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Abstract
Neoclassical toroidal plasma viscosity in the bounce-transit and drift resonance regimes is
calculated using a version of the drift kinetic equation that encompasses the physics of the
nonlinear trapping and quasilinear plateau regimes in tokamaks. It is demonstrated that the
mirror-force like term controls the transition between these two regimes. When the effective
collision frequency is larger than the mirroring or the nonlinear bounce frequency, the
quasilinear regime prevails; otherwise, the nonlinear trapping regime reigns. The demonstration
is accomplished by using the Eulerian approach and is beyond the grasp of the method of the
integration along the unperturbed orbit in solving the drift kinetic equation. The neoclassical
toroidal plasma viscosity in the quasilinear plateau regime is calculated. Approximate analytic
expressions for the neoclassical toroidal plasma viscosity that include the asymptotic limits of
the nonlinear trapping and quasilinear regimes are presented to facilitate thermal and energetic
alpha particle transport modeling in tokamaks.

Keywords: neoclassical toroidal plasma viscosity, tokamak modeling,
bounce-transit and drift resonance

1. Introduction

Neoclassical toroidal plasma viscous force is one of the key
physics mechanisms that control toroidal plasma rotation
when toroidal symmetry is broken in tokamaks [1, 2]. The
physics in the drift frequency range is well understood [1, 3–
8]. However, in the bounce-transit frequency range, the the-
ory is still evolving because of the subtlety resulting from the
radial drift motion of the bounce (i.e. bananas) and transit
(i.e. circulating particles) orbits [9–14]. It is now understood
that the best choice of the independent variables in solving
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the drift kinetic equation is to replace poloidal flux χ with
the toroidal component of the canonical momentum pζ for
the radial coordinate [15–19]. With this choice, the equation
can be solved by adopting the Eulerian approach without the
need to treat explicitly the poloidal mode coupling [18, 19].
When the collision frequency decreases, the transport process
associated with the broken toroidal symmetry or neoclassical
toroidal plasma viscosity [1, 2] is dominated by the bounce-
transit and drift resonance in the bounce-transit time scale. For
the equilibrium banana particles, the relevant resonance con-
dition is [9, 10, 20–23]

lωb+ nωd = 0; (1)

and for the equilibrium circulating particles, it is [15–19]

[
l− nq

(
pζ
)]
σtωt+ nωd = 0, (2)
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where ωb is the bounce frequency of the equilibrium bana-
nas, ωt is the transit frequency of the equilibrium circulating
particles, σt denotes the sign of the parallel motion of the cir-
culating particles, l is the poloidal mode number, n is the tor-
oidal mode number, q is the safety factor and ωd is the toroidal
drift frequency. Note that it is q(pζ) not q(χ) that appears in
the transit and drift resonance as a result of the equilibrium
radial drift. Even though q(pζ) does not appear explicitly in
the bounce and drift resonance condition, it still affects the res-
onance. Because ωd ∼ ωb, tρp/L, the bounce-transit and drift
resonance conditions can be satisfied for those bananas and
circulating particles that are close to the trapped-circulating
boundary. Here, ρp is the poloidal gyro-radius, and L is the
equilibrium radial scale length. Of course, for high n modes,
e.g. in rippled tokamaks, the resonance conditions can be sat-
isfied for deeply trapped and well circulating particles as well,
as long as there is only one class of trapped particles in the
equilibrium.

As it has been demonstrated, the poloidal mode coupling
can be treated by adopting the Eulerian approach [17–19]. In
that approach, the explicit poloidal mode coupling is annihil-
ated by choosing a new set of the poloidal and toroidal angle
like variables. Thus, the solution is relatively succinct in terms
of the new variables.

We, however, do not use the Krook model for the collision
operator, even though that model can be used to produce the
correct transport coefficients.We instead adopt the test particle
operator [24] and employ the appropriate approximation valid
for the localized distribution resulting from the resonance [19].
We take this opportunity to demonstrate the collisional res-
onance broadening in the distribution function that cannot be
obtained using a Krook model. The width of the resonance
layer depends on the collisional operator used.

We also want to demonstrate the relation between the non-
linear trapping regime (or superbanana regime) and the quasi-
linear plateau regime. We will show that when the mirroring
frequency (i.e. nonlinear bounce frequency) is smaller than
the effective collision frequency, quasilinear plateau regime
prevails. In the opposite limit, the nonlinear trapping regime
dominates. The ‘mirror force’ is the force that is responsible
for the nonlinear trapping. Of course, it is not the same as
the well-known mirror force of the µ∇⃗B. Here, µ is the mag-
netic moment, and B is the magnetic field strength. We for-
mulate the calculation of the quasilinear plateau accordingly
and, thus, it differs from the conventional approach. The for-
mulation offers physics insight on the transition between the
nonlinear trapping and quasilinear plateau regimes. As a res-
ult, we provide an approximate analytic formula that connects
the asymptotic limits of these two regimes, which is not yet in
any existing numerical codes, to facilitate plasma modeling.

The rest of the paper is organized as follows. The mag-
netic coordinates, field representations, and relevant physical
quantities are presented in section 2. In section 3, we develop
the equation that governs the nonlinear trapping and quasi-
linear plateau regimes. We solve the drift kinetic equation in
section 4. The previously published results in the nonlinear
trapping regime are summarized in section 4.1. In section 4.2,
we take the limit of the quasilinear plateau regime to neglect

the mirror force-like term. In addition, we simplify the test
particle collision operator utilizing the localization property
of the perturbed distribution function. Thus, not only the trans-
port coefficients but also the distribution function can be accur-
ately described. Approximate analytic formulas that yield the
proper asymptotic limits of the two regimes discussed here are
presented in section 5. The concluding remarks are given in
section 6.

2. Magnetic coordinates and field representations

We adopt Hamada coordinates (V, θ, ζ) for the equilibrium
magnetic field B⃗ such that

−→
B = ψ ′∇⃗V×∇⃗θ−χ ′∇⃗V×∇⃗ζ, (3)

where V is the volume enclosed inside the flux surface divided
by 4π 2, θ is the poloidal angle, ζ is the toroidal angle, ψ ′ =
B⃗ · ∇⃗ζ, and χ ′ = B⃗ · ∇⃗θ [25]. The corresponding covariant
representation is

−→
B = F∇⃗ζ +G∇⃗θ+ ∇⃗φ, (4)

where F is the poloidal current outside the flux surface multi-
plied by 2/c, G is the toroidal current inside the flux surface
multiplying by 2/c, c is the speed of light, φ is the solution of
the equation B⃗ · ∇⃗φ = B2−⟨B2⟩ and angular brackets denote
flux surface average [26].

The Eulerian approach can be consistently employed to
solve the drift kinetic equation for the distribution in all
the sub-cyclotron frequency range [17–19, 27, 28]. In that
approach a particular set of angle-like variables is chosen so
that the angle dependences in the equilibrium bounce-transit
and drift frequencies are appropriately averaged along the
magnetic field line [17–19]. As a result, the frequency coef-
ficients of the drift kinetic equation are not secular and depend
only on the radial coordinate. This dramatically simplifies the
analytic solution procedure. A poloidal angle-like variable η
is needed to replace the angle θ. For trapped particles, η is
defined as

η =
π´ θt1

θt2
dθ B

Bm
υ

|υ∥|

θˆ

θm

dθ
B
Bm

υ

υ∥
, (5)

where θt1 and θt2 are the turning points of the trapped particles,

Bm is the minimum value of B=
∣∣∣B⃗∣∣∣, occurring at the pol-

oidal angle θm, υ is the particle speed, and υ∥ is the particle
speed that is parallel to B⃗. The angle η has a period of 2π for
all trapped particles. For circulating particles, the angle η is
defined as

η =
2π´ π

−π
dθ B

Bm
υ

|υ∥|

θˆ

θm

dθ
B
Bm

υ∣∣υ∥∣∣ . (6)

The corresponding bounce ωb and transit ωt frequencies
are, respectively,
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ωb =
υχ ′

Bm

π´ θt1
θt2

dθ B
Bm

υ

|υ∥|
, (7)

and

ωt =
υχ ′

Bm

2π´ π
−π

dθ B
Bm

υ

|υ∥|
. (8)

A toroidal angle-like variable ζ0 is defined to replace the
field line label ζ0 = qθ− ζ. Explicitly,

ζ0 = ζ0−
(F− ∂φ/∂ζ0)υ∥

Ωχ ′ q ′θ−
θˆ
Bdθ
υ∥χ ′

×

[
−→υd · ∇⃗ζ0−

υ∥

B
∂

∂υ

(
(F− ∂φ/∂ζ0)υ∥

Ω
q ′θ

)

−
〈−→υd · ∇⃗ζ0〉

b,t

]
, (9)

where prime denotes ∂/∂υ, Ω is the gyro-frequency,−→υd is the
drift velocity and −→υd · ∇⃗ζ0 =

(
υ∥/B

)
∇⃗ ·
[(
υ∥/Ω

)
B⃗×∇⃗ζ0

]
.

The θ integral is an integral along the magnetic field line.
The average ⟨ · ⟩b, t denotes the average over the bounce and
transit orbits respectively [17–19]. Explicitly expressions for
⟨−→υd · ∇⃗ζ0⟩b, t can be found in [5, 17]. Because the integrand is
periodic, the indefinite integral is well-defined.

The Eulerian approach can accommodate the effects of
finite banana width in the radial direction V as demonstrated in
[17]. It can also include the effects of the finite orbit width in
the toroidal direction that are imbedded in the θ-integral. All
these effects can be reflected in Fourier amplitudes in the new
angle variables.

We also note in passing that the exact expression of−→υd · ∇⃗ζ0
can be used without the need of the low β and large aspect ratio
approximations. Here, β is the ratio of the plasma pressure to
the magnetic field pressure.

In terms of
(
Pζ , η, ζ0

)
, the perturbed magnetic field that

breaks the toroidal symmetry can be expressed as

B= BS−B0

∑
l,n

{blnccos [(l− nq)η

+nζ0
]
+ blns sin

[
(l− nq)η+ nζ0

]}
, (10)

where BS is the toroidally symmetric equilibrium magnetic
strength,B0 is themagnetic field strength on themagnetic axis,
and blnc and blns are the Fourier coefficients. The finite radial
mode width, although can be included as shown in [17], is
neglected in equation (10) for simplicity. However, finite orbit
width effects in the toroidal direction can be easily included in
equation (10) because in general blnc and blns are functions of
(υ, λ) where λ= µBm/E, µ= υ2⊥/(2B), E= υ2/2, and υ⊥ is
the particle speed perpendicular to the equilibrium magnetic
field.

3. Drift kinetic equation

The drift kinetic equation in (Pζ , θ, ζ0, E, µ) coordinates is

(
υ∥n̂+

−→υd
)
· ∇⃗θ∂ f

∂θ
+ υd.∇⃗ζ0

∂ f
∂ζ0

+ Ṗζ
∂ f
∂Pζ

= C( f) , (11)

wherePζ = χ − (F− ∂φ/∂ζ0)υ∥/Ω, n̂= B⃗/B,C( f ) denotes
collision operator, and

Ṗζ =
υ∥

B

[
∂

∂ζ0

(
υ∥B2

Ω

)]
. (12)

The ∂φ/∂ζ0 term in Pζ can be neglected for practical
applications.

The drift kinetic equation in equation (11) differs frommost
of the treatments on the theory of neoclassical toroidal plasma
viscosity in that the radial variable is Pζ not χ . Consequently,

it is
.
Pζ not

−→υd · ∇⃗χ that is the drive of the equation. The phys-
ics reason for the difference is that the equilibrium radial drift
motion is not included in the conventual approach. When the
radial motion is included, there is also an additional term in
the toroidal drift that depends on dq/dV as shown in [15–17].
This additional drift can be viewed either as a modification in
the toroidal drift or as a modification on the safety factor q that
a particle experiences. The latter view adopted here simplifies
the solution procedure dramatically as shown in [18, 19]. Phys-
ically, this implies that both trapped and circulating particles
follow the constant q= q(Pζ) line when the radial drift motion
is included. We should remark that even though q= q(Pζ)
does not appear in the resonant condition, the q= q(Pζ) is
actually imbedded in the Fourier coefficients blnc and blns for
the equilibrium trapped particles.

In terms of
(
Pζ , ζ0, η, E, µ

)
the drift kinetic equation can

be cast as

σtωb,t
∂ f
∂η

+ ⟨−→υd · ∇⃗ζ0⟩b,t
∂ f

∂ζ0
+

.
Pζ

∂ f
∂Pζ

= C( f) , (13)

after neglecting −→υd · ∇⃗θ, which is ρp/L < 1 and corres-
ponds physically to the neglect of the potato orbits [29]. The
physics of the potato orbits can be included by defining a
more complicated angle η. Here, σt =±1 denotes the sign
of υ∥ for the equilibrium circulating particles and σb = 1
for the equilibrium trapped particles and is not displayed for
simplicity.

We simplify the drift kinetic equation by assuming that
broken toroidal symmetry induced

.
Pζ is smaller than ωb, t and

⟨−→υd · ∇⃗ζ0⟩b,t such that the leading order equation in this order-
ing is

σtωb,t
∂ f0
∂η

+ ⟨−→υd · ∇⃗ζ0⟩b,t
∂ f0
∂ζ0

+
.
Pζ

∂ f0
∂Pζ

= C( f0) , (14)

and the corresponding solution is

f0 = f0 (Pζ ,E,λ) . (15)
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The anisotropic dependence, i.e. λ dependence has to be
at most no more than the first order in the small parameter of
the gyro-radius ordering, i.e. ρp/L< 1. If we had included a
source term in equation (14), f0 can be a slowing down distri-
bution; a detailed discussion on this issue is presented in [19]
and will not be repeated here.

The next order equation is

σtωb,t
∂ f 1
∂η

+ ⟨−→υd · ∇⃗ζ0⟩b,t
∂ f 1
∂ζ0

+
.
Pζ

∂ f 1
∂Pζ

+
.
Pζ

∂ f0
∂Pζ

= C( f 1) . (16)

The reason that ∂ f1/∂Pζ term is included in equation (16),
is that in the nonlinear trapping regime, ∂ f1/∂Pζ ∼ ∂ f0/∂Pζ

in the vicinity of the resonance as demonstrated in [19]. We
will summarize the results in the nonlinear trapping regime
and solve equation (16) in the quasilinear plateau regime here.

4. Solution to drift kinetic equation

We approach the quasilinear plateau regime from the colli-
sional end of the nonlinear trapping regime by increasing colli-
sion frequency. Thus, we focus on the transition between these
two regimes to discuss the physics that has not been addressed
in the theory of neoclassical toroidal plasma viscosity. We will
demonstrate the physics using a singlemode, e.g. the perturbed
magnetic field strength, δB,

δB=−blnccos
[
(l− nq)η+ nζ0

]
. (17)

For the quasilinear plateau regime, Fourier modes are inde-
pendent from each other, and the results are additive. Thus, the
result of a single mode is adequate. In the nonlinear trapping
regime, resonances must be well separated from each other.
Thus, as long as the resonances are far from overlapping, the
result of a single mode is relevant to the modeling of tokamak
physics.

4.1. Summary on results of the nonlinear trapping regime

In the nonlinear trapping regime, drift kinetic equation is
solved by a subsidiary expansion [18]. The small parameter
is νeff < ωb,nl, where the effective collision frequency νeff =
ν/ f 2t, ωb,nl is the bounce frequency of the nonlinearly trapped
particles, and ν is the typical collision frequency. Explicitly
[18],

f t =
nq
|l− nq|

√
δB/B

(ρp
r
s
)1/2

, (18)

and

ωb,nl =
υ

Rq

√
δB/B

(
n2q2

ρp
r
s
)1/2

, (19)

where r is the minor radius, s= d lnq/d lnr is the shear para-
meter, and R is the major radius. In this regime, the nonlinear

particle orbit can be calculated from a constant of motion Z,
which is [18]

Z=
1
2
∂ω

∂Pζ0

(Pζ −Pζ0)
2
+ω0 (Pζ −Pζ0)

− υ2

2

(
1− 3

υ∥0
2

υ2

)
B
Ω
nblnccos y, (20)

whereω = σt [l− δtnq(Pζ)]ωb, t+ nωd, y= [l− δtnq(Pζ)]η+
nζ0, δt = 1 for equilibrium circulating particles, otherwise δt =
0, Pζ0 is Pζ in the vicinity of the resonance that satisfies the
resonance conditions, and υ2∥0 is l= 0 component of υ2∥. Using
Z, the nonlinear particle orbit can be expressed in a pendulum
from

ω = σωω̂

√
k̂2− sin2

(y/2), (21)

where σω =±1 is the sign of ω, the magnitude of ω is

ω̂ = 2

√∣∣∣∣ ∂ω∂Pζ0

υ2

2

(
1− 3

υ∥0
2

υ2

)
B
Ω
nblnc

∣∣∣∣ (22)

and k̂2 is

k̂2 =
ω0

2

4
∣∣∣ ∂ω
∂Pζ0

υ2

2

(
1− 3

υ∥0
2

υ2

)
B
Ωnblnc

∣∣∣ . (23)

Here, we remark that k̂2 = 0 corresponds to ω0 = 0, i.e. the
position in the phase space where the linear resonance occurs.
Thus, a finite value of k̂2 < 1 corresponds to a ω0 ̸= 0 in the
linear phase but is trapped when the nonlinear trapping occurs.
This is the consequence of the choice of evaluating Z [18].

Utilizing y and Z as independent variables, the drift kinetic
equation can be cast as

ω
∂ f 1
∂y

+
.
Pζ

∂ f0
∂Pζ

= C( f 1) . (24)

Equation (24) has been solved in the nonlinear trapping
regime in [18]. The transport fluxes, i.e. neoclassical toroidal
plasma viscosity in that regime are( −→eζ · ∇⃗ ·←→π
−→eζ · ∇⃗ ·

←→
Θ

)
=−eχ

′

c
υt

3
ˆ
dxx2

(
1

x2− 5
2

)
νDIk

×

 πυω̂ων
2

Bmωb,t
∣∣∂ω
∂λ

∣∣(∂ω/∂Pζ0

)2 ∂ f0
∂Pζ0


r

,

(25)

where x = υ /υt,
−→eζ = ∇⃗V×∇⃗θ, ←→π is the viscous tensor,

←→
Θ is the heat viscous tensor, e is the electric change, υt =√
2T/M is the thermal speed, T is the temperature, and M is

the mass. The subscript r indicates that the quantities inside
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the square brackets are evaluated at the resonance pitch angle
for a given E. The symbol ων

2 is defined as [18]

ων
2 = 2

(υ∥
υ

)2Bm
B
λ

(
∂ω

∂λ

)2

+ 2υ2
∑

b ν∥
ab∑

b ν
ab
D

(
∂ω

∂υ

)2

, (26)

where a and b denote plasma species, νab∥ is the parallel dif-

fusion frequency, νabD is the pitch angle scattering frequency;
the latter two frequencies are defined in [24]. We remark here
that a is the test particle species and b is the field particle
species. The viscous forces we show here are for the spe-
cies a; the subscript a is omitted for simplicity. The nota-
tion Ik is a number resulting from the pitch angle integral

Ik =
´∞
0 dk̂2

(〈
ω̂
|ω|

〉
y
− H

⟨|ω|/ω̂⟩y

)
, where H is a step func-

tion that vanishes for nonlinearly trapped particles, ⟨ · ⟩y =
(2π )−1 ´ π

−π
dy( ·) for nonlinearly circulating particles, ⟨ · ⟩=

(2π )−1 ´ yt
−yt

dy( ·) with turning points at ±yt for nonlinearly
trapped particles.

The approximate test particle collision operator used in
deriving viscous forces is

C( f) = νDων
2 ∂

2 f
∂ω2

, (27)

which is not a model collision operator. As a matter of fact, the
collision frequency is enhanced for the localized distribution
in ω. The enhanced effective collision frequency would not be
obtained if a Krook model had been employed. The same is
the case in the quasilinear plateau regime to be demonstrated
in the next subsection.

4.2. Quasilinear plateau regime

Our approach in treating bounce-transit and drift reson-
ance in the quasilinear plateau regime differs from all other
approaches by including the mirror force like physics. The
governing equation is equation (24) which has the independ-
ent variables (Z, y, E, λ). In the quasilinear plateau regime,
we change the independent variables from (Z, y, E, λ) to
(Z, y, E, ω), and recast equation (24) into

ω
∂ f 1
∂y

+ω
∂ω

∂y
∂ f 1
∂ω

+
.
Pζ

∂ f0
∂Pζ

= C( f 1) , (28)

where the second term on the left side is the mirror-force-like
term that controls the nonlinear trapping. In the nonlinear trap-
ping regime, the mirror-force like term is indispensable. How-
ever, in the quasilinear plateau regime, the frequency implied
by this term is smaller than the collision frequency and can be
neglected; this criterion sets the low collision frequency bound
of the quasilinear plateau regime, i.e.

νDων
2 > ω̂3, (29)

a bound that has not been obtained previously in other treat-
ments. Thus, our treatment of the quasilinear plateau and non-
linear trapping regimes is similar to that of the banana and plat-
eau regimes in standard neoclassical theory [2, 30, 31]. Here,

we note that if we had used a Krook model for C( f ), we could
not obtain equation (29) properly.

Neglecting the mirror-force like term as is appropriate, the
governing equation in quasilinear plateau regime is

ω
∂ f 1
∂y

+
.
Pζ

∂ f0
∂Pζ

= C( f 1) , (30)

where ω is an independent variable. The resonance at ω = 0 is
now resolved by collisions. For a single mode, equation (30)
can be expressed explicitly as

ω
∂ f 1
∂y
− υ2

2

(
1− 3

υ∥0
2

υ2

)
mc
e
nblnc siny

∂ f0
∂Pζ0

= νDων
2 ∂

2 f 1
∂ω2 ,

(31)

where υ2∥0 is l= 0 component of υ2∥. The width of the reson-
ance layer ∆ω can be estimated to be, using equation (31),

|∆ω|∼
(
νDων

2
)1/3. (32)

Here, we note that the layer width in equation (32) cannot
be obtained if a Krook model is used for C( f ). Equation (32)
can be solved utilizing the function Hi(z) that satisfies [32]

d2w
dz
− zw= 1, (33)

where

w= πHi =

∞̂

0

dtezt−t3/3;

and the solution is

f 1 =−i
π

2
υ2

2

(
1− 3

υ∥0
2

υ2

)
mc
e
nblnc

∂ f0
∂Pζ0

(
νDων

2
)−1/3

×
[
Hi(z)eiy−Hi(−z)e−iy

]
, (34)

where z=−iω/
(
νDων

2
)1/3. The distribution f1 satisfies the

boundary condition that f1→ 0 as |z| →∞.
The neoclassical toroidal plasma viscosity can be calcu-

lated straightforwardly using f1 in equation (34). The defin-
ition for neoclassical toroidal viscosity is

⟨−→eζ · ∇⃗ ·←→π ⟩=−
〈
M
2

ˆ
d−→υ

(
υ2− 3υ∥

2
)
f
1
B
∂B
∂ζ0

〉
, (35)

where the angular brackets denote the flux surface average in
the quasilinear plateau regime. Substituting f1 in equation (34)
into equation (35) yields(
⟨−→eζ · ∇⃗ ·←→π ⟩
⟨−→eζ · ∇⃗ ·

←→
Θ ⟩

)
=−χ ′M

2cn2

eBm
π 2

8
υt

8×
ˆ
dxx7

(
1

x2− 5
2

)

×

(
1− 3

υ∥0
2

υ2

)2

× blnc
2

ωb,t

∣∣∣∂ω∂λ ∣∣∣
∂ f0
∂Pζ0

, (36)

where the energy integral is performed over the region that
satisfies the resonance condition.
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Figure 1. Schematic plot of neoclassical toroidal viscosity
−→eζ · ∇⃗ ·↔π ≡ π t versus collision frequency ν in log–log scale. The
transitions between nonlinear trapping (NT), quasilinear plateau
(QP) and Pfirsch–Schlüter (PS) regimes are noted. When the
resonances overlap in the nonlinear trapping regime, the result of
the quasilinear plateau regime persists.

5. Analytic expression for nonlinear trapping and
quasilinear plateau regimes

The asymptotic results for neoclassical toroidal plasma viscos-
ity in the nonlinear trapping and quasilinear plateau regimes
can be reproduced from the following analytic expressions(

⟨−→eζ · ∇⃗ ·←→π ⟩
⟨−→eζ · ∇⃗ ·

←→
Θ ⟩

)
=−

eχ ′

cBm
υt

4
ˆ
dxx3

(
1

x2− 5
2

)
ω̂

(
∂ω

∂Pζ0

)−2

×
∂ f0/∂Pζ0

ωb,t |∂ω/∂λ|
×

κNTκQP

κNT +κQP
, (37)

where κNT = πνDIkων
2, and κQP =

(
π 2/32

)
ω̂3. To obtain

equation (37), we have used ω̂2 to represent the perturbed field
blnc

2. Some of the results in equation (37) are not in any exist-
ing numerical codes. The formulas can be useful in modeling
tokamak experiments and energetic alpha particle transport
losses. A schematic plot of the neoclassical toroidal plasma
viscosity versus collision frequency ν is shown in figure 1.
Here, we remark that when the resonances overlap in nonlin-
ear trapping regime the result of the quasilinear plateau regime
persists.

In the collisional regime, the viscous forces connect to
those in the Pfirsch–Schlüter regime shown in [2].

6. Discussions and concluding remarks

We have presented an equation for treating the bounce-transit
and drift resonances that can accommodate both the nonlin-
ear trapping and quasilinear plateau physics. When the effect-
ive collision frequency is less than the nonlinear trapping fre-
quency, the mirror-force like term cannot be neglected and the
nonlinear trapping physics is dominant. In the opposite limit,
the physics of the quasilinear plateau prevails.

The physics of the nonlinear trapping and quasilinear plat-
eau regimes discussed here is similar to that of the electrostatic
Landau damping. The nonlinear trapping physics is analogous
to the electrostatic trapping in the Landau theory [33] and the

quasilinear plateau regime to the linear Landau damping, in
which there is no collision frequency dependence in the damp-
ing rate.

We calculate the neoclassical toroidal plasma viscosity in
the quasilinear plateau regime by including the effects of the
equilibrium radial drift in the safety factor q experienced by
the particles instead of in the toroidal drift. This is consistent
with the choice of Pζ as an independent radial variable. Even
though we have only used a single mode in the theory, the res-
ults can be easily generated to multiple modes because they
are additive in the quasilinear plateau regime.

We note that because toroidal drift speed is smaller than
the nominal bounce and transit speeds by a factor of ρp/L, the
bounce-transit and drift resonances most likely occur in the
vicinity of the trapped-circulating boundarywhere the real val-
ues of the bounce and transit frequencies are small. Of course,
for high n mode, the resonance can be satisfied for deeply
trapped and well circulating particles.

We have also constructed analytic formulas that can repro-
duce the respective asymptotic limits of the nonlinear trapping
and quasilinear plateau regimes. The results of these formulas
are not in existing numerical codes. The formulas are useful
in modeling tokamak physics, including the transport losses of
energetic alpha particles. As noted in [19], the energetic alpha
particle transport losses can be comparable to those of neo-
classical theory for δB/B∼ 10−4. Because plasma parameters
are not always in the asymptotic limits, the detailed value can
only be calculated numerically. The formulas presented here
can serve that purpose.
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