
1

Specification and Automated Analysis of
Inter-Parameter Dependencies in Web APIs

Alberto Martin-Lopez , Sergio Segura , Carlos Müller , and Antonio Ruiz-Cortés

Abstract—Web services often impose inter-parameter dependencies that restrict the way in which two or more input parameters can
be combined to form valid calls to the service. Unfortunately, current specification languages for web services like the OpenAPI
Specification (OAS) provide no support for the formal description of such dependencies, which makes it hardly possible to
automatically discover and interact with services without human intervention. In this article, we present an approach for the
specification and automated analysis of inter-parameter dependencies in web APIs. We first present a domain-specific language,
called Inter-parameter Dependency Language (IDL), for the specification of dependencies among input parameters in web services.
Then, we propose a mapping to translate an IDL document into a constraint satisfaction problem (CSP), enabling the automated
analysis of IDL specifications using standard CSP-based reasoning operations. Specifically, we present a catalogue of seven analysis
operations on IDL documents allowing to compute, for example, whether a given request satisfies all the dependencies of the service.
Finally, we present a tool suite including an editor, a parser, an OAS extension, a constraint programming-aided library, and a test suite
supporting IDL specifications and their analyses. Together, these contributions pave the way for a new range of specification-driven
applications in areas such as code generation and testing.

Index Terms—Web API, REST, inter-parameter dependency, DSL, automated analysis.

F

1 INTRODUCTION

Web Application Programming Interfaces (APIs) allow sys-
tems to interact with each other over the network, typically
using web services [21], [41]. Web APIs are rapidly prolif-
erating as the cornerstone for software integration enabling
new consumption models such as mobile, social, Internet
of Things (IoT), or cloud applications. Many companies are
also exposing their existing assets as private APIs, fostering
reusability, integration, and innovation within the boundar-
ies of their own companies [21], [22]. Popular API directories
such as ProgrammableWeb [36] and RapidAPI [39] currently
index over 23K and 10K web APIs, respectively, from mul-
tiple domains such as shopping, finances, social networks,
or telephony.

Modern web APIs typically adhere to the REpresent-
ational State Transfer (REST) architectural style, being re-
ferred to as RESTful web APIs [10]. RESTful web APIs are
decomposed into multiple web services, where each service
implements one or more create, read, update, or delete
(CRUD) operations over a resource (e.g., an invoice in the
PayPal API), typically through HTTP interactions. RESTful
APIs are commonly described using languages such as the
OpenAPI Specification (OAS) [33], originally created as a
part of the Swagger tool suite [44], or the RESTful API Mod-
eling Language (RAML) [38]. These languages are designed
to provide a structured description of a RESTful web API
that allows both humans and computers to discover and

• A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés are with the Smart
Computer systems Research and Engineering Lab (SCORE) and the
Research Institute of Informatics Engineering (I3US), Universidad de
Sevilla, Spain. E-mail: {alberto.martin, sergiosegura, aruiz}@us.es

• C. Müller is with the Research Institute of Informatics Engineering
(I3US), Universidad de Sevilla, Spain. E-mail: cmuller@us.es

understand the capabilities of a service without requiring
access to the source code or additional documentation. Once
an API is described in an OAS document, for example, the
specification can be used to generate documentation, code
(clients and servers), or even basic automated test cases [44].
In this article, we focus on RESTful web APIs and OAS as
the arguable standards for web integration. In what follows,
we will use the terms RESTful web API, web API, or simply
API interchangeably.

Web services often impose dependency constraints that
restrict the way in which two or more input parameters
can be combined to form valid calls to the service, we
call these inter-parameter dependencies (or simply dependencies
henceforth). For instance, it is common that the inclusion
of a parameter requires or excludes—and therefore depends
on—the use of some other parameter or group of paramet-
ers. As an example, the documentation of the Twilio API
[47] states that, when sending an SMS, either the body
parameter or the media_url parameter must be set, but
not both at the same time. Similarly, the documentation
of the QuickBooks payments API [37] explains that, when
creating a credit card, at least one of the parameters region
or postalCode must be provided, although both of them
are declared as optional.

Current specification languages for RESTful web APIs
such as OAS and RAML provide little or no support at
all for describing dependencies among input parameters.
Instead, they just encourage to describe such dependencies
as a part of the description of the parameters in natural
language, which may result in ambiguous or incomplete de-
scriptions. For example, the Swagger documentation states1

“OpenAPI 3.0 does not support parameter dependencies and

1. https://swagger.io/docs/specification/describing-parameters/

https://orcid.org/0000-0001-5501-9225
https://orcid.org/0000-0001-8816-6213
https://orcid.org/0000-0001-8157-9146
https://orcid.org/0000-0001-9827-1834
https://swagger.io/docs/specification/describing-parameters/

2

mutually exclusive parameters. (...) What you can do is document
the restrictions in the parameter description and define the logic
in the 400 Bad Request response”. The lack of support for
dependencies means a strong limitation for current specific-
ation languages, since without a formal description of such
constraints is hardly possible to interact with the services
without human intervention. For example, it would be
extremely difficult to automatically generate test cases for
the APIs of Twilio or QuickBooks without an explicit and
machine-readable definition of the dependencies mentioned
above. The interest of industry in having support for these
types of dependencies is reflected in an open feature request
in OAS entitled “Support interdependencies between query
parameters”, created in January 2015 with the message
shown below. At the time of writing this paper, the request
has received over 340 votes, and it has received 58 comments
from 36 participants [30].

“It would be great to be able to specify interdependencies
between query parameters. In my app, some query para-
meters become “required” only when some other query
parameter is present. And when conditionally required
parameters are missing when the conditions are met,
the API fails. Of course I can have the API reply back
that some required parameter is missing, but it would
be great to have that built into Swagger.”

This feature request has fostered an interesting discus-
sion where the participants have proposed different ways of
extending OAS to support dependencies among input para-
meters. However, each approach aims to address a particu-
lar type of dependency and thus show a very limited scope.
Addressing the problem of modelling and validating input
constraints in web APIs should necessarily start by under-
standing how dependencies emerge in practice. Inspired by
this idea, in a previous paper we conducted a thorough
study on the presence of inter-parameter dependencies in
industrial web APIs [25]. For that purpose, we reviewed
more than 2.5K operations from 40 real-world RESTful
APIs from different application domains. As expected, we
found that input dependencies are the norm, rather than
the exception, with 85% of the reviewed APIs having some
kind of dependency among their input parameters. More
importantly, as the main outcome of our study, we presented
a catalogue of seven types of dependencies consistently
found in RESTful web APIs. These findings, and specifically
the catalogue of dependencies (described in Section 2), serve
as the starting point for this work.

In this article, we first present a domain-specific lan-
guage for the specification of inter-parameter dependen-
cies in web APIs called Inter-parameter Dependency Language
(IDL). Second, we present an approach for the automated
analysis of IDL specifications using constraint program-
ming. In particular, we present a general-purpose map-
ping showing how to translate an IDL specification into a
constraint satisfaction problem (CSP). Then, we present a
catalogue of seven analysis operations of IDL specifications
and show how they can be automated using standard
constraint programming reasoning operations. For example,
given an IDL specification one may be interested to know if
it includes any inconsistencies like parameters that cannot
be selected (dead parameters), i.e., any request including

them would violate some dependency, or whether a given
call to the API satisfies all the dependencies. Our approach
is supported by several tools including an (Eclipse) editor,
a parser, an OAS extension (called IDL4OAS), a constraint-
programming aided library supporting the automated ana-
lysis of IDL specifications, and a complete test suite.

To illustrate the potential of the approach, we assess the
impact of our contributions in the domain of automated
testing of RESTful web APIs. Specifically, we compared
the effectiveness of random testing and IDLReasoner in
generating valid requests (i.e., those satisfying all inter-
parameter dependencies) and detecting failures in three
commercial APIs. As expected, random testing struggled
to generate valid requests: about 99% of the random re-
quests generated violated inter-parameter dependencies in
the APIs of Stripe and YouTube. In contrast, IDLReasoner
generated 100% valid requests for all the services under test.
More importantly, test cases generated with IDLReasoner
revealed 17 times more failures than random testing (1,209
vs. 67).

Beyond testing, our contributions prepare the ground
for a new range of specification-driven applications in web
APIs. For example, an API gateway supporting the auto-
mated analysis of IDL could automatically reject requests
violating any dependencies, without even redirecting the
call to the corresponding service, saving time and user
quota. Code generators could automatically include built-in
assertions to deal with invalid input combinations, prevent-
ing input-validation failures caused by violated dependen-
cies. Analogously, interactive API documentations could be
enriched with analysis capabilities to detect invalid calls
even before invoking the API. The range of new applications
is promising.

This paper is structured as follows: Section 2 presents the
catalogue of dependency patterns found in our systematic
review of real-world APIs. Section 3 introduces the syntax
of IDL using examples. Section 4 describes our approach for
the automated analysis of IDL specifications. Our tool suite
is presented in Section 5. Section 6 describes the evaluation
of our approach. Section 7 describes the possible threats to
validity and how these were mitigated. The related work is
discussed in Section 8. Finally, Section 9 concludes the paper
and presents future lines of research.

2 CATALOGUE OF DEPENDENCIES

The contributions presented in this paper are built on the
findings of a previous study by the authors on the presence
of inter-parameter dependencies in industrial RESTful web
APIs [25]. For the sake of understandability and to make our
paper self-contained, we next summarise those results more
relevant for this article, and redirect the interested reader to
the original paper for further details.

In our previous study, we reviewed more than 2.5K op-
erations from 40 real-world RESTful APIs including popular
APIs such as those of YouTube, Google Maps, Amazon S3,
and PayPal. The results of the study showed that depend-
encies are extremely common and pervasive—they appear
in 85% of the APIs under study (34 out of 40) across all
application domains and types of operations. Specifically,
we identified 633 dependencies among input parameters

3

(a) Dependency types. (b) Occurrences in APIs

Figure 1: Distribution of dependencies by type and percentage of APIs.

in 9.7% of the API operations analysed (248 out of 2,557).
The collected data helped us characterise dependencies
identifying their most common shape—dependencies in
read operations involving two query parameters—, but
also exceptional cases such as dependencies involving up
to 10 parameters and dependencies among different types
of parameters, e.g., header and body parameters. More
importantly, we classified the inter-parameter dependencies
identified into seven general types, described below.

Before going in depth into each type of dependency, a
number of considerations must be taken into account. First,
for the sake of simplicity, dependencies are described using
single parameters. However, all dependencies can be gen-
eralised to consider groups of parameters using conjunctive
and disjunctive connectors. Second, dependencies can affect
not only the presence or absence of parameters, but also the
values that they can take. In what follows, when making
reference to a parameter being present or being absent, it could
also mean a parameter taking a certain value. Finally, when
introducing each dependency type, we will make reference
to Figure 1, which shows the distribution of dependencies
by type (Figure 1a) and the percentage of subject APIs
including occurrences of each dependency type (Figure 1b).
Next, we describe the seven types of dependencies found in
our study, including examples.

Requires. The presence of a parameter p1 in an API call
requires the presence of another parameter p2. As previ-
ously mentioned, p1 and p2 can be generalised to groups
of parameters and parameter-value relations. Based on our
results, this is the most common type of dependency in web
APIs, representing 35% of all the dependencies identified
in our study (Figure 1a), and being present in 47.5% of
the subject APIs (Figure 1b). As an example, in the GitHub
API [17], when creating a card in a project, if the parameter
content_id is present, then content_type becomes re-
quired.

Or. Given a set of parameters p1, p2, . . . , pn, one or more

of them must be included in the API call. As illustrated in
Figure 1, this type of dependency represents only 3% of the
dependencies identified in the subject APIs. Interestingly,
however, we found that more than one fourth of the APIs
(27.5%) included some occurrence of this dependency type,
which suggests that its use is fairly common in practice.
As an example, in the Google Maps Places API [18], when
searching for places, both query and type parameters are
optional, but at least one of them must be used.

OnlyOne. Given a set of parameters p1, p2, . . . , pn, one, and
only one of them must be included in the API call. As
observed in Figure 1, this group of dependencies represent
17% of all the dependencies identified, and they appear in
almost half of the APIs under study (47.5%). Among others,
we found that this type of dependency is very common
in APIs from the category media, where a resource can be
identified in multiple ways, e.g., a song can be identified
by its name or by its ID, and only one value must be
typically provided. For example, in the Last.fm API [23],
when getting the information about an artist, this can be
identified with two possible parameters, artist or mbid,
and only one must be used.

AllOrNone. Given a set of parameters p1, p2, . . . , pn, either
all of them are provided or none of them. Very similarly
to the Or dependency type, only 6% of the dependencies
found belong to this category, nonetheless, they are present
in about one third of the APIs under study (30%). In the Yelp
API [53], for example, when searching for businesses, the
location can optionally be specified with two parameters,
latitude and longitude, which must be used together.

ZeroOrOne. Given a set of parameters p1, p2, . . . , pn, zero or
one can be present in the API call. Figure 1 reveals that this
dependency type is common both in terms of the number
of occurrences (18% of the total) and the number of APIs
including it (47.5%). As an example, in the search operation
of the YouTube API [55], it is possible to filter results

4

Figure 2: ZeroOrOne dependency in the YouTube API.

with four optional but mutually exclusive parameters, as
depicted in Figure 2.

Arithmetic/Relational. Given a set of parameters
p1, p2, . . . , pn, they are related by means of arithmetic
and/or relational constraints, e.g., p1 + p2 < 100. As
shown in Figure 1, this type of dependency is the most
recurrent across the subject APIs, being present in half of
them. Moreover, 17% of the dependencies found are of
this type. An example of a relational dependency is found
in the Twitter API [54]: when searching for tweets, the
max_id parameter must be greater than or equal to the
since_id parameter, otherwise no tweets will be returned.
In the payments API Forte [11], the following arithmetic
dependency exists: when creating a merchant application,
this can be owned by up to four businesses, in which case
the sum of the percentages cannot be greater than 100.

Complex. These dependencies involve two or more of the
types of constraints previously presented. Based on our res-
ults, they are typically formed by a combination of Requires
and OnlyOne dependencies. As illustrated in Figure 1, we
found 4% of complex dependencies, being present in 7.5%
of the subject APIs. Figure 3 depicts a Complex dependency
present in the Foursquare API [12]: if radius is used, then
either intent is set to ‘browse’ or intent is set to
‘checkin’ and categoryId or query are present too.

3 INTER-PARAMETER DEPENDENCY LANGUAGE

In this section, we present Inter-parameter Dependency Lan-
guage (IDL), a textual domain-specific language for the spe-
cification of dependencies among input parameters in web
APIs. Specifically, IDL is designed to express the seven types
of inter-parameter dependencies identified in our study
on real-world APIs and described in the previous section.
This includes support for the dependencies discussed in
the related OAS feature request in GitHub [30]. For the
design of the language, we took inspiration from the input
format of the combinatorial testing tool Pairwise Independ-
ent Combinatorial Testing (PICT) [35], by Microsoft, where
constraints among input parameters can be defined using

Figure 3: Complex dependency present in the GET
/venues/search operation of the Foursquare API.

invariants, conditional definitions (if/then/else), logical op-
erators and relational operators.

It is worth mentioning that IDL focuses on the definition
of dependencies among parameters, but not in the definition
of the parameters themselves. This is because IDL is specific-
ally designed to be easily integrated into API specification
languages such as OAS or RAML, where parameters are
specified in different ways. Thus, in what follows, we simply
assume that each parameter has a name and a domain.

A simplified version of the grammar of the language is
provided in Listing 1—the full version is available as a part
of the implementation of IDL [19] and on the supplemental
material provided with this article [43].

The key elements of the language are terms and predic-
ates. Both of them can evaluate to true or false. A term is an
atomic element of the language and can be represented by:
(1) a parameter’s name (e.g., p1) being evaluated as true if
the parameter is set (regardless of the value), or false other-
wise; or (2) a parameter-value relation, evaluated as true if
the parameter is selected and satisfies the relation. This rela-
tion can be defined using standard relational operators (e.g.,
p1>=100) or a wild card match—using the operator LIKE—
if the parameter is a string (PATTERN_STRING in Listing 1),
with ’*’ meaning zero or more characters and ’?’ meaning
one character (e.g., p3 LIKE ‘test_*’). A predicate is a
combination of one or more terms and dependencies joined
by the logical operators NOT, AND, and OR. Parentheses
are allowed in order to specify the operator priority. In
what follows, we describe the IDL notation of each type
of dependency.

Requires. This type of dependency is expressed as “IF
predicate THEN predicate;”, where the first predicate is
the condition and the second is the consequence. The following
listing shows two examples. Dependency in line 2, for in-
stance, indicates that invocations including the parameters
p1 and p2 should not include p3 nor p4, otherwise the call
would be invalid.

1 IF p1 THEN p2=='A';
2 IF p1 AND p2 THEN NOT (p3 OR p4);

Or. This type of dependency is expressed using the keyword
“Or” followed by a list of two or more predicates placed
inside parentheses: “Or(predicate, predicate [, ...]);”.
The dependency is satisfied if at least one of the predicates
evaluates to true. Two examples follow. Dependency in
line 1, for instance, specifies that valid invocations should
include at least one of the parameters p1, p2 or p3.

1 Or(p1, p2, p3);

5

1 Model:
2 Dependency*;
3 Dependency:
4 RelationalDependency | ArithmeticDependency |
5 ConditionalDependency | PredefinedDependency;
6 RelationalDependency:
7 Param RelationalOperator Param;
8 ArithmeticDependency:
9 Operation RelationalOperator DOUBLE;

10 Operation:
11 Param OperationContinuation |
12 '(' Operation ')' OperationContinuation?;
13 OperationContinuation:
14 ArithmeticOperator (Param | Operation);
15 ConditionalDependency:
16 'IF' Predicate 'THEN' Predicate;
17 Predicate:
18 Clause ClauseContinuation?;
19 Clause:
20 (Term | RelationalDependency | ArithmeticDependency
21 | PredefinedDependency) | 'NOT'? '(' Predicate ')';
22 Term:
23 'NOT'? (Param | ParamValueRelation);
24 Param:
25 ID | '[' ID ']';
26 ParamValueRelation:
27 Param '==' STRING('|'STRING)* |
28 Param 'LIKE' PATTERN_STRING | Param '==' BOOLEAN |
29 Param RelationalOperator DOUBLE;
30 ClauseContinuation:
31 ('AND' | 'OR') Predicate;
32 PredefinedDependency:
33 'NOT'? ('Or' | 'OnlyOne' | 'AllOrNone' |
34 'ZeroOrOne') '(' Clause (',' Clause)+ ')';
35 RelationalOperator:
36 '<' | '>' | '<=' | '>=' | '==' | '!=';
37 ArithmeticOperator:
38 '+' | '-' | '*' | '/';

Listing 1: Simplified grammar of IDL. STRING, DOUBLE
and BOOLEAN are standard data types.

2 Or(p1, p3 AND p5, p6=='B');

OnlyOne. These dependencies are specified using the
keyword “OnlyOne” followed by a list of two or more
predicates placed inside parentheses: “OnlyOne(predicate,
predicate [, ...]);”. The dependency is satisfied if one,
and only one of the predicates evaluates to true. Examples
of this dependency are shown below. The dependency in
line 1, for example, indicates that valid invocations should
include either the parameter p1 or the parameter p2 with
value ‘B’, but not both at the same time.

1 OnlyOne(p1, p2=='B');
2 OnlyOne(p1 OR p2, p3 AND (p4 OR p5));

AllOrNone. This type of dependency is specified using the
keyword “AllOrNone” followed by a list of two or more pre-
dicates placed inside parentheses: “AllOrNone(predicate,
predicate [, ...]);”. The dependency is satisfied if either
all the predicates evaluate to true, or all of them evaluate to
false. The dependency in line 1 below, for instance, indicates
that valid calls are those including either the parameter p1
and p2 with value true, or conversely, those not including
the parameter p1 and not including p2 with value true.

1 AllOrNone(p1, p2==true);
2 AllOrNone(p1 AND p2, p3 LIKE 'test_*' OR p4<10);

ZeroOrOne. These dependencies are specified using
the keyword “ZeroOrOne” followed by a list of
two or more predicates placed inside parentheses:

“ZeroOrOne(predicate, predicate [, ...]);”. The de-
pendency is satisfied if none or at most one of the predicates
evaluates to true. Two examples follow. Line 2, for instance,
specifies that valid invocations must meet zero or one (but
not both) of the two conditions between parentheses: (1)
including the parameter p1, or (2) including the parameter
p2 with a value less than or equal to 100.

1 ZeroOrOne(p1, p2, p3, p4);
2 ZeroOrOne(p1, p2<=100);

Arithmetic/Relational. Relational dependencies are spe-
cified as pairs of parameters joined by any of the following
relational operators: ==, !=, <=, <, >= or > (see examples
in lines 1 and 2 below). Arithmetic dependencies relate two
or more parameters using the operators +, - , *, / followed
by a final comparison using a relational operator. Lines 3
and 4 of the following listing show examples of arithmetic
dependencies.

1 p1 < p2;
2 p1 != p2;
3 p1 + p2 - p3 * p4 == 100;
4 p1 * p2 / ((p3 - p4) * p5) < 176.89;

Complex. These dependencies are specified as a combina-
tion of the previous ones since, as previously mentioned,
predicates can contain other dependencies. As an exception
to this rule, predicates cannot include Requires dependencies
to avoid over-complicated specifications (such dependen-
cies can be expressed in simpler ways). The following listing
shows some examples of complex dependencies. Depend-
ency in line 1 combines four different types of dependencies:
Requires, ZeroOrOne, OnlyOne and Relational.

1 IF p1 THEN ZeroOrOne(p2, OnlyOne(p3, p4>p5));
2 AllOrNone(p1+p2<100, Or(p3=='A', Or(p4, p5>p6)));

It is worth making a few general clarifications about the
language regarding dependencies Or, OnlyOne, AllOrNone
and ZeroOrOne. These are not strictly necessary, as they
could be translated to several Requires dependencies. How-
ever, they are provided as syntactic sugar to make specific-
ations succinct and self-explanatory. An example is given in
the following IDL excerpt (lines 1-3). Secondly, they cannot
contain negated elements within their parentheses, since
such constraints can be expressed in simpler ways (lines 5-
6). Finally, they can optionally be preceded by the keyword
“NOT” to negate the meaning of the constraint (see line 8
below for an example).

1 AllOrNone(p1, p2); // Equivalent to 1) and 2):
2 IF p1 THEN p2; // 1)
3 IF p2 THEN p1; // 2)
4

5 Or(p1, NOT p2); // Invalid dependency
6 IF p2 THEN p1; // Equivalent to line 5
7

8 NOT OnlyOne(p1, p2); // Valid negated dependency

Listing 2 depicts the IDL specification of the Google
Maps Places API [18]. It comprises seven operations, four of
which have dependencies. The API has eight dependencies
in total, including six out of the seven types of dependencies
supported in IDL (all of them except the complex ones),
namely:

6

• Line 2: If the parameter radius is used, then
rankby cannot be set to ‘distance’, and vice
versa.

• Line 3: If the parameter rankby is set to
‘distance’, then at least one of the following para-
meters must be present: keyword, name or type.

• Line 4: The parameter maxprice must be greater
than or equal to minprice.

• Line 7: Either both location and radius are used,
or none of them.

• Line 8: query and type are both optional paramet-
ers, but at least one of them must be used.

• Line 9: Equal to line 4.
• Line 12: One, and only one of the parameters

maxheight and maxwidth must be used.
• Line 15: If the parameter strictbounds is used,

then both location and radius must be used too.

1 // Operation: Search for places within specified area:
2 ZeroOrOne(radius, rankby=='distance');
3 IF rankby=='distance' THEN keyword OR name OR type;
4 maxprice >= minprice;
5

6 // Operation: Query information about places:
7 AllOrNone(location, radius);
8 Or(query, type);
9 maxprice >= minprice;

10

11 // Operation: Get photo of place:
12 OnlyOne(maxheight, maxwidth);
13

14 // Operation: Automcomplete place name:
15 IF strictbounds THEN location AND radius;

Listing 2: IDL specification of Google Maps Places API.

4 AUTOMATED ANALYSIS

The analysis of IDL deals with the extraction of information
from IDL specifications. For example, given an IDL specific-
ation, we might be interested to know whether it contains
errors (e.g., inconsistent dependencies) or whether a given
API call is valid, i.e., it meets all the constraints defined
in the specification. Performing these analyses manually is
hardly possible in practice.

In what follows, we present our approach for the auto-
mated analysis of IDL specifications using constraint pro-
gramming. In particular, we first present the formal se-
mantics of IDL by explaining how IDL specifications can
be mapped to a constraint satisfaction problem (CSP). Then,
we present a catalogue of seven analysis operations of IDL
specifications and show how they can be automated using
standard constraint programming reasoning operations.

4.1 Formal Semantics of IDL
The primary objective of formalising IDL is to establish a
sound basis for the automated support. Following the form-
alisation principles defined by Hofstede et al. [45], we follow
a transformational style by translating IDL specifications to
a target domain suitable for the automated analysis (Primary
Goal Principle). Specifically, we propose translating IDL spe-
cifications to a CSP that can be then analysed using state-of-
the-art constraint programming tools. A similar approach
was followed by the authors to automate the analysis of
feature models [3] and service level agreements [27], [28].

A CSP is defined as a 3-tuple (V,D,C) composed of
a set of variables V , their domains D and a number of
constraints C . A solution for a CSP is an assignment of
values to the variables in V from their domains in D so
that all the constraints in C are satisfied.

Table 1 describes the mapping from IDL to CSP. The
first row of the table depicts how each input parameter is
mapped to CSP variables, domains and constraints. Recall
that both the name and domain of each parameter should be
taken from the API specification (c.f. pi and domain() func-
tion). For each parameter, two CSP variables are created:
(1) one representing the parameter itself (c.f. pi), and (2) a
Boolean variable to express whether the parameter is set
or not (c.f. piSet). Optionally, we may also get information
from the specification about whether each parameter is
required (mandatory) or not. If a parameter pi is required
(i.e., it must be present in all API calls), the constraint
piSet == true is added to the set of constraints C . The
second and third rows of the mapping in Table 1 express
how the terms are mapped to a CSP. Every time a parameter
is found in a predicate, it must be checked whether the
parameter is present in the API request. If so, it will evaluate
to true, otherwise it will evaluate to false (c.f. piSet == true
from the second row of the table). In the case of parameters
having a relational condition with a value, it must also be
checked that the parameter satisfies such condition (c.f. third
row of the table). Finally, predicates and dependencies are
defined recursively using the function map(E), where E is
either a term, a predicate or a dependency. Exceptionally,
relational and arithmetic dependencies are only evaluated if
all the involved parameters are present in the API request
(c.f. last two rows in Table 1).

As an example, Listing 3 shows the resulting CSP ob-
tained as a result of applying the proposed mapping to the
IDL specification of the Search operation in the Google Maps
Places API, specified in Listing 2 (lines 1-4). Analogously,
Listings 4 and 5 depict the CSP constraints derived from the
Query and Get operations in Listing 2, respectively (lines 6-9
and 11-12).

1 V = { radius, radiusSet, rankby, rankbySet, keyword,
2 keywordSet, name, nameSet, type, typeSet,
3 maxprice, maxpriceSet, minprice, minpriceSet }
4

5 D = { int, Boolean, string, Boolean, string, Boolean,
6 string, Boolean, string, Boolean, int, Boolean,
7 int, Boolean }
8

9 C = {//ZeroOrOne(radius, rankby=='distance');
10 ((radiusSet==true =⇒ ¬(rankbySet==true AND
11 rankby=='distance') AND ((rankbySet==true AND
12 rankby=='distance') =⇒ ¬radiusSet==true)) OR
13 ((¬radiusSet==true) AND ¬(rankbySet==true
14 AND rankby=='distance'))) AND
15 //IF rankby=='distance' THEN keyword OR name OR
16 // type;
17 ((rankbySet==true AND rankby=='distance') =⇒
18 ((keywordSet==true) OR (nameSet==true) OR
19 (typeSet==true))) AND
20 //maxprice >= minprice;
21 (((maxpriceSet==true) AND (minpriceSet==true)) =⇒
22 (maxprice ≥ minprice)) }

Listing 3: CSP of Search operation in Listing 2.

1 C = {//AllOrNone(location, radius);
2 ((locationSet==true =⇒ radiusSet==true) AND
3 (radiusSet==true =⇒ locationSet==true) AND
4 (¬locationSet==true =⇒ ¬radiusSet==true) AND
5 (¬radiusSet==true =⇒ ¬locationSet==true)) AND

7

Mapping from IDL to CSP
API Parameters CSP Mapping

[Parameters] P ∀pi ∈ P,

V ← V ∪ pi ∪ piSet

D ← D ∪ domain(pi) ∪Boolean

C ← C ∪ piSet == true (if pi is required)

IDL Element CSP Mapping

Te
rm

s:
m

ap
(T

)

[Parameter]
pi C ← C ∪ {piSet == true}

[Parameter-Value Relation]
pi relOp? v C ← C ∪ {pi relOp v ∧ piSet == true}

Pr
ed

ic
at

es
:

m
ap

(P
)

[Term] T map(T)

[Dependency] D map(D)

[Term AND Predicate]
T AND P C ← C ∪map(T) ∧map(P)

[Term OR Predicate]
T OR P C ← C ∪map(T) ∨map(P)

[NOT Predicate]
NOT P C ← C ∪ ¬map(P)

D
ep

en
de

nc
ie

s:
m

ap
(D

)

[Requires]
IF Pi THEN Pj

C ← C ∪map(Pi) =⇒ map(Pj)

[Or]
Or(P1, ..., Pn) C ← C ∪

∨n
i=1 map(Pi)

[OnlyOne]
OnlyOne(P1, ..., Pn) C ← C ∪ {∀ni=1,∀nj=1|i 6= j,map(Pi) =⇒ ¬map(Pj)}

[AllOrNone]
AllOrNone(P1, ..., Pn) C ← C ∪ ∀ni=1, ∀nj=1|i 6= j, {map(Pi) =⇒ map(Pj)} ∧ {¬map(Pi) =⇒ ¬map(Pj)}

[ZeroOrOne]
ZeroOrOne(P1, ..., Pn) C ← C ∪ {map(OnlyOne(P1, ..., Pn))} ∨ {

∧n
i=1 ¬map(Pi)}

[Relational Dependency]
pi relOp? pj C ← C ∪ {(piSet == true ∧ pjSet == true) =⇒ pi relOp pj}

[Arithmetic Dependency]
pi arOp� pj arOp... pn relOp? v C ← C ∪ {(piSet == true ∧ pjSet == true ∧ ... pnSet == true)

=⇒ (pi arOp pj arOp ... pn relOp v)}
? relOp = {< | == | 6= | ≥ | ≤ | >}
� arOp = {+| − | ∗ |÷}

Table 1: IDL to CSP mapping.

6 //Or(query, type);
7 (querySet==true OR typeSet==true) AND
8 //maxprice >= minprice;
9 (((maxpriceSet==true) AND (minpriceSet==true)) =⇒

10 (maxprice ≥ minprice)) }

Listing 4: Constraints of Query operation in Listing 2.

1 C = {//OnlyOne(maxheight, maxwidth);
2 ((maxheightSet==true =⇒ ¬maxwidthSet==true) AND
3 (maxwidthSet==true =⇒ ¬maxheightSet==true)) }

Listing 5: Constraints of Get operation in Listing 2.

4.2 Analysis Operations
In this section, we propose a catalogue of seven analysis
operations on IDL specifications. These operations leverage
the formal description of the dependencies using IDL to ex-
tract helpful information such as identifying inconsistencies
or checking whether an API call is valid or not. Analogous
analysis operations have been defined in the context of the
automated analysis of feature models [3] and service level
agreements [27], [28]. We may remark that it is not our
intention to propose an exhaustive set of analysis operations
as that would exceed the scope of this article.

For the description of the operations in CSP, we will
refer to the input IDL specification of an API operation IDL
and the list of the parameters of the API operation P, taken
from the API specification. Note that P is necessary since it
contains the information about the types of the parameters,
and whether each parameter is defined as required or op-
tional in the API specification. Additionally, we will use the
following auxiliary operations:

• map(IDL,P). This operation translates an input IDL
specification IDL and the list of parameters P from
the API specification to a CSP following the mapping
described in Section 4.1.

• solve(CSP). This standard CSP-based operation
returns a random solution for the input CSP (if any).

• solveAll(CSP). This standard CSP-based opera-
tion returns all the solutions of the input CSP (if any).

• filter(CSP,L). This operation takes as input a
CSP and a list L of pairs variable-value to be set,
{{p1, v1}, {p2, v2}, . . . , {pn, vn}}, and returns the in-
put CSP with additional constraints setting each
variable in L, pi, to its corresponding value vi, i.e.,
C ← C ∪ {pi = vi} .

8

In what follows, for each operation, we provide a name,
a description, an example, and an explanation of how it is
mapped to a CSP.

Consistent specification. This operation receives as input
the IDL specification of an API operation and its list of
parameters, and returns a Boolean indicating whether the
specification is consistent or not. An IDL specification is
consistent if there exists at least one request satisfying all the
dependencies of the specification. Inconsistent specifications
are the result of users’ mistakes and therefore automating
their detection can be very helpful. This operation can be
translated to a CSP as follows:

isConsistentIDL(IDL,P) ⇐⇒ solve(map(IDL,P)) 6= ∅

Dead parameter. This operation receives as input the IDL
specification of an API operation, its list of parameters, and
the name of a parameter, and it returns a Boolean indicating
whether the parameter is dead or not. A parameter is dead if
it cannot be included in any valid call to the service. Dead
parameters are caused by inconsistencies in the specification
or the design of the service. They may be hard to detect
when the inconsistency is caused by several inter-related
dependencies. For example, in the following IDL specifica-
tion, the parameter p1 is dead since both constraints cannot
be satisfied at the same time.

1 IF p1 THEN p2;
2 OnlyOne(p1, p2);

Given an input parameter p, this operation can be
automated by setting the CSP variable representing the
presence of p to true (pSet = true) and checking whether
the problem has at least one solution. If there is no solution,
it means that p is dead, namely:

isDeadParameter(IDL,P,p) ⇐⇒
solve(filter(map(IDL,P), {{pSet, true}})) = ∅

False optional. This operation assumes that the specification
of each parameter indicates, as in OAS, whether the para-
meter is required (i.e., it must be included in every service
request) or optional. This operation takes as input the IDL
specification of an API operation, its list of parameters, and
the name of a parameter specified as optional, and returns a
Boolean indicating whether the parameter is false optional
or not. A parameter is false optional if it is required (i.e., it
must be included in all API calls to satisfy inter-parameter
dependencies) despite being defined as optional. False op-
tional parameters should be avoided since they give the user
a wrong idea of the domain. For example, suppose that the
parameter p1 is defined as mandatory (e.g., “required”:
true in OAS) and p2 is declared as optional (“required”:
false). The constraint “IF p1 THEN p2” in IDL would
make p2 a false optional parameter.

Given an input parameter specified as optional p, this
operation can be automated setting the CSP variable rep-
resenting the presence of p to false (pSet = false) and
checking whether the problem has at least one solution. If it
has no solutions, p is false optional. Note that the input IDL
specification should be consistent, otherwise all parameters

would be classified as false optional. This operation can be
translated to a CSP as follows:

isFalseOptional(IDL,P,p) ⇐⇒
isConsistentIDL(IDL,P) ∧
solve(filter(map(IDL,P), {{pSet, false}})) = ∅

Valid specification. This operation receives as input the IDL
specification of an API operation and its list of parameters,
and returns a Boolean indicating whether the specification
is valid or not. An IDL specification is valid if it is consistent
(i.e., there exists at least one request satisfying all the de-
pendencies of the specification) and it does not contain any
dead or false optional parameters. This operation, defined
as a composition of the previous ones, can be helpful to
easily detect errors when editing service specifications. This
operation can be translated to a CSP as follows:

isValidIDL(IDL,P) ⇐⇒ isConsistentIDL(IDL,P) ∧
∀pi ∈ P(¬isDeadParameter(IDL,P,pi)

∧¬isFalseOptional(IDL,P,pi))

Valid request. This operation takes as input the IDL spe-
cification of an API operation, its list of parameters, and a
service request (i.e., a list of parameters and their values)
and returns a Boolean indicating whether the request is
valid or not. A service request is valid if it satisfies all
the dependencies of the IDL specification. For example,
the following is a valid request for the IDL specification
depicted in Listing 6 : {p1=2,p2=5}.

1 Or(p1, p2 AND p3);
2 OnlyOne(p2, p3);

Listing 6: Valid IDL specification.

Let R be an input request, i.e., a list of parameters and
their respective values. This operation can be translated
to a CSP by (1) setting the CSP variables related to each
parameter to the value indicated in R, (2) setting the CSP
variables related to the presence of the parameters in R to
true (RiSet = true), (3) setting the CSP variables related to
the parameters not included in R to false (OiSet = false
where O = P \ R), and (4) checking whether the problem
has at least one solution. If it has no solutions, it means that
the request is not valid, namely:

isValidRequest(IDL,P,R) ⇐⇒ O = P \ R ∧
solve(filter(map(IDL,P),R ∪
{{R1Set, true}, {R2Set, true}, . . . , {RnSet, true}
{O1Set, false}, {O2Set, false}, . . . , {OkSet, false}})) 6= ∅

Valid partial request. This operation is analogous to the
previous one but the input request is partial or incom-
plete, meaning that some other parameters should still be
included to make it a full valid request. This operation
returns a Boolean indicating whether the partial request is
valid. A partial request is valid if it does not include any
contradiction, i.e., it can be extended with new parameters
to become a valid request.

9

Let S be a partial input request. This operation can be
specified as a CSP as follows:

isValidPartialRequest(IDL,P,S) ⇐⇒
solve(filter(map(IDL,P),S ∪
{{S1Set, true}, {S2Set, true}, . . . , {SnSet, true})) 6= ∅

Random request. This operation receives as input the IDL
specification of an API operation and its list of parameters,
and returns a random valid request for the operation. This
operation can be automated by translating the IDL specific-
ation to a CSP and requesting the solver to find a random
solution, namely:

randomRequest(IDL,P) = solve(map(IDL,P))

Table 2 summarizes some of the potential applications
of the proposed analysis operations. As illustrated, four
out of the seven operations are intended to automatically
identify errors in IDL specifications. Note that although the
operations Consistent specification, Dead parameter and False
optional are related, each of them addresses a specific type
of inconsistency and therefore they are helpful to point the
users towards the specific types of errors found in their
specification. The operation Valid request has applications in
testing and monitoring. For example, complex test data gen-
erators could use this operation to check whether the gen-
erated API requests are valid or not. Also, an API gateway
supporting this operation could detect and monitor invalid
calls without the need to redirect the request to the target
service, providing faster responses and reducing the con-
sumption of user quota. The operation Valid partial request
may be helpful for the early detection of inconsistencies. For
example, an interactive API documentation supporting this
operation could warn the user about inconsistencies as soon
as a dependency is violated, without having to wait until
constructing the full request. Finally, the operation Random
request, in combination with test data generators, can be very
useful for testing of web services as shown in Section 6.

Operation Applications

Consistent specification Specification error detection
Dead parameter Specification error detection
False optional Specification error detection
Valid specification Specification error detection
Valid request Testing, monitoring
Valid partial request Interactive documentation
Random request Testing

Table 2: Potential applications of the analysis operations.

5 TOOLING SUPPORT

As a part of our contribution, we provide a set of tools
supporting the specification and analysis of inter-parameter
dependencies in web APIs, including an editor of IDL
specifications, an extension for the OAS language and an
analysis library supporting the integration of our approach
into any external project. Together, these components make

Figure 4: IDL Editor.

our work readily applicable in practice and provide a refer-
ence implementation for future contributions on the topic.

5.1 IDL Editor and Parser
We implemented IDL using Xtext [50], a popular framework
for the development of programming languages and DSLs.
Xtext takes a grammar as input and generates a complete
set of tools as output, including a linker, a compiler, a parser
and a fully-fledged editor supporting features such as code
completion, type checking, syntax coloring and validation.
A simplified version of the IDL grammar is provided in
Listing 1, the full version is available as a part of the
implementation of IDL [19] (and also on the supplemental
material provided with this article [43]). Figure 4 depicts a
screenshot of the editor, showing some of its capabilities:
code completion, syntax coloring and error checking. The
editor is based on Eclipse, but is compatible with any web
browser or IDE supporting the Language Server Protocol
[24].

5.2 IDL4OAS: An OAS Extension
In order to foster the adoption of our approach, we propose
an extension of OAS for the specification of inter-parameter
dependencies using IDL. We call this extension IDL4OAS.
An OAS document describes a REST API in terms of the
elements it comprises, namely paths, operations, resources,
request parameters and responses. OpenAPI provides a way
to add extra information that may not be supported natively.
This information is included in custom properties that start
with “x-”, called extensions. IDL4OAS is an OAS extension
that allows to specify a set of IDL dependencies for each
API operation. An extra property called “x-dependencies”
must be added at the operation level, including the set of
dependencies among the input parameters of the operation.
Listing 7 shows an excerpt of an OAS document extended
with IDL4OAS, corresponding to the Search operation from
the Google Maps Places API (see Listing 2).

As illustrated, the property “x-dependencies” has been
added to the “GET /search” operation. This property is
actually an array of elements, where each element represents
a single dependency, therefore they must be preceded by
hyphens, following the YAML syntax.

10

1 paths:
2 /search:
3 get:
4 parameters:
5 - name: radius [...]
6 - name: rankby [...]
7 - name: keyword [...]
8 - name: name [...]
9 - name: type [...]

10 - name: minprice [...]
11 - name: maxprice [...]
12 - [...]
13 [...]
14 x-dependencies:
15 - ZeroOrOne(radius, rankby=='distance');
16 - IF rankby=='distance' THEN keyword OR name OR

type;
17 - maxprice >= minprice;

Listing 7: OAS document of the search operation from
the Google Maps Places API extended with IDL4OAS.

5.3 IDLReasoner: An Analysis Library
In this section, we present IDLReasoner, a CSP-based Java
library that allows to programmatically analyse IDL docu-
ments. Specifically, IDLReasoner translates input IDL spe-
cifications to CSPs using MiniZinc [26], a constraint solv-
ing language designed for modelling optimisation prob-
lems in a high-level, solver-independent way. This allows
IDLReasoner to be used with any CSP solver supporting
MiniZinc as an input format.

Figure 5 shows the high-level architecture of
IDLReasoner, using a UML component diagram. The
library comprises three main components: the Mapper,
which translates variables from the API specification and
dependencies from IDL to MiniZinc, and manipulates
the resulting MiniZinc file accordingly for each analysis
operation; the Resolutor, which performs the calls to the
selected CSP solver; and the Analyzer, which leverages the
Mapper and the Resolutor components to execute the seven
analysis operations from the catalogue.

IDLReasoner works as follows: the Analyzer takes three
elements as input, namely, an IDL document, an API spe-
cification (e.g., OAS) and the API operation where the de-
pendencies are present (e.g., “GET /search”). First, the Map-
per transforms the API operation parameters, their domains
and the IDL dependencies to a MiniZinc file, representing a
CSP. The ConstraintsMapper component leverages the IDL
parser to translate IDL dependencies into MiniZinc con-
straints. Then, when an analysis operation is invoked in the
Analyzer component (e.g., valid specification), the Mapper
manipulates the CSP file accordingly and the Resolutor calls
the CSP solver on the manipulated file. IDLReasoner sup-
ports the seven analysis operations explained in Section 4.2.
It is worth mentioning that IDLReasoner supports both IDL
and OAS documents separately, as well as OAS documents
including the specification of dependencies with IDL4OAS.

IDLReasoner is developed with extensibility in mind.
It can be extended to multiple web API specification lan-
guages and CSP solvers. At the time of writing this article,
IDLReasoner supports OAS (and IDL4OAS), and a range of
CSP solvers compatible with MiniZinc, including Chuffed
[7] and Gecode [16].

For the validation of the tool, we developed a test
suite of 203 test cases using standard testing techniques in-
cluding equivalence partitioning, boundary-value analysis,

Figure 5: High-level architecture of IDLReasoner.

and combinatorial testing. Among other issues, fully docu-
mented in GitHub [19], [20], we detected and fixed faults re-
lated to the parsing of IDL specifications, their translation to
MiniZinc files and the behaviour of the analysis operations
for boundary cases such as operations without parameters.
Although performance is out of the scope of our work, it
is worth mentioning that the execution of the whole suite
took between 130 and 140 seconds in a standard PC running
an Intel i5 processor with 16GB of RAM and a solid-state
drive (SSD). All the test cases, including their test inputs
and expected outputs, are publicly available, as well as their
implementation in JUnit [20].

6 APPLICATION TO AUTOMATED TESTING

In this section, we report the results of two experiments
showing the potential of our approach in the context of
automated testing of RESTful web services.

Testing RESTful web APIs involves generating HTTP
requests and asserting HTTP responses. Current approaches
for automated testing of RESTful web APIs mostly rely on
black-box fuzzing: testing the services with random requests
conforming to the OpenAPI specification of the API [1].
However, these approaches do not support inter-parameter
dependencies since, as previously mentioned, these are not
formally described in the API specification used as input.
As a result, existing approaches simply ignore dependencies
and resort to brute force to generate valid requests, i.e., those
satisfying all input constraints. This is not only extremely
inefficient, but it is also unlikely to work for most real-world
services, where inter-parameter dependencies are complex
and pervasive.

The IDL tool suite can nicely complement existing test
data generators for RESTful web APIs, enabling the auto-
mated generation of API requests satisfying all the inter-
parameter dependencies. In what follows, we report the
results of two experiments comparing random test case gen-
eration, where inter-parameter dependencies are ignored,
and IDLResoner, supporting the automated management of
inter-parameter dependencies described in IDL. For the im-
plementation of both strategies, we used RESTest, an open-
source testing framework for RESTful web APIs developed
by the authors and available on GitHub [40]. In particular,
we aim to answer the following research questions:

• RQ1: What is the effectiveness of IDLReasoner in gener-
ating valid requests for real-world APIs containing inter-
parameter dependencies?

• RQ2: What is the effectiveness of IDLReasoner in detect-
ing failures in real-world APIs containing inter-parameter
dependencies?

11

To answer these questions, we selected three API op-
erations with inter-parameter dependencies from three in-
dustrial APIs used by millions of users. Table 3 provides a
summary of the services under test. For each service, the
table shows the API name, description of the operation
tested, number of input parameters (P), number of IDL
dependencies (D), and number (and percentage) of different
parameters involved in at least one dependency (PD).

API Operation P D PD (%)

Stripe Create product 18 6 11 (61%)
Yelp Search businesses 14 3 7 (50%)
YouTube Search 31 16 25 (81%)

Table 3: RESTful API operations used in the evaluation.

It is worth noting that, in the following experiments, we
used five out of the seven analysis operations presented in
Section 4.2: Valid specification, Consistent specification, Dead
parameter, False optional and Random request. The first four
operations were used to identify potential errors in the
IDL specifications of the services, manually written by the
authors, while the last one was used to generate test cases
(i.e., API requests).

6.1 RQ1: Generation of Valid Requests

In this experiment, we compare the effectiveness of a ran-
dom test case generator and IDLReasoner in generating
valid requests, i.e., those satisfying all input constraints,
including inter-parameter dependencies.

Setup. For each API operation under test, we generated
1,000 random requests and 1,000 requests with IDLReasoner
(c.f. operation Random request from Section 4.2). Then, we
counted the number of actual valid requests based on the
2XX (successful status codes) responses obtained.

SUT Random IDLReasoner

Stripe 1.3% 100%
Yelp 54.6% 97.1%
YouTube 1.6% 100%

Table 4: Percentage of valid requests generated.

Results. Table 4 shows the percentage of valid requests
generated by each approach. As expected, the random test
case generator was hardly able to generate valid requests
for highly constrained APIs like Stripe (1.3%) and YouTube
(1.6%). In contrast, IDLReasoner generated 100% of valid
requests in all the APIs under test except Yelp, where a few
valid requests obtained error responses due to actual faults,
e.g., when setting the open_at parameter to a very large
integer, a 500 status code is returned. Based on these results,
we can answer RQ1 as follows: IDLReasoner effectively
supports the generation of valid requests for RESTful web
services, outperforming current random approaches where
inter-parameter dependencies are ignored.

6.2 RQ2: Detection of Failures
In this experiment, we compare the number of failures
uncovered by randomly generated requests, and requests
generated with IDLReasoner.

Setup. For each API and test generation technique (denoted
as “Random” and “IDLReasoner” in Table 5), we generated
2,000 requests, half valid and half invalid. Half of the invalid
requests generated with IDLReasoner were constructed by
violating one or more dependencies.

API Random IDLReasoner

Stripe 0 535
Yelp 67 161
YouTube 0 513

Total 67 1,209

Table 5: Failures classified by test generation technique.

Results. Table 5 depicts the number of failures revealed by
each technique. The randomly generated requests revealed
67 failures related to 500 status codes and disconformities
with the OAS specification in the Yelp service. IDLReasoner,
on the other hand, found more (1,209) and more complex
bugs. For example, in the Yelp service, when searching
for businesses in Egypt in Finnish language, the error
LOCATION_NOT_FOUND (400 status code) is returned, but
this does not happen for other languages such as Italian,
even though the results are in English. Other failures are
related to dependencies wrongly specified in the API docu-
mentation or badly implemented in the API itself. A descrip-
tion of all the bugs found is available in the supplementary
material of the paper [43]. As a result, we can answer RQ2
as follows: IDLReasoner is effective in uncovering failures
in real-world APIs, outperforming state-of-the-art random
test case generators.

7 THREATS TO VALIDITY

Next, we discuss the possible internal and external validity
threats that may have influenced our work, and how these
were mitigated.

7.1 Internal Validity
Threats to the internal validity relate to those factors that
might introduce bias and affect the results of our investiga-
tion. One of the main threats in this regard is the subjective
and manual review process conducted for identifying inter-
parameter dependencies in the online documentation of the
subject APIs. Some dependencies might have been misclas-
sified or simply overlooked. To mitigate this threat, the doc-
umentation of each API was carefully checked several times,
recording all the relevant information for its later analysis,
and also to enable replicability [9]. The impact of possible
mistakes was also minimised by the large number of APIs
and operations reviewed (40 APIs and 2,557 operations),
which makes us remain confident of the overall accuracy
of the results.

Another possible threat is related to the existence of bugs
in the implementation of the tools provided. To mitigate

12

this threat, both the DSL and the analysis library have been
thoroughly tested using standard testing techniques such
as equivalence partitioning and combinatorial testing. In
total, we modelled 267 dependencies in IDL (96 artificial
and 171 from real-world APIs), covering the seven types
of dependencies identified in our study [25], including
multiple and varied combinations of them, and we created
203 JUnit test cases for IDLReasoner. Furthermore, the tools
with their test suites and the results of our experiments are
freely available [43], thereby allowing full replication of the
evaluation performed.

7.2 External Validity
This concerns the extent to which we can generalise from
the results of the experiments. Our study on the existence of
inter-parameter dependencies in practice is based on a sub-
set of 40 web APIs, and thus our results may not generalise
to other APIs. To minimise this threat, we systematically
selected a large set of real-world APIs from multiple applic-
ation domains, including some of the most popular APIs in
the world with millions of users worldwide. The same threat
may be considered for the evaluation performed, since we
only tested three APIs. However, note that the purpose
of such evaluation is to demonstrate the potential of the
approach proposed in this paper. A more comprehensive
evaluation remains to be done in future work.

As another threat, the DSL proposed in this paper could
not be expressive enough to model all kinds of dependen-
cies found in web APIs. However, several reasons make us
confident of the expresiveness of the language. First, IDL
is partially inspired by the grammar of PICT, a mature
combinatorial testing tool developed by Microsoft. Second,
IDL is based on the findings of a thorough study of over 600
dependencies found in more than 2.5K operations. Finally,
and more importantly, we were able to model a total of
171 new dependencies from 23 real-world APIs, without
identifying expresiveness issues.

Finally, our work lacks an empirical validation with
software developers and practitioners that ensures the use-
fulness and usability of the developed tools. IDL might
be considered hard to understand or to familiarise with.
To minimise this threat, the language provides syntactic
sugar to make dependencies self-explanatory (i.e., Or,
OnlyOne, AllOrNone and ZeroOrOne). Also, we have pro-
posed IDL4OAS, which allows to succinctly specify inter-
parameter dependencies in OAS, the de-facto standard for
API specification in industry.

8 RELATED WORK

To the best of our knowledge, this work is the first to fully
address both the specification and the automated analysis
of inter-parameter dependencies in web APIs. Therefore, we
discuss the related work from these two different perspect-
ives.

8.1 Specification
Oostvogels et al. [31] proposed OAS-IP, a DSL for the
description of inter-parameter constraints in OAS. They
classified dependencies into three types: exclusive (called

OnlyOne in our work), dependent (Requires in our work), and
group constraints (AllOrNone in our paper). For the design
of the language, they studied six commercial APIs. Later
on, they proposed TypeScriptIPC [32], a TypeScript extension
for static typing of constraints in interfaces in this specific
programming language. Their work shares clear similarities
with ours in terms of expressiveness, however, IDL stands
out in three ways. First, IDL is specification-independent,
and not tied to any programming language. Second, IDL is
based on a more thorough analysis of industrial APIs and al-
lows the description of dependency patterns not supported
in OAS-IP: Relational and ZeroOrOne. Lastly, IDL provides
syntactic sugar for all the dependency patterns found in
practice, making it more succinct and less error-prone than
OAS-IP. For example, a ZeroOrOne dependency in IDL (line
1 below) must be expressed with three composed depend-
encies in OAS-IP (lines 2-4):

1 ZeroOrOne(p1, p2, p3); // Equivalent in OAS-IP:
2 implic(present(p1), not(or(present(p2), present(p3))))
3 implic(present(p2), not(or(present(p1), present(p3))))
4 implic(present(p3), not(or(present(p1), present(p2))))

RAML, the RESTful API Modeling Language [38], provides
basic support for inter-parameter dependencies. Mutually
exclusive parameters (i.e., referred to as OnlyOne in our
catalogue) can be specified thanks to the so-called union
type, where a piece of data can be described by any of
several types. For example, to describe two mutually ex-
clusive parameters p1 and p2, it could be done as follows:
“type: [p1 | p2]”. However, RAML does not support
the remaining six dependency types presented in this article,
which represent 83% of the dependencies found in our
study of real-world web APIs [25].

A few proposals exist for the specification of dependen-
cies in other types of web services such as WSDL [48]. Yang
[52] and Xu et al. [51] leveraged the OWL-S [34] specification
of the service to extract preconditions from them, such as
relational dependencies among parameters. Cacciagrano et
al. [5] used the Constraint Language in XML (CLiX) [8] to
specify constraints in the WSDL specification of the service.
Sun et al. [42] proposed WSDL with Constraints (CxWSDL),
a language for specifying six common types of constraints
of a service’s implementation (e.g., a time constraint, for
expressing the service availability). Other pieces of work [2],
[4], [6] focus on the dependencies present among different
operations, e.g., some operation must be invoked before
some other for the service to work correctly. Compared
to these approaches, our work focuses on inter-parameter
dependencies, while they focus on behavioural or semantic
constraints. At most, some contributions support the rela-
tional dependencies described in our catalogue [25]. Finally,
these approaches are based on (and tied to) XML, making
it difficult to integrate them in modern API specification
languages like OAS.

Regarding the specification of dependencies, combinat-
orial test case generation tools offer similar capabilities to
specify constraints among input parameters, e.g., TestCover
[46], Advanced Combinatorial Testing System (ACTS) [56]
and Pairwise Independent Combinatorial Testing (PICT)
[35]. Unfortunately, these tools were not designed with
reusability in mind and their use out of the context of testing
is difficult. The syntax of IDL is partially based on that of

13

PICT, a fully-fledged tool developed by Microsoft. However,
we extended the constraints grammar of PICT to support
the seven types of dependencies from our catalogue [25],
making IDL specifications succinct and self-explanatory.

8.2 Automated Analysis

Wu et al. [49] presented an approach for the automated
inference of dependency constraints among input paramet-
ers in web services. They first established six dependency
patterns, four of which are specific instances of the Requires
dependency presented in our work, and then leveraged the
service documentation, the SDK and the service itself to
extract and validate candidates of dependencies. Compared
to their approach, our work focuses on the specification and
analysis of inter-parameter dependencies, and not in their
inference. In this sense, their contributions are tangential
to ours, and it should be possible to combine them. For
example, we could use their approach to try to infer de-
pendencies in APIs, based on our catalogue of dependency
patterns.

Regarding WSDL and other XML-based specification
formats, several authors have addressed the automated
analysis of dependencies to some extent. The most related
papers [5], [51], [52] leverage the service specification to
generate requests satisfying or violating the constraints spe-
cified in it (similarly to our random request operation). Gao
et al. [14] integrated information about parameters, error
messages and testing results to infer data preconditions
on web APIs that sometimes are not correctly specified in
their documentation. Compared to these papers, we present
a catalogue of seven novel analysis operations, and we
propose a CSP-based implementation.

Regarding the automated analysis of IDL specifications,
our proposal is inspired by previous work by the authors in
the context of feature models, where more than 30 different
analysis operations have been proposed [3]. Also, we were
pioneers on the automated analysis of service level agree-
ments in different web service technologies such as WS-
Agreement [27], [28], [29], Linked USDL [15] and recently
in OAS [13]. Both lines of research served as the basis for
the contributions presented in this paper where, although
with similar ideas, we had to face unique challenges due to
the richer catalogue of dependency patterns found in web
APIs.

9 CONCLUSIONS

This article addressed the problem of specifying the depend-
encies among input parameters in web APIs. We presented
a domain specific language, IDL, specifically designed to
express the seven types of dependencies observed in a thor-
ough study of industrial APIs. Besides this, we proposed
a catalogue of seven analysis operations to extract help-
ful information from IDL specifications such as detecting
inconsistencies or checking the validity of API requests.
For the automation of the analysis operations we proposed
translating IDL specifications to CSPs and leveraging the
capabilities of state-of-the-art CSP solvers. The approach is
supported by an (Eclipse) editor, a parser, an OAS exten-
sion, an analysis library (IDLReasoner), and a test suite.

Among its many applications, we showed the potential of
IDLReasoner in the context of automated testing of RESTful
APIs, revealing failures in three commercial APIs. Together,
these contributions not only provide a complete solution
to the automated management of inter-parameter depend-
encies in web APIs, but they also open a new range of
applications and research opportunities in areas such as
code generation, monitoring and testing.

ACKNOWLEDGEMENTS

This work has been partially supported by the European
Commission (FEDER) and Junta de Andalucia under pro-
jects APOLO (US-1264651) and EKIPMENT-PLUS (P18-FR-
2895), and by the Spanish Government under project HOR-
ATIO (RTI2018-101204-B-C21) and the FPU scholarship pro-
gram, granted by the Spanish Ministry of Education and
Vocational Training (FPU17/04077). We would also like to
thank Roberto Hermoso for his technical support during the
development of IDLReasoner.

REFERENCES

[1] V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler: Stateful
REST API Fuzzing,” in Intern. Conference on Software Engineering,
2019, pp. 748–758.

[2] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen, “WSDL-Based Automatic
Test Case Generation for Web Services Testing,” in IEEE Interna-
tional Workshop on Service-Oriented System Engineering, 2005, pp.
207–212.

[3] Benavides, D., Segura, S., Ruiz-Cortés, A., “Automated Analysis of
Feature Models 20 Years Later: A Literature Review,” Information
Systems, vol. 35, no. 6, pp. 615 – 636, 2010.

[4] A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli, “Automatic
Synthesis of Behavior Protocols for Composable Web-Services,” in
Joint 12th European Software Engineering Conference and 17th ACM
SIGSOFT Symposium on the Foundations of Software Engineering,
2009, pp. 141–150.

[5] D. Cacciagrano, F. Corradini, R. Culmone, and L. Vito, “Dynamic
Constraint-based Invocation of Web Services,” in 3rd Intern. Work-
shop on Web Services and Formal Methods, 2006, pp. 138–147.

[6] A. Chaturvedi and D. Binkley, “Web Service Slicing: Intra and
Inter-Operational Analysis to Test Changes,” IEEE Transactions on
Services Computing, 2018.

[7] “The Chuffed CP solver,” accessed January 2020. [Online].
Available: https://github.com/chuffed/chuffed

[8] “CLiX - A Validation Rule Language for XML,” accessed
July 2020. [Online]. Available: https://www.w3.org/2004/12/
rules-ws/paper/24/

[9] “Inter-Parameter Dependencies in RESTful APIs [Dataset],” 2019.
[Online]. Available: https://bit.ly/2wvv1m1

[10] R. T. Fielding, “Architectural Styles and the Design of Network-
based Software Architectures,” Ph.D. dissertation, University of
California, Irvine, 2000.

[11] “Forte API,” accessed January 2020. [Online]. Available:
https://restdocs.forte.net/

[12] “Foursquare API,” accessed January 2020. [Online]. Available:
https://developer.foursquare.com/places-api

[13] A. Gamez-Diaz, P. Fernandez, and A. Ruiz-Cortés, “Governify for
APIs: SLA-Driven Ecosystem for API Governance,” in ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019, p. 1120–1123.

[14] C. Gao, J. Wei, H. Zhong, and T. Huang, “Inferring Data Contract
for Web-based API,” in IEEE Intern. Conference on Web Services,
2014, pp. 65–72.

[15] J. García, P. Fernandez, C. Pedrinaci, M. Resinas, J. Cardoso,
and A. Ruiz-Cortés, “Modeling Service Level Agreements with
Linked USDL Agreement,” IEEE Transactions on Services Comput-
ing, vol. 10, no. 1, pp. 52–65, 2017.

[16] “GECODE - An open, free, efficient constraint solving
toolkit,” accessed January 2020. [Online]. Available: https:
//www.gecode.org/

https://github.com/chuffed/chuffed
https://www.w3.org/2004/12/rules-ws/paper/24/
https://www.w3.org/2004/12/rules-ws/paper/24/
https://bit.ly/2wvv1m1
https://restdocs.forte.net/
https://developer.foursquare.com/places-api
https://www.gecode.org/
https://www.gecode.org/

14

[17] “GitHub API,” accessed January 2020. [Online]. Available:
https://developer.github.com/v3/

[18] “Google Maps API,” accessed January 2020. [Online]. Available:
https://developers.google.com/places/web-service/intro

[19] “Inter-parameter Dependency Language (IDL),” accessed January
2020. [Online]. Available: https://github.com/isa-group/IDL

[20] “IDLReasoner: An Analysis Library for IDL Specifications,”
accessed January 2020. [Online]. Available: https://github.com/
isa-group/IDLReasoner

[21] D. Jacobson, G. Brail, and D. Woods, APIs: A Strategy Guide.
O’Reilly Media, Inc., 2011.

[22] D. Jacobson and S. Narayanan, “Netflix API:
Top 10 Lessons Learned,” in Open Source Con-
vention (OSCON), Porland, Oregon, July 2014. [On-
line]. Available: http://www.slideshare.net/danieljacobson/
top-10-lessons-learned-from-the-netflix-api-oscon-2014

[23] “Last.fm API,” accessed January 2020. [Online]. Available:
https://www.last.fm/api

[24] “Language Server Protocol,” accessed January 2020. [Online].
Available: https://microsoft.github.io/language-server-protocol

[25] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “A Catalogue of
Inter-Parameter Dependencies in RESTful Web APIs,” in Intern.
Conference on Service-Oriented Computing, 2019, pp. 399–414.

[26] “MiniZinc: Constraint Modeling Language,” accessed November
2019. [Online]. Available: https://www.minizinc.org/

[27] C. Müller, A. M. Gutierrez Fernandez, P. Fernandez, O. Martin-
Diaz, M. Resinas, and A. Ruiz-Cortes, “Automated Validation
of Compensable SLAs,” IEEE Transactions on Services Computing,
2018, article in press.

[28] C. Müller, M. Resinas, and A. Ruiz-Cortés, “Automated Analysis
of Conflicts in WS–Agreement,” IEEE Transactions on Services Com-
puting, vol. 7, no. 4, pp. 530–544, 2014.

[29] C. Müller, M. Oriol, X. Franch, J. Marco, M. Resinas, A. Ruiz-
Cortés, and M. Rodríguez, “Comprehensive Explanation of SLA
Violations at Runtime,” IEEE Transactions on Services Computing,
vol. 7, no. 2, pp. 168–183, 2014.

[30] “GitHub issue - Support interdependencies between query
parameters,” accessed July 2020. [Online]. Available: https:
//github.com/OAI/OpenAPI-Specification/issues/256

[31] N. Oostvogels, J. De Koster, and W. De Meuter, “Inter-parameter
Constraints in Contemporary Web APIs,” in 17th Intern. Conference
on Web Engineering, 2017, pp. 323–335.

[32] ——, “Static Typing of Complex Presence Constraints in Inter-
faces,” in 32nd European Conference on Object-Oriented Programming,
2018, pp. 1–27.

[33] “OpenAPI Specification,” accessed March 2019. [Online].
Available: https://github.com/OAI/OpenAPI-Specification

[34] “Semantic Markup for Web Services (OWL-S),” accessed
November 2019. [Online]. Available: https://www.w3.org/
Submission/OWL-S/

[35] “Microsoft PICT - Pairwise Independent Combinatorial Testing,”
accessed October 2019. [Online]. Available: https://github.com/
microsoft/pict

[36] “ProgrammableWeb API Directory,” accessed March 2019.
[Online]. Available: http://www.programmableweb.com/

[37] “QuickBooks Payments API,” accessed January 2020. [On-
line]. Available: https://developer.intuit.com/app/developer/
qbpayments/docs/get-started/

[38] “RESTful API Modeling Language (RAML),” accessed March
2019. [Online]. Available: http://raml.org/

[39] “RapidAPI API Directory,” accessed March 2019. [Online].
Available: https://rapidapi.com

[40] “RESTest: Automated Black-Box Testing of RESTful Web APIs,”
accessed July 2020. [Online]. Available: https://github.com/
isa-group/RESTest

[41] L. Richardson, M. Amundsen, and S. Ruby, RESTful Web APIs.
O’Reilly Media, Inc., 2013.

[42] C.-a. Sun, M. Li, J. Jia, and J. Han, “Constraint-Based Model-
Driven Testing of Web Services for Behavior Conformance,” in
Intern. Conference on Service-Oriented Computing, 2018, pp. 543–559.

[43] “Supplementary material of the paper.” [Online]. Available: https:
//isa-group.github.io/2020-02-inter-parameter-dependencies

[44] “Swagger,” accessed March 2019. [Online]. Available: http:
//swagger.io/

[45] A. H. M. Ter Hofstede and H. A. Proper, “How to Formalize
It? Formalization Principles for Information System Development

Methods,” Information and Software Technology, vol. 40, pp. 519–540,
1998.

[46] “Testcover.com,” accessed January 2020. [Online]. Available:
https://www.testcover.com/

[47] “Twilio API,” accessed January 2020. [Online]. Available:
https://www.twilio.com/docs/usage/api/

[48] “Web Services Description Language (WSDL) Version 2.0,”
accessed November 2019. [Online]. Available: https://www.w3.
org/TR/wsdl20/

[49] Q. Wu, L. Wu, G. Liang, Q. Wang, T. Xie, and H. Mei, “Inferring
Dependency Constraints on Parameters for Web Services,” in
Proceedings of the 22nd Intern. Conference on World Wide Web, 2013,
pp. 1421–1432.

[50] “Xtext,” accessed October 2019. [Online]. Available: https:
//www.eclipse.org/Xtext/index.html

[51] L. Xu, Q. Yuan, J. Wu, and C. Liu, “Ontology-based Web Service
Robustness Test Generation,” in IEEE Intern. Symp. on Web Systems
Evolution, 2009, pp. 59–68.

[52] B. Yang, “Dependence Analysis for Web Services Data Mutation
Testing,” in Advanced Multimedia and Ubiquitous Engineering, 2016,
pp. 761–768.

[53] “Yelp API,” accessed January 2020. [Online]. Available: https:
//www.yelp.com/developers/documentation/v3

[54] “Twitter API,” accessed January 2020. [Online]. Available:
https://developer.twitter.com/en/docs

[55] “YouTube Data API v3,” accessed January 2019. [Online].
Available: https://developers.google.com/youtube/v3/

[56] L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn, “ACTS: A Combinat-
orial Test Generation Tool,” in International Conference on Software
Testing, Verification and Validation, 2013, pp. 370–375.

Alberto Martin-Lopez is a PhD candidate
at the Applied Software Engineering research
group (ISA, www.isa.us.es), University of Seville,
Spain. He received his MsC from this university.
His current research interests focus on auto-
mated software testing and service-oriented ar-
chitectures. He is a Fulbright fellow and the win-
ner of the ACM Student Research Competition
held at ICSE 2020.

Sergio Segura is an Associate Professor of
software engineering at the University of Seville,
Spain. He is a member of the Applied Soft-
ware Engineering research group, where he
leads the research lines on software testing and
search-based software engineering. His current
research interests include test automation and
AI-driven software engineering. Contact him at
sergiosegura@us.es.

Carlos Müller is a Lecturer and member of
the Applied Software Engineering Group (ISA,
www.isa.us.es) at University of Sevilla, Spain.
He obtained his PhD in Computer Science from
this university. His current research line includes
the automated analysis of service level agree-
ments (SLA) and the application of such analysis
at SLA design and monitoring.

Antonio Ruiz-Cortés is a Full Professor of soft-
ware and service engineering and elected mem-
ber of the Academy of Europe. He heads the Ap-
plied Software Engineering Group at the Univer-
sity of Sevilla. His current research focuses on
service-oriented computing, business process
management, testing and software product lines.
He is an associate editor of Springer Computing.
Contact him at aruiz@us.es.

https://developer.github.com/v3/
https://developers.google.com/places/web-service/intro
https://github.com/isa-group/IDL
https://github.com/isa-group/IDLReasoner
https://github.com/isa-group/IDLReasoner
http://www.slideshare.net/danieljacobson/top-10-lessons-learned-from-the-netflix-api-oscon-2014
http://www.slideshare.net/danieljacobson/top-10-lessons-learned-from-the-netflix-api-oscon-2014
https://www.last.fm/api
https://microsoft.github.io/language-server-protocol
https://www.minizinc.org/
https://github.com/OAI/OpenAPI-Specification/issues/256
https://github.com/OAI/OpenAPI-Specification/issues/256
https://github.com/OAI/OpenAPI-Specification
https://www.w3.org/Submission/OWL-S/
https://www.w3.org/Submission/OWL-S/
https://github.com/microsoft/pict
https://github.com/microsoft/pict
http://www.programmableweb.com/
https://developer.intuit.com/app/developer/qbpayments/docs/get-started/
https://developer.intuit.com/app/developer/qbpayments/docs/get-started/
http://raml.org/
https://rapidapi.com
https://github.com/isa-group/RESTest
https://github.com/isa-group/RESTest
https://isa-group.github.io/2020-02-inter-parameter-dependencies
https://isa-group.github.io/2020-02-inter-parameter-dependencies
http://swagger.io/
http://swagger.io/
https://www.testcover.com/
https://www.twilio.com/docs/usage/api/
https://www.w3.org/TR/wsdl20/
https://www.w3.org/TR/wsdl20/
https://www.eclipse.org/Xtext/index.html
https://www.eclipse.org/Xtext/index.html
https://www.yelp.com/developers/documentation/v3
https://www.yelp.com/developers/documentation/v3
https://developer.twitter.com/en/docs
https://developers.google.com/youtube/v3/

	Introduction
	Catalogue of Dependencies
	Inter-parameter Dependency Language
	Automated Analysis
	Formal Semantics of IDL
	Analysis Operations

	Tooling Support
	IDL Editor and Parser
	IDL4OAS: An OAS Extension
	IDLReasoner: An Analysis Library

	Application to Automated Testing
	RQ1: Generation of Valid Requests
	RQ2: Detection of Failures

	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Specification
	Automated Analysis

	Conclusions
	References
	Biographies
	Alberto Martin-Lopez
	Sergio Segura
	Carlos Müller
	Antonio Ruiz-Cortés

