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1. Introduction

Let D be the unit disc in the complex plane, T be the unit circle and H(D) be the collection of the
analytic functions in . Assume that X is a Banach space of analytic functions in ID. A positive Borel
measure g on the unit disc is called (s, X)-Carleson measure if there is a positive constant C' > 0 such that

/ FEFdu(z) < CIflx, feX. (L.1)
D

The notion of (s,X)-Carleson measures appeared naturally in the work of L. Carleson on the theory of
interpolating sequences for the Hardy spaces [12]. Recall that an f € H(D) is in the Hardy space H?, p €
(0,00), if

2m
191 = sup [ 1) d6 < +oo. (12)
rel0,1)
0
A standard reference for the Hardy space theory is [10].
Carleson proved that the (p, HP)-Carleson measures are exactly described by the geometric condition
n(S(1))

sup

FOV)) 4o, (1.3)
rcr

where the supremum is taken over all arcs I of the unit circle, || is their arc length and

S(I):{ZED:1—|I|§|Z|<1 and ée]}
is what we call a Carleson square. Since then, embeddings of the type (1.1) have been studied in the context
of several spaces of analytic functions. See [6], [7], [16], [22]. From this point and after we agree to use the
following simplification. If y is a positive Borel on D that satisfies (1.3) then we will refer to it simply as a
Carleson measure.

In [16] Luecking, among other Carleson measure type problems, considered a version of (1.1) for measures
w1 on the upper half-plane H, for tent spaces of analytic functions defined on H and for the n-derivatives of
the functions in those spaces. See Theorem 3, Section 6 in [16]. However, the proof that Luecking provided
serves for the case of the unit disc as well. Since we are interested in the unit disc setting and for n = 0, which
is the case without the derivative, below we state the question of Luecking under the latter considerations.

We say that a measurable function f in D belongs to T}/ (), p,q,a € (0,00), if

a
P

A
g = [ | [ 100 g | 1€l <o (1.4)
T €3]

For a £ € T we denote as



T. Aguilar-Herndndez, P. Galanopoulos / J. Math. Anal. Appl. 523 (2023) 127028 3
L) =Tu(§) ={reD:[1—E&] <M1~ |2},

where M > 1/2. The dA(z) stands for the area Lebesque measure on D. The tent spaces TJ(a) were
introduced by Coifman, Meyer and Stein [9]. We are interested in their subspaces

AT () = T (o) NH(D).
The restriction a > 0 has meaning only in the case of the analytic tent spaces since an AT} (0) does not
contain non trivial f € H(D). It is customary to use in the definition of the tent spaces the regions I'(¢). In
the next section we will see that they can be equivalently described by using other type of non tangential
approach regions.

Luecking dealt with the following question. Consider s, p, ¢, a € (0,00). Find the necessary and sufficient
conditions on the positive Borel measure p in D in order to exist a positive constant C' such that

1/s

[18@F du) | < Clflagrs £ € ATH@), (15)
D

Taking into account the terminology introduced with (1.1) we are allowed to say that this is an (s, AT} ())-
Carleson measure problem.

The family AT/ () includes the Bergman spaces. Observe that in the case p = ¢ and @ = 1, by an
application of the Fubini theorem in (1.4), we get the Bergman space AP that is the space of those f € H(D)
with the integrability property

[ £GP ) < +oe. (16)

D

For more information on Bergman spaces we propose to the interested reader [13], [11].
Luecking in [16] pursued these ideas even further by posing the following:

Problem 1. Let p, ¢, s, t,a > 0. Characterize the positive Borel measures p in D for which there is a positive
constant C such that

s/t

/ / PO du() | 1 < Oy, f € ATS(). (L.7)
T \'(¢)

This is a more general problem compared to (1.5) from the point of view that if we set s = ¢ then a
change in the order of integration converts (1.7) to the (s, T(a))-Carleson measure problem (1.5) for the
measure (1 — |2]?)du(z). In addition, if we set above p = ¢ and o = 1 then Problem 1 comes down to the
work of Z. Wu [27].

We answer with the following theorem.

Theorem 1.1. Let 0 < p,q,s,t,a < 400, Z = {z} an (r,k)-lattice, and let p be a positive Borel measure
on D. Then the following are equivalent.
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(1) There is a constant C' > 0 such that
s/t 1/s

/ / @) du(w) | el < Clfllrsey | € ATH(a).
T \(¢)

(2) The measure | satisfies the following:

(a) If0 < s<qg<+00,0<t<p<+oo, then

(p—t)gs
_pt_ (g—s)pt

/ 2 <%> B |d€| < +o00.

T \2+€r(§)

(b)) If0 < s < qg< 400, 0<p<t<+oo, then

qs

/< sup Ml/t(DM) o |d¢| < +o0.

seer(e) (1 —|zi])/P

(c) f0<qg<s<+4o0,0<pt<ooorl<g=s<+o0,0<p<t<—+oo, then

1/t D
sup P PEeT)
b (1= Jzl)s T8

(d) If0 < g=s< +00, 0 <t <p<+o0, then

p—t
_pt_ pt

P (D (zr, 7))

—t
sup | sup ) (ﬁ) (1= l2]) < oo,
ceT \ el rip (1 — zk])o/P

where I runs the intervals in T, S(I) = {z eD : 1—-|I1<|z| <1 and ERS I} and I is its arc
length.

As a consequence of our main result we present two applications that occurred naturally. It turns out that
this type of embeddings are the proper tool for the study of the integration operator which was introduced
by Pommerenke in [24]. To be specific, let

g:D—=C

be an analytic function. We call integration operator the map
1,00 = [ $Q) g dc,  zeD,
0

where f € H(D). Pommerenke considered T, on the Hilbert Hardy space H 2 of the unit disc. He proved
that its boundedness is characterized exactly when the symbol g is a BMOA function. That work was the
starting point for a great number of results about the properties of T;; on several spaces of analytic functions.
See [19], [28], [20], [18], [2].
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A. Aleman and A. Siskakis in [3] completed the scene for T, on the Hardy spaces. In [4] they extended
the study to the Bergman spaces where they proved that

T, € B(AP), pe (0,00) & ge€B, (1.8)
where B stands for the Bloch space which consists of those g € H (D) with the property

sup |g'(z)| (1 — |2?) < 4oc.
zeD

Based on this condition, there is defined a more general family of spaces. Let v > 0, we say that a function
g € H(D) belongs to the Bloch type space BY if

sup [g'(2)] (1 = [2*)7 < oo.
zeD

Recently, T. Aguilar-Herndndez, M. D. Contreras and L. Rodriguez-Piazza in [1], [2] defined the spaces
of average radial integrability. They say that a function f € H(D) belongs to RM (p, q), p,q € (0,00), if

27 1 %
T _/ /\f(rew)|pd7“ df < +c. (1.9)
0 0

This expression is the natural extension of the property of bounded radial integrability
1

sup /|f(rei9)|dr < 400 (1.10)
)

0€l0,2m
0

of an f € H(D). According to the Féjer-Riesz inequality the elements of the Hardy space H! fulfill the
property (1.10) [10].
For the case p = 00, 0 < ¢ < 400, the spaces RM (00, q) consist of analytic functions f on D such that

2
a
11 Ras (o) = / ( sup f(rew)|> d < +o00, if ¢ < 400, and
0<r<1

0

11l R (00,00) = I f Il o=
It is clear that for p = ¢
RM(p,q) = A”.

Moreover, with the help of the Holder’s inequality we can verify that the RM (p,q) spaces always stand
between two Bergman spaces. To be precise, if p < ¢ then

AT C RM (p,q) C AP

and if ¢ < p the containments are the other way around. All the inclusions are strict.
Notice that

RM(o0,q) = HY.
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This is due to the equivalent description of Hardy spaces in terms of the radial maximal function that is
2

1£1%0 = / sup |f(re®)[7d6.

0 re(0,1)
See [12].
The authors in [2] proved that the action of T, in RM (p, g) is similar to that in Bergman spaces. To put
it simply, the Bloch condition characterizes the boundedness of
Ty : RM(p,q) — RM(p,q) .

In order to obtain this result, they prove that condition (1.9) is equivalent to the condition

9
14

27 1
/ / | (re®®)[P(1 — 7)P dr df < 4+oo.
o \0

Here we consider the more general question stated below.
Problem 2. Let p, g, s,t € [1,00). Characterize the boundedness of
Ty : RM(p,q) — RM(t,s).
The answer we give is based on an equivalent representation of the RM(p,q) as tent spaces. This is
actually an independent result contained in the structural theory of the Triebel-Lizorkin spaces and [8] can
serve as a reference for that. Postponing the details for the next section we just present this equivalent

description according to which an f € H(D) belongs to an RM((p, q) if and only if

q
P

[ [ irera-sprrac | <.
T ©
Combining appropriately this condition and the results of Theorem 1.1 we prove the following result.

Theorem 1.2. Let 1 < p,q,s,r < 400 and g € H(D). The following statements are equivalent:

(1) The operator T, : RM (p,q) — RM(t, s) is bounded.
(2) The function g € H(D) satisfies that

(a) f1<s<qg<+o00,1<t<p<+oo,

g€ RM _pt s
p—t qg—s)’

(b)) If1<s<qg<+00,1<p<t<—+oo,

qs

/ (eSSSumg'(zn(l—|z|)1*%‘%> lde] < oo

z€l'(§)
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(c) fl1<qg<s<+4oo,l1<pt<oworl<g=s<+4o0,1<p<t<+oo,

(d) If 1 <g=s< 400, 1 <t <p< +00, the measure
PN pt_
du(z) = lg'(2)[7=7 (1 = |2])»=F dm(2)
is a Carleson measure.

The RM(p,q) are not the first example of spaces that can be treated as tent. The Littlewood-Paley
theory provides an alternative way to define the Hardy spaces in terms of the Lusin area function [29]. An
f € HP if and only if

P
2

/ / If'(2)]? dA(2) |d€| < 4+00. (1.11)

T ()

It has been proved that (1.11) not only is comparable to (1.2) but also it is convenient for the study of
integration operator. Z. Wu, using (1.11), studied the T, operator from a Bergman space to a Hardy for
the unit disc [28]. Later, S. Miihkinen, J. Pau, A. Perdld and M. Wang completed and extended the results
of Wu for the case of the unit ball [18]. Taking into account the fact that each average radial integrability
space is between two Bergman spaces is tempting to wonder about the action of T, from an RM (p, q) to a
H?. We prove the following theorem.

Theorem 1.3. Let 1 < p,q,s < +oo. The following statements are equivalent:

(1) The operator Ty : RM (p,q) — H® is bounded.
(2) The function g € H(D) satisfies that

(a) If 1 < s < g<400,2<p<+o0,

lg'()|(1 = |z])

N

m

k] W
s |
3
—~
—_
~—

(b)) If1<s<g<+4o0, 1 <p<2,

qs

/(esssup|g'(z)|(1—|z|)1_%> B |d€| < 4o00.
T

zel'(§)

1 1

(c) Ifl1<g<s<+4oo,l1<p<ooorl<qg=s<+oo, 1§p§2,g€81+-i »
2p p
(d) If 1 < g=s5<400, 2<p<+00, the measure |¢g'(z)|7=7 (1 — |z|) 7= dm(z) is a Carleson measure.

Closing the section we present the structure of the paper. In Section 2 we present the preliminary
information that will be required throughout our study. We gather the definition of the spaces of analytic
functions of our interest and some properties of them that we will need. Moreover, in Section 3, we give an
identification of the RM (p, q) spaces as tent spaces ATZ(1) (see Proposition 3.1).

The main results of this article appear in Sections 4 and 5. In Section 4, first we provide a characterization
of the positive Borel measures such that they satisfy (1.7) (see Theorem 4.1). This result will be the
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cornerstone in the course of the proof of the last section. Second, we focus on Theorem 3 of [16]. Although
we get the impression that all the cases of the indices involved are covered it appears that there is a specific
case to be made clear. Following similar ideas to those employed by Luecking we complete the picture.

In Section 5 we provide a characterization of when the integration operator Ty : RM(p,q) — RM(t, s)
is bounded, where 1 < p,¢,t,s < 400 (see Theorem 5.1). Also, we show the boundedness of T for ¢ = oo,
that is, when the operator T, maps RM (p, q) into the Hardy spaces H® (see Theorem 5.2).

Throughout the paper the letter C' = C(-) will denote an absolute constant whose value depends on the
parameters indicated in the parenthesis, and may change from one occurrence to another. We will use the
notation a < b if there exists a constant C' = C(-) > 0 such that a < Cb, and a 2 b is understood in an
analogous manner. In particular, if a < b and a 2 b, then we will write a < b.

2. Definitions and first properties

In this section we recall the definitions of the spaces of analytic functions under discussion. Moreover, we
compile some properties for the sake of being self-contained.

2.1. Awverage radial integrability spaces

These are the RM (p, q) spaces introduced in [1].

Definition 2.1. Let 0 < p, ¢ < 400. We define the spaces of analytic functions

RM(p,q) ={f € H(D) : ppq(f) < +oo},

where
o a/p /4
1 .
poal0) = | oz [ | [1rtewar) ae| . itpa<oc,
0o \o
1/p
Pp,oc(f) = esssup /\f re')|P dr , if p < oo,
te[0,2m)
27 q 1/q
1 .
Poog(f) = —/ sup |f(re')| | dt ,  if ¢ < +oo,
27 s \refo)

Poo,oa(f) = I fllme = sup | f(z)].
zeD

2.2. Tent spaces

The work of Coifman, Meyer and Stein is considered the starting point for the study of the tent spaces
of measurable functions [9]. Since then they have been studied widely by many authors. A typical collection
of references on the subject is the following [17], [16], [14], [5], [8], [23], [18].

Let £ € T. We define the non-tangential regions I'(¢) and A(€) as follows

T =Tu()={zeD:|z—¢ <M1 -z},
A(§) = {rfeie S0 < (1— 7“)},
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where M > 1 and |0] := min {|6 + 2kn| : k € Z}.

Definition 2.2. Let 0 < p,q,a < +00. The tent space T)(c) consists of measurable functions f on D such
that

a/p 1/a

g = | [ /umwaﬁé%;; del | < oo (2.1)

T \'()

Analogously, the space T (a) consists of measurable functions f on D with

1/q

1l ey = / esssuplf(:)1 g |t < oo (2.2)
T

zel

where the essential supremum is taken with respect to the Lebesgue measure. Notice that the definition of
T4 (o) = T2 is independent of a.
For the case ¢ = 4+00 and p < +o00, the space T,;°(a) consists of measurable functions f on D with

1/p

1 dA(z)
lfllroo(a) =sup | sup ——— / lf))P ——m— < +o0, (2.3)
TP et | werte =) J (1= [2l) e
w

where

, . 1—
S(Tele){pe” l—p<1l-—r [t—0| < 2T}

for re? € D \ {0} and S(0) = D. Notice that f € T2 («) if and only if the measure du(z) = |f(2)[P(1 —
|2]?)*~! dA(2) is a Carleson measure on D.

If we take holomorphic functions instead of measurable functions, we will denote the tent space of
holomorphic functions as AT} (a) := T (o) N H(D).

Below we state a technical lemma, well known to the experts of the area. It will be usefull for us too.

Lemma 2.3. [5, Lemma 4, p. 66] Let 0 < p,q < +oo and A > max{l,p/q}. Then, there are constants
Cy = Ci(p,q, A\, C) and Cy = Ca(p,q, A\, C) such that

q/p

¢ [ uirienriael < [ g (ﬁ:LZZIl)A )| 1del < 0o [ uiree)riagl
T T

T

for every positive measure i on D.

Remark 2.4. By Lemma 2.3, it is easy to see that any of the non-tangential regions I'(£) in (2.1) can be
replaced by A(€).

Moreover, for the case p = +00 one obtains by using [26, Theorem 17.11(a), p. 340] that the definition
of TZ is independent of the nontangential region.
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Remark 2.5. One can obtain an equivalent norm in ATZ replacing in (2.2) the set I'(§) by any other Stolz
region I'ps(&).

2.3. Tent spaces of sequences

Let B(z,w) be the hyperbolic metric on D and let D(z,r) = {w € D : B(z,w) < r} be the hyperbolic
disc of radius 7 > 0 centered at z € D. The sequence Z = {zx} is a separated sequence if there is a constant
d > 0 such that B(zx,z;) > d for j # k. The sequence Z = {z;} is said to be an (r, x)-lattice (in the
hyperbolic distance), for r > k > 0, if

(1) D= Uk D(z,r),
(2) the sets D(zy, ) are pairwise disjoint.

Notice that any (r, k)-lattice is a separated sequence.

Remark 2.6. It is known that if z,w € D such that (z,w) < r, then there is a constant C' = C(r) > 0 such
that £(1—2]) <1—|w| < C(1—|z]).

Using arguments similar to those in [11], one can prove the following result.

Proposition 2.7. Let K > 1, R > 0, and an (r,k)-lattice Z = {z,}. There is a positive integer N =
N(K,R,Z) such that for each point z € D there are at most N hyperbolic discs D(zx, Kr) satisfying
D(z,R) N D(z, K1) # 0.

As a consequence of the above proposition we obtain the following covering lemma which will be useful
in Section 4.

Lemma 2.8. Let C > 1 and an (r,k)-lattice Z = {zy}. There is N such that for alln € N and £ € T there
are N hyperbolic discs D(zy,r) that cover the set

sc(g)m{zem : 2n—1+1§1—|z|§2in}.
In order to facilitate the reading, we have included the following lemma due to Wu.
Lemma 2.9. [27, Lemma 2.8, p. 992] Let M > 1, r >0 and £ € T. If M, = (M + 1)e®" — 1, then
D(z,r) C Su.(€)
for all z € Sp(§).

A standard way to get an (r, k)-lattice is through the Whitney Decomposition of the unit disc. This is
the (r, k)-lattice described in the following example and the one that Luecking makes use of in [16].

Example 2.10. Let Z = {z; ;} be the sequence formed by the centers of the regions

27§ 2mw(j+ 1)
27 21

1 1
va_{ze]]) : 1—§§z|<1—ﬁ,arg(z)6{

for i € NU{0} and j = 0,1,...,2" — 1. We will refer to them as Luecking regions. There exist r > x > 0
such that Z = {z; ;} is an (r, k)-lattice.
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Our approach in order to get our results is mainly based on the discrete version of the tent spaces. These
are the tent spaces of sequences.

Definition 2.11. Let Z = {2, } be a (r, s)-lattice and 0 < p,q < +o0. We say that {\,} € T(Z) if

p/a Va
{An}lzg(z) = > P del ] < +oo, (2.4)
T zn €T(E)
the sequence {A\,}, € TL(Z) if
p/a Va
{An}lTe (2) = / ( sup I/\np> |dé| < 400, (2.5)
Z,LEF(é)
T
and {\,} € T2°(2) if
1/p
1
{AnHIzge(z) = sup | sup ———0= Aal?(1 = |za]?) < 400, (2.6)
O cer \werie) 1= Tul?) ZS:()

where

_ . 1—
S(Te“g):{pe” l=—p<1l—r |t—0]< 2r}

for re?® € D\ {0} and S(0) = D.
Remark 2.12. Lemma 2.3 justifies the independence of the definition (2.4) for any I'ps(€).

The following lemma is a well-know result in the theory of tent spaces of sequences and it will be useful
in order to obtain equivalent expressions when we consider different non-tangential regions.

Lemma 2.13. Let My > M > 1/2. There is a constant C > 0 such that

/ sup M7 ) Jde| < © / sup 7] (e
A 2, €Sy (§) T zr€SM(§)

for all 0 < g < +o0, and for all sequences {z;,} CD and {\x} C C.
The next version of the sub-mean value property will be useful several times. As usual we write f(© = f.

Lemma 2.14. [16, p. 338 ] (See also [11, Corollary 1, p. 68] for the case n =0) If 0 < p < 400, r > 0,
n € NN{0}, and [ is analytic in D, then

W / |f(w)[P dm(w),

D(a,r)

FARICOILES

for each point o € D.
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The relationship between the discrete version of tent spaces and the continuous version is given in the

next proposition.

Proposition 2.15. Let 0 < p,q < +o0 and Z = {zx} be an (r,k)-lattice. Given f € AT{(a) and N\ =

/\k(f) = supwED(Zk,T) ‘f(w)|(1 - |Zk|)a/p Then

I £ll7g () = [ Aellzg(z)-

Proof. Take Z; € D(zy,r) such that |f(Z;)| = SUD e Bz | f(w)|. First, let us check that ||{|f(Zx)|(1 —
|zk|)a/p}||Tg(Z) S I fllzg (ay- Applying the mean value property over the hyperbolic disc D(Z, s) with s < 3r,

we obtain
a/p 1/a
11£EOI = )P Hlzgz) = / S G|z | g
T \2x€r'm (&)
a/p Ya
dm(z) @
S / > / |f(Z)|pm (1 — [zl) |d€|
T \#€'M &) \p(z,,s)
Since D(Z, s) C D(zk,4r), applying Remark 2.6 we have
1 Z)I = 121 P} lzg 2)
a/p a
dm(z)
S Z / \f(z)\pW |d¢]|
T \#€Tm(&) \p(z, ar)
By Lemma 2.9, we can take My > M > 1/2 such that
U D(Zk‘a 4T) - FM+ (f)a
D(Zk,4’l’)ﬂl—‘]\4(f)¢@
and applying Remark 2.6, it follows that
I£1£ Z)I(1 = 1261)*"PHIzg 29
a/p Ya
dm(z)
SA> P s | |l
T 2. €M (€) \D(z4,47)
a/p a
dm(z)
< / / Z XD (z.4r) (%) |f(z)|pm |d¢]|
T \ra ) \er®

Due to the fact that Z = {zx} is an (r, k)-lattice, by Proposition 2.7 there is N such that

Z XD(zk,47‘)(Z) <N
k
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for all z € D. Therefore, we obtain

107G~ |2 g
a/p a
/ e dmz) 1/
syl [ [ rergSims | | S8 g,

T \r©

Now, we proceed with the converse inequality. Using the pointwise estimate |f(2)| < >, |f(2)|xD(zp,r) (2)
and the fact (given by Lemma 2.9) that we can take M > M > 1/2 such that

D(zx,7) C Tar, (€),
D(zp,r)NL(£)#0

it follows that

q/p /4

e = | [ | [ g2 |

\
T \'()
q/p 1/a

> If(z)lp% de)

¥ p(©)nD(zr,r)

IN
He—

q/p 1/q

» dm(z)
> [ wergtres] e

2k EF+(5)D(zk,T)

IN
S

Taking | f(Zk)| := sup,,c iz |/ (w)| and applying Remark 2.6, we have

q/p 1/q

1fllg @) S / Yo Gl ldel ] = I EI 12D g -

T \2k€l+(§)
Therefore, we are done. 0O

In [8] Cohn and Verbitsky proved a result about the factorization of tent spaces of functions over the
upper half-space, but we will use the following concerning the factorization of sequence tent spaces (see [18,
Proposition 6, p. 19]) throughout this article.

Proposition 2.16. Let 0 < p,q < +00 and Z = {ay} be an (r, k)-lattice. If p < p1,p2 < +00, ¢ < q1,¢2 < +00
and satisfy % = p% —+ p%, and % = qil + q%. Then

THZ) =TI (Z) - T2(2).

p

Remark 2.17. In [18, Proposition 6, p. 19] this result is stated for the cases p < p1,p2 < 400 and ¢ <
Q1,92 < +0o. However, using the same argument we can also extend it to extreme cases.
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The following propositions give us the duality for the tent spaces of sequences. They will be a cornerstone
in the proof of the main result of this paper.

Proposition 2.18. [5, Lemma 6, p. 68] Let Z = {z,} be a (r, k)-lattice and 1 < p < 400, 1 < ¢ < +00. Then
(T{(2))* = T, (Z), where % + L =1 and % + % = 1. The isomorphism between (TJ(Z))* and T, (Z) is

P
given by the operator

{bx} = (5 {bx})

where (-, {by}) is defined by

Har}, {or}) = an be(1—|zl), {ax} € TH(Z).
k

In fact, |[{bx}llpa 5y = sup {1325 axbr(X = |2kl {an}llzgz) = 1}-
P

Proposition 2.19. /5, Proposition 2, p. 72] Let Z = {z,} be a (r,k)-lattice and 0 < p < 1 < g < 4o0.
Then (T}(Z))* = TYL(Z), where % + % = 1. The isomorphism between (T}}(Z))* and TY(Z) is given by the
operator as in Proposition 2.18. In fact, ”{b’f}”T;fé(z) = sup {3, axbe (1= |z])| = [{an}llze(z) =1}

Proposition 2.20. [1/, Lemma 3.4, p. 184] Let Z = {z,} be a (r,k)-lattice and 1 < p < +oo. Then
(T,(2))* = T(Z), where 119 + z% = 1. The isomorphism between (T,(Z))* and Ty (Z) is given by the

operator as in Proposition 2.18.
In fact, |{bk} 1 (2) = Sup{@k arbe (1 = |2&)| = [{aw}lry(2) = 1}-

Following the same argument of Luecking in [16, Proposition 2, p. 352] and combining Lemma 2.8, we

have the same result of tent spaces of sequences in D now for any (r, k)-lattice, but avoiding the cases
1 < p< +00, ¢g=1. So that, we decide to omit the proof.

Proposition 2.21. Let Z = {z} be an (r, k)-lattice. If either 0 < p < +00,0< ¢<1lor0<p<1,¢g=1,

then
sup {

for any sequence {ay}.

> anbi(l —[z])

k

s okl 2) = 1} = sup Jar] (1 — [z4])' 1/

Remark 2.22. We point out that in [16, Proposition 2, p. 352] above result for the (r, k)-lattice given in
Example 2.10 is stated for 0 < p < +o00, but if p > 1 and ¢ = 1, its proof does not work.

The following result, due to Peréld, will be an important tool in the characterization of the Carleson
measures in the next section.

Proposition 2.23. /23, Lemma 14, p. 24] Let Z = {z,} be an (r,k)-lattice, 0 < p,q < 400, a > 0, and
M > max{1,p/q,1/q,1/p} + a/p. Then the operator S : TH(Z) — AT] (), where

SN = Soa
' (1—zZpz)M

k=0

is bounded.
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3. The tent space nature of the RM (p, q)

In this section we present equivalent representations of the RM (p, q) spaces in terms of the derivatives
of their elements and as tent spaces. It seems that the RM (p, q) and their equivalent representations form
part of the theory of Triebel spaces. As a reference to that we propose [8]. However, neither is clear nor is
easy to justify the equivalent formulas through that approach.

Our starting point is the Littlewood-Paley theory for the Hardy spaces H? (¢ > 0), according to which

/ / PP —rydr | do = ||f]1%. = / / FRPdAR) | 1),
T (€)

and [2] where the authors prove that, for 1 < p,q < oo or (1,¢q) with 1 < ¢ < +o0,

Wk

a
2w P

Pp.a(f)? A/ /\f re)P(1—r)Pdr | db. (3.1)

0

As we shall see the equivalence (3.1) extends to the case RM(p,1), p > 1.
First we establish how the RM (p, ¢) spaces can be represented as tent spaces. Our approach is based on
the ideas of [21] appropriately applied to our more general case.

Proposition 3.1. Let 1 < p,q < +oo. Then for f € H(D) we have that

(1) pp.a(f) = 1 llzg s
(2) pog(f' A= 1-D) = 7O =1 Dlizgy-

That is, RM (p,q) = AT}(1).

Proof. (1) First we show that

o a/p 1/a
dA(w)) de
< p — . 2
S| [ [ rwr T8 & (32)
S
Fixed 0 € [0, 2], we have that
1 _g—(n+1)
/| ret \pdr—z / NP dr
0 1—2—n
<> sup |[f(re) P27 — 27 ()
k—p 1—27"<r<1—2-(+1)
=3
k=0 2= (D) <1 —pg2-7

o (n+1)
S [ P daw).

k=0 En(9)

A
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where E,(6) = {w € D : jw — (1 —27")e"| < 323}. Moreover, it is easy to see that E;(6) N Ex(6) = 0,
if [j — k| > 3, and that there is a constant M >  such that E,(6) C I'y(e”) for all n € N. Therefore, it
follows that

e P e L)
Jisenpar 302 [ pwp g A

From this, we clearly have (3.2).
Now, for the comparison from below, we continue with the proof of

q/p /4

J1 [ swr 29 | <
€3]

]
T

Notice that for £ € T

I
| —
=
—
=
e
N
e
o
-
=
=
=
|
<
N—
L
~
>
o
3

<y [ 18wt @)t dsar

where

p
dr.

() = / ===y

For each n, the function h,, is log-subharmonic (see [25, p. 36]). Bearing in mind that
|(1—27""2)¢e® —¢| < M27""2, for |§ <277,

where M is an absolute constant, it follows that (1 — 2~ ("+2)¢e?® € Ty, (€) and
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1

[ weetopa-ntasdr <4y M)

0 |9]<1—r n=0

where M, denotes the non-tangential maximal operator, that is

Mhn(§) = sup hy(2).
z€lm (£)

Applying [21, Theorem 1.8, p. 173], we find a positive constant C(p, ¢) such that

1
dA(w) " : oo a/p 1/a
w
[ [ rewr 252wl o< (] <4ZM*hn(§)> g
T \A(@® T "0
0 q/p /a
< cg) sw | [ (Z wa) de]
0<s<1 =0
T
—(n+1) a/p e
p
= C(p,q) su dr d
v Q)OSSEI / Z / ’f< — 27" 2) 4]
=Y 1_g-n
Doing the change of variable u = ;—"=;, it follows that
a/p a
dA(w)
p d
J1 [ reor 250 | a
T (&)
1_9—(n+2) a/p la
< Cla) sw | [ Zz— [ resorar|
0<s<1
T 1-2-n
< 2C(p.q) sup ppg(fs)
0<s<1
By [1, Proposition 2.12], we conclude that
a/p a
dA(w)
p <
J1 [ ror 25| | <o
T €3]

(2) Following the same argument, we obtain the equivalent result for the derivative. O

The next theorem is due to Perdld [23]. It is the equivalent description of the AT)¢(1) in terms of the
derivative.

Theorem 3.2. [23, Theorem 2, p. 9] Let 0 < p,q,a < +oo. Then, we have that

1LF O =1 Dllrgay = 1fllrg(a)s f € HD).
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Combining the above we get the following corollary.

Corollary 3.3. Let 1 <p,q < +o0. Then, we have that

Pp.a(f) = poq(f' (YA =1-1)), feHD).

4. Carleson measures

This section is devoted to the study of Carleson measure type problems for the tent spaces of analytic
functions and consequently for the RM (p,q) spaces. First, we present our main result. It answers the
problem posed by Luecking in [16]. See section 7.

Theorem 4.1. Let 0 < p,q,s,t,a < 400, M > 1/2, Z = {z} an (r,k)-lattice, and let u be a positive Borel
measure on D. Then the following are equivalent:

(1) There is a constant C > 0 such that

S/t 1/8

/ / ) dutw) | ldel| < Cllfllme € ATI(0).
T (€3]

(2) The measure | satisfies the following:

(a) If 0 < s < g < +00,0<t<p<+o0, then

(p—t)gs
_pt_ (g—s)pt

/ 2 <%> - |d€| < +o00.

T z,€L(§)

(b)) If0<s<qg< 400, 0<p<t<+oo, then

1t(p iss
/ sup % |d¢| < +oo.
4 \mer© (1 — |zg|)o/P

(c) f0<g<s<400,0<pt<ooorl<g=s<+o0,0<p<t<+oo, then

(D, 1)

sup ———————~ < +o00.
b (L= [l 7o
(d) If0 < g=s< +00, 0<t <p<+o0, then
pe e
1/t Pt

4 (D(Zkﬂ‘))>
sup | sup —_— " (1 —zx]) < 400,
¢eT 2 ( (1 — |zg])o/P

Sel eT(D)

where I runs the intervals in T, S(I) = {z eD : 1—-|I| <zl <1 and o€ I} and |I| is its arc
length.
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Proof. First, we will prove that (2) implies (1). Let b > max{, 1}. By Lemma 2.9, one can take a constant
My >M> % such that, for all £ € T,

U D(z,7) C Tar, (€)

D(zg,m)NT ar (§)#0

where D(zk,r) are hyperbolic disks that correspond to the (r, x)-lattice.
Fix an f € ATJ(«). Using the pointwise estimate |f(2)| < >, [f(2)[XD(z,r)(2), it follows that

1 1
s/t s s/t s

[ [ swraww | el < [IS [ vwra| e
T

T \tw() * D)l ()
s/t 3
< sup | f(w)[" (D (zx, 7)) dp(w) |d¢]
T zkeFM+ (f) weD(Zva)
For the simplicity of the presentation we set |fi| := SUD,, e Bzrir) |f(w)|. Bearing in mind Lemma 2.3 and
b >max{},1} we have
s/t H
[ [ s auw | e (4.1)
T \'m(9)
s/t %
< > Il uDr,r)) du(w) |d¢]

T \#x€lnm, (§)

gl

bs/bt

|/l (e wroem)”) e

T 2, €0, (§)

1l 1P (D7) Hige 2 -

X

Using the duality relation for the Tp#(Z) as stated in Proposition 2.18, we get that

12 1P (D (i) Hips 2) (4.2)

= sup D OISl (D () (1= |2)
Ak>0 &
TEvSTe

<1
(bt)! (2)

a/bp :ul/bt(D(Zkv T))

W(l — |zk|).

= sup Z/\ka\l/b(l— |2k)
%

x>0
{ARHosyr <1
T((:t))/ (2)
By Remark 2.15, we have

£ 11z 0y = 141l (1 = 121D P | zg ) = M1 fal 21 = \Zkl)a/b”}lll}:g(z)-
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Therefore, for any sequence of positive numbers {A;} € ((bt))/ (Z), Proposition 2.16 implies that

gbs
a bs SFa(bs—1)
Dl V2= |22y € T (2) - Tyl (2) = T (2),

t+p(bt—1)

Taking into account the conditions (2)(a)-(d) together with Propositions 2.18-2.21 respectively, we obtain
that there is a constant C'(u) > 0 such that

Vbt (D(zp, r ’
<Zk: Al f 01 = Zk|)a/pr(l - |Zk|)>

< O Al fl P (1 = J2) /P73 I

pbt (2)
TFp(bt=1)

GO0 1AMy gy U1 = L)

(4.3)

Ty (Z)

C(p) ”{/\k}HT(bs)’(z) IH1fe (1= 12D g )

C(u)° ||{>\k}||T<bs>’(Z) 1Fll Az ) -

Now, we proceed to clarify which is the constant C(u) in each of the cases of the statement (2)

(a) By Proposition 2.18, it follows that

o= [{=rs)

(b) Using Proposition 2.18 for the cases s < ¢, p = t and Proposition 2.19 for the case s < ¢, p < t we have
that

1/b

_ H {ul/tw(zkm» }
TZS:‘"(Z) (1 = [zxl)>/P

p—t

qs .
T9.° (2)
p—t

S e Y | (=)

(¢) By means of Proposition 2.21, the constant C () in these cases is determined by

1/bt B 1/t(p

w P (D(zg, 1)) a=s w'’t(D(zg,r)

C(pu) <sup —————(1 — |zg|) *s = | su —a 5
) kp (1 — |z |)o/bp (1= Jzx]) kp (1—|zp)pTa s

(d) In the remaining cases, we apply Proposition 2.20 to obtain

1/b
1 - |zk| D‘/bP o (Z) 1 — |zk|)a/p T, (2)
p t p—t

Therefore, combining (4.1), (4.2), and (4.3), we conclude that

s/t 1/s
/ / Fa) du(w) | lael | < Il

T \'()
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Now, we continue with the proof of (1) implies (2). By Lemma 2.9, there is a constant M, > M > 1/2
such that D(z,r) C Ty, (&) for all z € T'pr(€). By hypothesis and Lemma 2.3 there is a constant C' > 0 such
that

s/t 1/s
[ [ verae| | <ol (4.4

T . (6)

for all f € AT}(a). Take A = {\x} a sequence of T}/(Z) and let py, : [0,1] — {—1,1} the Radermacher
functions. Moreover, for K > max {1,p/q,1/q,1/p} + a/p, we consider the function

|Zk|)
E A _ D.
kpk ZkZ)K 3 S

From (4.4) and Proposition 2.23, it follows that

s/t
[ [ 1m@rae) | ld s 1o,
T s (€)
Integrating both sides with respect to z, we obtain
1 s/t
/ / [ IR due) | el de S 1A o

0 M, (&)

Applying Fubini’s theorem and Khinchine-Kahane-Kalton inequality (see [15, Theorem 2.1, p. 251]), it
follows that

s/t
1 /

///|Fz(2)|th(Z)dx e S 1M HITg )

T \O T, (8)

Now, by means of Khinchine’s inequality we have

AN
Zk p :
I/ (Z o |—k|K) )| 14 S 1O Hig
T . (€)
It holds that
1— ‘Zk|
< - D.
XD(Z)C,T‘)(Z) ~ |1 — ﬁz\ 5 S

In addition, each z € D belongs to not more than N = N(r) disks D(zx,r) (see Proposition 2.7). Using the
fact that

lwlle < max{1, N*/* =2} w2
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for w € C and, combining it with the estimation above, one can see that

s/t
XD (zk,7 ( )
I/ S Il ey e | lag
T M, (§)
(= \" "
s/t—s XD(zp,r
Smax{l,N/t /2}/ / (Z 2%) du(z) |d¢|
T \ta.(6) N F
t/9 s/t
YA 2 (L= |25
< max{l, N } DI TPQ du(z) |d¢|
T \tar(e N F
< max{L, N*/*7*2} [ {17 2)-
Hence, it follows that
s/t

Z | |f M(D(Zkv ))

(= |a|)ot/7 |dg| S max{1, N*/*~2}[{ A I 59

T 2z €l p (E)

_bs
On the other hand, let a b such that tb > 1 and sb > 1. For any {7} € T'";, ' (Z), after applying Fubini’s
bt—1
theorem and Hoélder’s inequality twice, one gets that

WM(D(z 1/b
PR (71 . |Z(,c’§;/f,)) (1= Jzl) (4.5)

T \z€l(§)

1/tb biod
WD) e
S SR > e
< e -
zLEl— () 2 €07 ()
s/t 1/bs
u(D(z5.1)
<| [ X mwrdEmn ) ] ind e,
(L= [zx)>t/P .1 (2)
T zrel'—

bt—

1/b
< max{1, N~ Zb}ll{kk}HT/q(Z [H{7e 3] P gy
bf 1

By Proposition 2.16 we have that

_bs
oY eT”‘i,(:f U(Z)=T% " (2) - Ty 2).

t+p(bt—1) bt—1

Then, using (4.5) together with Propositions 2.18-2.21 respectively, we obtain that (2) holds. Therefore, we
are done. O
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The last part of the section is about Theorem 3 of [16]. There, Luecking considered the embeddings of the
derivatives of analytic tent spaces AT}(«) in the L® space of a positive Borel measure . The setting was the
upper half plane and the technique he employed was the discretization of the problem, too. Nevertheless,
the same proof can be applied to the unit disc. Below we state Luecking’s result for the latter case.

Theorem 4.2. [16, Theorem 3, p. 354] Let 0 < s,p,q < +00 such that if s = q then p < ¢, 0 < o < 400,
Z = {z; ;} the (r,k)-lattice consisting of the centers of the Luecking regions, and n € N U {0}. Let p be a
finite positive Borel measure on . Then the following assertions are equivalent.

(1) There is a constant C > 0 such that

1/s

/|f(")(w)|S dp(w) < Clflrga), f€AT(a).
D

(2) The sequence

= (R ;)(1 — |ZZ._’]_|)—§—sn_17

where R; ; is a Luecking region (see Example 2.10) and z; ; is the center of this region, satisfies one of
the following:

9
(a) If s < p,q, then {u; ;} € T:%’ (Z).

(b) If p< s <q, then {u; ;} € TL " (Z).
(¢c) Ifg<s orp<s=q, then {i;(1 — |z ;|)' "} is a bounded sequence.

Although the cases stated above as 2(a), 2(b), 2(c) are covered completely by Theorem 3 in [16], looking
carefully at the original proof given by Luecking we realize that the case when 0 < s = ¢ < p < oo has to be
clarified. To be more specific, in [16] this range of values is also treated by the application of Proposition 2
of [16]. Here we make clear that this case has to be confronted separately using the proper duality relation.
When 0 < s = ¢ < p this duality is the one stated in Proposition 2.20. In order to keep the spirit of the
proof as it appears in [16] we make use of Luecking’s regions.

Theorem 4.3. Let 0 < s < p < 400, 0 < o < 400, Z = {z;} the (r,k)-lattice consisting of the centers
of the Luecking regions, and n € N U{0}. Let u be a finite positive Borel measure on D. Then, there is a
constant C' > 0 such that
1/s
J 150w duw) | <cls
D

T3 (a)s f € AT;(CV), (4.6)

if and only if {p(Rij)(1 ~ |2i5)) 757" } € T (2).

Proof. First, we prove that the condition {u(RM)(l — \zi7j|)_%_sn_l} € T°% (Z) implies (4.6). Let f €
p—s
AT (), then

1FP )<Y I GEig)lxr,,(2), 2 €D,

ij
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where R;; is a Luecking region (see Example 2.10) and %,; € R,; is such that |f()(3 ;)| =
SUP,,c 7, ; | (w)]. So that

/ @ dut) < NGl R

=S G (1 fa) 5o
ij (1= lzi ) >

N

Frst+1 (1 - |Z%]|)

Hence, by hypothesis and Proposition 2.20 it follows that

/|f(")(w)\s dp(w) < 1fM(z)) (1 - |Zm‘|)%+sn( |H( Dlai) =1z
D i

<||{um}||Tp (@I{IF G A= 2D T i, 2)-

Let us check that

1A G (= [z 7 " Ml

p/s

(Z) S ||f||T;(a)

Using the fact that there is n > 0 such that R; ; C D(% ;,n). Applying the mean property over each
hyperbolic disc D(%; ;,n) (see Lemma 2.14), it follows that

HIF™ Gl (U= 120D ", )
s/p

[ X G a- ]

T \z,i€lm (&)

s/p
1-— Zi.q pnta
S / ) ((1 - ||,§-7].|))np+2 / [f(w)[” dm(w) |d¢].
T \zi.i€lm(§) I D(Z:.5,1)
Since D(Z; ;,m) C D(zi j,2n), by Remark 2.6 we have

as

™ Gl (L= 120D % "2

p/s

Sl ] wer gt | e

T \#€'mEp(z,; 2n)

(2)

By Lemma 2.9, we can take My > M > 1/2 such that

U Dz, 2n) T, (),

2i,; €T M (§)

we have

IS Gl (@ = 1ziD T i, ()
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s/p

p _ dm(w)
s’/ / Z XD(zi 5,2 (W) | [f(w)] W |d€|.

T \Uarg (6) zi ;€M (§)

Since each z € D can be covered by a fixed number N of hyperbolic discs D(z; ;,27) (see Proposition 2.7),
we obtain

LA™ Gl (U= 120D 7 "z, ) < 1113

Ty(a)

Conversely, assume that there is a constant C' > 0 such that

/ £ (w)[* dps(aw)
D

for every f € AT, (). Let us see that {/J,(RZ‘J‘)(I - |Z7j7j|)7%78n71} €T (Z).Let A = {\;;} be a sequence
of T;(Z) and p; ; : [0,1] — {—1,1} the Radermacher functions. Moreover, for M > max {1,p/s,1/s,1/p} +
1/p we consider the function

1/s

Using Proposition 2.23, we have that

1/s
QFé”)(w)P du(w) | < C|F]

Integrating both sides with respect to x we obtain

1
[ 1@ de dutw) < 101 0

Ts
D O

Ts(a) S 1A

T:(2)-

By means of the Khinchine’s inequality we get that

) s/2
(L= Jziy)" 7 (
Z A2 |2"% du(z) S ||>‘H;“;(Z)'
Zi,j
D
Since xg,, (2) S ﬁ K ‘I’ we have that
s/2
2 XR”( 2)

/ > Ay
i

D

dp(z) S A7 (2)-
1— |Zij|)2n+2 Tp(Z)

Therefore, it follows that

H(R J)
| i j|° > (1= lzi4]) S
%-: VPSS A !

= 1Ak}l 2
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The arbitrariness of {|\; ;|°} in Tpl/S(Z) and Proposition 2.20 show that

{HR )=z 57 e % (2). O

p—s

5. Integration operator

In this last section, we focus on the application of our main result to the study of the integration
operator when acting on the RM (p, q) spaces. Let a g € H(D), by the term integration operator we refer
to the transformation

7,00 = [ Q9O ¢, zeD,
0
where f € H(D).
We recall that for 1 <p < 400, 1 < ¢ < +00
Ty : RM(p,q) — RM(p,q)

bounded if and only if g € B (see [2]). The same condition characterizes the boundedness of the operator
on Bergman spaces (see [4]).
The starting point for the study of T,, was the Hardy space setting. It was proved that,

Ty,: H* — H?

is bounded if and only if g € BMOA (see [24], [3]). Since then many authors have considered the action of
T, between distinct Bergman, Hardy spaces (see, i.e., [28], [18]). Based on the fact that an RM (p, q) space
is identified as a Bergman, when p = ¢, and a Hardy space H? corresponds to the limit case RM (o0, q),
here we consider the more general question of characterizing the symbols g such that

Ty : RM(p,q) = RM(t,s)

for 1 <p,q,t,s < +oo. It turns out that Theorem 4.1 is the key to this study.
First we present the answer to the question under consideration when the indices are finite.

Theorem 5.1. Let 1 < p,q,s,t < +o0o. The following statements are equivalent:

(1) The operator T, : RM (p,q) — RM (¢, s) is bounded.
(2) If Z = {z} is an (r,k)-lattice and denoting dugy(z) :=|g'(2)|" dm(z) it holds

(o) If1<s<qg<+4o00, 1 <t<p<+oo, then

p/ D) N\
3 R = |dé| < +oo.

141 9
S\

(b)) If1<s<qg<+o00,1<p<t<+oo, then

1/t a—s
/(mm_ﬂjﬂﬁil> €] < +00.

ver(e) (1—|z)p et
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(c) fl1<qg<s<+4oo,1<pt<ooorl<g=s<+o0,1<p<t<+oo, then

wg (D(zg,7)
sup g Tii i <X
TR
(d) If1<g=s<+00, 1 <t <p<+oo, then
1/t = 2
wy' (D(zg, T i
sup | sup Z (%) (1—zx]) < +o0
¢eT \ ¢erl zeS(I) (1 — |Zk|)p t

(3) The function g € H(D) satisfies that

(a) If1<s<g< 400, 1 <t<p<+oo,

(b)) If1<s<q<+o00,1<p<t< oo,
g e T
(¢) f1<g<s<+4oo,1<pt<worl<g=s<+4o0,1<p<t<—+oo,
gEBH%*é*%*%.
(d) If 1 <g=s< +o00, 1 <t<p<+o0, the measure
du(z) = |y ()7 (1= |27 dm(2)

is a Carleson measure.

Proof. Fix M > 1/2. In the beginning of the proof we remind that, given f € H(D),

s/t /s
pus(Ty(F)) =< / / T, () ()1 — )" dm(uw) | |de]
T \'am(8)
s/t 1/s
/| ] 1@lig@ia-ju) dngw) |l
T \FM(E)

by Theorems 3.1-3.2. Now, consider p the measure
dp(z) = |g'(w)|"(1 = [w)' ™" dm(w) = (1 = Jw])" ™" dpg(w).
In addition, taking into account that given the (r, x)-lattice {2z},

1— | = 1= |z], weD(z k1),

27
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for any w in the hyperbolic disc D(z,r), and we have

(D (zi,1)) = (1= [zk])' ™ pag (D (2, 7))

Bearing in mind these facts, the equivalences between (1) and (2) follow immediately by using Theorem 4.1.

From now on, we prove the equivalence between (2) and (3). We split the proof in different cases.

Let us prove that (2)(a) is equivalent to (8)(a). The idea is to show that

(p—t)gs
1" (D(zs )
Z 141 9 |d§‘
T 2, €l (§) (1= fzx]) ™

(p—t)gs
(g—s)pt

=[| | @@ a-ju)# " dnw) de].
T

First, let us check that

(p—t)gs

1/t . = (g—s)pt
/ 5 (ug (D(;ml))) &l
T

z€l (€

(p—t)gs
(g—s)pt

s[| [ wwia s e dnw) de].

T M (8)

Setting |g'(Zk)| := sup,,cprz 7 |9 (w)| we have

Lt D, = =
3 ((uq (D(zr, >>> el

1411
7 \serm \(1 =127

L\ (¢—s)pt
e
1_1
AR ( sup g/ (w)|(1 — |zx])" )
T ZkGFM(E) ’UJED(Z;WT)

[ = (ela-japi) ).

T \#x€Cm (&)

(5.1)

(5.2)

At this point we apply the mean value property over the hyperbolic disc D(Zg,s) with s < 3r (see

Lemma 2.14), so

(p—t)gs
pt

l/t ) Pt (g—s)pt
= |d¢]
1 — ‘Zk|
ZkGFM

(p—t)gs

(g—s)pt

/zke% <1—\zk|> /|9<>| dm(w)

T D(fk,S)

|dé].
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Since D(Z,s) C D(zk,4r), by Remark 2.6, we have

(p—t)gs
(p—t)gs

1/t pp—jt (g—s)pt
/ ( g (D, 1)) ) e
_+%_1
T \2x€lm (&) (1 = fz&l)?
(a—s)pt

< / 3 / 16/ ()[ 75 (1 — o) 25 dim(a) de].
T

2 €T (€) D (2 ,47)

Taking M4 > M > 1/2 such that

U D(Zka47ﬂ) CFM+(€)3
D(zk,r)NT a1 (§)#0

we get that
pt Ep—t;q-:
1/t p—t aer
Z lug/ (D(Zkar)> |d§|
—Jal)r et
T \#x€CMm(E) k
(p—t)as
ot (g—s)pt
g'(w)[r?
5/ / Z XD(zkAr)(w) %dm(w) |d€].
T \nar @ \#ETu(© (1= Jwl)™—>=

According to Proposition 2.7, each z € D belongs to no more than N hyperbolic discs D(z, 4r) with NV
only depending on the lattice. As a consequence

=
1 p—t a=s)pt
5 <ug“<D<zk,r>>> ‘ e
1 171
S\ L& N = [t
(p—t)gs
(¢g—s)pt
s[| ] e dnw |
T ', (§)
(p—t)gqs
(g—s)pt
5/ /|g'< 7 (1 — [w])ZF L dm(w) de],
T M (&)

where the last inequality follows by Lemma 2.3. So that, (5.2) holds.
Now, we proceed with the converse inequality. Using the pointwise estimate |g'(2)| < >, |9 (2)|XD(zp,r) (2)
and the fact (given by Lemma 2.9) that we can take M > M > 1/2 such that

D(z,7) C Tar, (€),
D(z,r)NT s (€)#D

it follows that
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(p—1t)gs
(a—s)pt
/ /|g’<w>|w<1—\w|> 1 dm(w) de|
T \wm(6)
(p—t)gs
(¢g—s)pt
_pt_ _pt_
IS [ e e |
T kT (©)ND(zi,r)
(p—t)gs
(g—s)pt
g/ 3 / (1~ ) 2 dim(uw) de).
D(zg,r

T zk€l M, (€

s

Taking 2, € D(zy,r) such that |¢'(Zx)| := SUD,, B zp ) l¢'(w)], and using Remark 2.6, we have

(p—t)gs

(g—s)pt

/ /|g'<w>w<1—|w|> 1 dim(w) de|
T I (€)

(p—t)gs

(g—s)pt

s/ Sl G (1 | de].

T zk€ln, (§)

By the mean value property over the hyperbolic disc D(Z, s) with s < 3r (see Lemma 2.14), we obtain

(p—t)gs
(g—s)pt
/ /|g’<w>|w<1—|w|> 1 dim(w) de|
T \'wm(€)
(p—t)gqs
ﬁ (q—s)pt

<[ = /|g'<w>|f% (1= |y de].

T \ #x€Tay () \p(z,,9)

Since D(Zk, s) C D(zk,4r) and Remark 2.6, we have

(p—t)gs
(g—s)pt

[ [ @i a-je)# dnw) de]
T

M (§)

(p—t)gs
p’it (a—s)pt

§/ 2. / lg'(w)|" dm(w) (1= |a) 57 |dé|

T 2, € M, (§) D (2 ,47)

(p—t)gqs
= (g—s)pt

< > > Io(z;.0) XD (i ar) (W)]g' ()" dm(w)

|dé].

1+L—¢
T \z€lar, (&) \ J (L —lz) 7>

Applying Remark 2.6 one more time, it follows that
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(p—t)gs
(g—s)pt
[ [ 1@l je)# dmw) de]
T \'m()
(p—t)gs
" pp—_tt (¢—s)pt
Ug (D(Z]a r))
5/ > > 1t |dg].
T 2k € M, (§) ZjGD(Zk,5r)( |ZJD

By Proposition 2.7, there are at most N = N(r, ) points z; of the (r, x)-lattice in the disc D(zy, 5r). Using
the fact that

lwlle < N*P||wl], 2.

for all w € CV, we obtain

(p—t)gs
(g—s)pt

/ /|g’<w>| (1 w) 25 dm(w) de|

T \'m(§)

(p—t)gs

1/t ppjt (g—s)pt
t/p (D(z5,7))
§/ 2 ((1—|zg|>+1) a

T Zker‘[\/1+(€) ZjED(Zk,5T)

Now, by Lemma 2.9, one can take M, > M, > 1/2 such that

U D(zk,57) C T, (§)-

2i€0 M (€)
Hence, we have
(p—t)gs
(g—s)pt
[ [ o) dnw) |
T \'m(6)
(p—t)qs
- Ve V)
p—t)gs H Z5,T
SN [0 >0 Xoe,m(E) <%> e
J zk€lm, (§) (I =lzl)e
Ut pt_ =85
(p=t)as wg' (D(z5,7)) 7"
< N =992 Z (g—;Jrll Z XD(z]-,ST)(Zk) |dg].
2 \z€la (€) (L= [z zi €l (€)

Since, for all j € N,

Z XD(z;,57) (Zk) <N,
zk€ln, (§)

where N = N(r, k), we have



32 T. Aguilar-Herndndez, P. Galanopoulos / J. Math. Anal. Appl. 523 (2023) 127028

(p—t)gs
(g—s)pt
[ ] @i a- ) dmw) |
T \'m(6)
it Epft))qs
p—t)gs t)gs 1/t . m o
SN—E((Q e N<§ s Z (%) |d¢|
T \#z€lm. (&) (L= lz)e ™
" BTN T
pg' (D(z,m) \"
< / > (g—ﬁ_l de].
2 \serme NIz
The last inequality follows by Lemma 2.3. Therefore (5.1) holds.
Combining Theorem 3.2 and Theorem 3.1, it follows that
t s = qs = ! 1-— .
Pt @)= ol e, =N =D
p—t p—t
By (5.1) and Remark 2.4, we conclude

(p—t)gs “qs

pt

( ) / Z /’Lé/t(D(Zkar)) o o |d§|
Pt g (g) =< _—
P aes (1_|Zk|)%+%71

T 2z €T (8)

So that, we have proved that (2)(a) and (3)(a) are equivalent.
Let us show the equivalence between (2)(b) and (3)(b), that is,

qs

/( sup g/ (w)[(1 — fw]) - ) |d¢|
4 welp(€)

YVt D(z =
x/ sup L(k#)) |d|.
4 \aeern(© (1= lzl)?

First, taking supremum over each hyperbolic disc D(zg,r) and M4 > M > 1/2 such that

S =

Q
|

U D(z,7) C Tar, (€),

D(zp,r)NCar (€)#D

it follows that

qs

/( 1/ (Dl ) ) g
e ZkEFM(ﬁ) (1- |Zk|) i1

1_1 -
g/ ( sup g/ (w)](1 — fw]) ) -
kA welnm, ()
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where in the last inequality we use Lemma 2.13 applied to a dense sequence in D. So, one direction of (5.3)
holds.

Now we continue with the proof of the converse inequality. As before, we can choose My > M > 1/2
such that

U D(zk,7) C Tar, (§).
D(zk,r)NT as (§)#0

So that, we have

411 o
/( sup g/ (w)|(1 — w])* ) de|
E weFM(g)

§/< Sup sup Ig’(w)l(llwl)l+%_%> |dg].

2k €T, (§) wED (zk,7)

Taking 2, € D(zk,r) such that |g'(Z)| == sup, 57y 9'(w)], applying Remark 2.6 and Lemma 2.14 for

s < 3r we obtain

gs

1o\
/( sup g’ (w)](1 — Jw])' "% p) |d¢]|
- weTlp (§)

qs

y11 o
5/( sup  1g'(Z) (1 — |+ ) de|
T ZkEFIVI+(§)

1/t s
dm(w 1_1
S s | [ wer 2] astir |
seelar, ) | (1 —|Zk)
T D (Zf,s)
1/t qus
_1_1
5/ Sup / lg'(w)[" dm(w) | (1—|z)' 7777 |d¢]
ZkEFM+(£)
T D (z1,4r)

5 Zk€F1W+(§) 1 - |Zk|) 5L

Recalling the argument we used in the equivalence of (2)(a) and (3)(a) we can find a positive constant
N = N(r, k) such that

qs

/ ( sup |g'<w>|<1—|w|>1+1i> ¢
5 wel'nm (§)

1/t
a:01—1) D(z;,r
N / Sup Z /1’9 ( (£+l)_)1 |d£|
tTp
T

ze€lay (€ z €D(z,5r) (1 - ‘ZkD
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1/t ats

gs(1—t qs D i

<N él—s )Nq—s / sup sup M |d¢].
4 \ekelar, (0 \=meDGrmr) (1= [z]) o™

By Lemma 2.9, one can take M, > M, > 1/2 such that

U DGz, 5r) c Tar(9).

2z €0, (§)

So that, we obtain

qs

1o\
/( sup g’ (w)](1 — Jw])' p> |dé]|
- weTa (§)

qs

1/tDz T s
s/( o L“:”) e
T

k€0 (&) (1= |2])

1/t qus
D(zg,r
S [ swp HEIECEI) )
T ZkGF]u(g) (1 — |Zk|)t P

Last inequality follows by Lemma 2.13. Therefore, we have proved that (2)(b) and (3)(b) are equivalent.
The equivalence between (2)(c) and (3)(c) follows immediately. Observe that for each D(zy,r)

1 1

1/t
g (D(zg,r 141 1_1
| %) Ssuplg'(2)[(1—[2)) FeteTe

So, one implication holds. Now, set z € . Applying the mean value property it occurs that

1/t

1,1 _1_1 t_t_t_
|9 ()L = |2 T Ta g g (w)[*(1 = Jw])™ =727 dim(w)

~

D(z,r)

Since the number of the hyperbolic discs D(zk,r) such that D(zg,r) N D(z,r) # 0 can be at most a fixed

number (see Proposition 2.7), we have

1/t
1.1 1 1 pg' (D(zk, 7
‘9/(2)|(1_|Z|)1+"+s pTa S sup J (l+l 1)_1_1
ko1 —|zgl)pTames

Now, we show that (3)(d) implies (2)(d). Fix an arc I C T. Then

pt

5 ( s/ (D(z17) ) ()
14,1
zL€S(I) (1_|Zk|)p+t !

< Y G (L - a2,

zr€S(I)

where |¢'(Zx)| := SUD,, e Bz ) |¢'(w)|. Using the mean value property on D(Zg,s) (see Lemma 2.14) with

s < 3r, it follows that
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3 ((ug (D( k,l>>l> (1l

141
zr€S(I) 1—|Zk|)p+t

(L fa])* 7 o
S X TR ') dm(w)
2 €S(I) D (1,5

Since D(Zk,s) C D(zk,4r), we obtain

pt

Yt Doy e
> (W) (1 -l

zLeS(I) 1- |Zk|

< Y (- | / g/ ()| dm(w)
2k €S(I) Dz, ,4r)

=Y [ )@l dmw).

ZkeS(I)D(ZkAT)

Taking an arc Iy C T such that |J,, cg
covering property of the lattice we have

1
,+?7
aes(n \(L— |x])? S(14)

which is enough in order to claim that we have accomplished our aim.
Let us continue proving that (2)(d) implies (3)(d). Fix an arc I C T. Then

/ (1 [wl) 2 |g' (w)| 7 dm(w)
S(I)

< ¥ / (1 [w]) 2 |g' (w)| 7 dm(w)

k' s(hnD(zr,r)

" Skl p% pt pt
Z <M> (1—1z]) S /(1_|w|)ﬁ‘g/(w)‘E dm(w)

35

n D(zk,4r) C S(I4) with |I| < [I;] and employing the finite

Bearing in mind that we can take 11 such that Up,, ,)nsr)zo P(2k: 1) € S(I4) with [I] < |I1], we have

pt

[ @by ) dmw) <3 (1~ [wl)#7 g/ (w)[# dmf(w)

s(1) #ESUH)D (2, 1)

= Y (- |ah / 19/ ()| dm(w).

2R €S(I4) D(zk,r)

The application of the submean value property leads to

/ (1~ )2 |g' ()| 2 dime)
S(1)
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p—t
_pt_ 1
S Y - [ g [ W@l | dm
2 €S(1y) D(zk,r) D(z,2r)
= 1— |z o2 12 /ﬁ D(z, 2r T
g9
2x€S(I4)
P_t_gL_;'_l % Pth
= > A lah P (g (DG 20)) T (1= )
2, €S(14)

pt

5 ((ué(D(zk,2r>_>> LoD,

1419
2e€S(I14) 1—|Zk‘)p t

Since the hyperbolic discs D(zy,2r) can be covered at most by a fixed number of hyperbolic discs D(z;,r)
and by the fact that one can take I, C T such that U, cg s, D(zk,3r) C S(Ii) with [I; | < [L,], then

pt

[ a1y @i dmw) s (W) (1 Jaal).

st sves N1 = |zl
Therefore, we are done. 0O

Closing this section we consider the action of T, : RM(p,q) — RM (t,s) when one of the parameters is
infinite, in particular when ¢ = 4-00. In other words, when T, : RM (p,q) — H?, since RM (o0, s) = H®. The
specific case p = ¢, that is when Ty, : A? — H?®, has already been considered by Wu in [28] and subsequently
by Miihkinen, Pau, Perild, and Wang in [18] for the multivariable case. We complete the scene for the more
general cases of indices as stated below.

Theorem 5.2. Let 1 < p,q,s < +oo. The following statements are equivalent:

(1) The operator T, : RM (p,q) — H?® is bounded.
(2) If Z ={z} is an (r,k)-lattice and denoting duy(z) = |¢'(2)|*> dm(z) it holds

(a) If 1 < s < g<+400,2<p<+o0,

(p—2)gs

2p

20
> <g> |d¢| < +oo.

— 1/p
L\ (1 — |zl)

(b)) If1<s<qg<+00,1<p<2

1/2 Fe=
/< sup Hg \ZAZk:T)) (D(Zk’r))> |d€| < +o0.

aer(e) (1—[zk])/P
(c) f1<g<s<+4oo,l1<p<worl<g=s<+4o0,1<p<2

1/2
D(zg,r
sup—ug ( (i_;)_); < +00.
e (1= [al)pti
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(d) If 1 < g=s< 400, 2<p< 400,

p—2
2p_ 2p
1/2 p—2
D
sup | sup L(Zk’l;)) (1—|zk]) < +o0.
get \ger o5y \ (1= l=)'/P
(3) The function g € H(D) satisfies that
(a) If1<s<q<+00,2<p< o0,
1 g
9" (I~ |22 € Ty (1).

(b)) If1<s<qg<+o00,1<p<2,

1 1 1

(c) f1<g<s<+4o0,1<p<ooorl<qg=s<+400,1<p<2 geBti v a,
2
(d) If1 < q=s< +00, 2 < p < 400, the measure |¢'(2)|7-2 (1 — |2|)7°2 dm(z) is a Carleson measure.

Proof. The proof of the equivalences between (1) and (2) follows as a consequence of Theorem 4.1. This is
due to the equivalent description of the Hardy norm as

/2 1/s

1Ty (F)ll e = / / F)Plg @) dm(z) | Jag]
T &)

(see [21, Theorem 1.3, p. 172]) and to the consideration du(z) = |¢'(2)|? dm(z).
The remaining equivalence results using the same arguments that were used in the proof of Theo-
rem 5.1. O
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