it is orthogonal to xm , m = 0 · · · , n − 1, with respect to the
easure νM,U

a,b,N and its norm is given by (5.7).
Indeed, since the leading coefficient of qa,b,N ;M,U

n is

1
Φa,b,N ;M,U

n , (5.8)

(n + nU )!

19
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we deduce that the polynomial qa,b,N ;M,U
n (x) has degree n. Then

⟨qa,b,N ;M,U
n (x), xm

⟩
ν
M,U
a,b,N

=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

(−1) j−1
⟨Ra,b,N

n+nU − j+1, xm
⟩νMa,b,N

1≤ j≤a+nU +1[
(b + N − n − nU + j)a+nU +1− j W a,b,N ;M

g (−n − nU + j − 2)
]

g ∈ {b, b + 1, . . . , a + b − 1}[
(−1) j−1 Ra,b,N

n+nU − j+1(λa,b(u))
]

u ∈ U

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
.

or m = 0, . . . , n − 1, s = n + nU − j + 1, the identities (4.6) in Lemma 4.1 show that the
rst row of the determinant above is a linear combination of the following a rows (the rows
efined by the polynomials W a,b,N ;M

g ). So, the determinant vanishes and we deduce that

⟨qa,b,N ;M,U
n (x), xm

⟩
ν
M,U
a,b,N

= 0.

ence, the polynomials qa,b,N ;M,U
n and xm , m = 0, . . . , n − 1, are orthogonal with respect to

he measure νM,U
a,b,N .

The identity (5.7) for the norm can be proved similarly.

tep 2. If (5.5) holds then the polynomials qa,b,N ;M,U
n (x) are orthogonal with respect to the

easure νM,U
a,b,N .

It is straightforward from Step 1.

tep 3. If the measure νM,U
a,b,N has a sequence (pn)nS−1

n=0 of orthogonal polynomials, then the
ssumption (5.5) holds.

We prove it using induction on n.
For n = 0, we consider the nU × nU determinant defined by

Λ =

⏐⏐⏐⏐⏐⏐
j=1,...,nU[

(−1) j Ra,b,N
nU − j (λ

a,b(u))
]

u ∈ U

⏐⏐⏐⏐⏐⏐ .
t is not difficult to see that, up to a non null factor, Λ is equal to the Vandermonde determinant

VX of the finite set X = {λa,b(u) : u ∈ U } (see (2.5)). The assumption (5.2) implies that this
andermonde determinant is different to zero, and hence Λ ̸= 0. Since Ra,b,N

j = 0 for j < 0,
e deduce that

Φa,b,N ;M,U
0 = (−1)nuaΦa,b,N ;M

0 Λ

a∏
j=1

(b + N + j + 1)a− j ,

nd Lemma 4.1 gives Φa,b,N ;M,U
0 ̸= 0.

The proof can now be completed as that of Step 3 in Theorem 1.1. □

Multiple roots of the polynomial
∏

u∈U (x − λa,b(u)) can be managed using derivatives of
a,b,N a,b
Rn+nU − j+1(λ (u)) in the determinant (5.6).
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We next explicitly compute the three term recurrence formula for the orthogonal polynomials
qa,b,N ;M,U

n )n (it will be useful in [14]). We define

Λa,b,N ;M,U
n =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
1≤ j≤a+nU +1, j ̸=2[

(b + N − n − nU + j)a+nU +1− j W a,b,N ;M
g (−n − nU + j − 2)

]
g ∈ {b, b + 1, . . . , a + b − 1}[
(−1) j−1 Ra,b,N

n+nU − j+1(λa,b(u))
]

u ∈ U

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
.

(5.9)

orollary 5.2. In the hypothesis of Theorem 5.1, the orthogonal polynomials (qa,b,N ;M,U
n )n

atisfy the following three term recurrence formula

xqa,b,N ;M,U
n = an+1qa,b,N ;M,U

n + bnqa,b,N ;M,U
n + cnqa,b,N ;M,U

n ,

here

an = (n + nU )
Φa,b,N ;M,U

n−1

Φa,b,N ;M,U
n

,

bn = (n + nU )(b + N − n − nU + 1) + (a + n + nU + 1)(N − n − nU )

− ∆

(
(n + nU )

Λa,b,N ;M,U
n

Φa,b,N ;M,U
n

)
,

cn = n(a + N − n + 1)(a + b + N − n + 1)
(

a + b + N − n
a + b + N − n + 1

)a

×
Φa,b,N ;M,U

n+1

Φa,b,N ;M,U
n

,

where ∆ denotes the first order difference operator ∆ f = f (n + 1) − f (n).

roof. It is a matter of computation using the formulas (5.8) and (5.7) for the leading
oefficient and the norm of qa,b,N ;M,U

n , respectively. □

We complete this Section with a couple of remarks.

Remark 5.3. Note that only rational functions of N appear in the three term recurrence formula
in Corollary 5.2. Using standard analyticity arguments, we deduce that the three term recurrence
formula is also true for N ∈ C except for the poles of Φa,b,N ;M,U

n (as functions of N ).

emark 5.4. Lemma 4.1 allows us to extend Theorems 1.1 and 5.1 for other Christoffel
ransforms of the measure νMa,b,N . We just sketch the idea. Indeed, it is easy to see that we can
ubstitute in the identities (4.6) and (4.7) the power xm for any polynomial r of degree m,
hanging the number um

i (4.4) to

ur
i =

{
r ′(λa,b(−i−1))Pi (−λa,b(−i−1))

P ′
i (−λa,b(−i−1))

, if i satisfies (4.3),
(5.10)
0, otherwise,
21
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and the sequences (ψm
g )m to

ψr
g =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
r (λa,b(−g−1))+ur

g

)
Res

−λa,b (−g−1)(1/P)

W a,b,N ;M
g (0)

, g = b, . . . , ⌈ a+b
2 ⌉ − 1,

r (λa,b(−g−1))
Pg (−λa,b(−g−1))h−a,−b,−2−N

g (0)
, g = ⌈

a+b
2 ⌉, . . . , a − 1,

r (λa,b(−g−1)) Res
−λa,b (−g−1)(1/P)

W a,b,N ;M
g (0)

, g = a, . . . , a + b − 1.

(5.11)

onsider now a set G, G ⊂ {b, . . . , a + b − 1}, define the finite set of positive integers

HG = {b, . . . , a + b − 1} \ G,

he polynomial

sG(x) =

∏
h∈HG

(λa,b(x) − λa,b(−h − 1)),

nd assume that if h ∈ HG and b ≤ h ≤ ⌈
a+b

2 ⌉ − 1, the multiplicity of −h − 1 as a root of sG
is bigger than 1. Then the polynomials

qM,G
n (x) =

⏐⏐⏐⏐⏐⏐
(−1) j−1 Ra,b,N

n− j+1(x) 1≤ j≤nG+1[
(b + N − n + j)a+1− j W a,b,N ;M

g (−n + j − 2)
]

g ∈ G

⏐⏐⏐⏐⏐⏐ , (5.12)

re orthogonal with respect to the measure∏
h∈HG

(x − λa,b(−h − 1))νMa,b,N . (5.13)

ndeed, if we write r (x) = sG(x)xm , it is easy to see that ψr
g = 0, g ̸∈ G, g = b, . . . , a +b−1.

sing then the version of Lemma 4.1 provided by (5.10) and (5.11), the orthogonality of the
olynomials qM,G

n with respect to the measure (5.13) can be proved proceeding as in the proof
f Theorem 1.1.

If we set UG = {−h − 1; h ∈ HG}, this result is actually saying that (5.12) provides for
the orthogonal polynomials with respect to the measure (5.13) other determinantal expression
different to (5.6). However, there is a little improvement because UG has not to satisfy (5.2). For
instance, for a = 5, b = 2 and G = {3}, we get HG = {2, 4, 5, 6} and UG = {−7,−6,−5,−3}.
HG does not satisfy (5.2) but (5.12) provided orthogonal polynomials with respect to the

easure (5.13).
We can also proceed as in Theorem 5.1. Indeed, consider a finite set U of complex number

atisfying (5.2). We can then prove as in Theorem 5.1 that the polynomials

qM,G,U
n (x) =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

(−1) j−1 Ra,b,N
n+nU − j+1(x) 1≤ j≤nG+nU +1[

(b + N − n − nU + j)a+nU +1− j W a,b,N ;M
g (−n − nU + j − 2)

]
g ∈ G[
(−1) j−1 Ra,b,N

n+nU − j+1(λa,b(u))
]

u ∈ U

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐∏
u∈U (x − λa,b(u))

re orthogonal with respect to the measure

ν
M,G,U
a,b,N =

∏
(x − λa,b(u))

∏
(x − λa,b(−h − 1))νMa,b,N
u∈U h∈HG
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providing that

ΦM,G,U
n =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
1≤ j≤nG+nU[

(b + N − n − nU + j + 1)a+nU − j W a,b,N ;M
g (−n − nU + j − 1)

]
g ∈ G[
(−1) j Ra,b,N

n+nU − j (λ
a,b(u))

]
u ∈ U

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐∏
u∈U (x − λa,b(u))

̸= 0.

he norm is then given by

(−1)nU n!(n + 1)a−nG (N + b)!2(N + a + b − n)nG

(n + nU )!(N + nG − n)!(N + nG + b − n)!
ΦM,G,U

n ΦM,G,U
n+1 .

There is again an improvement on Theorem 5.1, because now there can be double roots in the
polynomial∏

u∈U

(x − λa,b(u))
∏

h∈HG

(x − λa,b(−h − 1)). (5.14)

That is the case, for instance, when a = b = 2, G = {3} and U = {−3}. Indeed, since
HG = {2}, the polynomial (5.14) is then equal to (x − λ2,2(−3))2.

. New Krall dual Hahn measures

The more interesting case of the Christoffel transforms studied in the previous Section is
hen

λa,b(u) ∈ {λa,b(i) : −b ≤ i ≤ −2 or 0 ≤ i ≤ N }, u ∈ U, (6.1)

ecause then the measure νM,U
a,b,N (1.11) is a Krall measure.

Since λa,b(u) = λa,b(−u − a − b − 1), and we still have to assume (5.2), we can take

U ⊂ {i : −a − b + 1 ≤ i ≤ −a − 1} ∪ {i : 1 ≤ i ≤ N }. (6.2)

he measure νM,U
a,b,N is supported in the finite sets of integers

{λa,b(i) : i ∈ {−b, . . . , N } \ U }

hich has b + N + 1 − nU elements.
If we write n− for the number of elements of {u ∈ U : −a − b + 1 ≤ u ≤ −a − 1}, the

easure νM,U
a,b,N depends on the b − n− continuous parameters M j with −b ≤ j ≤ −1 and

j ̸= −u − a − b − 1, u ∈ U .
In this Section, we prove that under the assumption (6.1), the orthogonal polynomials with

espect to the measure νM,U
a,b,N are eigenfunctions of a higher order difference operator of the

orm (1.2). We prove this by constructing for these polynomials other determinantal formula
different to (5.6)).

We need to introduce some notation. Define the numbers

aU = a + max(−1,max U ) + 1, bU = b + max(−1,max U ) + 1 (6.3)
NU = N − max(−1,max U ) − 1, sU = λa,b(max(−1,max U ) + 1), (6.4)
23
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and the finite sets of positive integers

FU = {a, . . . , a + b − 1} ∪ {a + b + u : u ∈ U }, (6.5)
GU = I (FU ), (6.6)

here I is the involution defined by (2.3). The elements of GU are arranged in increasing
rder. Consider finally the sequence

Φ̃a,b,N ;M,U
n (x) =

⏐⏐⏐⏐⏐⏐
1≤ j≤nGU[

W aU ,bU ,NU ;M
g (−n + j − 1)

]
g ∈ GU

⏐⏐⏐⏐⏐⏐ . (6.7)

Theorem 6.1. Let a, b, N be nonnegative integers with 1 ≤ b ≤ a ≤ N, write M =

M0, . . . ,Mb−1} for a finite set consisting of b real parameters, Mi ̸= 0, 1, and U for a
nite set of integers satisfying (6.1). Then the measure νM,U

a,b,N has a sequence of orthogonal
olynomials if and only if

Φ̃a,b,N ;M,U
n (n) ̸= 0, n = 0, . . . , N + b − nU + 1. (6.8)

n that case the sequence of polynomials (q̃a,b,N ;M,U
n )N+b−nU

n=0 defined by

q̃a,b,N ;M,U
n (x) =

⏐⏐⏐⏐⏐⏐⏐⏐
(−1) j−1 R

aU ,bU ,NU
n− j+1 (x−sU )

(b+N−n+ j)nGU
+1− j 1≤ j≤nGU +1[

W aU ,bU ,NU ;M
g (−n + j − 2)

]
g ∈ GU

⏐⏐⏐⏐⏐⏐⏐⏐ , (6.9)

is orthogonal with respect to the measure νM,U
a,b,N , with norm

⟨q̃a,b,N ;M,U
n , q̃a,b,N ;M,U

n ⟩
ν
M,U
a,b,N

= Φ̃a,b,N ;M,U
n Φ̃a,b,N ;M,U

n+1 (6.10)

×
(n + nU )!(N + b)!2(N + b − n)!

n!(N + a − n − nU )!(N + b − n + nGU )!2
.

oreover the polynomials q̃a,b,N ;M,U
n (λaU ,bU (x)), n ≥ 0, are eigenfunctions of a higher order

ifference operator of the form (1.2) with

−s = r =

∑
f ∈FU

f −

(
nFU

2

)
+ 1.

First of all, we explain how we have found the formula (6.9) for the orthogonal polynomials
ith respect to the measure νM,U

a,b,N . For s small enough, write (in a similar form to (3.5) in
ection 3)

aU,s = aU − s/M, bU,s = bU + s

o that aU,s, bU,s ̸∈ Z. Consider the measure ρFU
aU,s ,bU,s ,NU

defined by (3.2). When all the
arameters in M are equal, that is, M = {M, . . . ,M}, a careful computation shows that
he measure ρFU

aU,s ,bU,s ,NU
converges to νM,U

a,b,N as s → 0. Since the determinantal formula (3.4)
provides orthogonal polynomials with respect to ρFU

aU,s ,bU,s ,NU
, we can then construct orthogonal

polynomials with respect to νM,U
a,b,N by taking limits in (3.4) as s → 0. As explained in Section 3,

in order to avoid the collapse of the determinant (3.4) when passing to the limit, we have to
change the Hahn polynomials h−aU ,−bU ,−2−NU

g by the polynomials W aU ,bU ,NU ;M
g (1.5). In doing

that we get the determinantal formula (6.9).
24
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Proof of Theorem 6.1. We first prove that the polynomials q̃a,b,N ;M,U
n (λaU ,bU (x)), n ≥ 0, are

eigenfunctions of a higher order difference operator of the form (1.2). As in Theorem 1.1, this is
a consequence of the determinantal formula (6.9). Indeed, write pn(x) = RaU ,bU ,NU

n (λaU ,bU (x))
and A for the algebra Aλ (1.3) with λ(x) = x(x + aU + bU + 1). Since bU + NU − n + 1 =

+ N − n + 1, we have again that ϵn = b + N − n + 1 defines a D-operator for the sequence
of Hahn polynomials (RaU ,bU ,NU

n )n and the algebra A, and ξn,i = (b + N − n + 1)i (see Step
in the proof of Theorem 1.1). Hence, the polynomials (q̃aU ,bU ,NU ;M,U

n (λaU ,bU (x)))n have the
orm (4.9) and, as a consequence, they are eigenfunctions of an operator of the form (1.2). The
rder can be computed as in [11, Theorem 3.1].

The rest of the proof of Theorem 6.1 can be done as that of Theorem 1.1 but using the
ollowing version of Lemma 4.1.

We start by extending the definitions previous to Lemma 4.1 to the new scenario. In order
o do that, we have to take into account that the parameters aU , bU , NU ((6.3) and (6.4)) play
n the polynomials q̃aU ,bU ,NU ;M,U

n the role played by the parameters a, b, N in the polynomials
a,b,N ;M
n . In the same way, the set GU plays now the role of {b, . . . , a+b−1}. It is not difficult
o check that {bU , bU + 1, . . . , aU − 1} ⊂ GU . Hence, we introduce the following auxiliary
unctions.

We define the polynomial PU as follows (compare with (4.1))

PU (x) =

∏
g∈GU

(x + λaU ,bU (−g − 1)).

t is not difficult to see that if i = bU , . . . , aU − 1, then −λaU ,bU (−i − 1) is a double root of
PU . Define then the polynomial PU,i by (compare with (4.2))

PU,i (x) =
(2i + 1 − aU − bU )PU (x)

(x + λaU ,bU (−i − 1))2 ,

Since λaU ,bU (−i − 1) = λaU ,bU (i − aU − bU ), we get that PU,i = −PU,aU +bU −1−i when

either i = bU , . . . , ⌈
aU +bU

2 ⌉ − 2 (6.11)
or i = ⌈

aU +bU
2 ⌉ − 1 and aU + bU = 2⌈

aU +bU
2 ⌉.

efine also the numbers um
U,i , m ≥ 0, by (compare with (4.4))

um
U,i =

⎧⎨⎩
m(λaU ,bU (−i−1))m−1 PU,i (−λaU ,bU (−i−1))

P ′
U,i (−λaU ,bU (−i−1))

, if i satisfies (6.11),

0, otherwise.

For g ∈ GU , we finally define the sequences (ψm
U,g)m as follows (compare with (4.5))

ψm
U,g =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
(λaU ,bU (−g−1))m

+um
U,g

)
Res

−λaU ,bU (−g−1)
(1/PU )

W
aU ,bU ,NU ;M
g (0)

, g = bU , . . . , ⌈
aU +bU

2 ⌉ − 1,

(λaU ,bU (−g−1))m

PU,g (−λaU ,bU (−g−1))h
−aU ,−bU ,−2−NU
g (0)

, g = ⌈
aU +bU

2 ⌉, . . . , aU − 1,

(λaU ,bU (−g−1))m Res
−λaU ,bU (−g−1)

(1/PU )

W
aU ,bU ,NU ;M
g (0)

, otherwise.
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The following identities can be proved as (4.6) and (4.7) in Lemma 4.1. For 0 ≤ n, 0 ≤ m ≤ n
nd m − a + 1 ≤ s ≤ n

(NU + 1)!⟨RaU ,bU ,NU
s (x − sU ), (x − sU )m

⟩
ν
M,U
a,b,N

(−1)nGU +s+1(aU − 1)!(N + b)!
= (b + N − s + 1)s

∑
g∈G

ψm
U,gW aU ,bU ,NU ;M

g (−s − 1),

nd for n = 0, 1, . . . , a + N − nU + 1

(−1)n+1(NU + 1)!⟨RaU ,bU ,NU
n−nGU

(x − sU ), (x − sU )n
⟩
ν
M,U
a,b,N

(aU − 1)!(N + b)!(b + N − n + nGU + 1)n−nGU

=
(n + nU )!(N + a − n − nU + 1)n

(−1)n+1(aU − 1)!(NU + 2)aU −1−nU

+

∑
g∈G

ψm
U,gW aU ,bU ,NU ;M

g (−n + nGU − 1). □

. More pieces of the puzzle

When the finite set U satisfies (6.1), we have found two nontrivial determinantal represen-
ations for the orthogonal polynomials with respect to the Krall discrete measure νM,U

a,b,N .
We show in this Section that actually this is also the case for the families of orthogonal

olynomials with respect to each one of the Christoffel transforms studied in Section 5.
n particular, this includes other determinantal expression for a sequence of orthogonal
olynomials with respect to the basic example νMa,b,N .

heorem 7.1. Let a, b, N be nonnegative integers with 1 ≤ b ≤ a ≤ N. For a finite set
= {M0, . . . ,Mb−1} consisting of b real parameters, Mi ̸= 0, 1, write M−1 for the set of

arameters M−1
= {1/M0, . . . , 1/Mb−1}. Let U be a finite set of complex numbers satisfying

5.2) and nS > 0 and define the sequence (Ψ a,b,N ;M,U
n )n by

Ψ a,b,N ;M,U
n =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

1≤ j≤b+nU[
(−N − a − b)n+ j−1W a,b,−2−N−a−b;M−1

f (N + a + b − n − j + 1)
]

f ∈ {a, a + 1, . . . , a + b − 1}[
Rb,a,N

n−b+ j−1(λa,b(u))
]

u ∈ U

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
.

(7.1)

hen the measure νM,U
a,b,N has a sequence of orthogonal polynomials if and only if

Ψ a,b,N ;M,U
n (n) ̸= 0, n = 0, . . . , nS. (7.2)

n that case the sequence of polynomials (ra,b,N ;M,U
n )nS−1

n=0 defined by

ra,b,N ;M,U
n (x) =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

Rb,a,N
n−b+ j−1(x) 1≤ j≤b+nU +1[

(−N − a − b)n+ j−1W a,b,−2−N−a−b;M−1

f (N + a + b − n − j + 1)
]

f ∈ {a, a + 1, . . . , a + b − 1}[
Rb,a,N

n−b+ j−1(λa,b(u))
]

u ∈ U

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐∏
a,b , (7.3)
u∈U (x − λ (u))
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is orthogonal with respect to the measure νM,U
a,b,N , with norm

⟨ra,b,N ;M,U
n , ra,b,N ;M,U

n ⟩
ν
M,U
a,b,N

=
n!(−N − a − b)2

n(N + b + 1 − n)aΨ
a,b,N ;M,U
n Ψ a,b,N ;M,U

n+1

(−1)nU +b(n + nU )!(N + b + 1)2
a

. (7.4)

Before going with the proof, we analyze the case U = ∅, that is, the basic example νMa,b,N .
s in the previous Section, we explain how we have found the formula (7.3) for the orthogonal
olynomials with respect to the measure νMa,b,N . For F0 = {a, . . . , a + b − 1}, and for s small
nough, consider the numbers

as = a − s/M, bs = bU + s, âs = −b − s/M, b̂s = −a + s, N̂ = N + a + b

see (3.5) and (3.1) in Section 3). Consider the measure ρF0
as ,bs ,N̂

defined by (3.2). Since this
easure is a Christoffel transform of the dual Hahn measure ρâs ,b̂s ,N̂ (which it is well defined

ecause as, bs ̸∈ Z), we can construct a sequence of orthogonal polynomials with respect to
F0
as ,bs ,N̂

by mean of the formula (see [43, Theorem 2.5]):

pn(x) =

⏐⏐⏐⏐⏐⏐⏐
Râs ,b̂s ,N̂

n+ j−1 (x + a + b) 1≤ j≤b+1[
Râs ,b̂s ,N̂

n+ j−1 (λâs ,b̂s ( f ))
]

i ∈ {a, . . . , a + b − 1}

⏐⏐⏐⏐⏐⏐⏐∏b
i=1(x + a + b − λâs ,b̂s ( f ))

. (7.5)

s explained in Section 3, when all the parameters in M are equal, that is, M = {M, . . . ,M},
the measure ρF0

as ,bs ,N̂
converges to νMa,b,N as s → 0. Since the determinantal formula (7.5)

provides orthogonal polynomials with respect to ρF0
as ,bs ,N̂

, we can then construct orthogonal
polynomials with respect to νMa,b,N by taking limits in (7.5) as s → 0.

On the one hand, a careful computation using the duality (2.12) and the identity (2.14)
shows that for b ≤ n and a ≤ f ≤ a + b − 1

lim
s→0

1
s

Râs ,b̂s ,N̂
n (λâs ,b̂s ( f )) (7.6)

=
(1 − M)(−N − a − b)n W a,b,−2−N−a−b;M−1

f (N + a + b − n)

(−1) f M(n − b + 1)b( f − b)!(−N − a − b) f
.

n the other hand, using the identity (2.8), we have

R−b,−a,N+a+b
n (x + a + b)∏a+b−1

f =a (x + a + b − λ−a,−b( f ))
=

Rb,a,N
n−b (x)

(n − b + 1)b
. (7.7)

Using (7.6) and (7.7) we see that for M = {M, . . . ,M} and U = ∅, the limit of the polynomials
(7.5) are the polynomials (7.3) (after renormalization). This is the way we have found (7.3).

Proof. We first consider the basic example νMa,b,N , i.e., U = ∅.
The key is again some identities of the kind displayed in Lemma 4.1. More precisely: define

the polynomial Q as follows

Q(x) =

a+b−1∏
(x − a − b − λa,b(− j − 1)). (7.8)
j=a
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Note that the roots of Q are simple.
For f = a, . . . , a + b − 1, we next define the sequences (ψm

f )m as follows

ψm
f =

(a + b + λa,b(− f − 1))m

Q′(a + b + λa,b(− f − 1))W a,b,−2−N−a−b;M−1

f (a + N + 1)
. (7.9)

We then have for 0 ≤ n ≤ b + N , 0 ≤ m ≤ n and n − b + 1 ≤ s

⟨Rb,a,N
s (x), (x + a + b)m

⟩νMa,b,N
=

(b − 1)!(N + 2)b−1(−a − b − N )s+b

(−1)b(b + N + 1)a
(7.10)

×

a+b−1∑
f =a

ψm
f W a,b,−2−N−a−b;M−1

f (a + N − s),

and for 0 ≤ n ≤ N + b

⟨Rb,a,N
n−b , (x + a + b)n

⟩νMa,b,N
=

n!(b + N + 1 − n)a(−a − b − N )2
n

(b + N + 1)2
a

(7.11)

+
(b − 1)!(N + 2)b−1(−a − b − N )n

(−1)b(b + N + 1)a

a+b−1∑
f =a

ψn
f W a,b,−2−N−a−b;M−1

f (a + b + N − n).

s mentioned in the proof of Lemma 4.1, these kind of identities appear in all the families
f Krall-discrete polynomials (see [15, p. 69, 77], [16, p. 380–381] for the Krall Charlier,
rall Meixner and Krall Hahn polynomials, respectively). The identities (7.10) and (7.11) are

ompletely similar to the identities (4.13) and (4.14) for the Dual Hahn polynomials and the
easure ρF

a,b,N (3.2) when the finite set F satisfies a, b ≥ max F + 1. Indeed, on the one
and, all the roots of the polynomial Q (7.8) are simple as those of the polynomial (4.11)
compare with the situation in Lemma 4.1 explained in Remark 4.2). And, on the other hand,
roceeding as in Remark 4.3, one can see that the polynomials W a,b,−2−N−a−b;M−1

f (a+ N −x),
≤ f ≤ a + b − 1, which appear in the right hand side of the identities (7.10) and (7.11), are

igenfunctions of the second order difference operator

D = A(x)s−1 + B(x)s0 + C(x)s1,

here

A(x) = (x + 1)(x − a − N ), C(x) = (x − N − 1)(x + b),
B(x) = −A(x − 1) − C(x + 1),

nd

D(W a,b,−2−N−a−b;M−1

f (a + N − x)) = λa,b(− f − 1)W a,b,−2−N−a−b;M−1

f (a + N − x)

note that the eigenvalues λa,b(− f − 1) define the polynomial Q (7.8)). D is the same second
rder difference operator with respect to which the Hahn polynomials h−a,−b,N+a+b

f (a+N −x),
≤ f , are eigenfunctions (see (2.13)) (compare with the situation in Lemma 4.1 explained in

he Remark 4.3).
Taking this into account, the identities (7.10) and (7.11) can be proved in a similar way to

he identities (4.13) and (4.14).
The basic example νMa,b,N (i.e., U = ∅) can now be managed as in Theorem 1.1, and the
eneral case when U ̸= ∅ can be proved as Theorem 5.1. □
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We finish this Section pointing out that we have constructed three different determinantal
ormulas for the orthogonal polynomials with respect to the Krall dual Hahn measure νM,U

a,b,N
when U satisfies (6.1). The first one is (5.6) whose determinant has size a+nU +1. The second
one is (6.9) whose determinant has size max{a+b−1, a+b+U }−nU +1 (for the computation
of the size we have used (2.4)). The third one is (7.3) whose determinant has size b + nU + 1.
Note, that the size of those determinants can be very different. For instance, for a = 5, b = 2
and U = {−2, 0, 1, 5, 6}, the size of the three determinants are 11, 9 and 8, respectively. None
of these three determinants can be transformed in some of the other determinants by combining
rows and columns.

8. The case a ≤ b

In the previous Sections, we have assumed that b ≤ a. As far as we know, the dual Hahn
polynomials do not have any symmetry between the parameters a and b, so the case a ≤ b
needs some specific changes to be handled. Those changes are however rather natural: only
the basic measure νMa,b,N and the polynomials (W a,b,N ;M

g )g need to be slightly adapted.
When a ≤ b, the set of real parameters is now M = {M0, . . . ,Ma−1}, Mi ̸= 0, 1, and its

number of elements is a. The basic case corresponds with the discrete measure νMa,b,N supported
in the finite quadratic net

{λa,b(i) : i = −a, . . . , N }

and defined by

νMa,b,N =

−1∑
x=−a

(2x + a + b + 1)(N + 1 − x)x+b

(N + b + 1)x+a+1
Mx+aδλa,b(x) (8.1)

+
(N + 1)2

b

(b + 1)a−b

N∑
x=0

ρb,a,N (x)∏b−1
i=0 (x + a + i + 1)(x + b − i)

δλa,b(x),

here ρb,a,N is the dual Hahn measure (see (2.9)).
We next define the polynomials (W a,b,N ;M

g )g .
For g ∈ {⌈

a+b
2 ⌉, . . . , b − 1}, we use again the limit (3.10) and define

W a,b,N ;M
g (x)= lim

s→0

1
s

(
h−a−s,−b,−2−N

g (x) −
h−a−s,−b,−2−N

g (−2 − N )

h−a−s,−b,−2−N
−g+a+b−1 (−2 − N )

h−a−s,−b,−2−N
−g+a+b−1 (x)

)
.

The reason why we have substituted 0 by −2 − N in the previous limit with respect to (3.10)
is to preserve the symmetry of the Hahn polynomials with respect to the interchange of the
parameters a and b. Indeed, it is easy to see that

(−1)n W a,b,N ;M
g (x) = W b,a,N ;M−1

g (−2 − N − x). (8.2)

For g ̸∈ {⌈
a+b

2 ⌉, . . . , b − 1}, we define W a,b,N ;M
g as follows⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(−1)b+g(g − b)!

×

[
(b + a − g − 1)!(−x)aha,−b,−2−N−a

g−a (x − a)

+
(g−a)!(N+a+b+1−g)2g−a−b+1

Mg−b−1 h−a,−b,−2−N
a+b−g−1 (x)

]
, b ≤ g ≤ a + b − 1,

h−a,−b,−2−N
g (x), otherwise.

(8.3)

Notice that only the polynomial W a,b,N ;M depends on the parameter M , i = 0, . . . , a − 1.
i+b i
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The finite set {b, b + 1, . . . , a + b − 1} which appears in the determinants (1.6) and (1.9)
emains the same (because of the same reasons explained in Section 3 for the case b ≤ a).

With these changes, Theorem 1.1 works in the same way that for the case b ≤ a. More
recisely:

heorem 8.1. Let a, b, N be nonnegative integers with 1 ≤ a ≤ b ≤ N, and write
= {M0, . . . ,Ma−1} for a finite set consisting of a real parameters, Mi ̸= 0, 1. Then the

easure νMa,b,N (8.1) has a sequence of orthogonal polynomials if and only if

Φa,b,N ;M
n =

⏐⏐⏐⏐⏐⏐
1≤ j≤a[

W a,b,N ;M
g (−n + j − 1)

]
g ∈ {b, b + 1, . . . , a + b − 1}

⏐⏐⏐⏐⏐⏐ ̸= 0, n = 0, . . . , N + a + 1.

n that case the sequence of polynomials (qa,b,N ;M
n )N+a

n=0 defined by

qa,b,N ;M
n (x) =

⏐⏐⏐⏐⏐⏐⏐
(−1) j−1

(b+N−n+ j)a+1− j
Ra,b,N

n− j+1(x) 1≤ j≤a+1[
W a,b,N ;M

g (−n + j − 2)
]

g ∈ {b, b + 1, . . . , a + b − 1}

⏐⏐⏐⏐⏐⏐⏐ , (8.4)

is orthogonal with respect to the measure νMa,b,N , with norm

⟨qa,b,N ;M
n , qa,b,N ;M

n ⟩νMa,b,N
=

(N + b)!2Φa,b,N ;M
n Φa,b,N ;M

n+1

(N + a − n)!(N + b − n)!(N + b − n + 1)2
a
. (8.5)

oreover, the polynomials qa,b,N ;M
n (λa,b(x)), n ≥ 0, are also eigenfunctions of a higher order

ifference operator of the form (1.2) with −s = r = ab + 1.

All the results in Sections 5–7 can be adapted in the same form as Theorem 1.1, with the
nly additional change of the assumptions (6.1) and (6.2) in Section 6 that have to be changed
o

λa,b(u) ∈ {λa,b(i) : −a ≤ i ≤ −2 or 0 ≤ i ≤ N }, u ∈ U,
U ⊂ {i : −a − b + 1 ≤ i ≤ −b − 1} ∪ {i : 1 ≤ i ≤ N },

espectively.
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