
82 December 2006/Vol. 49, No. 12 COMMUNICATIONS OF THE ACM

On the one hand, the field of
software product lines (SPLs), as
described in the articles in this
section, covers all the software
development life cycle necessary
to develop a family of products
where the derivation of concrete
products is made systematically
and rapidly [10]. On the other
hand, agent-oriented software
engineering (AOSE) is a new
software engineering paradigm
that arose to apply the best prac-
tices in the development of com-
plex multi-agent systems
(MASs) by focusing on the use
of agents, and organizations
(communities) of agents as the
main abstractions [7].

Following a somewhat slow
start, agent technology has begun
to come into its own. With the
advent of biologically inspired,
pervasive, and autonomic com-
puting, the advantages of, and

necessity of, agent-based tech-
nologies and MASs has become
obvious. Unfortunately, current
AOSE methodologies are dedi-
cated to developing single MASs.
Clearly, many MASs will make
use of significantly the same
techniques, adaptations, and
approaches. The field is thus ripe
for exploiting the benefits of
SPLs: reducing costs, improving
time to market, and enhancing
agent technology in such a way
that it is more industrially
applicable.

We believe there is much that
can be achieved by combining
the two approaches: applying the
SPL philosophy for building a
MAS will afford all the advan-
tages of SPLs and make MAS
development more practical.
Thus, our intent in this article is
twofold: to stress the feasibility
and benefits of what we call

By Joaquin Peña, Michael G. Hinchey,
and Antonio Ruiz-Cortés

MULTI-AGENT SYSTEM
PRODUCT LINES: CHALLENGES
AND BENEFITS

multi-agent systems product lines
(MAS-PL) and demonstrate the
main research challenges in the
development of MAS-PLs.

FEASIBILITY OF MAS-PL AND
BENEFITS
The software process proposed in
AOSE presents many similarities
with the process followed in SPLs
for the first activities of the
domain engineering, which is in
charge of providing the reusable
core assets that are exploited dur-
ing the derivation of products,
done during application engineer-
ing [10]. Following the nomen-
clature used in [10], the activities,
usually performed iteratively and
in parallel, of domain engineering
that present correlation with
AOSE are:

• Domain Requirements Engi-
neering. Both approaches use
models based on similar con-
cepts: features in the case of
SPLs, and system goals in the
case of AOSE [3, 4]. Both rep-
resent requirements observable
by the end user. Both
approaches use hierarchical
diagrams where features/goals
are decomposed into finer-
grain diagrams. However, the
SPL emphasizes the analysis of
the scope of the SPL, that is,
the products inside it, and the
analysis of common and vari-
able features across the SPL,
which is not carried out by
AOSE. In [5, 9], a first step
toward adapting system goals
to MAS-PL and documenting
variability is shown.

• Domain Design. Both
approaches develop architec-
ture-independent models that

attempt to analyze how features
and their variability can be
materialized. In AOSE, role
models are used for this purpose
[12], and some approaches in
SPL also propose the same
approach [6, 11]. However,
agent-focused models show
additional information not
needed in SPL role models, such
as the goals of the agents, or
whether they are used to
abstract information architecture
techniques, while not showing
how these role models can be
reused for different products.

• Domain Realization. Both
approaches focus on designing
a detailed architecture. In the
case of the SPL, a common
architecture for all products
and a set of reusable assets. In
the case of AOSE, a single
architecture that fulfills all of
the system goals of the MAS.
Some approaches in both fields
base the construction of the
architecture on role model
composition [6, 11]. In [9],
authors presented the first
steps toward building the core
architecture of a MAS-PL
based on automatic analysis of
system goals models adapted to
feature models using [2].

This, along with the first
research papers developed in this
field, shows that the benefits of
enabling MAS-PL are obtainable.
The main benefit is straightfor-
ward: AOSE can help SPL gain
increased acceptance in the indus-
trial world. However, as we show
here, a number of research chal-
lenges exist that must constitute
the research agenda required for
MAS-PL to become a reality.

FUTURE CHALLENGES

SPL for Distributed Systems.
Distributed systems have not been
a hot topic in the SPL field. How-
ever, MASs are distributed sys-
tems that will need new adapted
techniques to be covered.
Although certainly it will affect to
the whole development cycle, one
of the first steps we foresee is the
need for investing in the use of
interaction-based models, such as
role models. The research under-
taken for this topic may extend
the applicability of SPL not only
to MASs, but also to other kinds
of distributed systems such as
Web services [1].

AOSE Deficiencies. As shown
previously, AOSE does not cover
some of the activities of SPL.
These are mainly concentrated on
commonality analysis, and its
implications for the SPL
approach. Another important
topic involves the product man-
agement activity that is performed
in parallel with domain and appli-
cation engineering. It is in charge
of managing the economic aspects
of a SPL. Given the products and
the markets for MASs are quite
different from the ones typically
used in SPLs, a great amount of
effort must be made toward
studying these aspects. Finally, as
AOSE is devoted to develop sin-
gle products, application engi-
neering is not present in AOSE.
Researchers should also invest
efforts on studying this activity.

Management of Evolving Sys-
tems. Agent-based evolving sys-
tems result in large software
systems that adapt and learn from
changes in the environment. The
development of these systems
results in a complex task where

COMMUNICATIONS OF THE ACM December 2006/Vol. 49, No. 12 83

84 December 2006/Vol. 49, No. 12 COMMUNICATIONS OF THE ACM

systems usually become unman-
ageable from an engineering
point of view. SPL can help this
task by viewing an evolving sys-
tem as a SPL where a different
state in the system is viewed as a
separate product [8]. This decom-
poses the system into well-
identified chunks and a
well-defined context where each
product will appear, which helps
to deal with the inherent com-
plexity of MASs.

Self-* properties of agents. We
believe agent technology may also
bring advantages to SPL. Given
research efforts invested in pro-
viding agents with the capabilities
to communicate with each other
at the semantic level, or to pro-
vide capabilities of self-organiza-
tion, self-optimization, and

self-healing, the maintenance and
evolution of the core architecture
may be simplified. Additionally,
the integration costs of new fea-
tures for a certain product, or
even the entire SPL, may be
decreased.

CONCLUSION

MAS-PL, incorporating benefits
from both SPL and AOSE, will
help in the industrial exploitation
of agent technology, saving both
effort and cost. We have
identified several challenges, such
as adapting current AOSE engi-
neering techniques to the SPL
philosophy, which in many cases
requires the development of new
activities and models from
scratch. However, a symbiosis
between both AOSE and SPL
arises when AOSE also provides
benefits to SPL, mainly through
encouraging and improving
research on SPL of complex dis-
tributed systems. As can be seen,
MAS-PLs represent a great, and
worthwhile, challenge that will
certainly attract the interest of
many practitioners and
researchers.

References
1. Benavides, D., Ruiz-Cortés, A., Serrano,

M.A., and de Oca, C.M. A first approach to
build product lines of multi-organizational
Web-based systems (MOWS). In T. Böhme,
V. Larios-Rosillo, and H. Unger, Eds., IICS,
volume 3473 of Lecture Notes in Computer
Science, Springer, 2004, 91–98.

2. Benavides, D., Ruiz-Cortés, A., and
Trinidad, P. Automated reasoning on fea-
ture models. In Proceedings of the Advanced
Information Systems Engineering 17th Inter-
national Conference (CaiSE 2005), LNCS
3520, 2005, 491–503.

3. Bresciani, P., Perini, A., Giorgini, P.,
Giunchiglia, F., and Mylopoulos, J. Tropos:
An agent-oriented software development
methodology. Journal of Autonomous Agents
and Multiagent Systems 8, 3 (2004).

4. Czarnecki, K. and Eisenecker, U. Generative
Programming: Methods, Tools, and Applica-
tions. Addison–Wesley, 2000.

5. Dehlinger, J. and Lutz, R. A product-line
approach to promote asset reuse in multi-
agent systems. In SELMAS, volume 3914 of
Lecture Notes in Computer Science, Springer,
2005, 161–178.

6. Jansen, A., Smedinga, R., Gurp, J., and
Bosch, J. First class feature abstractions for

product derivation. IEEE Proceedings—Soft-
ware 151, 4 (2004), 187–198.

7. Jennings, N. An agent-based approach for
building complex software systems. Com-
mun. ACM 44, 4 (2001), 35–41.

8. Peña, J., Hinchey, M.G., and Ruiz-Cortés,
A. Managing the evolution of an enterprise
architecture using a MAS-product line
approach. In Proceedings of the International
Workshop on System/Software Architectures
2006. CSREA Press, 2006.

9. Peña, J., Hinchey, M.G., and Ruiz-Cortés,
A. Building the core architecture of a multi-
agent system product line: With an example
from a future NASA mission. In Proceedings
of the ACM 7th International Workshop on
Agent Oriented Software Engineering (Hako-
date, Japan, May 2006), 13–24.

10. Pohl, K., Böckle, G., and van der Linden, F.
Software Product Line Engineering: Founda-
tions, Principles and Techniques. Springer,
2005.

11. Smaragdakis, Y. and Batory, D. Mixin lay-
ers: An object–oriented implementation
technique for refinements and collaboration-
based designs. ACM Transactions on Software
Engineering Methodology 11, 2 (2002),
215–255.

12. Zambonelli, F., Jennings, N.R., and
Wooldridge, M. Developing multiagent sys-
tems: The GAIA methodology. ACM Trans-
actions on Software Engineering Methodology
12, 3 (2003), 317–370.

Joaquin Peña (joaquinp@us.es) is a lec-
turer in the Department of Computer Science
Languages and Systems at the University of
Seville in Spain.
Michael G. Hinchey
(Michael.G.Hinchey@nasa.gov) is the director
of the Software Engineering Laboratory at the
NASA Goddard Space Flight Center in
Greenbelt, MD.
Antonio Ruiz-Cortés (aruiz@us.es) is
an associate professor in the Department of
Computer Science Languages and Systems at
the University of Seville in Spain.

The work reported in this article was supported
by the Spanish Ministry of Science and Tech-
nology under grants TIC2003-02737-C02-01
and TIN2006-00472 and by the NASA Soft-
ware Engineering Laboratory, NASA Goddard
Space Flight Center, Greenbelt, MD, USA.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2006 ACM 0001-0782/06/1200 $5.00

c

COMMUNICATIONS OF THE ACM December 2006/Vol. 49, No. 12 85

