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1. Introduction
In this paper we deal with characteristic functions of domains

1, ze€D,
Ip(r) = 0, z€R"~D.

The main interest is to study singular integral operators of Calderén-Zygmund type
applied on this kind of functions and obtained as follows

e—0t
lz—y|>e

T(ID)(I)=W/K(x—y)lu(y)dy= lim / K(z—y)1p(y)dy, reR"™ (1.1)
Rn

Above, pv stands for principal value and the kernel K is homogeneous of degree —n,
given by

Qz)

|z["

K@) =29 00wy = 0@) vA >0, / Q(z)do(z) = 0.

lz|=1

In the classical theory of singular integrals, the function T'(1p)(x) belongs to the BMO
space [19]. In particular, for odd kernels, it is not difficult to show that as x approaches
to a point on 9D the function T'(1p)(x) is not bounded and diverges to infinity loga-
rithmically. On the other hand, when the kernel is even,

a new geometric cancellation was found in [5,2] which shows that T'(1p)(z) belongs to
L. This L*> bound is given in terms of the C'*% norm of the domain, 0 < ¢ < 1. The
regularity of the boundary together with the fact that the kernel has mean zero on half
spheres cancel the singularity on the boundary of the domain. The motivation was to
show preservation of C1*7 regularity for domains moving by the 2D Euler equations; i.e.
global in time existence for the vortex patch problem [5,2].
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From the harmonic analysis point of view, Calderén-Zygmund operators with smooth
and even kernel have been studied specifically as they satisfy stronger inequalities than
general ones. In [15], it is shown that the following pointwise inequality holds for even,
higher-order Riesz Transforms

" f(x) < CM(Tf)(=),

where T* is the maximal singular integral and M is the Hardy-Littlewood maximal
operator. It yields a stronger estimate than the classical Cotlar’s inequality [20].

The extra cancellation providing L bounds has been extensively used in different
PDEs problems. Considering the Beltrami equation, it guarantees that the solutions
are bi-Lipschitz [14]. For the Muskat problem, modeling the evolution of incompressible
immiscible fluids in porous media or Hele-Shaw cells, this bound yields lack of squirt
singularities [6] (also known in the literature as splat singularities). For multidimen-
sional aggregation equations with a Newtonian potential, it provides propagation of
C'* regularity up to the blow-up [1]. In the two dimensional inhomogeneous Navier-
Stokes equations modeling the evolution of incompressible fluids of different densities,
this L> bound provides global-in-time regularity for higher order norms (W?° and
C?*t9) of the moving free boundary between the fluids [10]. In [11], a combination of
parabolic and elliptic estimates together with this L>° bound are used to propagate the
same higher order norms but for Boussinesq temperature fronts. See also [3] for recent
developments in contour dynamics for non-linear transport equations. In all these results
the singular integral operators are given with €2 a polynomial function.

In this work, we go further in order to control higher regularity for functions given by
(1.1) with even kernel. Despite the fact that these functions are discontinuous on 9D, it
is possible to obtain C° regularity in D and in R™ \ D. In [14,16], this regularity has
been shown together with qualitative bounds of the form

IT(1p)llcsmy < CP([Dllcr+0), (1.2)

with P a polynomial and C' > 0 a constant depending on n, ¢, and the geometry of
the domain D. Above, the function T'(1p) is extended continuously on D. The latter
paper also characterizes the regularity of the domains in terms of odd singular integrals
operators on 0D. It uses harmonic analysis techniques and Clifford algebras as a gener-
alization of the field of complex numbers to higher dimensions. In this paper, we show
that the bound above can be improved to make it linear in the higher regularity norm
of the boundary. Moreover, the dependency on the arc-chord condition is made explicit:

IT(p)ll¢o(yuee ey S CA+IOD) PP+ DllLip) (X + [ Dlleres). (1.3)

Above, C = C(n, o), Lip stands for Lipschitz, ||D||. measures the non self-intersecting
property of the boundary 0D, P is a polynomial function, and |0D| denotes the (n — 1)-
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dimensional surface area. The higher order norm is homogeneous, given for a function
by

1 llesn = [V Fllgw = sup A@=VIG ;g

] |£L’ - y|a

See below for more details about the notation. During the review process of this article
the referee pointed out work [8], in which the author also proves an estimate similar to
the one above. However, our proof is different, working at the level of the interface via
contour dynamics methods.

An important motivation of these estimates comes from a classical two dimensional
fluid mechanics problem. Concretely, the dynamics of two incompressible immiscible
fluids evolving by the inhomogeneous Navier-Stokes equations. In that problem, the
viscosity can be understood as a patch function and the gradient of the velocity is
related to the viscosity by combinations of second and fourth-order Riesz transforms,

T =0;0x(-A)"'(I - V(=A)V:), j,k=1,..,n, I the identity.

In [12], global-in-time well-posedness for the evolution of C1*7 interfaces between the two
fluids is proved. Global-in-time regularity was recently shown in [17] for H°/2 Sobolev reg-
ularity of the interface instead of C'*? and by using striated regularity. In the argument
of the proof in [12], the estimate (1.3) is used in an important manner. In particular, we
emphasize the importance of the quantitative bound of the non self-intersection condition
||ID]l. This quantity has to be controlled globally, since it is known that free-boundary
incompressible Navier-Stokes can develop finite-time pointwise particle collision on the
free interface [4,7].

The rest of the paper is structured as follows. Section 2 contains the statement of
the main results: Theorems 2.2 and 2.3. It describes how the operators (1.1) can be
studied in terms of odd operators on the boundary, yielding Theorem 2.3 as a corollary
of Theorem 2.2. The rest of the paper, Section 3, is the proof of Theorem 2.2. To study the
Holder regularity of the operators involved, the proof distinguishes three situations: when
the two points are on the boundary (Subsection 3.1), near the boundary (Subsection 3.2),
and far from the boundary (Subsection 3.3). The deciding cut-off is defined in terms of
the non self-intersecting condition and the C**9 regularity of the domain. In the second
scenario, we need to consider further whether the separation between the points occurs
mostly in normal or tangential direction. The nearly normal direction case is decomposed
in purely normal (Case 1) and tangential (Case 2) differences, each one estimated through
delicate splittings of the singular integrals. The nearly tangential case is reduced, using
a fixed point argument, to the purely normal plus on the boundary cases. Finally, the
third situation is less singular.
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2. Main result

We consider higher-order Riesz transform operators of even order 2[, [ > 1. That is,
we deal with Calderén-Zygmund operators given by

T(f)(z) = lim K(z —y)f(y)dy, (2.1)
lz—y|>e
where
K(x) = % ’ (2.2)

and Py (x) is a homogeneous harmonic polynomial of degree 2/ in R™. We want to study
the Holder regularity of the operator T applied to the characteristic function 1p(z) of a
C'? domain D,

T(1p)(z)=pv | K(z —y)lp(y)dy =pv | K(z — y)dy, r e R™ (2.3)
/ /

We recall that the operators (2.1) have explicit Fourier multipliers,

]__( P (z) )(g):c P (8) (2.4)

|x|n+m—a mvo‘vn|§|m+a’

with 0 < o < n and

., D(m52)

_m_ 2 2
Cm,a,n - Zmﬂ' 2 ar(“’H‘g_‘X) .
Remark 2.1. Any homogeneous polynomial Py of degree k can be written as Py(z) =
() + |2|?pr_2(x), where p;, is a homogeneous harmonic polynomial of degree k and
Pr—2 is homogeneous of degree k — 2 (Sec. 3 in Chapter 3 of [18]). Thus the restriction
to harmonic polynomials in (2.2) involves no loss of generality.

Using Euler’s homogeneous function theorem and integration by parts, the regularity
of (2.3) can be studied through the associated operators

S(f)(x) = pv / Kz —1)f@)dS@y), xR, (2.5)
oD

where the kernel k() is given by

_ Q2-1(7)

k(@) = ez
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and @Q9;_1 is a homogeneous harmonic polynomial of degree 21 — 1.

Since one of the main motivations of these results are physical, we show the techniques
in dimension three. An analogous approach provides the proof in any dimension.

We will denote by D a non-self-intersecting bounded domain of class C'17. It is
defined as follows. Denote by Vj, j = 1, ..., J, the neighborhoods that provide local charts
of the boundary 9D in such a way that for any € 9D there exists a V; C R? such
that « = Z(a) with a € V}, with well-defined normal vector. To measure the non-self
intersection and the regularity of the parameterization, we define

1D = IF(Z)l|z = 10aZ]5t < oo,

where
= i in{ i i : 1Z(a) — Z(B)]
0uZlne = 2yinmint Jgf, Ve 2l Jo Pes 2 i, o= 1
The Lipschitz norm is given by
Z(a)—Z
HD”Lip = max sup M < 00,
i=Leod apapev; o= B
and the Holder seminorm by
Z(a) —VZ
||D||C’1+a = A_max sup |V (a) Vv (ﬁ)‘ < 0o,

i=1 7 aB,a,8€V; la — Bl

There exists also a well-defined normal vector given by
N =04, Z N0y, 2.

For convenience, we take the parametrization so that N is pointing towards the interior
of the surface. Now we are in position to state our main theorem:

Theorem 2.2. Assume D is a bounded domain of class C*t°, 0 < o < 1. Then, the
operator (2.5) maps boundedly C? (0D) into C°(D)UC? (R™~.D). Moreover, the following
bound holds

IS( e (Byuee ®npy < C(1+|5DDP(HDII*+IIDHLip)(Ilfllcw + ||f||L°o||D||c'1+o>7

with P a polynomial function depending on S, and C = C(n, o).

I3

As indicated before, we can write (2.3) as a sum of terms of the form (2.5) with
f = Nj. Therefore, we have the following result:
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Theorem 2.3. Assume D is a bounded domain of class C**°, 0 < o < 1. Then, the
Calderén-Zygmund operator (2.1) applied to the characteristic function of D, (2.3), de-
fines a piecewise C° function,

T(1p) € C°(D)UC? (R™ \. D).
Moreover, it satisfies the bound
IT(1p)ll ¢ Dyuce ®nwpy S CAHODNP(Dll+[DllLip) (X + [ D ga+-),
with P a polynomial function depending on T, and C' = C(n,0).
3. Proof of Theorem 2.2

Without loss of generality, we show the proof for the following case

S(f)(z) =pv / k(x —y) f(y)dS(y),

oD
with

T1T2T3
|z

k(x) =

The developed techniques can be applied to any other odd homogeneous polynomial and
any dimension. We choose this case to show more clearly the crucial steps. The case of
k(x) of degree one is more direct. If the degree is greater than three the approach is
the same but technically longer. With the kernel chosen, we provide a constructive and
direct method, showing the main difficulties and cancellations.

3.1. Regularity on the boundary

First, consider an atlas of the surface 9D and, on a given chart, fix a cut-off n > 0
and define the ball

Ay ={y €D |z —y| <n}

Consider any h € R3 such that

U
I+ [F2) )X+ [0aZ] L)’

hl <7 =
hl <7 =7
then « + h € Ay, and we will generally write

x=Z(a), x+h=2Z(f).
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We will also use the middle coordinate point

€= . (3.1)

Then,

S()(@) = S+ h) =pv [ () = Ko+ h =) F)dS0)

A"’?
3.2
b [ (se—n—rarn-y)iwase)
ODN A,
=I+1I.
The second term is away of the singular part and thus more regular,
C
111} < Egﬁﬂ?WfHLw|hL
The first term is given by
I= t/ (k(Z(a) = Z(v)) = K(Z(B) = Z(1))) F(Z(3))IN (7)|d.-
Z=1(Ay)
For simplicity of notation, we will denote
9(7) = F(Z(M))IN()I,
so we have that
lgllzee < 110aZ|[Ze |1 f]|2ox, (33)
lgllce < UFllee10aZITE + 100 Zll e 100 Z] Lol fll Lo -

The nonlinear kernels in I are neither odd nor given by a derivative. We decompose the
I term as follows

I=1I+1I, (3.4)

where
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and
I = / (K(@aZ(€)(@ = 7)) = KO Z(E)(B = 1)) ) 9() d.
Z=1(Ay)

We estimate I first. Since the kernel is odd, we first isolate the singularity from the
boundary. We notice that

— n
a—B| <|IIF(2)||n=|h| < ||F(2)| 1ot < ——to | 3.5
o= B < IF() 12 0] < IF DT € g (3.5)
and
_ _ 3n
A0, 0271 (A)) > —  A(B,027 A >
( ( 7])) HaaZHLOC (ﬂ ( 7])) 4”8(12”[,00

thus, we take a smooth cut-off x () defined as x(y) = 1 for |a—~| < W, x(v)=0

for |a — 4| > M%? and radial centered at «. Introducing the cut-off in I, we have
Iy =I5 1 + Iz 9, (3.6)
with

Ba= [ (HO.Z(E)a - 1) - HOZOE ~ 1) x(g() dr.

Z=1(Ay)

ha= [ (HO.Z(E)a - 1) - KOZOE - 1) (1 - x(2)g(2) .

Z=1(Ay)

Along the paper, we will need to control the singularity in the kernel k(0,Z (&) (a — 7).
We will use that it is comparable to | — | ~2. In fact, since the domain is regular and
of class C'*7, it holds that

900 Z(6) - 00a Z()] < (1= )|, Z() 1002 Z(£) (3.7)
for some € > 0. Therefore,
10aZ(&) (@ = 7)[? = (a1 = 1)?|DZ()* + (a2 — 72)|02Z(€)?
=201 = &)lon = llaz = 12l|01 Z(§)[10:2(S)]
> e (a1 = 1M Z() 1 + (02 — 12)21022(9)?)
> el0aZftla = 2

We now see that we can take ¢ > 0 explicit by using the arc-chord quantity. For all
v € R?\ {0}, and £ € R?,
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1Z(€+7) = Z(9)]

e
B < |0a2(8) |-

17l

|00 Z |int < lim inf
v—0
Therefore,
7100, Z(€) + 71200, Z(§)* > 11?100 Z 13-
Taking v; = £(0a,Z(£)| ™", we conclude that

0uZ _ | 10a7P3

inf inf

cos <1-— ——/m g1 =2
[cosbOI <1 =15 Z)F <!~ aaz]2~

Hence we can take

e=(1F(D)ll=10aZr=)"2, (3-8)

and thus we have the bound

o [l
B =N [ o 2T .9

This yields the following bound for the kernel k(0,72 (&)(a — 7)),

< IF(Z) L 100 Z ][

K02 (@~ 7)) P (310)
We notice that
1 B 1 _ (0aZ()(B— ) - (0aZ(&)(a =7+ —1))
0aZ(E) (=7 10.Z(§)(B —7)° 10aZ(&)(a = 7)[?0aZ()(B —7)I°

o P19 Z(€)(@ = 1), [0aZ(€) (B =)
06 Z(&)(a = 7)> +10aZ(E)(B =P
(3.11)
with p,,, a homogeneous polynomial of degree m. Thanks to (3.5) and the cut-off function,
in I it holds that 1|a —~| < |8 — 7| < 3|a — 7|. Together with (3.9) and (3.5), this
gives that

I (Z)|| < 100 Z1 1,
o =~

k(00 Z(6) (=) =k(0aZ(§)(B-7))|<C |- (3.12)

Then, the term Iy can be estimated directly since the kernel is not singular in its
domain,

1]
I2,2] < Cllgll=10aZ |2 1 F(Z) |2 —

Ui
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The support of x allows to rewrite I5; as follows

o = [ (KOuZ(€)(a ~ 1) ~ HOZ(O)(5 ~ 1) x(Vg(r) .

R2

The classical splitting to show that the singular integral goes from C? to C” (see Lemma
4.6 in [13] for example) provides the desired bound:

I 1 S CP(||[F(Z)| 2 +[0aZl|L>)lgllc-|h]7-
Combining the bounds above, we have obtained that
[I2| < CP(|F(Z)|lL> +10aZl|L=)llgllc<|h|7. (3.13)

We proceed to estimate I (3.4). We split it as follows:

Li=hL1+5ho+ i3+ 114, (3.14)
where
Zl « —Z1 —aaZl la— ZQ « —Zg Z « -7
ham [ dyat (D B0) 0B ) Eale) T k)~
Z=1(Ay)

)

(Z1(B) = 21(7) = 0aZ1(§) - (B = 1))(Z2(8) = Za(v ))(23(5)23(7)))
1Z2(8) = Z(v)P°

_ 00 24(6) - (0~ 7)(Za(0)~Za(3)~ 00 Za(6) - (0= 7) (Zs(0) ~ Z3()
ha= [ o Z(0)-Z()F o

Z71(Ay)
~0aZ1(8§) - (B =) (Z2(B) = Za(v) — 0aZ2(§) - (B —7))(Z5(B) — Z3(7))>
1Z(B) — Z(v)P ’
Iz = / dvg(7) ( H 9aZi(§) - (=) (ZS(Q)ZT(ZfY()a)—agfj)(? -
Z-(Ay) =t

Tt e e (Z3(8) = Zs(y) — BaZs(€) - (B )
110026+ (3 =) 20 = 20 )

1 1
[12:2:49) - =) ze=zeF -~ oz =)

i=1

L= /dwg(v)<

Z-1(A,)
3

1 1
_H%Zi(f) . (ﬂ_’Y)(‘Z(ﬁ) —Z()P - 8aZ(f)(ﬂ—’7)|5)>'

i=1

Using the following sets
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Up=ZA) N{la—r| <2la=8}, Up=2Z"(A4;)N{la—~|>2la—-p} (3.15)
we decompose [ ; further,
Liy=J1+ 2+ I3+ Ji+ Js, (3.16)

with

gy = /dvgw)((Zl(a)—Zl(V)—aaZNf) (=) (Z2() = Z2 (7)) (Z3 () — Z3(7))

) Z@)-Z0)F
(4B) = Z1(7) = 9aZi(§) - (B —))(Z2(B) — Z2(7))(Z5(B) — ZB(’Y)))
1Z2(B8) = Z(VI°
=Ji1+ Ji,2,
_ (Z1(a) = 21(B) =021 (§) - (a=P))(Z2() = Z5(7)) (Z3() = Z5(7))
Zl —Zl —(%Zl . - Z2 (0% —ZQ Z3(a)—2Z
Jsz/dvg(v)( (B)=21() ©) léﬁ(a)v_))z(m(S) (B)(Zs(2) = Z5(v))
Us
Zl —Zl —8QZ1 . - ZQ —Zz Z3(a)— 2
J4:/dvg(7)( (B)=21(v) ©) |§B(a)7—))z((7)(f) (1)(Zs(e)=25(8)).
Uz
Js = /dvg(v)(Zl(ﬁ)—Zl(v)—aaZ1(§) ~(B=)(22(B) = Z2(7))(Z3(8) — Z5(7))
Us

Then, we have that

Zi(a)—Z1(v)—0aZ1 () - (av— Zs(a)—2Z Z3(a)— 2
lel:/dv (v )( 1(a)=Z1(v) ( )Z(<a)7_))Z((7)(|5) 2(1))(Zs() = Z3(7))

/d7 8 Z1(2) =00 Z1(8)) - (a—7)(Z2() — Z2(7)) (Z3() — Z3(7))
[Z(a)=Z(7)]°

= K + Ks.
The estimate for K; follows immediately
[K1| < Cligllze=10aZl e | F()N T 100 Z |70 | 1I°

Since U; is a ball, we can write Ko as follows:
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(Za(a) = 22(7))(Zs(@) = Z3(7))
1Z(e) = Z(v)°

— (o) OaZz(e) - (o —7)0aZs(@) - (a — 7))
|0aZ(a)(a = 7)]? '

Ko = (072() = 0.71(6)) - [ (a7 (gm

Uy

Similarly as in (3.11), the difference between the denominators is given by

(Zo(@) = Z2(7))(Zs(a) — Z5(7))  OaZo(e) - (o — 7)0aZs() - (=)
|Z () = Z () 10aZ(a) (o — 7)]?
_ (%(a) = Z(7) = 0aZa(a) - (= 7)) - (Z2(@) = Za(7) + OaZa(@) - (@ — 7))
1Z(a) = Z(7)P|0aZ () (o = 7)[?
, PallZ(0) = Z())P, 100 Z(@) (@ = 7))
1Z(a) = Z(9)]° + [0aZ(a) (e = 7)°

(3.17)
thus

[Ks| < C(llgllew IFNTENOa 2] 1 + gl 100 Z | oo | F ()75 100 Z]17 ) [BI°.
It is clear that J; o satisfies the same bound, hence
1| < CP(|F(Z)|| > +110aZ zo) (9]l o + gl Loe 1902l 0 ) |7
By writing

Z1(@) = Z1(B) = 0a21(8) - (a = B) = Zi(a) = Z1(B) — DaZ1(@) - (a = )
+ (0aZ1(@) = 0aZ1(§)) - (a = B),

the term J5 is bounded directly by
T2 < CligllL=10aZl ¢ | E(2)ZE 106 Z e | RI7-

Taking into account that on Us it holds that 3|a — | < [8 — 7| < £|a — 4/, the bounds
for Js, Jy, and J5 follows

|J3] + [Ja] < Cllgllze10aZll o IF(D)TE 100 Z ] 1 117,
5| < Cllgllz10aZll o | F(Z) N 100 Z 7 1R

Inserting back in (3.16) the bounds for J3-J7, we obtain
[I1] < CP(|F(Z)| o +110aZ] ) (19l o + |9l o< 100 Z ]| ¢ ) 1] (3.18)

Now, recalling the splitting for I; (3.14), it is clear that the bound above works as well
for I 2, I 3, and I 4, hence it is valid for I;. Combining it with the bound for I5 (3.13)
in (3.4) and recalling (3.2) and (3.3), we finally have that
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1S() () = S(f) @+ h)| < CA+[0DN)P(|F(Z)|[ L~ + 1002l L)

(3.19)
< (Ifllew + 1l 1aZlle ) A1
3.2. Regularity near the boundary

Consider two points € D and x+h € D (or analogous situation in R3 \ D, R?\. D)
and, without loss of generality, suppose that

d(x + h,0D) = d(x,0D) = § > 0. (3.20)
We can write

= Z(a)+ 6N(a),

i (3.21)
x4+ h=2Z(a)+ (hy+ 6)N() + hy,Ony Z(a) + hryOa, Z ().
We denote
- N
N(a) = ﬂ, N(a) = 0oy Z() A Ouy Z (),
VIN(a)]|
and we notice that, as in (3.7), we have
IN(@)| = (IF(2)]|10aZ| L)~ 0ay Z()||0a, Z(av)],
hence
- _s _1
[0aZ]|L = [N ()| Z [|F(Z)] 12 10aZ] L2 - (3.22)
We define the cutoffs
1 |ao¢Z‘inf % ‘aaZ|inf %
6 < s )
A< 5(wzic) (z-)
1 ‘804Z|inf % |804Z|inf % 1 |8OtZ‘iIlf % ‘6aZ‘inf %
hn < aa ) h’T < a1 9
[ 24(18||8QZ||C~U) (||8aZ||Loc> [hr| 24(18||8aZ||C0) (HaaZHLx)
(3.23)

where |h,|* = h2 + hZ,. It will be sometimes convenient to write the point z 4 h in the
following form

z+h=Z(a+ )+ uN(a+N), (3.24)
where by assumption (3.20)

p|N(a+ N)| = 5N (). (3.25)
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We must first make sure that such a A and p always exist for given d and h satisfying
(3.23). More specifically, we want to find A = (A1, A2) and pu satisfying (3.25) solutions
of (3.24),

Z(a) + (hp 4 0)N() + hy, 00, Z() + hryOu, Z () = Z(a + ) + uN (o + N).

Let us denote

A=A, = (e, ey hy +0)T

Then, upon projecting the equations onto da, Z (), s, Z(c), and N (a), the system reads
as follows

MM = h,
where
M(X)
Z(athe)=Z(«) _Oay Z(e) Z(a+N)—Z(atrier) | oy Z(a)  N(atX)-8a, Z(a)
A1 [0ay Z(a)]? A2 [0ay Z(a)]? [0ay Z(a)[?
Z(a+N)—Z(atAser) Oay Z(x) Z(atAze2)—Z(a) | Oan Z(x) N(a+2)-0ay Z(a)
A1 [0aq Z(a)? A2 [0ay Z(a)]? [0ay Z(a)[? ’
Z(a+N)—Z(atAzez) J~\7(a) Z(atAzez)—Z(a) | ]~\~/'(a) ]\~/'(~a+/\) . J\:/(a)
A1 IN(a)|? Az [N (a)]? IN(@)|  IN(a)]
and
- 0, Z(a) - 0n, Z(a) = O, Z(a) - On, Z(ar) <
hy = hy + hy,— 2 , ho=h., +h, — 2 , h3=h,,.
L e T 2P 2 T T 2 P P
Denote the limit matrix by M (),
A ACS
M = | 2u 20 >16 2(a) o 2
T T Pzt 1 0
0 0 1
As a fixed point equation, the equation reads
A=T(A) =M ((M - M(\)X + h). (3.26)

Since M~'h = h, and taking into account (3.7), we see that

TN < [MHM — M(A)A| + |hl

1 1
ClloaZ|l7=IF(Z2)|[110aZll o (1 + 100 Z]| 7 | F(Z)[| 7 )| + |R,
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thus there exists a large enough constant C; > 0 so that for

B < (CLll0aZI I F(D)][ < 00 Zl o (1 + 106 Z ] 3 | F(2)]1F )

al-

Brouwer’s Fixed Point Theorem [9] yields the existence of a solution to (3.26) in the ball

1
of radius 2(cl||aaZ||%w F(2)|[ 1002l 0 (1 + 100 Z]|2 ||F(Z)||§oo>) “ and centered
at the origin, and moreover

Al < 2lhl. (3.27)

Finally, the third equation in (3.26) shows that the condition (3.25), i.e., (3.20), implies
that

i IN(@)| — [N(a+ A

~ ) “s0ra,
N(at )]

which in particular gives that, for suitable C; big enough,

)
hp > —— — . 3.28
Next, we distinguish two cases: |h.| < i%é and |h,| > %H?Q%S'
3.2.1. Regularity in nearly normal direction
Assume that
1 |aaZ|inf
h| < =——=—06. 3.29
el < 316,201 (3.29)

We can write

S(H)@+h) = S(f)(x) = S(f)x+h) = S(f)(Z(a

)+ (0 + hn)N(a)
+S(f)(Z(e) + (6 + ha)N(a

) = S(F)(Z(a) + 6N (a)),

(3.30)
¢ so that the first two terms correspond to a difference in the tangential direction and
the last two to a difference in the normal direction. We estimate each of these terms
separately. Note that the above splitting is valid since (3.28) and the assumption |h,| <
%%6 guarantees that h, + & > 6/2, hence the point Z(a) + (6 4+ h,,)N(a) belongs
to D. We can thus assume in the following subsection, Case 1, that h,, > 0; otherwise,
interchange the roles of 6 and 0 + h.,.

Case 1: Normal direction. Here we consider h,. = 0, i.e., we are dealing with the second
difference above. We write it as follows
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S(F)(Z (@) + (0-+h) N () ~ S(7)(Z(0) + 5N ()
—pv [ (KZ(@)+ 6+ h) (@)~ 9) ~ bl ) F0)dS)

Z(Bn)

b [ (2@ + G+ RN (@)~ ) = o - 1)) £0)S()
OD~Z(B,)
= I+ 11,

where

={yeR?:|ja—9| <n}

The second term is again more regular,

C
| < ——5— |0DI[| || Rl
773|8aZ|?nf

The first term is given by

I +0)Nj(a) = Z;(7))
/ hn+a> V@) -z "
/H +6N() Z;i(7)) (4)d
+6N ZmpE S
and we decompose it as follows
I=1+1, (3.31)
1 1
:B/ Mt (|Z< ST RIN@ = ZaT = 2o
/H] ! Z;(y) + (hn + 8)N;()) =TT} 1 (Z;() = Z;(7)) i
4 Z(a) = Z2(3) + (hn + )N ()P e
! (3.32)
I ( Zj(7) + 6N;(a)) — HJ 1(Zj(a) = Z; (7))
/ Z(a)— Z(x) 1 ¥ (@)]" g
We split I; further:
Li=Li+ - +1g, (3.33)

where
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2
Iy = / (Z1(0) = Z1(7) — BaZa(@) - (0 — 1) [[(Z5(0) — Z;(7)
B, J=1
y ( 1 _ 1
1Z(0) + (6 + ha)N(a) - Z()F e — Z2())F/?

Lip= /8a21(a) (@ =) (Za(@) = 22(7) = OaZa(@) - (= 7)) (Zs(@) = Z3(7))

1 1
) (‘Z( )+ (§+hn)]\7(o¢) - Z))? a |£L‘— Z<7)|5)g(7)d77
I3 = /(9 Zi(« V)00 Zo(a) - (v — ) (Z3(a) — Z3(7y) — BaZ3(ax — 7))

1 1
" (\Z( )+ (6 + ha)N(a) — Z(MP |I_Z(7)|5)9<7)d%

L= / A )00 Za(0) - (@ — 7)0aZs(a) - (@ — 7)

1~ _ 1 )dw
|Z(a) + (3 + hn)N(a) = Z()P° o= Z()P/

x (9(7) = g(e))(
L =g(a) /aaZl(a) (= 7)0aZs(a) - (0 — 7)0aZs(x) - (v — )

1 1
) (|z<a> + (6 +ha)N(@) = ZW)P  |0aZ(@)(a =)+ (hn + )N (a)[5
1 1
T azZ(@)a— ) + 0N (@) Iw—Z(v)|5)d%

Lis=gla /821 (0 = 7)0aZa(a) - (@ — 7)0aZs(a) - (o — )

1 1
Bz @E T T HF@F ~ BaZ@a =T 3R

dny.
To estimate these terms we will need to bound from below the denominator
D =1Z(a) = Z(7) + (6 + ha)N(a) >,
We can write
= 1Z(a) = Z(y)]? + (hu + 0)*|N ()]

+2(2(0) - 2(3) = 0aZ() (@ = 7)) - N (@) (s +9)
_ 12(0) = Z()P

P oo = A + (B + 0)?IN()]* = 2| = 4" (|00 Z | &0 [N ()| (B + 6).
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The last term satisfies that

2o =" 7)|0a Z ]| ¢ IN ()| (i + 8) < 1ﬂr(hn+5)2\N(0<)|2
Lo

5 (b + 6) 257 00 2] 17 00 Z\I“”Ia ol

The fact that h, +d > §/2 and the choice of the cutoff for ¢ (3.23) allow us to obtain
that

1
> 31002 (Jo =22 + (o +6)?). (3.34)
Next, we proceed to estimate each of these terms I; ;, ¢ =1,...,6. For I; ; we have that

o =Pl — Z2(0)|°
1Z(@) + (6 + hn)N(@) = Z(7)]

< Clhullgli 10021 [0aZl - [ (
_ ~/|340 _ -1
ST I
Z(0) + (6 + h)N(a) - ZO)F
(3.35)

We introduce the bound for the denominator (3.34) in I; ; to obtain that

uazW%/<W—w%%m—vP+ﬁr3

I Ch g oo 6 A4 o 1
| 11| ‘ ||| ”L H HC |a Z| (|a—"/|2+(hn+5)2)5

inf
"7

o =P (o — o + 52)’%)
(Joo =712 + (hn + 6)2)3

Changing variables w = (a — 7)/(hn + 9),

ot

[

100213 / UMH%@P+G$QVV

L <0—"— = [[0aZ||¢o
< gyl 10 2le g 7, (wF+ 1)1
WIST,+5
o 2\—3
IM“(WF+Gﬁm))2ww
(Jwf2 +1)3 ’
hence

[[Oa Z‘Zoo/ |w]| >t |w|**t®
I Clha, |00 Z]| ¢o ( + 5)dw7
‘ 11‘ ‘ | ||9HL H ”C |(9 Z‘ (|w|2+1)% (|w|2+1)§

inf

to conclude the desired bound



20 F. Gancedo, E. Garcia-Judrez / Journal of Functional Analysis 283 (2022) 109635

100 Z 17

1] < Cllgllze<10aZ]l¢v N4

|7l (3.36)

inf

The terms I; 2 and I; 3 are bounded analogously:

0023 -
Rzl +sal < Cllgll [0a7l o 521 1 o (3.37)
inf
In I; 4 the same approach yields
10aZ |7,
1 C o a6 |l 3.38
1141 < Cllglloe 5™ (339)

We deal with I 5 (3.33). Let us denote

un = 1Z(a) = Z(7) + (hn + )N ()],

i (3.39)
vp = [0aZ(a)(a —7) + (hn + 6)N(a),
and
1 1
u—g—u—g G (un; uo)( o—ui),
where
1 1 1 1 1 1
G(un; ug) = ( t a5t 535+t 55+ 5)' (3.40)

Uup + ug u;r’luo Uy, U U3 Ug Uj U UpUg

We notice that u? = D for which we have the lower bound (3.34). We also need a lower
bound for vy:

[on|* = [8aZ(a) (@ = 7)* + (hn + 8)*|N (a)

|(9 |1nf (‘a o ’Y|2 + (hn + 5)2)’

= |a Z|1n a 712
1922117

where we have used (3.7), (3.8), and (3.22). Notice that the following is a common lower
bound for uj and vy,

1 Oa
|unl?, val® > §|8aZ'2 1902 (Jo = * + (hn + 0)?). (3.41)

007

We have that

2—'LL2 — o)l — «) — - N «
8 = ol +29IN()] =22 (e) = 2(0) - Fieh (5.4
h
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The term I; 5 (3.33) is then written as follows

Is=g(a) /GaZl(a) (a0 —7)0aZa(a) - (0 — 7)0aZs(at) - (v — )

(3.43)
1 1 1
A L
and we split it further
Iis=J+ Jo,

where

7 = g(a) / Da:(0) - (0 — )0aZa(0) - (@ — 1) Zs(a) - (& — )
BT/

X G(un,uo) (ug — uj, — (v3 — vj))d,

X (G(un, ug) — G(Umvo))(v(z) —vj)dy.

Substituting (3.42),

Ty = ~2h, g(a) / DaZ1(0) - (@ = 7)3aZa(@) - (@ — 7)0aZs(@) - (@ — 7)
By

X G(un, uo)(Z(a) = Z(7)) - N()dr.
The extra cancellation
(Z(@) = Z(7)) - N(@) = (Z(a) = Z(7) — 0aZ(a)(a = 7)) - N(a),

and recalling that u7 = D, we introduce the lower bound for D in (3.34) to obtain that

WA 4 _ Aldto — ~|2 4 52 -1
H HL ||8aZ||Ca|hn| / (‘04 'Y| (|a '7| + ) 2

Ji| <C o0
|J1] gl 00 2|7, (Joe =72 + (hy 4 0)2)3
la—7|<n
T T (T [ 0 P
| = 4|2 + (hp + 6)2
100 Z | 7,00 o
< Cllglle= 106 Z|¢:o [n

‘aﬂczﬁnf
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We proceed to estimate Jo. We further split this term

6
Jo = Z Jo i
k=1

where

1 1 v — v}

>< p—
(ug_kulg vg_kv’g ) Uup + Ug

for 1 <k <5, and

Ja6 = g(@) / 0aZ1(a) - (@ = 7)DaZa(a) - (@ = 1)DaZs(a) - (o = 7)(vg — v})

B,

1 1 1 1 1 1 1
x (

+ + )( -
5 4,2 3,,3 2,4 5
Vp Vo (S vV v,V VRV~ “Up + Ug Vp, + Vg

To control Jy; a further splitting is given:

6
Jo1 = Z K
=1

where
K\ = gla) / OaZ1(0) - (0 — 1) Zal@r) - ( — 7)0aZa(ar) - (v — )
B77
2 _ .2
o L et
5 U0 Vo’ up +up
and

Ki = g(a) / Ba1(0) - (& — )0 Z2(0) - (0 — 7)0aZs(0) - (@ — )

B,

1 1 1 v =}

x —_— —_— i —
voul vl =2 (Uh ’Uh) up + uo

for 2 <1 < 6. Estimate

[on — un| < [[0aZllgola — A7

)dvy

(3.44)
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and the lower bound (3.41) allows us to get

_ 2+o
161] < Cllgllo 222U 15 211 ] / lo = (£ 9) - 9)dy
10 Z]15; e G+ 0 + )0
a—y|<n
W .
<cmm£%ngammm

Using (3.44), an analogous bound follows for the rest of Kj. It yields the desired control
for the term Jo ;.

The terms J 1, kK = 2, ..., 5, are controlled in a similar manner to J ;. We show some
detail in the most singular one: J 5. It is decomposed by

J2,5 = Kr + Ks

where K. is a representative term, and in K we collect similar integrals (they can be
handled as before). The K, integral is given by

/321 (0 = 7)0aZa(@) - (@ — 7)PaZs(a) - (a — )

SR EVE B Y el

vpud ‘g v’ up + ug

Then, the following bound is obtained

Z L do( 12, £2\—3
5| < Cllgle 12ZlEx 15 7). / o =l (e =P+ 0%
10 Z it (Jo = ]2 + (hy + 0)2)2
lo—y|<n
¥4 i
<C|9|Lw%na Z|| o |7

The rest of terms in K, are estimated analogously. Then, it yields the desired control
for J275.
Next, we consider J3 ¢ which is estimated using (3.44):

WA 4+o _ A2 52—%
ol < Clall LS o,z o [ (10T R)

102|115 (o =P + (i + )27
Ja—v|<n
Ia—w”%M—WP+¥V§ﬁ
[~ 7+ (hn 1 02
0.2 )
< Clgli L2215 7)o ihale.

1002 iy
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We are done with J, and therefore with I 5,
1115 < CllgllLo< 106 Z 1o |F(Z)]| 100 (1 + 06 2] | F(Z)[|70) 100 Z || o |hn 7. (3.45)

Finally, because |0, Z()(a—7) 4 (hn +0)N()]? = |0 Z(a)(a —7) > + (hn+6)?|N(a)|?,
the integral in I1 ¢ (3.33) is odd and thus vanishes. Hence, recalling (3.33) and the bounds
(3.36)-(3.38), (3.45), the I integral is estimated,

1] < Cllglre 100 Z|l2e | F(Z) oo (1 + 106 ZI 2 | F(Z) |22 ) 100 Z | o [ in]

(3.46)
+C gl 1002 1o 1 F(2) | 20 [hn] -

It remains the control of I5. In order to estimate the term I a further decomposition is
done in (3.32):

8
=> I (3.47)
j=1

They are given expanding the products in the numerator, gathering in one term the
subtraction between one integral with (h,,+9) and its corresponding integral with only 4.
Here we show how to deal with three of them, as the rest of the estimates follow similarly.
They are given by

121:/(Zl(a)721(7>)(22(a) Z5(1)) (7 + 8)N3(at)
’ 1Z(a) = Z(7) + (b + 6)N(a) P

g(y)dy

( ))5N3(a)

9(v)d,

and

+53N1( )Na(a)N3(e) B % N1 (@) Na () N3
/ 20 200 + G+ 98" | @) - 26) + N @

Next, we perform a further decomposition in I5; to handle it:

7
Ih = Z Jk (3.48)
k=3
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where

Js = /(Zl(a) — 21(7) = 9aZi(a) - (a = 7))(Za(@) = Za(7)) (hn + 5)1\73(04)9(7)617

|Z(@) = Z(7) + (hn + )N ()

(Z1(0) = Z2(7) — DaZ2(a) - (0 — 7)) (Zale) — Za(1))dNa ()
-/ Z(a) - Z(x) + 6N (@) gy,

Jy= /C%Zl(a) (o= 1)(Za(@) = Za(7) — BaZa(a) - (@ = 7)) (hn + 6) N3 (e)
1Z(@) = Z(7) + (hn + )N (a)?

g(v)dy
By,

_ / 0aZ1(a) - (& = 7)(Za(@) = Zo(y) — BaZa(0) - (@ — 7))0N3(a)
1Z(@) = Z(7) + 6N (a)?

g(v)dv,
By,

J__/%zmnwa—w@zﬂm.m—ywm+®Nﬁmg
© 12(0) = 2(7) + (ha + )N ()P
 [2tile)-a—n)lutifa) (o 7)N5(a)
2(a) = 2(7) + 0N ()P

(9(7) — 9())dr,

By,
1 1
Jo = (hn + 6) N (a /a& (0 = 1)0aZa(@) - (a = 7) (-5 — —5)dy
Up U
1 1
— 6N3(a /3 Zy(a) - (= )aZa(a) - (a =) (= — =) dv,
Uy Yo

(see (3.39)) and

OaZ1(0) - (o = 7)0aZa(e) - (@ —7)
|00 Z(a)(a =) + (hp + 6)N ()5

J1 = (e + ) Ns(a)g(0)
/
00Z1(a) - (a0 — ’Y)aaZQ(QN) (=)
|0aZ(a)(a —7) + N (a)?

- Ns(a)g(a) |

B’VY
In the next step, a splitting gives
Js=J31+ J3
with

(Z1(a) = 21(7) = BaZi(a) - (=)

(7) + (hn +9)

~—

Q

(Z2(e) — ZQ(’Y))Q

J371 = hn]\~]3(o¢) (a)|5

N
L
!
N
=
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and
- 1 1
J3.2 = 0N3() [(Zi() = Z1(7) = BaZ1(a) - (a = 7))(Za(@) = Z2(7))9(7) (=5 — —5 ) d-
7 Up,  Ug
Bound (3.34) provides the desired estimates as before:
106 Z |17
Js1| < Cllg|lpee —2Z2EZN A Z 1| o | |,
|31 < Cllgllz ENAER 102l ¢ P
WA 72+"a A2+ 62)2
sl < Cllgle 2 13, 7). 5, ) e
|00 215 a—>+ (hy + 6)?)2
o =P (ja — 2+ 6*) 75 )
(Jo = ]2+ (hn +8)%)%
10623
< Cllgll~ T7—5—[10aZl go [hnl
|3OéZ|i6nf “
We are done with J3. The terms Js and J5 follow in a similar manner,
10aZ|2 | 10aZ|2~
174l < Clglle~ ( = N0aZl e Bl
|a Z|1nf ‘a Z|1nf ©
but for J5 the bound is slightly different:
10aZ|2 | 10aZ]|1
J5| < Cllgll o ha|?.
51 < Cliler (g + Tz ) Il
To handle Jg we split it in two:
Jo = Jo,1 + Jo 2,
where
1 1
J61 =h N3 /8 Zl CV 7)8 ZQ( ) (0[—’7)(—5 — —5)d’}/,
up, U
and
1 1 1 1
Jo.2 = ON3(ax /5 Zi(a —7)5a22(04)'(04—7)(ﬁ—u—8—(E—%Dd%

As before it is possible to get
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100 Z | L

|J6.1| < Cllgllze~

10255

inf

= 100 Zll¢o |-

The next term can be estimated similarly to I1 5 (3.43) in order to obtain

100 Z | £

|J6.2] < CllgllL~

and therefore the appropriate bound for Jg:

[J6] < Cligllze

100 Z |16

inf

|00 Z i

100 Z] 1

I

1002l o i,

27

We now show that the last term J7 (3.48) is Lipschitz. The change of variables v <

(a —7)/(hyn + §) gives that

O G R e

"YKW

Ty
|0aZ(c)7[* + [N (a)[?)2
B / 0aZ1(a) - ¥0u Za(at) - d’y).
(10aZ(@)v[? + N ()[?)%

[vI<E

Define

0aZ1() - Y00 Zo(a) -

gl

F(z)

(10aZ(@)y[? + [N (a)[?

lvI<?
which, denoting 4 = WI

n

can be written as follows

dry,

)%

r3

F(z)

/”aazl< 0) - 40aZ2(0) -4
N ()

If we denote further

G(r,a) =

[N

we obtain that

0/ (N (a)

1

7 3
[t
J (a2p2 4+ 1)

=drd¥.

2100 Z(@)31?r2 +1)3

2+ 3a%r—2
3a*(1 + a?r—2)

7] < 1062l < g2 | / OaZi(@ |> ?0)?2( a) 4
b +0 < 4 A 5o A
< (G2 N (@) 0 Z@)3]) = GG N (@)~ a2 ()31 )a

~

Y-

(3.49)
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Since |-£G(a,r)| < |a|~®, we obtain

106 Z 700 [

|J7| < Cllgllzee —5—H5———-
‘ |8 Z‘mf n

This yields the appropriate estimate for I5 ;. Next we handle I3 5 with the splitting

=
where
=T
—62N2<a>Ns<a>/ Al Ao ZMSV(><)|5 Do),
Jo = (hn +8)* (o / v % Zl )Eh jg) ) — o)y
— 5 () Ny a) / | Z(afjazlz(?j;i; Do) —gle)ir
B = (8 Nafo) Ngla) [2,21(@)e =) (7 = )0
B,
- 828a(e)Ny(a)gla) [ uZu(0)(a =) (5 = o)
B,
(see (3.39)) and
Ji1 = (hn 0N /a Z(a . Zl) )(mn?a) NP
— P Nala /|a Za Z; 7()+5713f( E
The term Jg can be decomposed further to get
Jg = Jg 1+ Jg 2,

where
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Zi(a) = Z1(7) = OaZi(a)(e = 7)

= 2 V [} V « =
kﬂu%+zm®Nx>Na>¥WZW»_ZW%+WH+®NwM5mwm
and
9 - 1 1
Jg2 = 0°Na(a)N3(a) /(Z1(a) — Z1(7) = 0aZy(a) (o — 7))9(7)(772 - u_g)d%
B

n

Then, it is possible to bound as follows

10aZ|13
|aaZ|?nf
100 Z|13
|aOtZ|?nf

|ha| (2l + 6] + | hn)
7 + 020

[ Js.1] < Cllgllz 10aZll¢o

< Cligllz= 10aZ]l¢o [hn|”,

to get the desired estimate. Similarly as before, the next term is approached:

|Js,2

inf

100 Z |7 2 / o =AM (la =42+ 672
< C gl Lee aaZ 'g(s hn 5
|| ”L ‘aaz|11 H ||C ‘ |B ( (‘Oé _ ")’|2 + (hn + 5)2)5

o= o o —aP + 8 Ey
(lo =P + (ks +0))

00 2|3 81hn| |hn
<C 0o —————||0aZ|| 5o
lgllz 0aZ|LL I les (lhn+6|2—a+ |hn+5|1—a)
100 Z |70
< Cllglze 180 2| ¢ [in
1OaZ ling ‘

It yields the desired estimate for Jg:

|00 Z [}

Jg| < C oo
| Js] lgllz AR

||aaZ||c"ﬂ|hn|J~

The next term can be handled analogously, obtaining the bound below

[10aZ |7
|aaz‘11

inf

[Jo] < Cllglles [n .

We continue dealing with Jjg, which can be decomposed as before to obtain

100 Z | £

Jio] < C|g|| L=
ol < ClaleT. 715

10aZ||¢o ]

The last term in the splitting is prepared to be integrated explicitly. In this case it is
easy to check that it is zero:
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Ji1 =0.

Gathering the last four estimates provides the appropriate estimate for I5 5. It remains
to handle I5 3. A further decomposition yields

I3 = Jig + Jiz + Jua,

where
Jra =(hy + 8)* Ny ( )B/Z : (2 ))fg)m E
~ NN / )+ N
By (b + 5 Ka()Ba(e) Nafeo(o) (G = 32
By
- PR @) N Fa()g(@) [( - )
By
and
T4 = (i + 3P Na(e) (e /na Z(a Wﬂ R INCIRE
_53N1(Q)N2(0‘)N3(O‘)9(0‘)/(aaZ(a)( ?Z+52N( 123

By

A further decomposition helps to deal with Jqs:

Ji2 = Jio1 + Ji2.2,

where
Jia1 =(h3 + 3h,6(hy, + 0)) Ny () /|Z ?Y g(gba)zrdg)]v( )
and

J122 —6 Nl(

im\
:w =
|
Sl
o
S—
5

Next, it is possible to bound as follows
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19 Z] 7 || (|| + B[P + 8] + B[P | + 0

<C = o
|J12,1‘ X |a Z|mf ||gHC |hn+6|3—o'
10023~
< O g o hnl,
|a Z|1nf “
WA a—A2462)2
izal < LBZE g 5, |/|a e (e o)
inf (| _FY| +(h”ﬂ+5) )2
(Joo—* +8%)73 )a
(o =72 + (b + 0)%)3
100 Z 14 82 |h| o] 1024 .
< . < .
gz oles (g + i gsn=e) < C gz 1ollee inl”

inf inf

and to get the appropriate estimate for Jyo. A similar splitting for J;3 allows to obtain

1902l N0aZllze , 10aZ]x

10215 102l 10a 2} 10aZlcc .

T3] < Cllgllz=

inf inf inf

Similarly as we did for J7 in (3.49), after a change of variables, the radial part of the
integrals in J14 can be integrated to obtain the desired bound. It yields the appropriate
estimate for I» 3. We therefore complete controlling the term I (3.47),

12 < Cllgllz= 100 Z|I7 | F(Z) |7 (1 + 106 Z | | E(Z) o) 100 Zl oo | hn |

(3.50)
+Clgllea 100 Z )12 1 F(2) 2 (L + 002 Loe | F(Z) || o) Fin] -

Together with (3.46), it provides the desired bound for I (3.31). Recalling (3.3), this
completes the proof of the Case 1,

S(£)(Z(a) + (8 + hn)N(a)) = S(f)(Z() + 0N (@)

(3.51)
P(10aZ|lr + IF(Z) =) (I fll =180 Z] gw + | fllco ) 1Anl”-

Case 2: Tangential direction. Here we consider the first difference in (3.30). We recall

that in the case we are dealing with, || < i%5 we have that d + h,, > 0. Hence,

for simplicity in notation we do the estimate for some § > 0, and we will later apply it
with & + h,,. We keep the notation 2 = Z(a) + §N(a). First, we split as before

SN+ hr - 0u2(0)) — S(f) ()
—pv [ (Ko b 0a2(@) ~ 1) - ko~ ) F0)dS0)

Z(Bn) (3.52)
+ / (k(w +hr 0aZ(a) —y) — k(z — y))f(y)ds(y)

dD~Z(B,)
=T +1I,
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where

By ={yeR*:Ja—7]<n}.

The second term is again more regular,

1] < m\@DHUHmeL
The first term is given by
H 1@+ hy - 0aZ; ( H -
/ |a:—|—h OaZ(a) — / |$— (7)‘”’
and we decompose it as follows
6
I=>"1I, (3.53)
=1
where
/H] 1 N Ahr - 0aZ;(a)+0N;())(Za() = Z3(7) — (@ —7) - Oa Z3(cv)) (7)d
1Z(0) = Z(9) + hr - 0aZ() + 0N ()5 g
/HJ 1 (7) + ON;())(Zs(a) = Zs(7) = (o — ) - 0aZ3())) (7)d
Z(a) — Z(7) + 6N (a)F e
(3.54)

—7) - OaZs(@))

I — /((04 — 7+ he) - 0aZs(@) + 3N3())(Za(@) — Za(y) — (@

! |Z(a) = Z(y) + hy - OuZ(a) + N (a) 5

x (Z1(a) = Z1(y) + hy - 0uZ1(a) + SNy () g(7)dy

(3.55)

—7) - BaZs(@))

B / (@ =) - BaZs(a) + 5N3())(Z2(a) — Zo(v) — (@

! |Z(a) = Z(v) + 6N (a)?

x (Z1(c) = Z1(v) + 6N1(a))g(7)d,
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Iy =
/H§_2<<a — 7+ he) - 0aZi(@) + N () (Zi(a) — Z1(7) — (a =) - 0uZi(a))
- g(v)dy
4 1Z(0) = Z() + hr - aZ(a) + 6N ()]
/ [Tj—2((@ =) - 0aZ;(0) + 6N;(@)(Z1(0) = Z1(3) = (0 =) - BaZa(e)
- Z(a) — 2() + SN (@) gty
B, |
(3.56)
; _/ij_l((a—wh»-aazj<a>+cw< )91 = g(@)
4= 1Z(a) — Z(7) + hy - 9 Z () + 6N ()5 7
5 (3.57)
/HJ , 2(0) +8N,(@))(s() = 9(@))
Z(y) + 6N (a)[f ’
3
/ H a—7+h,) 0aZj(a) +5N;(a))
B, j=1
x ( 1 i
Z(a) = Z(3) + hr - 0aZ(c) + 0N ()P
- 1 )y 559
(10aZ(a)(a =y + he)[2 + 62| N () [2) ? '
3
[ s@ [Tt =) 2.25(0) + 65,@)
B, J=1
o ( 1 _ . 1 _ é)d%
12(a) = Z() FON(DP (j0,Z(a)(a — )2 + 62N (a)[2)?
L [jos((@ =7+ he) - aZi(@) + ;@) |
6 = gl ~ 5
2 (10aZ(@)(@ =7+ ho) P + 82| N(a)]?)
(3.59)

[[-1((0 =) 9aZj(0) + ()
2 (10aZ(@)(@ =)+ &N (@)?)?

—g(a)

We proceed to estimate each of these terms. We first estimate the denominator as follows

D=|x—Z(y)+h:0.Z(c)?
=1Z(a) = Z(Y)]* + |hr - 0aZ(a)]* + 6*|N(a)?
+2h, - 0aZ(0) - (Z(a) = Z(7)) +26(Z(0) — Z(v) — 0aZ(a)(a = 7)) - N(cv)

 12(0) = Z()P

P oo = A + [7r0a Z () * + 0% N (o)
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~ Z(a) — Z(y
- 28l =0 Zl 1§ (@)] = 2 =] 0, 2@ L=,
The last two terms satisfy that

1—0
2
1+o0
2

26| —4|"*7)|0a 2|0 IN ()| < 0%|N(a)f?

_|_

2 20 .20 2
2755 0757 | N|| L5 100 Z | 577 o = 12,
and

||Z(a)_Z('7)| < 1|a—’y|2|Z(a>_Z(7)|2

o —~[?

2la —v||hy - 0uZ <
o= llhe - 0uZ(e) = <

+ 4|hy - 0aZ()]?.

The choice of the cutoff for § (3.23) and the fact that we are in the case where |h,| <

1 _18aZlins :
AT § provides that

1 1
> - 2 ( — 24 252) )
D> 310aZ s (la =7 + 50%) (3.60)

inf
Next, we split I (3.53) as follows
L=hL1+5L+ 113, (3.61)
with
L1 =h; 0,21 ()

" /(22(04)—Z2(7) + hy - 0 Za() +6N3(a)) (Zs(a) = Zs(7) — (@=7) - DaZs(@))
|Z(a) — Z(7) + hy - 0aZ(a) + SN ()|

g(v)d,

(Z1 () =2 (7)4‘51\71(@))(23(0‘)—Z3(7)—(0f—7) - OaZ3(v))
|Z(a) = Z(y) + hy - 0aZ(c) + 6N ()|

11,2 :hr . aozZQ(a)/ g(’Y)d’%

By

We have that

24 o 22| Lo |00 Z3]| ¢1o oo — ho| 4 8)|a — ~|1+e
1| < [ 222112 lgnLZPna allc-lglls /<|a it lhel +8)la [
o2 ing 2, (|a—7|2+%52)
hr o
< 1he] 10023 190 Zllcs gl /<|w|+7+1>|v|1+ "
I I A ’

5
R2 (|’Y‘2 + %)
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and hence, recalling that we are dealing with the case where (3.29) holds, we obtain that

192 Z]| L& Nlgll L

[Lal < C s 10aZ| g ||
0o Z it
Analogously, we find that
102115 N9l
(ol <C o 10a ¢ |r|”.
002 ik

If we denote

up = |Z(a) = Z(y) + hy - 0aZ () + SN (a)],

N (3.62)
uo = |Z(e) = Z(7) + 6N(a)],
we have that
1 1
u_g - u_g = G(uh7u0)<u(2) - ulzz)v
where G is defined in (3.40). Since
ug = ujp = —|hr - 9aZ(a)* = 2(Z(a) = Z(7) + 6N (a)) - (hr - 0aZ () (3.63)
= —|hr - 0a2(0) = 2(Z(a) = Z(4)) - hr - aZ (), '
we obtain that
1902112 llgll =
I < C aaZ So h‘f‘ Ua
sl € CF 0 g T 007 el
and thus
1021 llg o> |00 Z 17,00
L|LC 1+ O0aZ|| ¢o |hr |7 3.64
<O gme (g, ) 1oa e 360
The terms 5 and I3 (3.61) follow similarly and share the same bound
10 Z| LK N9l 190 Z]I7
1 I3 <C 1 0aZ || o |P]7, 3.65
L]+ 11| g (1 )10zl e (3.65)
while for I, we find that
N2l 100 Z 17,0
L|<C 1+ o |hr | 3.66
1l < ozt (1 ez ) Il ) (3.66)

We proceed to estimate I5. We recall the notation (3.62) and define
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N

vn = (|0aZ(a)(a =+ hr)? + 0% N (a)*) 2,

. B (3.67)
vo = (10aZ(a)(a = 7)[* + 6*[N(a)[*)?,
for which we have the lower bound, also valid for u; (3.62),
2 S |00 Z [t ( 2 1 2)
O Z|f e — —06°). 3.68
|Uh| | |1nf||a Z||2<>o |a ’V| + 9 ( )
Then, we perform the following splitting

Is =Is1 +Iso+ Is 3+ Is 4, (3.69)

where

3
Is1 = g(a)h, - 0uZ1(c / H((a — v+ he) 0aZj(a) + ONj () (u,® — v;,°)dr,
B, =2

15,2 = g(a)hr'aaZZ(a)/((Oé_’y)'8azl(a)+5N1(a))

B,

% (= +hy) -0aZs(a) +0N3(a)) (uy® — vy, ) dy,

Iss = g(a)h - 8 Zs( /H Zj(e) + 6N;(@)) (up,” — v;,°)d,

3
Ios = g(a / H Z,(0) + 653 () (6 — v — ug + 05 ) .
4

We bound I5 ; as follows

1511 < llgllz 1100 Z o |hr | /(la =7+ he| +6)% = v,y
B’V?

We have that
up, —vp = Z() = Z(7) = (@ —7) - aZ(a)?

+ 2((a — v+ h;) 0sZ(a) + 5N(a)) . (Z(a) —Z(v) = (a=7) - OQZ(a))

Cla =7 +la =7 +he| +0)10aZ| =00 Z | ¢ola — 7'+,
(3.70)

thus
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s oo < el =ikl
|8 Z\mf (|a—7\2+%62)2
100 Z[3 100 Z]l¢o (I =]+ la = + he| +6)Ja — [+
|00 Z| 14 (|O¢—’y\2+%52)% :

<C

Introducing this bound back, we obtain that

w||0nZ AR + +he|4+6) o — Ayt
1< ololo= 10211 10,71 |h|/ Sttt )) o —alt
1nf |OZ—’Y|2+§52
lgllzoe 100 Z]| 1%
< o \|8a2||c'a|hr|”-
10a Zint"
(3.71)

The same bound holds for the terms I5 o and I53. We are left with I5 4. We split it
further as follows

Is 4 = Ji + Jo, (3.72)

with

3
(a / (@ Z,(0) + 68, (0))Gun, o) (u — u} — (03 — o})) o,

B, J=1

oo/ The

n

<.

- 8aZj() + 0N;j()) (G (un, uo) — G(vn, vo)) (v — vj)d,

H:jw

where G is defined in (3.40). From (3.67) we have that
vg = Vi = —|hr - 8aZ()]* = 2(hy - 0aZ) - (DaZ(a)(a = 7)), (3.73)

which, together with (3.63), provides that

Therefore, we obtain

lgll 2= 119aZ ] 1227
|8aZ|-13+0

inf

1] < 10021l |7 (3.74)

We proceed to estimate Jo. We further split this term
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6
=> Jok (3.75)
k=1

where

By
( 1 1 )vg v?
X
6k, k 6k k )
u, ug v, Cug U T Uo

for 1 <k <5, and

Ja6 = g(a) / 0aZ1(a) - (o = 7)DaZa(a) - (o = )DaZs(cr) - (o = 7)(vg — v})

— 2
BT?
( 1 n 1 1 1 1 ( 1 1 )
X
vivg - vivd o vdud o vliug o vpvl Mun tug v 4o

To control Jy; a further splitting is given:

6
Jo1 = Z K;
=1

where
K\ = g(a) / Do Z1(0) - (0 — 1) Zal@2) - ( — 7)0aZa(a)) - (v — )
B”
i(i _ i)M
ud ‘ug  vo’ up +ug
and
K = g(a /a 21(0) - (& — )0 Za(a) - (0 — 7)0aZa(0) - ( — )
1 1 1. 02 —v?
XU 6—1 1— Q(u__v_)u0+uh
oy, Uy, h R’ Un 0
for 2 <1<

< 6. Estimate (3.70) and (3.73) allows us to get

A a—v**(la =5+ (|h| + | =7
il < Clall~ 1R o, Z||cw|h|/' L

(Jo = 7[2 + 58%)3

10aZ | 57
|8 Z 15+0

inf

< Cligllz= 10aZ ¢ |hr|”-
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The rest of K; are bounded similarly. Hence Js ; is controlled. The remaining terms Js 4,
k = 2,..,6, in (3.75) are controlled in a similar manner to Js1, and all of them are
bounded with the same bound (we omit the details to avoid repetition, as the estimates
follow along the lines below (3.44)). Therefore,

ol < O gl 10202y )l (3.76)
2 X gl Lo |aaZ|ilri1f+o. (oY Colltr| » .
which together with (3.74) gives that
1062|1257 -
[I5,4] < Cllgllp= 97150 106 Z]| o |Pr |7 (3.77)
| (o4 |inf

Joining this bound with the ones for I5 1, I5 2, I5 3 (3.71) back in (3.69) provides that

”a Z||12+fr
|a Z15+a

inf

15| < Cllgllz= 10aZ]| o hr|”- (3.78)

Finally, the term I (3.53) can be written as follows

/ [1)_(w-9aZj(a)+ ](a))dv
|

(10aZ(a)wl2+| N (a)2)

_h
TISE

/ [T;_1(w - 8aZi () + Ny ()
|aZ Jwl2+|N(a)2)*

dry,

[w|< ¥
and therefore

|h
g+T‘ 3

; [P, (6 - 00 Z;(0))r + Nj(a)
Is] < Clgll i~ + ; Tt
6 t /( /| ) (106 Z(a)w|?r2+|N(a)[?)

- on_ n
5 5

n 7

5
|00 Z||3
<CH9||L°°|57L< +
.l
5

inf
|h

I3

|h§'r‘ X 1
/ )r(r + gdr
AT
5

>3

190213« ]
|a Z mf |77|

< Cligllz~
Together with (3.64), (3.65), (3.66), and (3.78) in (3.53), we conclude that

w727 0,210y | allm10uZle 1Y
1< (U (ol + ol Ieen )+ Dol ey e

inf inf

(3.79)
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and hence, substituting (3.3),

IS+ hr - aZ() — ()]
(1 + D) P(IF(Z) 41002l =) (I F o + 1l 1002l o ) el

This concludes the proof of Case 2. Together with (3.51) (Case 1) and recalling the
splitting (3.30), the estimate for two points near the boundary in nearly normal direction,
i.e., assuming (3.29), is done.

3.2.2. Regularity in nearly tangential direction

Here we consider the case |h.| > %%6 . Recalling the expression (3.24) for z+h

in this case, we can write
S(f)(@+h) = S(f)(z) = S(f)(Z(a+X) + uN(a+ X)) = S(f)(Z(a+ )
S()(Z(a+A) = S(f)(Z(a))
S(H(Z(@) = S()(Z(a) + 6N (a)).

Given the bound (3.27) and that we are in the case ¢ < 4”?"M |hr], we can apply the
previous Holder estimates for S(f) along the surface (3.19) and on the normal direction
(3.51) to obtain that

[S(f)(@ + h) = S(f)(@)|
C(A+[0DNPIE(Z)l|re+10aZllro) (I fllow + Il 0aZlle ) 1217 (3.80)

3.3. Regularity far from the boundary

Consider two points z and 2+ h in D (or analogously both in R \. D) such that they
are sufficiently far from the boundary. That is, recalling (3.23), we consider now that
. L
min{d(z,0D),d(x + h,0D)} > L, |h] < 5

where

OaZlint \% /10aZ| L 3
- 1(18||85YZZ||;(,) (||aaZz|||if )

Then, for any y € 9D and s € (0,1),

|z — y

|z —y+sh| > |z —y|—|h] > 5

and thus the mean value theorem gives that
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|h|
)
[z =yl

C
|z —yl?

lk(z +h—y) —k(z—y)|<C
[k(z+h—y) —k(z—y)| <
Hence, it follows that

S+ ) = SEO@] = | [ (ba+h=9) = bz = ) F@)S()

< Clfllp /l'h;w S(y)

Uoodr
<Cl e~ a2 l= [

L

and we conclude that

[ fllze< 100 Z]| Lo
Lo’

OOH&NZHL“’ |a Z|mf Ha Z”C |h|o O
100 Zlint 0,27

1S(f)(z+h) = S(f)@)| <C [h[”

<CO|flle
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