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Abstract

We show that the geometric realisation of the poset of proper parabolic subgroups of a
large-type Artin group has a systolic geometry. We use this geometry to show that the set
of parabolic subgroups of a large-type Artin group is stable under arbitrary intersections
and forms a lattice for the inclusion. As an application, we show that parabolic subgroups
of large-type Artin groups are stable under taking roots and we completely characterise the
parabolic subgroups that are conjugacy stable.

We also use this geometric perspective to recover and unify results describing the
normalisers of parabolic subgroups of large-type Artin groups.

2020 Mathematics Subject Classification: 20F65 (Primary); 20F36 (Secondary)

1. Introduction

Artin groups are a class of groups strongly related to Coxeter groups, and defined
as follows: Let S be a finite set, and for every distinct s, t ∈ S, choose an integer mst ∈
{2, 3, . . . , ∞}. The associated Artin group is given by the following presentation:

AS := 〈S | sts · · ·︸ ︷︷ ︸
mst

= tst · · ·︸ ︷︷ ︸
mst

when mst �= ∞〉.

If we add the relations s2 = 1 for all s ∈ S, we obtain the associated Coxeter group WS.
Every Artin group AS has an associated Coxeter graph �S defined as follows:

(i) the set of vertices of �S is S;

(ii) there is an edge connecting s and t if and only if ms,t �= ∞. This edge is labelled with
ms,t.

C© The Author(s), 2022. Published by Cambridge University Press on behalf of Cambridge Philosophical Society. This is an Open Access
article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S0305004122000342 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000342
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0305004122000342


394 MARÍA CUMPLIDO, ALEXANDRE MARTIN AND NICOLAS VASKOU

Many questions remain open for general Artin groups, such as whether they are torsion-
free, whether they have a soluble word problem, or whether the satisfy the celebrated
K(π , 1)-conjecture. However, several classes of Artin groups are better understood, for
instance: right-angled Artin groups (mst = 2 or ∞ for all s, t ∈ S), Artin groups of spherical
type (such that the associated Coxeter group WS is finite) and Artin groups of large type
(mab ≥ 3 for all a, b ∈ S).

The aim of this paper is to investigate the structure of certain subgroups of large-type
Artin groups. For a general Artin group AS with generating set S, it is a theorem of [23] that
the subgroup generated by a subset S′ ⊂ S is isomorphic to the Artin group AS′ . The various
subgroups AS′ , for subsets S′ of S, are called the standard parabolic subgroups of AS, and
their conjugates are the parabolic subgroups of AS. A parabolic subgroup conjugated to
a standard parabolic subgroup AS′ will be said to be of type S′. An Artin group that does
not decompose as the direct product of two of its standard parabolic subgroups is called
irreducible. Since a parabolic subgroup can naturally be viewed as an Artin group by the
above, one defines similarly the notion of irreducible parabolic subgroup.

Parabolic subgroups form a natural class of subgroups that has been playing an increas-
ing role in the geometric study of Artin groups in recent years. Indeed, several complexes
have been associated to Artin groups using the combinatorics of parabolic subgroups. For
instance, Deligne complexes and their variants are built out of (cosets of) standard parabolic
subgroups of spherical type [6], and have been used to study various aspects of Artin groups:
K(π , 1)-conjecture [6, 21], acylindrical hyperbolicity [7, 18, 24], Tits alternative [17], etc.
More recently, using the connections between braid groups and mapping class groups, the
irreducible parabolic subgroups have been used to define a possible analogue of the com-
plex of curves for Artin groups of spherical type [9, 19]. The geometry of this complex is
currently being intensively studied.

The combinatorics of the set of parabolic subgroups of Coxeter groups are well under-
stood. For instance, it is known that the intersection of any subset of parabolic subgroups
of a Coxeter group is itself a parabolic subgroup [22]. This implies in particular that the set
of parabolic subgroups is a lattice for the inclusion. By contrast, the analogous problem is
open for general Artin groups:

Question. Let AS be a general Artin group. Is the set of parabolic subgroups stable under
arbitrary intersections?

The answer to this question is known for braid groups: a braid group can be seen as the
mapping class group of an n-punctured disc Dn. In this situation, parabolic subgroups are in
bijection with isotopy classes of non-degenerated simple closed multicurves, each of them
defining a disjoint union of (at least 2-punctured) discs in Dn. An intersection between these
families of discs can be defined (see Farb and Margali [10, section 1] to get an idea of the
construction). This corresponds to the intersection of parabolic subgroups of the braid group
and gives us an affirmative answer to our question. This answer was recently generalised to
all Artin groups of spherical type by [9] using Garside theory. For so-called Artin groups of
type FC, it was shown that the intersection of two parabolic subgroups of spherical type
is again a parabolic subgroup of spherical type [19]. However, the case of general parabolic
subgroups remains open.

Besides being interesting in their own right, such results about the poset of parabolic
subgroups can be valuable tools in studying the structure of Artin groups. For instance, the
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analogue of Theorem A for Artin groups of spherical type was a key ingredient in the proof
that Artin groups of type FC satisfy the Tits alternative [17].

In this paper, we solve this problem for Artin groups of large-type:

THEOREM A. Let AS be a large-type Artin group. Then the intersection of an arbitrary
subset of parabolic subgroups of AS is itself a parabolic subgroup. Moreover, the set of
parabolic subgroups of AS is a lattice for the inclusion.

Note that a consequence of this theorem is that every subset of AS is contained in a
unique minimal parabolic subgroup. This generalises to large-type Artin groups the notion
of parabolic closure known for Coxeter groups [22] and Artin groups of spherical type [9].

The approach in this paper is geometric in nature. We associate to each Artin group
AS a simplicial complex XS, called its Artin complex, whose first barycentric subdivision
is exactly the geometric realisation of the poset of proper parabolic subgroups of AS. In
essence, the Artin complex XS is the complex obtained by modifying the construction of the
Deligne complex in order to allow all proper standard parabolic subgroups instead of those
of spherical type (see section 2 for more details). The advantage in considering this com-
plex is that all the parabolic subgroups of AS arise as stabilisers of simplices of XS and can
thus be studied geometrically. In particular, studying intersections of parabolic subgroups
can be done if we have a sufficiently strong control over the (combinatorial) geodesics of XS

between two simplices. This is possible for large-type Artin groups, as we show that these
complexes are non-positively curved in an appropriate sense. The key geometric result of
this article is the following:

THEOREM B. Let AS be a large-type Artin group on at least 3 generators. Then its Artin
complex XS is systolic.

Large-type Artin groups were recently shown by [15] to be systolic groups. However,
we emphasise that the systolic geometry appearing here is of a rather different nature: the
systolic complex associated to AS considered by Huang–Osajda is essentially a (thickened)
Cayley graph of AS for the standard generating set, and as such is quasi-isometric to AS.
By contrast, the Artin complex XS studied here is quasi-isometric to the Cayley graph of AS

with respect to all its proper parabolic subgroups, and in particular the action of AS on XS is
cocompact but far from being proper.

As an application, we solve the conjugacy stability problem for parabolic subgroups of
large-type Artin groups. A subgroup H of a group G is conjugacy stable if for every pair
of elements a, b ∈ H such that a = α−1bα there is β ∈ H such that a = β−1bβ. A natural
question to ask is which parabolic subgroups of an Artin group are conjugacy stable. This
problem had already been solved for parabolic subgroups of spherical Artin groups [5],
generalising pre-existing results for braids of [13]. We answer this question for large-type
Artin groups:

THEOREM C. Let AX be a standard parabolic subgroup of a large-type Artin group AS.
Then AX is not conjugacy stable in AS if and only if there exist vertices a and b of �X that
are connected by an odd-labelled path in �S and that are not connected by an odd-labelled
path in �X.
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Notice that conjugacy stability is preserved under subgroup conjugation, hence the previ-
ous theorem classifies all parabolic subgroups of a large-type Artin group under conjugacy
stability.

As another application, we show that parabolic subgroups of large-type Artin groups are
stable under taking roots, whose analogue for Artin groups of spherical type was proved in
[9, corollary 8·3]

THEOREM D. Let AS be a large-type Artin group, let P be a parabolic subgroup of AS,
and let g ∈ AS. If gn ∈ P for some non-zero integer n, then g ∈ P.

Beside the intersection properties of parabolic subgroups, the previous result relies on
understanding the fixed-point sets and normalisers of parabolic subgroups. Their structure
has been studied by various authors as we explain below, but the results are a bit hidden
in the literature. In the case of large-type Artin groups, our approach provides a unifying
perspective that allows us to recover all these results within a single framework. We mention
the full result here for ease of reference and we re-prove it with our techniques, as we believe
such results on normalisers of parabolic subgroups are of independent interest:

THEOREM E. Let AS be a large-type Artin group and let P be a parabolic subgroup of
type S′.

(i) If |S′| ≥ 2, then N(P) = P.

(ii) If |S′| = 1, then N(P) splits as a direct product of the form

N(P) = P × F,

where F is a finitely-generated free group. Moreover, there is an explicit description
of a basis of F (see Corollary 34 for details).

The structure of normalisers of parabolic subgroups in Artin groups of large type had
already been investigated by Luis Paris and Eddy Godelle, although it is a bit hidden in their
papers. Recall that an Artin group that cannot be decomposed as the direct product of two
of its standard parabolic subgroups is called irreducible. In [20, section 4], the conjugation
of standard parabolic subgroups is described by an algorithm. In particular, we know that
the only pairs of different irreducible standard parabolic subgroups that can be conjugated
are the spherical ones. In the large case, as all parabolic subgroups are irreducible and the
only spherical parabolic subgroups are the dihedral ones (i.e. the parabolic subgroups on
two generators), the situation is as follows: AX and AX′ are conjugate if and only if X = X′ or
X = {a}, X′ = {b} and a and b are connected in�S by an odd-labelled path. [12, definition 4·1,
corollary 4·12] tell us that the conjugating elements between two (possibly equal) standard
parabolic subgroups AX and AX′ must be the product of an element in AX and an element
associated to the previous path. If |X|> 1, such a path does not exists and then N(AX) = AX .
If |X| = 1, the description of the normaliser is similar to the one given in Corollary 34.
However, the description Godelle gives there is set-theoretic and does not describe the direct
product structure.

The structure of the normaliser of cyclic parabolic subgroups for large-type Artin groups
(and more generally two-dimensional Artin groups) had been obtained, albeit under a dif-
ferent name, in [18, proposition 4·5]. Moreover, a basis of the corresponding free group had
been stated as a remark, but without details.
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The paper is organised as follows. In Section 2, we introduce the Artin complex of a
general Artin group, and show that its local structure is particularly well-behaved: The links
of simplices are themselves (smaller) Artin complexes, see Lemma 6. In Section 3, we use
this local structure to prove Theorem B. Section 4 exploits the systolic geometry of the
Artin complex to prove Theorem 11. In Section 5, we study the geometry of fixed-point
sets of parabolic subgroups in order to prove Theorem E. Finally, we prove Theorem C and
Theorem D in Section 6.

2. The Artin complex

The goal of this section is to introduce our main geometric object: the Artin complex
associated to an Artin group. Later on, we present some of its basic properties. When talking
about complexes of groups, we will use the notations of [3, chapter II·12].

Definition 1. Consider an Artin group AS with |S| ≥ 2, and a simplex K of dimension
|S| − 1. We define a simplex of groups over K as follows. The simplex K is given a trivial
local group. There is a one-to-one correspondance between the elements si ∈ S and the codi-
mension 1 faces of K, and we denote by �si these codimension 1 faces. In particular, �si is
given the local group 〈si〉. Changing the codimension, there is a bijection between the strict
subsets of S and the faces of K. Every face of K of codimension k can be written uniquely
as the intersection

�S′ :=
⋂

si∈S′
�si for some S′ � S with |S′| = k.

The face �S′ is then given the local group AS′ .
The morphism associated to an inclusion of faces KS′′ ⊂ KS′ is the natural inclusion

ψS′S′′ : AS′′ ↪→ AS′ . Let P be the poset of standard parabolic subgroups of AS ordered with
natural inclusion. As each AS′ is itself an Artin group [23], there is a simple morphism,
ϕ : G(P) ↪→ AS, given by inclusion, from the complex of groups to the Artin group. The
complex XS := DK(P , ϕ) obtained by development of P over K along ϕ is called the Artin
complex associated to AS (see [3, theorem II·12·18] for the definition of development, see
also the remark below).

Note that the action of AS on XS is without inversions and cocompact, with strict funda-
mental domain a single simplex which is isomorphic to K. To avoid any confusion, we will
from now on denote by K the quotient space and by �S′ its faces, and we will denote by K
a chosen fundamental domain of XS and by �S′ its faces. For every simplex � of XS, there
is a unique subset S′ � S such that � is the same orbit as �S′ . We say that such a simplex is
of type S′.

Remark 2. In [3, proof of theorem II·12·18], the authors give a topological description of
the spaces obtained by development of such complexes of groups. In light of this, the Artin
complex XS can also be described by the following:

XS := DK(P , ϕ) := AS × K
/
∼ ,

where (g, x) ∼ (g′, x′) ⇐⇒ x = x′ and g−1g′ belongs to the local group of the smallest
simplex of K containing x.
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Remark 3. Another perhaps more intuitive way to look at XS is the following. Consider
the poset of proper parabolic subgroups of AS and its geometric realisation PS, defined as
follows:

(i) the vertex set of PS is the set of proper parabolic subgroups of AS;

(ii) there is a (n − 1)-simplex between vertices of PS corresponding to proper parabolic
subgroups P1, . . . , Pn whenever there is a sequence of inclusions Pn � · · ·� P1. This
happens if and only if there is an element g ∈ AS and a proper subsets S(n) � · · ·� S(1)

of S such that Pi = gAS(i) .

Then PS is exactly the barycentric subdivision of XS.

LEMMA 4. Let AS be an Artin group and let XS be its Artin complex. Then XS is
connected. Additionally, if |S| ≥ 3, then XS is simply-connected.

Note that in the case where |S| = 2, then XS is a graph that is not a tree. (It contains for
instance loops corresponding to relations of the form aba · · · = bab · · · )

Proof. This is a direct consequence of [3, chapter II·12, proposition 12·20]. XS is con-
nected because the Artin group AS is generated by its standard parabolic subgroups.
Moreover, if |S| ≥ 3, then AS is the colimit of its standard parabolic subgroups, by [23],
and thus XS = D�(P , ϕ) is the universal cover of the complex of groups G(P), hence is
simply-connected.

Definition 5. Let Y be a simplex in a simplicial complex X. The link of Y in X is the
simpicial complex LkX(Y) consisting of the simplices of X that are disjoint from Y and
which together with Y span a simplex of X.

LEMMA 6. Let AS be an Artin group with Artin complex XS. Then the link of a simplex of
type S′ is isomorphic to the Artin complex XS′ associated to the Artin group AS′ .

Proof. By [3, chapter II·12, construction 12·24], it is possible to describe the link of a
simplex in the development of a complex of groups as the development of an appropriate
subcomplex of groups. We explain below how this applies to XS.

The link of�S′ in K is a simplex of dimension |S′| − 1, whose poset of faces is isomorphic
to the poset of proper subsets of S′ ordered with the inclusion. The complex of groups G(K)
induces a complex of groups on the link LkK

(
�S′

)
. Moreover, there is a simple morphism

ϕS′ : G(LkK

(
�S′

)
) → AS′ given by the family of homomorphisms

(ϕS′)S′′ : AS′′ −→
ψS′S′′

AS′ .

It follows from the construction described in [3, chapter II·12, construction 12·24] that the
link of LkXS (�S′) is isomorphic to the development D(LkK

(
�S′

)
, ϕS′). Note that the induced

complex of groups on LkK

(
�S′

)
is naturally isomorphic to the complex of groups associated

to AS′ in Definition 1. Moreover, the simple morphism ϕS′ coincides with the simple mor-
phism used in Definition 1 to define the Artin complex XS′ . Putting everything together, it
now follows that the link LkXS (�S′) is isomorphic to XS′ .

This argument generalises in a straightforward way to any simplex g�S′ of XS of type S′.
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3. Systolicity

The goal of this section is to prove Theorem B. Recall that a subcomplex Y of a simplicial
complex X is full if every simplex of X spanned by vertices of Y is a simplex of Y . If γ is
a combinatorial path in the 1-skeleton of X, then the simplicial length of γ is the number
|γ | of edges contained in γ . We will denote by Stab(T) or StabXS(T) the stabiliser of a set of
points T in XS. We introduce a few more definitions from systolic geometry [16]:

Definition 7. The systole of a simplicial complex X is

sys(X) := min{|γ | | γ is an embedded full cycle of X} ∈ {3, 4, . . . , ∞}.

For k ∈ {3, . . . , ∞}, we say that X is locally k-large if sys(LkX(Y)) ≥ k for all simplices
Y ⊆ X. We say that X is k-large if it is locally k-large and sys (X) ≥ k. X is k-systolic if
it is connected, simply-connected and locally k-large. Finally, X is called systolic if it is
6-systolic.

The main result of this section is the following:

THEOREM 8. Let AS be an Artin group with |S| ≥ 3. If all coefficients in AS are at least
k ∈ {3, . . . , ∞}, then its Artin complex XS is 2k-systolic. In particular, if AS is of large type,
then XS is systolic.

In order to prove this theorem, we need the following lemma:

LEMMA 9. Let AS be an Artin group on two generators a, b with coefficient mab ∈
{3, . . . , ∞} and Artin complex XS. Then sys (XS) = 2mab.

Proof. If mab = ∞, it follows directly from the definition of the Artin complex that XS is
the Bass–Serre tree associated to the splitting 〈a〉 ∗ 〈b〉. The result is then immediate.

Let us now assume that mab <∞. Let e be the edge in X whose vertices x, y correspond
to the cosets 〈a〉 and 〈b〉. Let γ be a non-backtracking loop in XS. Since XS is a bipartite
graph coloured by the cosets of 〈a〉 and 〈b〉 respectively, the length of γ is even. Denote
by e0, e1, . . . , ek the edges of γ . Since the action of AS on XS is transitive on edges, let us
assume that e0 = e.

Note that the action of 〈a〉 is transitive on the set of edges around x, and so is the action of
〈b〉 on the edges around y. Assume without loss of generality that γ first goes through x, i.e.
e1 and e0 share the vertex x. Then e1 must be of the form ar1e, for some r1 ∈ Z\{0}. Note
that the edges e1 and e2 then share the vertex ar1y. The action of ar1〈b〉a−r1 is transitive
on the set of edges around ar1y, thus e2 must of the form ar1br2e, for some r2 ∈ Z\{0}.
We continue this process by induction until γ stops. In particular, the final edge ek is of
the form

ar1br2 · · · ark−1brk

for non-zero integers r1, . . . , rk. But since ek = e as γ is a loop, we get ar1br2 · · · ark−1brk e =
e. Since Stab(e) = {1}, it follows that ar1br2 · · · ark−1brk must be trivial in AS. But it is also a
non-trivial word, as γ is not homotopically trivial. By [1, lemma 6], we must have k ≥ 2mab.
Hence, the combinatorial length of γ is |γ | = k ≥ 2mab.
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We can now prove the main theorem:

Proof of Theorem 8. We will prove by induction on the number |S| of generators of the
Artin groups AS that their associated Artin complexes XS are 2k-systolic.

If |S| = 3, we know from Lemma 4 that XS is connected and simply connected. It only
remains to show that for all g ∈ AS, for all S′ � S, the simplex g ·�S′ is such that LkXS (g ·�S′)
is 2k-large. If |S′| = 2, then the link LkXS (g ·�S′) is isomorphic to the Artin complex XS′
associated to the Artin group AS′ (Lemma 6), and the latter is 2k-large by Lemma 9. The
cases |S′| = 0 or 1 are trivial.

Let us now assume that |S|> 3 and that every Artin complex AS′ with S′ � S is 2k-
systolic. Again, we know from Lemma 4 that XS is connected and simply connected, so
it only remains to show that for all g ∈ AS, for all S′ � S, the simplex g ·�S′ is such that
LkXS (g ·�S′) is 2k-large. If |S′| ≥ 2, then Lk(g ·�S′ , XS) is isomorphic to the Artin complex
XS′ associated to the Artin group AS′ (Lemma 6). The latter is 2k-systolic by the induction
hypothesis, hence is 2k-large as well [16, proposition 1·4]. Once again, the cases |S′| = 0 or
1 are trivial.

4. Intersection of parabolic subgroups

The aim of this section is to use the systolicity of the Artin complex of an Artin group of
large type to prove Theorem A. We will do it by proving the following theorem:

Definition 10. Let P1 and P2 be two parabolic subgroups of an Artin group AS such that
P1 ⊆ P2. We say that P1 is a parabolic subgroup of P2 if P1 ⊆ P2 is conjugate to an inclusion
of standard parabolic subgroups AS′′ ⊆ AS′ , S′′ ⊆ S′.

THEOREM 11. Let AS be an Artin group of large-type.

1. The intersection of two parabolic subgroups of AS is again a parabolic subgroup of
AS.

2. If P1 and P2 are two parabolic subgroups of AS such that P1 ⊆ P2, then P1 is a
parabolic subgroup of P2.

Note that the second item in the previous theorem is already a result of [12, theorem 3].
However, we believe the reader may be interested in recovering this result directly from our
perspective.

In all this section, AS denotes an Artin group on at least 3 generators. First notice the
Artin complex allows us to understand geometrically the parabolic subgroups of AS, via the
following correspondence:

LEMMA 12. Let AS be an Artin group on at least 3 generators and let XS be its associated
Artin complex. Then:

(i) the parabolic subgroups of AS are exactly the stabilisers of simplices of XS;

(ii) let � be a simplex of XS. The parabolic subgroups of StabXS(�) are exactly the
stabilisers of the simplices that contain �.

Proof. By construction, every standard parabolic subgroup AS′ is precisely the stabiliser
of some simplex �S′ lying on the fundamental domain K of XS, and viceversa. Moreover,
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any parabolic subgroup of the form gAS′g−1 is the stabiliser of the simplex g ·�S′ , g ∈ A. To
prove the first claim, notice that any simplex of XS can be expressed as g′ ·�′, where �′ is
in K and g′ ∈ A.

Let us now prove the second claim. On the one hand, let P be a parabolic subgroup
of StabXS (�). Up to conjugation, we can suppose that � lies in K of XS, and that P is
the stabiliser of a simplex �′ that also lies in K. Now notice that, by construction of the
fundamental domain, this implies that �′ contains �, as we desired. On the other hand,
note that if �′′ is a simplex that contains �, then we can find an element g ∈ AS such that
g ·�′′ belongs to K. Hence g′StabXS (�′′)g′−1 ⊆ g′StabXS (�)g′−1 is an inclusion of standard
parabolic subgroups, as we wanted to prove.

Remark 13. The previous correspondence is not a bijection between the parabolic subgroups
of AS and the simplices of its Artin complex, as two distinct simplices may have the same
stabiliser.

Secondly, we mention the following result from systolic geometry, well known to experts,
that will be used in our proof:

LEMMA 14. Let G be a group acting without inversions on a systolic complex Y, and let
H be a subgroup of G. Suppose that H fixes two vertices v and v′ of Y. Then H fixes pointwise
every combinatorial geodesic between v and v0.

Proof. We prove the result by induction on the combinatorial distance between v and v′.
If d(v, v′) = 1, the result is immediate, as there is unique edge between v and v′. Suppose
by induction that the result is true for vertices at distance at most n ≥ 1, and let v, v′ be
two vertices of Y at distance n + 1. Since Y is systolic, it follows from [16, corollary 7·5]
that the combinatorial ball of radius n around v′, denoted B(v′, n), is a convex subset of Y
in the sense of [16, definition 7·1]. Moreover, by [16, lemma 7·7], this combinatorial ball
intersects the combinatorial ball B(v,1) along a single simplex. This implies that there exists
a simplex� of Y containing v, and such that every combinatorial geodesic from v to v′ starts
with an edge of�. In particular, we define�′ as the simplex of Y spanned by the first edges
of all the combinatorial geodesics from v to v′. Since H fixes v and v′, H preserves the set
of combinatorial geodesics from v to v′, and in particular H stabilises �′. Since G acts on Y
without inversion, it follows that H fixes �′ pointwise.

Let γ be a combinatorial geodesic from v to v′. By the above, H fixes the first edge e of
γ . Let v1 be the vertex of e distinct from v. We have that H fixes v1 and v′, and these two
vertices are at combinatorial distance n. By the induction hypothesis, H fixes pointwise the
portion of γ between v1 and v′, and it now follows that H fixes pointwise all of γ . This
concludes the induction.

We proceed now to the proof of the main theorem of this section:

Proof of Theorem 11. We will prove the theorem by induction on the number n of gener-
ators of AS. If n = 2, AS is an Artin group on two generators a, b and there are two cases to
consider. If mab <∞, then AS is a spherical Artin group, so item 1 follows from [9, theorem
9·5] and item 2 follows from [11, theorem 0·2]. If mab = ∞, then AS is a free group on two
generators a, b. Moreover, the proper parabolic subgroups are either trivial or infinite cyclic.
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Since the action of AS on the Bass–Serre tree associated to the splitting 〈a〉 ∗ 〈b〉 has trivial
edge stabilisers, it follows that two distinct proper parabolic subgroups intersect trivially.
Thus, item 1 and item 2 follow immediately.

Let us now assume that the result is known for Artin groups of large type on at most n
generators with n ≥ 2, and let AS be an Artin group of large type on n + 1 generators. Let XS

be its associated Artin complex.

Claim 1. Let e1, . . . , ek be a combinatorial path p in XS. Then there exists a simplex� of
XS containing the edge ek such that⋂

1≤i≤k

StabXS (ei) = StabXS (�).

Proof of Claim 1. We will prove the claim by induction on k. If k = 1, p is just the edge
e1 and the proof is trivial. Now suppose that the claim is true for k and let us prove it for
k + 1. By applying the induction hypothesis to the subpath e1, . . . , ek, we will then have⋂

1≤i≤k+1

StabXS (ei) = StabXS (�′) ∩ StabXS (ek+1),

where�′ is a simplex containing the edge ek. Let v be a vertex contained in both ek and ek+1.
By Lemma 12, this means that both StabXS (�′) and StabXS (ek+1) are parabolic subgroups of
StabXS (v). Also, up to conjugacy, Stab(v) is an Artin group on n generators. Therefore, by
the induction hypothesis on n, StabXS(�′) ∩ StabXS (ek+1) is a parabolic subgroup of Stab(v)
contained in StabXS(ek+1), so it is a parabolic subgroup of StabXS(ek+1). Geometrically,
StabXS (�′) ∩ StabXS (ek+1) is the stabiliser of some simplex containing ek+1. This completes
the proof of Claim 1.

Claim 2. Let �1 and �2 be two simplices of XS. Then there exists a simplex � of XS

containing �2 such that StabXS (�1) ∩ StabXS (�2) = StabXS (�).

Proof of Claim 2. Let �′ be any simplex of XS and let V
�

′ be the set of vertices of �′.
As the action of AS on XS is without inversions, we have that StabXS(�′) = ∩w∈V�′ Stab(w).
Define a combinatorial path p that is the concatenation of the three following paths: a combi-
natorial path p1 that travels along every vertex in V�1 ; a combinatorial geodesic p2 between
the endpoint of p1 and V�2 ; and a combinatorial path that starts in the endpoint of p2 and
travels along every vertex in V�2 . Denote the endpoint of p by v and let Ep be the set of
edges of p. Then, by Claim 1 and Lemma 14,

StabXS(�1) ∩ StabXS (�2) =
⋂

w∈V�1∪V�2

StabXS (w) =
⋂

e∈Ep

StabXS(e) = StabXS(�),

for some simplex� containing v. Now we need to show that� contains also�2. Notice that
StabXS (�2) contains StabXS (�) and both StabXS (�2) and StabXS (�) are parabolic subgroups
of StabXS(v). This group is, up to conjugacy, an Artin group on n generators. So by using the
induction hypothesis on n, StabXS (�) is a parabolic subgroup of StabXS (�2), which means
that we can choose � to contain �2. This finishes the proof of Claim 2.
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In particular, note that Claim 2 together with Lemma 12 implies that the parabolic
subgroups of AS are stable under intersection, proving item 1.

Claim 3. For every pair of simplices�1 and�2 of XS such that StabXS (�1) ⊆ StabXS (�2),
there exists a simplex � of XS containing �2 such that StabXS(�1) = StabXS (�).

Proof of Claim 3. Just notice that StabXS (�1) = StabXS (�1) ∩ StabXS (�2), so by Claim 2
there is a simplex � containing �2 such that StabXS(�1) = StabXS (�). This completes the
proof of the claim.

We now explain why this claim implies that AS satisfies item 2. Let P1 and P2 be two
parabolic subgroups of AS such that P1 ⊆ P2. By Lemma 12 there are simplices �1 and �2

of AS such that P1 = StabXS (�1) and P2 = StabXS (�2). By Claim 3, there exists a simplex
� of XS containing �2 such that StabXS (�1) = StabXS (�). Again by Lemma 12, this means
that P1 is a parabolic subgroup of P2, as we wanted to prove.

Remark 15. Notice that the only place where the systolic geometry was used in the previous
proof is the following argument coming from Lemma 14: if an element fixes two simplices,
then it fixes pointwise a combinatorial path between these simplices. Therefore, a strong
enough requirement to prove Theorem 11 for any Artin group AS is to have this fixing-path
condition in its Artin complex XS.

Question. Let XS be the Artin complex of any Artin group AS and let g ∈ AS be an element
fixing �1 and �2. Is there a combinatorial path between �1 and �2 fixed by g pointwise?

Following the release of this paper, Blufstein generalised this approach to a larger class
of two-dimensional Artin groups [2].

We can generalise some interesting results concerning parabolic results that were
previously shown for spherical Artin groups [9, section 10]:

COROLLARY 16. Let AS be an Artin group of large type. Then an arbitrary intersection of
parabolic subgroup of AS is a parabolic subgroup. In particular:

(i) for a subset B ⊂ AS, there is a unique minimal parabolic subgroup of AS (with respect
to the inclusion) containing B;

(ii) the set of parabolic subgroups of AS is lattice with respect to the inclusion.

The strategy will be the same standard argument used in [9, proposition 10·1]. We can
find the generalised FC version of the first statement for spherical parabolic subgroups in
[19, corollary 3·2].

Proof. Let P be an arbitrary set of parabolic subgroups of AS and let Q = ∩P∈PP. Q
is contained in every parabolic subgroup in P , so by Theorem 11, we just need to prove
that Q is equal to a finite intersection of parabolic subgroups. Notice that every parabolic
subgroup is expressed as the conjugate of some standard parabolic subgroup. Since AS is a
countable group and there are only finitely many standard parabolic subgroups of AS, the
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set of parabolic subgroups of AS is countable. In particular, P is countable. Enumerate the
elements in P = {P1, P2, P3, . . . } and let

Qm =
⋂

1≤i≤m

Pi.

By Theorem 11, all Qm’s belong to P . As Q = ∩i∈NQm, we need to show that the set
{Qm | m ∈N} is finite.

Let XS be the Artin complex of AS. Notice that we have a descending chain

Q1 ⊇ Q2 ⊇ Q3 ⊇ · · ·
By doing an induction on the Claim 3 in the proof of Theorem 11, one can easily see that if
StabXS (�1) � StabXS (�2) � StabXS (�3) . . . , the dimension of �i has to be bigger than the
dimension of �i−1. As the dimension of XS is finite, the chain cannot be infinite. Therefore,
Q is the minimal parabolic subgroup containing every element of P .

To see the first statement, just assume that P = {P | B ⊂ P}. For the second statement let
P1 and P2 be any two parabolic subgroups of AS. We need a maximal parabolic subgroup R1

contained in P1 and P2 and a minimal parabolic subgroup R2 containing P1 and P2. By all
the previous discussion, R1 = P1 ∩ P2 and R2 is the minimal parabolic subgroup in P when
P = {P | P1 ∪ P2 ⊆ P}.

5. Normalisers and fixed-point sets of parabolic subgroups

The aim of this section is to prove Theorem E. In all this section we consider an Artin
group AS with |S| ≥ 3. For a parabolic subgroup P of AS, we denote by Fix(P) (or FixXS (P)
if we wish to highlight the ambient complex) the fixed-point set of P in XS. Since AS acts on
XS without inversions, Fix(P) is a subcomplex of XS. The connection between the normaliser
N(P) of a parabolic subgroup P and its fixed-point set Fix(P) is given by the following:

LEMMA 17. Let P be a parabolic subgroup of AS. Then the normaliser N(P) of P satisfies

N(P) = Stab(Fix(P)).

In addition, an element of AS belongs to N(P) if and only if it sends some maximal simplex
of Fix(P) to some maximal simplex of Fix(P).

Proof. (⊆) Let g ∈ N(P), that is, gP = Pg, and let v ∈ Fix(P). Then

P · (g · v) = g · (P · v) = g · v.

In particular, g · v ∈ Fix(P) and thus g ∈ Stab(Fix(P)).

(⊇) Let g ∈ Stab(Fix(P)) and let �⊆ Fix(P) be a maximal simplex in the sense that
Stab(�) = P. Then g ·�⊆ Fix(P), thus

P · (g ·�) = g ·�.

In particular, gPg−1 fixes �, hence gPg−1 ⊆ P. In other words, g ∈ N(P).
The key geometric result to prove Theorem E by means of studying fixed-point sets is the

following:
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PROPOSITION 18. Let AS be a large-type Artin groups, and let P be a parabolic subgroup
of AS of type S′.

(i) If |S′| ≥ 2, then Fix(P) is a single simplex.

(ii) If |S′| = 1, then Fix(P) is a subcomplex whose dual graph is a simplicial tree (see
Definition 24 for the terminology).

The proof of this proposition will be split into two cases. We first mention a useful
observation that will allow for proofs by induction:

LEMMA 19. For a simplex � of Fix(P) of type S′′, the link LkFix(P)(�) is isomorphic to
FixXS′′ (P).

Proof. We have LkFix(P)(σ ) = Fix(P) ∩ LkXS (σ ). Since LkXS (σ ) is equivariantly isomor-
phic to XS′′ by Lemma 6, the previous intersection is thus isomorphic to FixXS′′ (P).

Parabolic subgroups on at least two generators. We start with the case of a parabolic
subgroup P of type S′ with |S′| ≥ 2.

LEMMA 20. If |S′| ≥ 2 then Fix(AS′) is a single simplex � such that Stab(�) = AS′ .

Proof. We will be using the following claim:

Claim. If a subcomplex Y of XS is such that all of its links are simplices or empty, then Y
itself is a simplex.

Indeed, if Y is not a simplex, then it contains a combinatorial path u, v, w that forms a
geodesic of XS. The two vertices u, w define two vertices of LkY (v) at distance at least 2 by
assumption, hence LkY (v) is not a simplex, which proves the claim.

Recall from Lemma 19 that for a simplex � of Fix(P) corresponding to a simplex of type
S′′, the link LkFix(P)(�) is isomorphic to FixXS′′ (P). If |S − S′| = 1, then Fix(P) must be a
single vertex v: if it weren’t, it would follow from the convexity of Fix(P) (Lemma 14) that
P fixes an edge of XS, which is impossible since in that case P is a maximal proper parabolic
subgroup of AS. Fix(AS′) being a single simplex now follows by induction on |S − S′| ≥ 1 by
applying the above Claim. The dimension of Fix(AS′) is |S − S′| − 1, so by maximality its
stabiliser has to be AS′ .

COROLLARY 21. If P is a parabolic subgroup of AS of type S′ with |S′| ≥ 2, then N(P) = P.

Proof. By Lemma 17 we know that N(P) = Stab(Fix(P)). Moreover, we know from
Lemma 20 that there is a simplex � in XS such that Fix(P) =� and Stab(�) = P.
In particular,

N(P) = Stab(Fix(P)) = Stab(�)=P.

Parabolic subgroups on one generator. We now move to the case of a parabolic subgroup
of type S′ with |S′| = 1. We start with the following general remark:

LEMMA 22. Let P be a parabolic subgroup of AS. Then Fix(P) is contractible.

The proof of this lemma will rely on the following notion of convexity from [16]:
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Definition 23. A subcomplex Y of a simplicial complex X is 3-convex if it is full and
every combinatorial geodesic of length 2 with endpoints in Y is contained in Y . It is locally
3-convex if for every simplex σ of Y , the link LkY (σ ) is 3-convex in LkX(σ ).

Proof of Lemma 22. By Lemma 14, Fix(P) contains every geodesic between two vertices
of Fix(P). In particular, it is connected and 3-convex, hence locally 3-convex by [16, fact
3·3·1]. By [16, lemma 7·2], Fix(P) is thus contractible.

It turns out that such fixed-point sets have a very simple geometry. We introduce the
following:

Definition 24. The dual graph TP of Fix(P) is defined as follows:

(i) vertices of TP correspond to the simplices of Fix(P) of type S′ � S with |S′| = 1 (called
type 1 vertices) or |S′| = 2 (called type 2 vertices);

(ii) we put an edge between a type 1 vertex � and a type 2 vertex �′ whenever �′ ⊂�;

(iii) finally, TP is the subgraph obtained by removing the type 2 vertices that have
valence 1.

We think of TP as a subgraph of the first barycentric subdivision of Fix(P).
We have the following:

LEMMA 25. The dual graph TP is a simplicial tree.

In a nutshell, the proof of Lemma 25 goes as follows: we construct a sequence of
subcomplexes

X0 � X1 � · · ·� Xk,

where X0 is the first barycentric subdivision of Fix(P) and Xk = TP, and such that for each
0 ≤ i ≤ k − 1, Xi+1 is a deformation retract of Xi. Since X0 is contractible by Lemma 22, it
will then follow that the graph TP is also contractible, hence is a tree.

We will need the following standard result from algebraic topology to construct deforma-
tion retractions:

LEMMA 26. Let X be a simplicial complex, and let v be a vertex of X whose link LkX(v)
is contractible. Then the subcomplex spanned by X − v is a deformation retract of X.

Proof. Since the star StarX(v) is isomorphic to a cone over LkX(v), we first notice that X
is obtained from X − v by coning-off the contractible link LkX(v). Recall that for a simpli-
cial complex Y and a contractible subcomplex Z, the quotient map Y → Y/Z obtained by
collapsing Z to a point is a homotopy equivalence, see [14, proposition 0·17]. We thus have
the following commutative diagram:
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where both vertical arrows are homotopy equivalences since LkX(v) and its cone StarX(v) are
contractible. Thus, the inclusion X − v ↪→ X is a homotopy equivalence, and it follows from
[14, corollary 0·20] that the subcomplex spanned by X − v is a deformation retract of X.

Proof of Lemma 25. Consider the barycentric subdivision Fix(P)′ of Fix(P). A vertex
v of Fix(P)′ corresponds to a simplex of Fix(P); We will call the dimension of the corre-
sponding simplex the height of v. For every 0 ≤ k ≤ |S| − 2, we define the subcomplex Xk of
Fix(P)′ spanned by the vertices of height at least k. In particular, X0 = Fix(P)′ and X|S|−2 is
a subgraph of Fix(P)′ containing TP.

We now show that for every 0 ≤ k ≤ |S| − 3, Xk+1 is a deformation retract of Xk. Notice
that Xk is obtained from Xk+1 by adding for every vertex v of height k the star StarXk (v),
which is isomorphic to a simplicial cone over the link LkXk (v). Let v be a vertex of
height 0 ≤ k ≤ |S| − 3. This vertex corresponds to a simplex � of Fix(P) of type S′ for
some subset S′ � S with |S′| ≥ 3. Note that a vertex of Xk adjacent to v must have height
greater than k by construction, hence the link LkXk (v) is isomorphic to the first barycen-
tric subdivision of LkFix(P)(�). In particular, LkXk (v) is isomorphic to the first barycentric
subdivision of FixXS′ (P) by Lemma 19, and hence is contractible by Lemma 22. It thus fol-
lows from Lemma 26 that Xk+1 is a deformation retract of Xk+1 ∪ StarXk (v). Since for two
distinct vertices v, v′ of height k, the subcomplexes Xk+1 ∪ StarXk (v) and Xk+1 ∪ StarXk (v′)
intersect along Xk+1, we can glue the various deformation retractions into a deformation
retraction of

Xk = Xk+1 ∪
⋃

height(v)=k

StarXk (v)

onto Xk+1. Thus, for every 0 ≤ k ≤ |S| − 3, Xk+1 is a deformation retract of Xk. Thus, the
graph X|S|−2 is a deformation retract of X0 = Fix(P)′. Since the latter complex is contractible
by Lemma 22, so is the graph X|S|−2, and it follows that X|S|−2 is a tree. Finally, TP is
obtained from X|S|−2 by removing the type 2 vertices that have valence 1. Thus, TP is a
deformation retract of X|S|−2, hence TP is a tree.

Note that since N(P) = Stab(Fix(P)) by Lemma 17, N(P) acts on Fix(P), hence on the
dual tree TP. We will use this action to prove the following:

LEMMA 27. The normaliser N(P) of P splits as a direct product P × F, where F is a
finitely generated free group.

Remark 28. It can be shown that the tree TP is N(P)-equivariantly isomorphic to the stan-
dard tree associated to P as considered in [18, definition 4·1]. In particular, the proof of
Lemma 27 is essentially the same as the proof of [18, lemma 4·5]. We however include a
proof formulated in our setting for the sake of self-containment.

Since P is a normal subgroup of N(P) acting trivially on TP by construction of Fix(P),
we can look at the induced action of N(P)/P on TP. We will use this action to completely
describe the normaliser N(P). We first need the following result:

LEMMA 29. For the action of N(P)/P on TP we have:

(i) type 1 vertices of TP have a trivial stabiliser;

(ii) type 2 vertices of TP have an infinite cyclic stabiliser.
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Before starting this proof, let us recall a standard result about dihedral Artin groups:

LEMMA 30 ([4]). Let Aab be a dihedral Artin group with 2<mab <∞, and let δab be its
Garside element, defined as follows:

δab = abab · · ·︸ ︷︷ ︸
mab

.

Then the centre of Aab is infinite cyclic and equal to 〈δab〉 if mab is even, and 〈δ2
ab〉 otherwise.

Proof of Lemma 29. A type 1 vertex v of TP corresponds to a maximal simplex of Fix(P).
Such a simplex has stabiliser P by construction, hence StabN(P)/P(v) is trivial.

Let v be a type 2 vertex of TP of type {c, d}. This vertex corresponds to a simplex with
associated coset gAcd for some g ∈ A� . It follows from [18, lemma 4·5] and Lemma 30 that
we have:

(i) if mcd is even, then

StabN(P)/P(v) = gZ(Acd)g−1 = 〈gδcdg−1〉;
(ii) if mcd is odd, then

StabN(P)/P(v) = gZ(Acd)g−1 = 〈gδ2
cdg−1〉,

We are now ready to prove Lemma 27.

Proof of Lemma 27. Since two type 1 vertices of TP corresponding to cosets of the same
standard parabolic subgroup are in the same N(P)-orbit, hence in the same N(P)/P orbit, it
follows that the action of N(P)/P on TP is cocompact.

Thus, N(P) acts cocompactly and without inversion on a simplicial tree. By Lemma 29
the stabilisers of type 1 vertices are trivial (hence so are the stabilisers of edges) and the
stabilisers of type 2 vertices are infinite cyclic. It thus follows from Bass–Serre theory that
N(P)/P is a finitely-generated free group, and thus N(P) splits as a semi-direct product
P � F, where F is a finitely generated free group. To see that this product is a direct product,
it is enough to show that P is central in N(P). Let ak (with k ∈Z) be an element of P = 〈a〉
and let h ∈ N(P). Since h normalises P, there exists an integer 
 ∈Z such that hakh−1 = a
.
By applying to this equality the homomorphism AS →Z that sends every generator to 1, it
follows that k = 
, hence ak is central in N(P). This concludes the proof.

An explicit basis of the normaliser. Finding an explicit basis for the free subgroup appear-
ing in Theorem E is now a standard application of Bass–Serre theory, which was stated as
a remark without further justification in [18, remark 4·6]. We first start by describing a
fundamental domain for the action, as well as the quotient space TP/N(P).

Definition 31. Let �′ be the first barycentric subdivision of the Coxeter graph �S. A vertex
of �′ corresponding to a generator a of AS will be denoted va and will be said to be of
type 1, while a vertex of �′ corresponding to an edge of � between generators a and b will
be denoted vab and will be said to be of type 2.

Let a be a generator of AS and let P = 〈a〉 be the corresponding standard parabolic sub-
group. Let �a,odd denote the maximal connected subgraph of � that contains the vertex a
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and only odd-labelled edges. Let �P be the graph obtained from the disjoint union of all the
edges of �′ that contain a vertex of �a,odd, by the following identification: if such an edge e
(e′ respectively) of �′ contains a vertex v (v′ respectively) such that v, v′ correspond to the
same vertex of �a,odd, then v and v′ are identified and define the same vertex of �P.

Some examples of the graph �P are given in Figure 1, when the underlying Coxeter graph
is a triangle.

Definition 32. Let e be an edge of �P between a type 1 vertex vc and a type 2 vertex vcd,
for c,d spanning an edge of �. We denote by ẽ the edge of TP between the vertex Ac and
the vertex Acd. Choose an orientation of each edge of �. For each oriented path of �P based
at va, we denote by e1, . . . , en the oriented sequences of edges of � crossed by γ , and we
define

gγ := δ±1
e1

· · · δ±1
en

,

where the sign for each Garside element δei depends on whether γ follows the orientation
of ei.

We now choose a spanning tree τ of �P, which we think of as being based at va. For a
vertex v of �P, we denote γv the oriented geodesic of τ from va to v. Let e be an edge of �P.
If e is contained in τ , let v be the vertex of e closest to va in τ . If e is not contained in τ , let
v be the vertex of e closest to va in �P (as �P is bipartite). We denote gv := gγv , and we set

YP :=
⋃

e⊂�P

gṽe.

This defines a connected subtree of TP. To see that YP is connected, note that if e, e′ are two
adjacent edges of �P contained in τ , then by construction of the various elements gγ , we
have that gṽe and gv′̃e′ are adjacent in YP. Moreover, if e is an edge of �P not contained in
τ and if e′ is an edge of τ meeting e at the vertex of e closest to va in �P, then gṽe and gv′̃e

′
are adjacent in YP.

LEMMA 33. The subtree YP is a fundamental domain for the action of N(P) on TP, and
the quotient TP/N(P) is isomorphic to �P.

Proof. An edge of TP corresponds to a pair consisting of a maximal simplex of TP (of
type c for some c ∈ V(�)) and one of its codimension 1 faces (of type cd for some d ∈
V(�) adjacent to c). We thus mention the following useful fact, which is an immediate
consequence of Lemma 17:

Fact. Two edges of TP in the same AS-orbit are also in the same N(P)-orbit.

Let us first show that YP is a fundamental domain for the action of N(P) (and hence
N(P)/P) on TP. The fact that YP is connected, hence a subtree of TP, is a consequence of the
construction. By construction of the various edges ẽ, it thus follows that the edges of YP are
in different AS-orbits, and in particular in different N(P)-orbits. Now let e be an edge of TP.
Its type 1 vertex is of type c, for some c ∈ V(�) such that 〈c〉 and 〈a〉 are conjugated. It thus
follows from [20] that c ∈ V(�a,odd), and it then follows that e is in the AS-orbit, hence the
N(P)-orbit, of an edge of YP. Thus, YP is a fundamental domain for the action of N(P) (and
hence N(P)/P) on TP.
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Fig. 1. Examples of computations of normalisers of the parabolic subgroup P = 〈a〉, for various
large-type triangular Artin groups. Type 2 vertices of �P are indicated in bold in the second
column and come with their infinite cyclic stabilisers. The group element in blue corresponds to
the element of a basis of F coming from the fundamental group of �P. Note that the structure of
the normaliser for large-type triangular Artin groups depends only on the parity of the labels and
not on the labels themselves, so the above cases cover all possible cases.

We now want to study the quotient space TP/N(P). Let us analyse the action of N(P)/P
on TP at a local level.

Let v be a vertex of TP of type c ∈ V(�). By the above remark, we will assume up to the
action of N(P) that this vertex corresponds to the codimension 1 simplex of XS corresponding
to gvAc. By construction of TP, the codimension 1 faces of � that correspond to a type 2
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vertex of TP adjacent to v are the simplices corresponding to the parabolic subgroups gvAcd

with d connected to c in �.
Let v be a vertex of TP of type {c, d} where c, d span an edge of �. Up to the action

of N(P), we will assume that this vertex corresponds to the simplex with associated coset
gvAcd. Then it follows from Lemma 29 that we have:

(i) if mcd is even, then all the edges of TP containing v are in the same 〈δcd〉-orbit;

(ii) if mcd is odd, then there are exactly two N(P)-orbits of edges of TP containing
v, corresponding to the 〈δ2

cd〉-orbits of the maximal simplices of type {c} and {d}
respectively.

The description of the quotient TP/N(P) now follows from this local description.
As mentioned earlier, the fundamental group N(P)/P of this graph of groups over �P is

a free group, and by Bass–Serre theory a basis for it is obtained by choosing a generator
of each (infinite cyclic) stabiliser of vertex of dihedral type, as well as a family of elements
corresponding to a basis of the fundamental group of �P. We now explain how to construct
explicitly these elements.

(1) For each vertex v of YP of type {c, d}, a generator of

StabN(P)/P(v) = gvZ(Acd)g−1
v

is given by {
gv · δ2

cd · g−1
v if mcd is odd,

gv · δcd · g−1
v otherwise.

(2) A basis of π1(�P) is in bijection with the edges of �P − τ . Let e be such an edge,
joining a type 1 vertex vc and a type 2 vertex vcd, and let e′ be the edge joining vd and
vcd. Then the edges gvcδ

±1
cd ẽ and gvd ẽ′ of YP contain two type 2 vertices in the same

N(P)-orbit, and the geodesic of YP between these two vertices project to a loop of �P

crossing e exactly once that represents the element

gvc · δ±1
cd · g−1

vd
∈ N(P).

Note that this element is of the form gγ , for some combinatorial γ containing e. Thus,
a family of elements for item 2) is given by the family of elements gγ when γ runs
over a basis of π1(�P).

We thus get the following:

COROLLARY 34. The normaliser N(P) splits as a direct product N(P) = P × F, where F is
a finitely-generated free group with a basis given by the following family of elements:

(i) for every vertex v of �P of dihedral type {c, d}, the element{
gv · δ2

cd · g−1
v if mcd is odd,

gv · δcd · g−1
v otherwise;

(ii) for each combinatorial loop γ based at va in a chosen basis of π1(�P), the
element gγ .

https://doi.org/10.1017/S0305004122000342 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000342


412 MARÍA CUMPLIDO, ALEXANDRE MARTIN AND NICOLAS VASKOU

In Figure 1, we give examples for various Artin groups associated to a triangular Coxeter
graph of the normalisers of standard generators.

6. Conjugacy stability and root stability

We are now ready to prove Theorem C and Theorem D. In this section, AS denotes as
usual an Artin group of large type on at least three generators.

By Corollary 16, we can define the following subgroups of AS:

Definition 35. Let g ∈ AS. The minimal parabolic subgroup Pg containing g is called the
parabolic closure of g.

This subgroup behaves well under conjugacy as illustrated by the following result (which
generalises an analogous statement for spherical Artin groups [9, lemma 8·1]):

LEMMA 36. Let g ∈ AS and α ∈ AS. Then

Pα−1gα = α−1Pgα.

In particular, if a and b are conjugate, their parabolic closures correspond to stabilisers
of simplices of XS with the same dimension.

Proof. It is obvious that α−1Pgα contains α−1gα. We need to prove that this parabolic
subgroup is the minimal one containing α−1gα. Let Q be any parabolic subgroup containing
α−1gα. As αQα−1 contains g, Pg ⊆ αQα−1. Therefore, α−1Pgα ⊆ Q.

We are finally able to prove the conjugacy stability theorem:

Proof of Theorem C. Let g and g′ be two elements of AX that are conjugated by an element
α ∈ AS. As Pg, Pg′ ⊂ AX , by Theorem 11 there must be Y , Y ′ ∈ X and β, β ′ ∈ AX such that

Pg = β−1AYβ and Pg = β ′−1AY′β ′. Since Pg and Pg
′ are conjugate by Lemma 36, AY and

AY′ have to be conjugate. At the beginning of this section, we have seen that if |Y|> 1, then
Y = Y ′. Also, if |Y| = 1, then either Y = Y ′, or Y and Y ′ are single generators connected by
an odd-labelled path in �S. Thus, there are two possibilities:

(i) suppose that Pg = β−1AYβ and Pg′ = β ′−1AYβ
′, with Y ⊆ X and β, β ′ ∈ AX . Then

(βα)−1AY (βα) = β ′−1AYβ
′ and βαβ ′−1 normalises AY . If the dimension of AY is

bigger than 1, then by Corollary 21, N(AY ) = AY ⊆ AX , so α ∈ AX . If the dimension of
AY is 1, g = β−1aβ, g′ = β ′−1aβ ′, for some a ∈ X, and they are conjugate by β−1β ′ ∈
AX;

(ii) suppose that g = γ−1anγ and g′ = γ ′−1bnγ ′, γ , γ ′ ∈ AX , where a and b are Artin
generators that are connected in �S by an odd-labelled path. Then, there is an element
of AS conjugating a to b. If there is an odd-labelled path in �X connecting a to b, then
there is an element c in AX that conjugates a to b. Thus, γ−1cγ ′ conjugates g to g′.

On the contrary, if there is no such a path in �X , there is no element in AX conjugating
a to b. Since the parabolic closures of g and g′ are respectively γ−1〈a〉γ and γ ′−1〈b〉γ ′, by
Lemma 36 there is no element in AX conjugating g to g′. This is then the only case in which
AX is not conjugacy stable in AS.
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We also prove that the parabolic closure of an element g is stable when taking roots and
powers of g. This is a generalisation of [9, corollary 8·3].

PROPOSITION 37. Let AS be a large-type Artin group of rank at least 2, and let g ∈ AS.
Then for every n ∈ Z\{0} we have Pg = Pgn.

Before coming to the proof of this proposition, we first introduce the following Lemma.
Note that this result and its proof are analogous to [8, theorem 7·3]:

LEMMA 38. Let G be a group acting by simplicial automorphisms on a systolic complex
X. Suppose that there is a vertex v ∈ X whose orbit Gv is finite. Then there exists a simplex
of X that is invariant under the action of G.

Proof. The statement of [8, theorem 7·3] is given for a finite group G. However, their
proof only uses the finiteness of G to obtain a finite G-orbit, out of which they construct an
invariant simplex. In particular, their proof generalises without any change to the case of an
infinite group G with a finite G-orbit.

We now come to the proof of Proposition 37:

Proof of Proposition 37. We show by induction on |S| that Pg = Pgn . If |S| = 2, AS is a
dihedral Artin group. In particular, it is spherical, and the result follows from [9, corollary
8·3]. Let now |S| ≥ 3, and suppose that Pg �= Pgn . We have that Pgn ⊆ Pg, and then there is a
chain of inclusions of the form

Pgn � Pg ⊆ AS.

Claim. We have Pg � AS.
Indeed, since Pgn � AS, the set FixXS(Pgn) is non-empty. In particular, gn is elliptic, and

thus g has finite orbits, as for every point v ∈ Fix(gn),

〈g〉 · v = {v, gv, g2v, . . . , gn−1v}.
By Lemma 38, g must stabilise some simplex � in XS. Because the action of AS on XS

is without inversions, g must fix � pointwise. In other words, Fix(g) is non-empty, hence
Pg � AS. This finishes the proof of our claim.

Also, we have Pg = hAS′h−1 for some h ∈ AS and S′ � S. Now notice that

h−1Pgnh � h−1Pgh = AS′ ,

and thus Ph−1gnh � Ph−1gh = AS′ by Lemma 36. As |S′|< |S|, we can use the induc-
tion hypothesis on XS′ . This yields Ph−1gh = Ph−1gnh. In particular, one has Pg = Pgn by
Lemma 36, which is a contradiction.

As an immediate consequence, we have the following result:

COROLLARY 39. Let AS be a large-type Artin group of rank at least 2, and let P be a
parabolic subgroup of AS. If gn ∈ P for some n ∈ Z\{0}, then g ∈ P.
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[16] TADEUSZ JANUSZKIEWICZ and JACEK ŚWIATKOWSKI. Simplicial nonpositive curvature. Publ.

Math. IHES 104(1) (2006), 1–85.
[17] ALEXANDRE MARTIN and PIOTR PRZYTYCKI. Tits alternative for Artin groups of type FC. J. Group

Theory 23(4) (2020), 563–573.
[18] ALEXANDRE MARTIN and PIOTR PRZYTYCKI. Acylindrical actions for two-dimensional Artin

groups of hyperbolic type. Int. Math. Res. Not. (2021), rnab068(online article).
[19] ROSE MORRIS-WRIGHT. Parabolic subgroups in FC-type Artin groups. J. Pure Appl. Algebra 225(1)

(2021), 106468.
[20] LUIS PARIS. Parabolic subgroups of Artin groups. J. Algebra 196(2) (1997), 369–399.
[21] LUIS PARIS. K(π , 1) conjecture for Artin groups. Ann. Fac. Sci. Toulouse Math. Ser. 6, 23(2) (2014),

361–415.
[22] DONGWEN QI. A note on parabolic subgroups of a Coxeter group. Expo. Math. 25(1) (2007), 77–81.
[23] HARM VAN DER LEK. The homotopy type of complex hyperplane complements. PhD. thesis

Nijmegen (1983).
[24] NICOLAS VASKOU. Acylindrical hyperbolicity for Artin groups of dimension 2. Geom. Dedicata

216(7) (2022).

https://doi.org/10.1017/S0305004122000342 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000342

	Introduction
	The Artin complex
	Systolicity
	Intersection of parabolic subgroups
	Normalisers and fixed-point sets of parabolic subgroups
	Conjugacy stability and root stability

