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Time series is one of the most common data types in the industry nowadays. Forecasting the 
future of a time series behavior can be useful in planning ahead, saving time, resources, and 
helping avoid undesired scenarios. To make the forecasting, historical data is utilized due to the 
causal nature of the time series. Several deep learning algorithms have been presented in this 
area, where the input is processed through a series of non-linear functions to produce the output. 
We present a novel strategy to improve the performance of deep learning models in time series 
forecasting in terms of efficiency while reaching similar effectiveness. This approach separates 
the model into levels, starting with the easiest and continuing to the most difficult. The simpler 
levels deal with smoothed versions of the input, whereas the most sophisticated level deals with 
the raw data. This strategy seeks to mimic the human learning process, in which basic tasks 
are completed initially, followed by more precise and sophisticated ones. Our method achieved 
promising results, obtaining a 35% improvement in mean squared error and a 2.6 time decrease 
in training time compared with the best models found in a variety of time series.

1. Introduction

Time series is one of the most common data type nowadays. Forecasting future behavior is critical in many fields [6], such as 
power consumption, weather, and pollution. It is really valuable as it allows us to plan, save time, save resources and help to avoid 
undesired scenarios [41]. A time series is a collection of ordered data by its time component. Previous known events are used to 
estimate future behaviors due to the causal nature of time series data. Depending on whether the forecast considers obtaining one 
future step or multiple future steps, the problem is known as one-step or multi-step forecasting. Additionally, a time series that 
considers just one variable is named univariate while a time series with several variables is named multivariate.

In this study, we examine multi-step forecasting in univariate time series due to the relevance of various practical scenarios such 
as traffic management, power usage, and retail sales. In many of these cases, we must consider the evolution over numerous time 
steps to make judgments and implement solutions that increase performance.

* Corresponding author.
E-mail addresses: mjimenez3@us.es (M.J. Jiménez-Navarro), mariamartinez@us.es (M. Martínez-Ballesteros), fmaralv@upo.es (F. Martínez-Álvarez), 
Available online 8 March 2023
0020-0255/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

guaasecor@upo.es (G. Asencio-Cortés).

https://doi.org/10.1016/j.ins.2023.03.021
Received 11 June 2022; Received in revised form 31 January 2023; Accepted 2 March 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ins
mailto:mjimenez3@us.es
mailto:mariamartinez@us.es
mailto:fmaralv@upo.es
mailto:guaasecor@upo.es
https://doi.org/10.1016/j.ins.2023.03.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2023.03.021&domain=pdf
https://doi.org/10.1016/j.ins.2023.03.021
http://creativecommons.org/licenses/by/4.0/


Information Sciences 632 (2023) 815–832M.J. Jiménez-Navarro, M. Martínez-Ballesteros, F. Martínez-Álvarez et al.

The research community is adopting deep learning for time series forecasting (TSF) more frequently [6,42,46], reporting 
competitive results when compared to traditional Box-Jenkins and other machine learning techniques. Deep learning can 
automatically learn features using raw input without the need for feature engineering. The model learns some non-linear relationship 
that maps the input to the output. However, as we cannot accurately explain the transformation learned, they are known as black-box 
algorithms.

In this paper, we define a hierarchical behavior for the model by giving an additional task to each layer in the model and obtaining 
some insights into the internal model transformations. We assume that, like people, neural nets can learn quicker by starting with 
easier tasks and gradually increasing the difficulty. For example, if you were to learn to ride a motorcycle, it would be easier if you 
already knew how to ride a bike, since you would have acquired notions such as balance, braking, circulation, etc. Learning these 
notions from a more complicated assignment takes longer as there are more factors to consider compared to the easiest activity. 
Even if the basic notions are learned via another complicated task, they may be biased and unsuitable for that task. Following the 
motorcycle example, if you can ride both the motorcycle and the bike, you will have a less unbiased sense of balance. This is because 
you cannot simply identify it with the weight or form of the motorcycle, as you have a more general experience.

We propose the Propagated HIerarchical Learning Network (PHILNet),1 a novel approach to increase neural network efficiency 
for univariate multi-step TSF, especially in terms of execution time. PHILNet extends, modifies, and improves the HLNet architecture 
[22]. The principal modification includes the influence of harder tasks into simpler tasks in the backpropagation algorithm.

The main novelty underlying PHILNet consists in splitting the neural network into levels, which constitute one or several layers. 
Simpler versions of the input are fed into the first level, while more complex versions are fed into subsequent layers. Smoothing 
is used to simplify the input window, regulated by a parameter that is different for each layer. The initial layers transfer their 
information to the subsequent layers. Due to this transfer, the posterior layers can benefit from the knowledge obtained from the 
previous layers, improving the convergence speed. The convergence speed is especially relevant in scenarios where a large model 
has to be trained, several models are used to forecast different scenarios, a large number of hyperparameters have to be tuned, and 
so forth.

Moreover, the main contributions of this paper are as follows:

• The definition of a novel method that improves the efficiency of deep neural networks for multi-step problems with similar 
efficacy.

• The interpretability improvement of the model by providing insights into the layers in the neural network.
• The comparison with LSTM [20], GRU [11], DeepAR [38], Temporal Fusion Transformers [31], NBEATS [36], Prophet [40], 

and PHILNet using numerous datasets from different application fields.

The remainder of this paper is structured as follows. We summarize the relevant work related to this research in Section 2, 
focusing on significant differences. The methodology proposed in this study is described in Section 3. We show the experimentation 
process carried out describing the models, datasets and metrics employed in Section 4. Section 5 discusses the results obtained after 
experimentation, assessing the significance of the results using statistical analysis, and investigating the effect of the data size on 
efficiency. Finally, we discuss the results of the work and future directions in Section 6.

2. State of the art

In this section, the related work is divided into two subsections. In Section 2.1, a general state-of-the-art of time series forecasting 
area is described, while in Section 2.2 similar approaches to our proposed methodology are analyzed.

2.1. Area of analysis

Time series forecasting needs require large input windows in many application fields. A recent approach in time series forecasting 
focuses on limiting the number of connections or input records by increasing the sparsity in order to obtain good efficacy with no 
additional computational resources.

Bai et al. [5] proposed a novel convolutional layer on multiple datasets for TSF. This work proposes the temporal convolution 
network, which includes the concept of causal and dilated convolution. On the one hand, causal convolution restricts the convolutions 
so that only past information can influence the future. On the other hand, dilated convolutions introduce a fixed step between every 
two adjacent filter taps, which increases the receptive field. This model has been extended and used in several applications [17,18,28]. 
However, even though the receptive field increases, information is lost as a result of the effect of dilation. Our proposal attempts to 
improve efficiency, speeding up convergence of the neural network, not using more efficient transformations.

Oreshkin et al. [36] develop an explainable neural network architecture. The authors define the backward and forward residual 
connections which take ideas from the ResNet [16] architecture used in artificial vision. The backward residual connection 
decomposes the input sequentially, removing complexity, while the forward residual connection is a partial prediction of the neural 
network. However, our proposal uses a different method to improve the efficiency by introducing a new architectural paradigm in 
which the learned representations are formed hierarchically.
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1 All the code with the experimentation has been included in the following repository https://github .com /manjimnav /PHILNet.
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Salinas et al. [38] proposed a novel architecture for probabilistic forecasting. The model uses an LSTM layer that processes the 
input obtaining the hidden state. Then, the likelihood model defines the noise of the forecasting by estimating the mean and the 
standard deviation of the next step distribution.

Several comparisons have been made between recent deep learning approaches applied to TSF. The work developed by 
Lara-Benítez et al. [29] shows the efficacy and efficiency of some of the most used deep learning approximations for TSF. Recurrent 
neural networks (RNN) showed competitive results compared to convolutional neural networks (CNN) approaches in a good variety 
of datasets. Recurrent neural networks are one of the most applied models for time series forecasting in several application fields 
[1,9,23].

Transformers have become especially relevant due to their application to natural language processing and time series forecasting 
[30,31,44,48]. The main component of transformers is self-attention, which assigns a score to the different time steps based on their 
relevance. However, this mechanism has several issues that hinder its application to TSF. Zhou et al. [49] show the main issues and 
develop an architecture based in the self-attention mechanism. Our methodology is applied to recurrent neural networks due to their 
proven effectiveness in several TSF problems, but the methodology supports using other layers instead of LSTM.

Finally, we highlight a recent non neural network approach with competitive results. In particular, the model proposed by Taylor 
et al. [40] called Prophet. This method defines an additive model that includes several exogenous variables such as holidays, future 
known features, trends, etc.

2.2. Related works

Previous research has investigated the use of several multi-resolution or smoothed time series to improve model efficiency. 
Typically, these approaches employ some models to learn each representation separately before combining them into a meta-model. 
Because they must train as many models as representations individually, these techniques are usually very inefficient.

Another comparable method modifies the training algorithm by picking easier examples to learn from before going on to the 
more challenging ones. The concept is similar to that of PHILNet, but we add interpretability by including the notion of increasing 
difficulty in the model structure.

Kourentzes and Petropoulos [26] suggest an expansion of MAPA [25] that includes the need for stock holding units. Their 
technique involves fitting an arbitrary model to each of numerous non-overlapping representations of the data and then averaging 
the model predictions using a mean or median. On the contrary, PHILNet does not fit a model for each input representation. Instead, 
each representation is trained together, reducing the training time.

Afolabi et al. [2] develop an approach in which an empirical mode decomposition based noise reduction procedure is used 
in the original time series to provide meta-information, which is then fed into a model to generate predictions. The authors 
successfully tested their approach in NARX networks [32] and LSTM. Noise reduction is out of the scope of PHILNet. Furthermore, 
the simplification is included into the model architecture and the simplified versions are not simply entered as a feature to the input. 
Instead, we assign the task of predicting a simplified version to the initial layers to save training time.

Wu et al. [43] develop the RESTful framework for improving forecasting efficiency by using multi-resolution patterns into time 
series. The authors presented a two-step process in which a GRU network is used to extract the hidden state of each time series and 
resolution, then a convolutional layer is used to extract the pattern of each hidden state and produce predictions. The strength of 
PHILNet is not only multi-resolution representations, but also smooth time series representations that extract meaningful patterns. 
PHILNet is also a one-step method, with feature extraction and final predictions completed in the same phase.

Bahrpeyma et al. [4] build a recurrent neural network for each of the different representations of the time series. Multiple horizons 
are predicted using recurrent neural networks, which are then weighted on the basis of the efficacy of the model. This technique, 
like other efforts, shows the issue of efficiency and model isolation.

Koenecke and Gajewar [24] use curriculum learning to analyze financial time series, achieving good results by increasing the 
complexity of the task during training and ordering the data previously. As a complexity ordering criterion, they employed the baby 
steps technique and seasonal decomposition. We focus on modifying the architecture, rather than on the training data fed to PHILNet. 
Additionally, we make no assumptions about the complexity of time series segments.

We are interested in optimizing the final prediction job using other tasks that support the main task. For that reason, PHILNet 
would be equivalent to auxiliary learning [35]. However, to our knowledge, there is no hierarchically multi-step TSF architecture for 
auxiliary tasks.

3. Methodology

This section introduces the proposed methodology. Hence, Section 3.1 motivates its development, Section 3.2 describes it, and 
finally Section 3.3 explains how the loss is calculated.

3.1. Motivation

Some studies have shown that CNN learns a hierarchical representation in artificial vision applications [45]. In these cases, the 
initial layers learn more generic low-level representations, while the subsequent layers use this knowledge to generate more specific 
817

higher-level representations. However, to the best of our knowledge, this pattern has not been investigated in TSF.
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Fig. 1. Detailed version of PHILNet architecture. Each level is represented by a green box that receives the input of the model. Then, each level smooths the input 
using the smooth layer, encodes the smoothed input using a 𝐿𝑆𝑇𝑀 layer, and feeds the current hidden state and the previous ones to the 𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑 layer. The 
final prediction given by the last level represents the output of the model.

Inspired by the behavior learned by convolutional neural networks in image classification [29], we present a novel neural network 
architecture that explicitly uses a hierarchical representation through different objectives. In the initial levels, simpler representations 
allow the model to learn more generic features, which are transferred to the next layer.

We hypothesize that recurrent models, such as CNN [14], may try to learn more generic characteristics from the time series in 
the first layers and, progressively, more specific characteristics in the subsequent layers. According to this assumption, assigning the 
simpler objectives to the first levels helps the model to speed up the convergence. This is accomplished because simpler objectives 
are learned faster, learning the general representations that are transferred to the next levels.

3.2. Description

The hierarchical representation of the input window is obtained by using an additional task/objective to each layer or collection 
of layers, hereinafter called a level. Each task uses a different representation of the input window, decomposing the time series from 
simpler to harder tasks. The easiest task is assigned to the initial level while, as we progress through the next levels, more complicated 
tasks/objectives are provided.

We define the input of the network as 𝑆𝑤(𝑡) with length 𝑤, which is called the past window. For each level 𝑖, the model generates 
an input 𝑆̂𝑖

𝑤′ (𝑡), which is simpler than 𝑆𝑤(𝑡). Smoothing allows us to recognize patterns in time series such as trends, acquire 
a high-frequency representation, and reduce the noise and variance. Smooth representations allow the model to obtain general 
representations of the input window quickly, as noise reduction facilitates the forecasting task.

The smoothing approach selected is the moving average (MA). The moving sum may be used, but the average keeps the data 
distribution consistent with the original. The smoothing method receives a parameter 𝜎 to control the smoothness of the level, which 
is a hyperparameter of the model. The parameter 𝜎𝑖 ∈ ℕ, hereinafter called the smooth factor, determines the size of the rolling 
window in the moving average for each level 𝑖. The smoothness and simplification degree increase as the value of 𝜎𝑖 or smooth factor 
increases. Therefore, the first levels have higher values of 𝜎𝑖 than the following levels. For the last level, a value of 1 is used for the 
smooth factor (𝜎) leaving the input unchanged.

Fig. 1 shows the proposed architecture divided in three main steps. First, each level (𝐺𝑖) starts with a 𝑆𝑚𝑜𝑜𝑡ℎ𝐿𝑎𝑦𝑒𝑟 with 
their respective smooth factor (𝜎𝑖) obtaining 𝑆̂𝑖

𝑚,𝑤′ (𝑡), where 𝑤′ denotes the reduced length of the input window after the 
smoothing process and 𝑚 denotes the feature size. Then, the LSTM layer receives the simplified input window 𝑆̂𝑖

𝑚,𝑤′ (𝑡) and 
outputs the hidden state 𝐻𝑖 which encodes the information of the window. The hidden state is concatenated with all the 
preceding hidden states. This step is crucial in the proposed approach since it is at this point where the previous levels 
share the information from general representation. Finally, all concatenated hidden states are fed into a 𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑 layer 
at level 𝑖, which generates predictions for each horizon of size ℎ. Each level 𝑖 generates its own output, 𝑂𝑖

1,…,ℎ
resulting 

in the same number of outputs as levels. Only the last level has the true unsmoothed forecast, which constitutes the 
prediction.
818

In the LSTM layer, the transformations applied to each element 𝑆𝑡 in 𝑆𝑚,𝑤(𝑡) are:
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𝑖𝑡 = 𝜎
(
[𝑆𝑡,ℎ𝑡−1]𝑊 𝑖

)
,

𝑓𝑡 = 𝜎
(
[𝑆𝑡,ℎ𝑡−1]𝑊 𝑓

)
,

𝑜𝑡 = 𝜎
(
[𝑆𝑡,ℎ𝑡−1]𝑊 𝑜

)
,

𝐶̃𝑡 = tanh
(
[𝑆𝑡,ℎ𝑡−1]𝑊 𝑔

)
,

𝐶𝑡 = 𝜎
(
𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡

)
,

ℎ𝑡 = tanh
(
𝐶𝑡

)
∗ 𝑜𝑡 ,

where 𝑊 𝑖, 𝑊 𝑓 , 𝑊 𝑜 and 𝑊 𝑔 represent the weights for the input, forget, output and cell gates respectively. 𝐶̃𝑡 represents the candidate 
cell state, 𝐶𝑡 the cell state and ℎ𝑡 the hidden state of the layer.

Therefore, the output for each level is a function of the current level concatenated with all previous hidden states. The function 
applied during the 𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑 layer is formulated as follows:

𝑂𝑖
1,…,ℎ

= 𝑓𝑖(𝐺𝑖(𝑆𝑖
𝑚,𝑤

(𝑡)) +…+𝐺1(𝑆1
𝑚,𝑤

(𝑡))) ,

where 𝐺𝑖 represents the transformations that output the hidden state for level 𝑖 and 𝑓𝑖 being the 𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑 layer from level 𝑖. 
The complete process is summarized in Algorithm 3.2.1.

Algorithm 3.2.1 PHILNet inference process.
Given an input window 𝑆𝑚,𝑤, and smooth factors 𝜎𝑖, 𝑖 ∈ [1...𝑛]. For each group 𝐺𝑖, 𝑖 ∈ [1...𝑛]:

1. Calculate 𝑆̂𝑖
𝑚,𝑤′ (𝑡) smoothing the input windows using the 𝑆𝑚𝑜𝑜𝑡ℎ𝐿𝑎𝑦𝑒𝑟 with the corresponding 𝜎𝑖.

2. Compute the hidden state (𝐻𝑖) using the 𝐿𝑆𝑇𝑀 layer.
3. Concatenate the current hidden states with all previous hidden states (𝐻1...𝑖).
4. Calculate the output 𝑂𝑖

1...ℎ for each horizon.

Return 𝑂𝑛
1...ℎ as final output.

3.3. Loss calculation

As a result of the forward step, each level produces a different prediction with an associated loss. The loss for each level is 
calculated using a smoothed version of the true future values. The loss of all predictions is finally added together to obtain the final 
loss. Note that the true values for each level must use the appropriate smooth factor 𝜎𝑖 to calculate the loss.

The first layer acquires larger losses proceeding from the simpler tasks and the subsequent tougher tasks at the backpropagation 
stage. As result, the first levels may tend to stay in areas of the error space where the model performs well in more tasks, obtaining 
general characteristics to pass on to the layers below. Furthermore, the combination of numerous losses in the initial layers produces 
a general gradient with greater amplitude, which helps minimize the convergence time.

We predict the gradients of the easier tasks to move to low loss areas quickly since convergence in smaller tasks is expected to 
be faster than in difficult tasks. Then, the subsequent levels can use that information and focus on the more specific behavior of the 
difficult tasks using fewer iterations.

4. Experimentation

In this section, we introduce the information about the experimentation performed in PHILNet. First, we describe the datasets used 
in the experiment and the relevant associated characteristics in Section 4.1. The established experimental environment is detailed in 
Section 4.2. The main components of the hardware used during all the experimentation are described in Section 4.3. In Section 4.4, 
the evaluation metrics used in all datasets are presented.

4.1. Datasets

We chose 13 public datasets from various contexts, each of which has several time series. This collection covers a wide range 
of TSF applications with diverse domains, window sizes, and forecasting horizons. The properties of each dataset are detailed in 
Table 1, including the number of time series (N), the forecast horizon (FH), and the maximum (M) and minimum (m) window sizes 
for each dataset used. It can be seen that more than 52000 time series have been analyzed, most of them have been used in TSF 
contests and other TSF studies [19].

The Demand dataset [37] was taken from the Spanish Electricity Network website and records the power demand from January 
to December 2015. This is a univariate dataset collected every 10 minutes from the same building. We created 72 time series by 
dividing the time series into non-overlapping segments of 576 time steps each. The purpose is to forecast the next 24 hours.

The CIF 2016 competition dataset [39] has 72 monthly time series, 15 of which have a 6-month forecast horizon (CIF16o6) and 
the rest 57 have a 12-month forecast horizon (CIF16o12). Some of these time series are artificially generated, while others are real 
819
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Table 1
Summary of properties of the datasets used.

Dataset N FH M m

Demand 72 144 432 144
CIF16o12 57 12 36 15
CIF16o6 15 6 18 7
ExchangeRate (ER) 8 6 18 7
M3 1428 18 36 22
M4 48000 18 36 22
NN5 111 56 168 70
SolarEnergy (SE) 137 6 18 7
Tourism 336 24 48 30
Traffic 862 24 72 30
Traffic-metr-la (TML) 207 12 36 15
Traffic-perms-bay (TPB) 325 12 24 15
WikiWebTraffic (WWT) 997 59 118 73

The ExchangeRate (ER) dataset [27] contains records of the daily exchange rates from 1990 to 2016 in eight countries: Australia, 
the United Kingdom, Canada, Switzerland, China, Japan, New Zealand, and Singapore. The purpose of this dataset is to forecast the 
values over the next six days.

The datasets for the M3 [33] and M4 [34] competitions include time series from various domains and observation frequencies. 
The time series contains monthly samples from various fields. Both contests need an 18-month forecast and include time data from 
industry, finance, and demographics. The number of cases in each category is evenly distributed based on their occurrence in the 
actual world, leading to representative results in innovative investigations. The M4 dataset comprises 48000 monthly time series, 
whereas the M3 dataset has 1428 monthly time series.

The NN5 dataset [13] is a competition composed of 111 time series with a total length of 735 values. This dataset contains daily 
cash withdrawals from automated teller machines (ATMs) in England over the past two years. The competition created a forecasting 
horizon of 56 days.

The SolarEnergy (SE) [47] dataset provides solar power production measurements from 137 solar photovoltaic power plants in 
Alabama State sampled every 10 minutes. The objective is to correctly anticipate one hour.

The Tourism dataset [3] is made up of 336 monthly time series of various lengths that require a 24-month forecast. The 
information comes from the tourist authorities in Australia, Hong Kong, and New Zealand which represents the overall tourism 
figures for each nation.

Public traffic speed datasets Traffic-metr-la (TML) and Traffic-perms-bay (TPL) [21]. For the past four months, traffic-metr-la has 
collected data from 207 sensors on Los Angeles roadways. Similarly, Traffic-perms-bay collects 6 months of traffic speed data from 
325 sensors around the Bay region. All data were gathered every 5 minutes, to forecast one hour.

The [10] traffic dataset is a collection of hourly time series obtained by the California Department of Transportation in 2015 and 
2016. The information describes the road occupancy rates ranging from 0 to 1, observed by various sensors on the San Francisco Bay 
region highways every 10 minutes. The objective is to forecast 4 hours in advance.

The WikiWebTraffic (WWT) dataset is part of the [15] Kaggle competition, which attempts to estimate future online traffic for a 
set of Wikipedia pages. The daily number of hits is used to evaluate on-line traffic, and the forecasting horizon is 59 days.

4.2. Experimental settings

This section describes the experimentation process which is divided in two sub-sections. Section 4.2.1 provides an overview of 
the models used for comparison, while Section 4.2.2 delves into the specifics of the hyperparameter settings and data division used 
in the experiments.

4.2.1. Models
We selected four different types of models as baseline: recurrent based models including HLNet, attention based model, residual 

based model and non neural network model.
Recurrent models were selected as the proposed methodology uses this type of layer as the basic block. For that reason, LSTM 

[20], GRU [11], DeepAR [38] and HLNet [22] were selected for the experimental study. LSTM and GRU stack a set of layers with 
the same name and use a fully connected layer at the end to make a direct multi-horizon forecast. We tried to reproduce the same 
architecture as in the original DeepAR paper using a single LSTM layer, which makes a probabilistic forecast. We use the mean of 
the normal distribution as the forecasting produced by the model. Unlike the other recurrent models, the forecasting in DeepAR was 
originally one-step using an iterative approach to adapt to multiple horizons. Finally, HLNet was used during the experimentation 
with the same configuration and architecture as presented in the original paper.

Attention based model reported great results in recent applications. For that reason, Temporal Fusion Transformers (TFT) [31]
was the model selected including some changes compared to the original implementation. The main changes correspond to the output 
of the model and the loss function. Originally, the output of the model corresponds to the tenth, fiftieth, and ninetieth quantile. As 
820

we only consider one output, we selected the fiftieth quantile as the output of the model. Additionally, the quantile loss function was 
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replaced to the mean square error loss as our implementation does not accept quantiles as output. Finally, exogenous variables were 
introduced to provide the same information to all models during the experimentation carried out.

Residual based model was also selected due to the results recently reported. In particular, NBEATS [36] is the selected model 
using the general block proposed in their work. This block does not assume a seasonal-trend decomposition of the time series which 
provides a better opportunity to adapt to a more variety of datasets.

Finally, we used a non neural network approach in order to compare the neural networks with an efficient approach which has 
provided competitive results recently. Prophet [40] was selected without including any exogenous variable. As Prophet can fit only 
one time series, we trained a model for each time series for every dataset and averaged the results obtained.

4.2.2. Experimentation
We created a comparable experimental environment for all models to perform fair comparisons. As a hyperparameter selection 

approach, a grid search was selected to perform the Bayesian tests in the next section. In PHILNet, the normalization technique, the 
hidden size, the number of layers, the window size, and the smooth factor comprise the hyperparameter space. The learning rate can 
be 0.01 or 0.001, the hidden size 32, 64, or 128 neurons, the number of layers 2 or 4, and the window size 125, 200, or 300 percent 
of the forecast horizon size.

Prophet uses its own hyperparameters, which are not shared with the neural networks. The official documentation indicates 
that the principal hyperparameters are the changepoint prior scale (CPE) and seasonal prior scale (SPE). The SPE and CPE 
hyperparameters can take the values: 0.001, 0.01, 0.1, 1, and 10.

The train/test division has been chosen using a fixed origin method [19]. For each segment or separated univariate time series 
(𝑚 = 1), the last records are used as the forecasting horizon, while the remaining records in the segment are used as training. A 
windowing process is used for each segment to obtain the input windows and their respective forecasting horizons.

4.3. Hardware

All experiments have been executed on the same machine with the same hardware configuration. The hardware configuration 
consists of an NVIDIA Geforce RTX 3070 GPU, an AMD Ryzen 7 5800X 3.8 GHz, and 32 GB RAM.

4.4. Evaluation metrics

We analyzed the outcomes of PHILNet, HLNet and LSTM by comparing three forecasting indicators and one efficiency parameter. 
The well-known Mean Absolute Error (MAE) and Mean Squared Error (MSE) are the first two metrics, using the following formulas:

𝑀𝐴𝐸 = 1
ℎ

ℎ∑
𝑡=1

|𝑦𝑡 − 𝑦̂𝑡|

𝑀𝑆𝐸 = 1
ℎ

ℎ∑
𝑡=1

(𝑦𝑡 − 𝑦̂𝑡)2

Furthermore, the Weighted Average Percentage Error (WAPE) was chosen for the variety of datasets with values ranging from 0 
to 1, and metrics like Mean Absolute Percentage Error (MAPE) do not accurately reflect reality.

𝑊𝐴𝑃𝐸 =
∑ℎ

𝑡=1 |𝑦𝑡 − 𝑦̂𝑡| ∗ 100∑ℎ

𝑡=1 𝑦𝑡

Finally, as an efficiency metric, we measured the training time to show the efficiency of the model.

5. Results discussion

This section discusses the results obtained after the experimentation and evaluation carried out. Section 5.1 compares PHILNet 
with the previous presented approach focusing on the improvement obtained. Section 5.2 makes a comparison between all the 
baseline models explained in Section 4.2. Section 5.3 shows the best models found in the baseline and makes a more detailed 
comparison. Finally, we discuss the influence of the size of the data on the training time in Section 5.4.

5.1. Comparison with HLNet

In this section, a comparison with the original proposal is reported. The results analyze the improvement of PHILNet over HLNet 
in terms of training time. Then, to make conclusions about the statistical significance of the obtained results, a test has been used to 
support the results.

5.1.1. Results
In PHILNet, the main features can be summarized as follows: use several tasks hierarchically in which the simpler tasks transfer 
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their knowledge to more difficult tasks, and simultaneously, harder tasks influence the simpler tasks via backpropagation. If we do 
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Table 2
MAE, MSE, WAPE and training time for each dataset and model of our modified version of PHILNet.

Model

PHILNet HLNet

MAE MSE WAPE (%) TIME MAE MSE WAPE (%) TIME

Demand 899 1.84e06 3.31 3’ 08” 893 1.77e06 3.27 3’ 40”
CIF16o12 1.22e04 8.66e09 16.48 0’ 05” 1.40e04 9.06e09 15.32 0’ 17”
CIF16o6 1.89e06 1.90e13 19.54 0’ 05” 2.14e06 2.37e13 19.93 0’ 04”
ER 1.80e-4 6.25e-6 0.28 1’ 05” 1.80e-4 8.00e-6 0.28 2’ 02”
M3 674 1.52e06 15.43 1’ 34” 683 1.50e06 15.28 2’ 49”
M4 604 2.00e06 14.71 6’ 07” 598 1.94e06 14.78 12’ 18”
NN5 3.48 30.20 18.40 5’ 27” 3.49 29.49 18.34 23’ 23”
SE 1.77 8.75 183.00 16’ 14” 2.16 12.4 255.00 7’ 21”
Tourism 2224 8.28e07 19.49 1’ 28” 2217 9.61e07 18.95 1’ 40”
Traffic 1.2e-3 6.77e-4 34.44 6’ 27” 1.2e-3 5.77e-4 34.40 21’ 12”
TML 1.99 8.60 3.33 11’ 26” 2.00 8.82 3.34 12’ 16”
TPB 0.92 2.13 1.38 14’ 17” 0.92 2.12 1.38 33’ 41”
WWT 12.00 9171 47.17 9’ 28” 11.99 9009 47.38 45’ 24”

Fig. 2. Probability of having greater training time and WAPE between PHILNet and HLNet.

not use several tasks hierarchically or transfer the knowledge, we have an architecture similar to an LSTM. However, if harder tasks 
cannot influence in the simpler tasks of the architecture, the proposal would be the same as HLNet.

Table 2 shows the comparison between PHILNet and HLNet. In general, if we define the best method as the method with the best 
results in more metrics, the efficacy obtained in HLNet is better in 8 datasets, while PHILNet is better in 5 datasets. However, the 
difference is not very significant when HLNet is better.

In terms of training time, PHILNet obtains better results in 11 datasets while HLNet is better than PHILNet in 2 datasets. In 
addition, the training time for the SE dataset has been reduced considerably. However, there is a notable difference in the rest of the 
datasets in general. In NN5, Traffic, TPB, and WWT, PHILNet obtains half the training time than HLNet.

5.1.2. Bayesian test
To statically prove the results obtained, we decided to use a Bayesian approximation, since the null hypothesis significance test 

has several well-known problems [7].
We used the Bayesian correlated t-test [12] and Bayesian signed-rank test [8] to make the comparison for each dataset and all 

datasets, respectively. These tests are the Bayesian version for Wilcoxon signed rank test and t-test. The input is the paired results 
of two models A and B, which returns the probability that model A is better than B, model B is better than A, and there are no 
significant differences (rope).

WAPE and training time were analyzed using a Bayesian approach to show that the results obtained are statistically significant. 
Bayesian tests need to define a region of practical equivalence, also called rope. In the case of WAPE we decided to set the rope 
at 1%. For training time, the rope will be 1% of the average difference between PHILNet and HLNet. This means that experiments 
in which the WAPE difference is less than 1% and experiments in which the training time difference is less than 1% the average 
difference in the training time are considered equivalent. As the Bayesian tests are paired, it is necessary to have the same number of 
samples for each model. The samples are the results obtained for each model trained with different hyperparameters in all datasets. 
We obtained all pairs of results with the same hyperparameters for HLNet and PHILNet.

Fig. 2 illustrates the probabilities for the different scenarios. The probability of PHILNet having higher WAPE than HLNet is 
represented in p(PHILNet) and the inverse scenario is represented in p(HLNet). Furthermore, p(rope) indicates the probability of 
similar results. As you can see, the probability of HLNet having greater time than PHILNet and the probability of PHILNet and HLNet 
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having similar results are 1.
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Table 3
Best WAPE (in percentage) found for every model in each dataset.

LSTM GRU DeepAR TFT Prophet NBEATS PHILNet

Demand 3.83 5.27 14.08 4.40 267.99 14.33 3.31
CIF16o12 17.10 12.87 23.99 14.64 17.02 15.86 16.48
CIF16o6 32.23 25.17 71.82 26.98 20.92 27.20 19.54
ER 0.30 0.32 13.02 0.39 6.08 0.36 0.28
M3 15.30 15.43 30.36 15.53 15.79 17.41 15.43
M4 14.57 14.75 41.73 15.07 16.90 15.73 14.71
NN5 18.56 18.89 41.90 18.51 19.37 41.29 18.40
SE 222.00 259.61 2255.52 233.96 2357.02 300.56 183.00
Tourism 19.69 19.16 50.90 19.63 32.94 37.99 19.49
Traffic 33.92 34.67 77.61 39.37 69.94 72.84 34.44
TML 3.33 3.38 40.39 3.51 9.94 3.40 3.33
TPB 1.38 1.36 35.16 1.68 – 1.45 1.38
WWT 46.89 47.45 175.22 48.14 68.95 48.49 47.17

Table 4
Training time for the best models in each dataset.

LSTM GRU DeepAR TFTa Prophet NBEATS PHILNet

Demand 0’ 49” 8’ 57” 8’ 03” 50’ 32” 0’ 41” 0’ 2” 3’ 08”
CIF16o12 0’ 30” 0’ 50” 0’ 07” 1’ 31” 0’ 20” 0’ 01” 0’ 05”
CIF16o6 0’ 05” 0’ 02” 0’ 01” 0’ 21” 0’ 05” 0’ 11” 0’ 05”
ER 2’ 05” 1’ 36” 0’ 27” 57’ 07” 0’ 27” 0’ 11” 0’ 52”
M3 7’ 22” 6’ 01” 1’ 21” 56’ 51” 10’ 29” 0’ 11” 1’ 34”
M4 9’ 15” 29’ 34” 2’ 47” 62’ 05” 353’ 42” 1’ 38” 6’ 07”
NN5 20’ 09” 16’ 13” 4’ 09” 109’ 29” 0’ 45” 0’ 38” 5’ 27”
SE 10’ 14” 10’ 40” 7’ 16” 42’ 35” 61’ 50” 1’ 57” 16’ 14”
Tourism 3’ 41” 4’ 58” 1’ 46” 30’ 29” 2’ 30” 0’ 21” 1’ 28”
Traffic 41’ 02” 33’ 47” 23’ 54” 73’ 16” 55’ 46” 1’ 42” 6’ 27”
TML 14’ 14” 10’ 21” 5’ 57” 81’ 49” 90’ 44” 2’ 16” 11’ 26”
TPB 48’ 27” 48’ 10” 2’ 28” 50’ 03” – 5’ 23” 14’ 17”
WWT 46’ 49” 54’ 17” 24’ 32” 81’ 33” 6’ 57” 3’ 31” 9’ 28”

a Due to incompatibility between the libraries used during the experimentation, the execution was 
done using the CPU.

With these results, we can conclude that the inclusion of several simpler tasks is enough to improve training time in the datasets. 
However, we prove that a key concept is a hierarchical optimization, where the harder tasks can influence the simpler tasks. We 
hypothesize that to reduce the negative transfer impact of the simpler tasks on the harder tasks, we must optimize both tasks jointly.

5.2. Comparison with baseline architectures

An experimental comparison with all the baseline architectures described in Section 4.2 is reported in this section. The results 
show the best models for each dataset analyzed in terms of efficiency and efficacy.

Table 3 shows the efficacy of each model in all datasets. It can be noted that only the WAPE metric has been used to facilitate the 
comparison among the tested architectures.

The models based on recurrent layers (PHILNet, LSTM and GRU) except for DeepAR obtained the best results in terms of efficacy. 
PHILNet obtained the best results in six datasets, LSTM was the best model in five, and GRU was the best in three datasets. We 
hypothesize that DeepAR obtained poor results although it used recurrent layers as consequence of the iterated forecasting approach.

TFT model obtained generally good results, but they are still under the GRU, LSTM, and PHILNet efficacy.
Prophet had notably worse results compared to the other methods. In datasets like CIF16o6, CIF16o12 or M3, the method obtained 

remarkable results, but in datasets like WWT or Demand, the results were worse than other models, in general. Furthermore, the 
efficacy of the TPB dataset was several orders of magnitude higher than the error evaluated in other datasets. For this reason, the 
results in TPB were removed from the Table 3 and Table 4. To the best of our knowledge, this result may be due to the irregular 
patterns contained in the time series of some datasets which difficult the training to the set of Prophet models.

NBEATS has the same problem as Prophet. This model obtains competitive results in datasets like CIF16o6, M4 or TML. However, 
the results are remarkably poorer than models in other datasets, making this model less generalizable to other problems.

In terms of efficiency, Table 4 shows that the best models were NBEATS, DeepAR, and PHILNet. NBEATS and DeepAR were 
expected to be efficient models, as they are simpler models than the other ones. Despite the fact that PHILNet has almost the same 
architecture as the usual LSTM model, it presents a good efficiency comparable to simpler models in some datasets.

The poor efficacy obtained in the TFT model was consequence of using the CPU for training instead of the GPU because the 
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libraries and drivers used were incompatible with the official implementation of the model.
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Table 5
The best hyperparameters found for every model in each dataset.

LSTM GRU DeepAR TFT Prophet NBEATS PHILNet

Layers Units Layers Units Layers Units Layers Units CPE SPE Layers Units Layers Units GF

Demand 2 32 2 64 1 64 2 64 0.1 1 2 128 4 32 2
CIF16o12 4 64 4 128 1 128 2 64 10 0.01 4 64 2 128 4
CIF16o6 4 32 2 128 1 128 2 64 0.1 0.001 2 64 4 128 2
ER 2 64 2 64 1 32 2 128 10 0.001 2 32 2 128 4
M3 2 128 4 32 1 64 2 64 0.5 0.01 2 32 4 32 4
M4 2 32 4 128 1 32 2 32 0.1 0.01 2 32 2 64 8
NN5 2 128 4 32 1 64 2 64 0.5 10 4 32 4 32 8
SE 2 32 2 64 1 128 2 128 10 0.001 4 64 4 32 4
Tourism 2 128 2 128 1 64 2 64 10 0.001 2 128 2 128 8
Traffic 2 128 4 32 1 128 2 128 0.5 10 4 64 2 128 4
TML 2 64 2 32 1 64 2 128 0.1 10 4 32 2 64 6
TPB 4 64 4 64 1 32 2 64 10 0.001 4 128 4 128 4
WWT 4 32 2 128 1 64 2 32 0.5 10 4 128 2 32 2

Prophet seems to have good efficacy in datasets with few time series in general. However, in datasets with a lot of time series, 
the efficiency decreases as Prophet needs to model each one independently. Table 4 shows that datasets with few instances do not 
necessarily obtain better efficiency. Additionally, the amount of memory needed to fit a dataset is greater than other models, since 
every time series in a dataset contains an independent model, which is responsible of the forecasting of the time series.

LSTM and GRU seem to have an efficiency similar to our proposed methodology, but PHILNet is faster even using similar layers. 
Section 5.3 compares LSTM, GRU, and PHILNet in more detail, as are the models that obtain better results without significantly 
increasing the training time.

As conclusion, PHILNet seems to be the option which obtain a better efficacy in more datasets preserving a good efficiency.
Table 5 shows the best hyperparameters found for each model in each dataset. In general, there seems to be no pattern in the 

models nor datasets, showing that more layers or units are required. In Prophet hyperparameters, a very low value of the seasonal 
prior scale (SPE) and a high value of the changepoint prior scale (CPE) seem to be the most common pattern in most of the datasets.

5.3. Comparison with LSTM and GRU

In this section, a detailed comparison with the best architectures found in Section 5.2 is reported. The following discussion of 
results analyzes the improvement of PHILNet over LSTM and GRU. Then we apply the Bayesian test between our proposal and the 
best baseline architecture to demonstrate the statistical significance of the results obtained.

5.3.1. Results
The MAE, MSE and WAPE metrics mentioned in Section 4.4 for the LSTM, GRU and PHILNet architectures are shown in Table 6. 

In most situations, PHILNet obtains a significant improvement in terms of training time with similar or better results than LSTM or 
GRU.

In 9 of 13 datasets, the training time for PHILNet was reduced, whereby 8 of 10 datasets obtained more than half the training 
time compared with LSTM or GRU. The improvement in training time is not related to a decrease in the number of parameters, as 
seen in Table 5. When comparing the units and layers of LSTM and PHILNet, there does not appear to be any pattern. This fact seems 
to indicate that PHILNet does not require more or fewer parameters to obtain equivalent results to LSTM or GRU in general. We 
found that a value of 4 for the smooth factor (sigma) is the most common value for the best models.

If we define the best model of a dataset as the model with the least error in more metrics, there are four datasets in which LSTM 
outperforms all models, seven datasets in which PHILNet outperforms all models, one dataset in which GRU outperforms all models 
and one draw. However, in most datasets, there are no significant differences, except for Demand and CIF16o6 datasets, where 
PHILNet improves LSTM by at least 10% in all metrics.

In general, LSTM seems to be the most competitive architecture, compared to PHILNet. For that reason, the rest of the analysis 
focuses mainly on the comparison between LSTM and PHILNet.

Table 7 shows the relative average improvement for each metric between the best and second best architecture using the results 
in Table 6. Additionally, the number of times that an architecture obtains the best results for a metric is reported. The table supports 
the idea that PHILNet has a better improvement, while the improvement of LSTM and GRU is less notable.

The WAPE of the LSTM, GRU and PHILNet is shown in Fig. 3 for each value of smooth factor (𝜎). Because the LSTM and GRU 
do not have the smooth factor (𝜎), it appears to be 0. We give a boxplot that displays the range of the findings obtained after doing 
numerous trials with varied settings.

In most situations, when looking at the influence of the smooth factor parameter on PHILNet, we cannot detect any clear 
relationship between the different smooth factor values and the metrics. When the smooth factor changes its value, the range of 
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the boxplot appears to fluctuate dramatically, but the median in most datasets remains almost the same.
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Table 6
MAE, MSE, WAPE (in percentage) and training time for each dataset and model.

Model

LSTM GRU PHILNet

MAE MSE WAPE TIME MAE MSE WAPE TIME MAE MSE WAPE TIME

Demand 1055 2.21e06 3.83 0’ 49” 1440 4.01e06 5.27 8’ 57” 899 1.84e06 3.31 3’ 08”
CIF16o12 1.26e04 7.52e09 17.10 0’ 30” 1.59e04 1.04e10 12.87 0’ 50” 1.22e04 8.66e09 16.48 0’ 05”
CIF16o6 2.34e06 2.56e13 32.23 0’ 05” 3.83e06 1.14e14 25.17 0’ 02” 1.89e06 1.90e13 19.54 0’ 05”
ER 1.9e-4 6.72e-6 0.30 2’ 05” 2.06e-4 8.85e-6 0.32 1’ 36” 1.8e-4 6.25e-6 0.28 0’ 52”
M3 691 1.55e06 15.30 7’ 22” 694 1.58e06 15.43 6’ 01” 674 1.52e06 15.43 1’ 34”
M4 592 1.94e06 14.57 9’ 15” 603 1.99e06 14.75 29’ 34” 604 2.00e06 14.71 6’ 07”
NN5 3.50 30.50 18.56 20’ 09” 3.57 30.28 18.89 16’ 13” 3.48 30.20 18.40 5’ 27”
SE 1.73 7.60 222.00 10’ 14” 2.03 10.07 259.61 10’ 40” 1.77 8.75 183.00 16’ 14”
Tourism 2349 1.21e08 19.69 3’ 41” 2388 1.46e08 19.16 4’ 58” 2224 8.28e07 19.49 1’ 28”
Traffic 1.23e-3 6.53e-4 33.92 41’ 02” 1.27 7.07e-4 34.67 33’ 47” 1.23e-3 6.77e-4 34.44 6’ 27”
TML 1.99 8.77 3.33 14’ 14” 2.01 9.15 3.38 10’ 21” 1.99 8.60 3.33 11’ 26”
TPB 0.91 2.10 1.38 48’ 27” 0.90 2.03 1.36 48’ 10” 0.92 2.13 1.38 14’ 17”
WWT 11.97 8833 46.89 46’ 49” 12.11 9430 47.45 54’ 17” 12.00 9171 47.17 9’ 28”

Table 7
Average improvement for the best results of each architecture with the second best architecture over each dataset. 
The number of instances where the architecture outperforms all the other architectures is in parentheses.

LSTM GRU PHILNet

MAE 1.17% (5) 1.08% (1) 11.41% (7)
MSE 5.91% (5) 3.33% (1) 34.67% (7)
WAPE 2.60% (4) 10.33% (3) 29.51% (5)
Time 63.45% (2) 34.5% (2) 267.71% (9)

Table 8
Probability of LSTM having greater WAPE than PHILNet (LSTM), probability of PHILNet having greater WAPE than LSTM (PHILNet) and 
probability of PHILNet having similar WAPE than LSTM (rope) for each smooth factor.

Dataset Smooth factor

2 4 6 8

LSTM rope PHILNet LSTM rope PHILNet LSTM rope PHILNet LSTM rope PHILNet

Demand 0.18 0.82 0.00 0.22 0.78 0.00 0.28 0.72 0.00 0.21 0.79 0.00
CIF16o6 0.97 0.03 0.00 0.96 0.03 0.00 0.98 0.02 0.00 – – –
CIF16o12 0.56 0.43 0.00 0.54 0.45 0.00 0.60 0.39 0.00 0.54 0.46 0.00
M3 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
M4 0.00 1.00 0.00 0.10 0.77 0.14 0.00 0.99 0.00 0.05 0.89 0.05
NN5 0.14 0.86 0.00 0.15 0.85 0.00 0.13 0.87 0.00 0.16 0.84 0.00
SE 0.01 0.01 0.99 0.14 0.04 0.82 0.00 0.00 1.00 – – –
ER 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 – – –
Tourism 0.79 0.15 0.06 0.76 0.17 0.07 0.77 0.16 0.07 0.76 0.17 0.07
Traffic 0.00 0.41 0.59 0.00 0.82 0.18 0.00 0.74 0.26 0.00 0.55 0.45
TML 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
TPB 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
WWT 0.70 0.07 0.23 0.70 0.07 0.23 0.70 0.07 0.23 0.69 0.07 0.24

We identified that LSTM and GRU results seem more unstable than PHILNet, with less extreme outliers introduced (most of which 
then have been removed for visual clarity). This fact leads us to believe that PHILNet is more resilient, displaying fewer results with 
distribution outliers regardless of the settings.

In general, the results in Fig. 3 are comparable, with no apparent winner in most of datasets. The principal difference between 
LSTM, GRU and PHILNet is the IQR (interquartile) range obtained in CIF16o6 or ExchangeRate (ER), although the median is nearly 
the same. The smooth factor seems to have some influence on the results depending on the dataset. The median and IQR range of 
PHILNet is generally stable for all smooth factors, except in the M4, Solar Energy (SE), and Traffic-perms-bay (TPB) datasets which 
presents a large variability. In the tourism and M3 data sets, PHILNet has a poorer median and IQR range, although it has superior 
results in Table 6. GRU seems to outperform LSTM and PHILNet in CIF16012, Demand and Tourism. Finally, even if the metrics in 
the results table were identical, PHILNet in Traffic-metr-la (TML) provides better results in terms of median and IQR range.

The training time distribution of the experiments is shown in Fig. 4. The boxplots seem to support the notion that PHILNet takes 
less time to train than LSTM and GRU in general, with less IQR range and median. The median and IQR range of training time was 
lower in 11 datasets while the training time is similar to, or higher in the five remaining datasets. Interestingly, in SolarEnergy (SE) 
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dataset where PHILNet exhibited a longer training time than LSTM and GRU for the best configuration, the median and IQR range is 
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Fig. 3. Boxplot of all experiments indicating the WAPE value for each number of units within PHILNet.

lower. In this case, the training time does not represent a large variation for every smooth factor, indicating that the smooth factor 
has no great impact on the training time.

Our theory is that PHILNet takes longer to train in the remaining circumstances because the model does not fall into a local 
minimum and needs more time to find a better minimum. This implies that, when the LSTM models reach a local minimum, the 
metrics do not improve and early stopping is triggered, reducing the training time in half. Because the PHILNet does not fall as 
quickly into local minima, the early stopping is delayed, extending the training period.

5.3.2. Bayesian tests
In the previous section, the results seem to indicate that PHILNet has similar results than LSTM in general requiring less training 

time, while GRU seems to be worst than both models. To obtain a statistical significance in our conclusions, we applied a Bayesian 
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test as in Section 5.1.2. Note that, in contrast to HLNet, all hyperparameters between LSTM and PHILNet are the same except for 
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Fig. 4. Box plot of all the experiments training time per smooth factor PHILNet.

the smooth factor. This means that there are more configurations for PHILNet than for LSTM, so a paired comparison cannot be 
performed directly. The results for the LSTM model for all hyperparameters are compared with PHILNet for each smooth factor. 
Furthermore, since GRU is not competitive in terms of training time and WAPE with LSTM and PHILNet, only LSTM is selected in 
the comparison.

Table 8 shows the probability that LSTM has a higher WAPE than PHILNet (LSTM), PHILNet has a higher WAPE than LSTM 
(PHILNet) and a similar WAPE (rope). We set a threshold of 75% probability to make assumptions about the results, which means 
that results that do not exceed the threshold are considered undetermined. The value for each dataset and the smooth factor have 
been colored green or orange, depending on whether the probability is above or below the threshold, respectively. (For interpretation 
of the references to color please refer to the web version of this article.)

Most of the probabilities fall into the rope, which means that PHILNet has an error similar to LSTM. The case of the CIF16o12 
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dataset is considered undetermined, the difference between LSTM, PHILNet, and rope does not exceed the threshold for any smooth 
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Fig. 5. Probability of having a greater WAPE between LSTM and PHILNet for different smooth factors.

Table 9
Probability of LSTM having greater training time than PHILNet (LSTM), probability of PHILNet having greater training time than LSTM 
(PHILNet) and probability of PHILNet having similar training time than LSTM (rope) for each smooth factor.

Dataset Smooth factor

2 4 6 8

LSTM rope PHILNet LSTM rope PHILNet LSTM rope PHILNet LSTM rope PHILNet

Demand 0.15 0.05 0.80 0.22 0.04 0.73 0.12 0.05 0.83 0.12 0.05 0.83
CIF16o6 0.00 0.00 1.00 0.00 0.01 0.99 0.00 0.01 0.99 – – –
CIF16o12 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
M3 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
M4 0.91 0.02 0.08 0.90 0.02 0.08 0.95 0.01 0.04 0.91 0.02 0.07
NN5 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
SE 1.00 0.00 0.00 0.98 0.01 0.01 1.00 0.00 0.00 – – –
ER 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 – – –
Tourism 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Traffic 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
TML 1.00 0.00 0.00 0.99 0.01 0.00 0.99 0.01 0.00 0.99 0.01 0.00
TPB 0.96 0.02 0.02 0.98 0.01 0.01 0.96 0.02 0.02 0.97 0.01 0.01
WWT 0.99 0.01 0.00 0.99 0.01 0.00 0.99 0.01 0.00 0.99 0.00 0.00

factor. In the Traffic dataset, the results are undetermined for smooth factors 2 and 8 but fall in the rope for 4 and 6. In the Solar 
Energy (SE) dataset, PHILNet has more WAPE than LSTM. Finally, in the CIF16o6 and Tourism datasets, PHILNet has fewer errors 
than LSTM.

Fig. 5 shows the WAPE comparison between the probabilities LSTM, rope, and PHILNet as p(LSTM), p(rope), and p(PHILNet) 
respectively for all datasets. We have four equilateral triangles, one for each smooth factor for PHILNet as all the hyperparameters 
are shared with LSTM except for the SmoothFactor. The figure shows how all points fall into the rope assigning a probability of 1. 
This supports the first idea of our hypothesis: PHILNet has similar results to LSTM in general.

Table 9 shows the probabilities as the previous table but using the training time metric. In 11 of 13 datasets, the probability 
showed LSTM has greater training time for each Smooth factor value. In the Demand and CIFo2016o6 datasets, the probability was 
higher for PHILNet having more training time than LSTM. Note that almost all probabilities are above 90% showing clearly the 
training time reduction.

Fig. 6 shows the probabilities as in the previous figure but using the training time metric. The figure clearly shows that the 
828

training time in LSTM is greater than PHILNet in general.
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Fig. 6. Probability of having a longer training time between LSTM and PHILNet for different smooth factors.

Fig. 7. Training time analysis by data size in M3 dataset.

5.4. Data size analysis

We used the M3 as the computation time is not too expensive and the training time reduction is good enough to see the difference 
between PHILNet and LSTM. The data has been sampled from 5% to 100% of available data. When we sample the 5% of available 
data, for example, we take it from more recent instances. As we increase the available data, the oldest data are introduced to the 
training. We use this sampling method because we consider it the most realistic scenario in practice.

Fig. 7 shows how the training time scales in our method as more data are added to our method. We can observe how the methods 
start to have the same training time in the beginning, but as we increase the training data the LSTM increases considerably faster 
than PHILNet.

Fig. 8 shows the evolution of the training time in the M3 dataset by layers and units. The training time in LSTM and PHILNet 
seems to follow an exponential evolution. However, PHILNet has less training time in general than LSTM maintaining below in 
almost all cases.

6. Conclusions and future works

In this paper, we introduced PHILNet, a novel method for multi-step forecasting evaluated over 13 different datasets and compared 
829

with six important methods in the context of TSF. Thus, we developed a new architecture based on LSTM layers that allows learning 
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Fig. 8. Training time by layers and units.

from simpler to more complex tasks obtaining a hierarchical representation of the input. The methodology is done by smoothing 
the original input and transferring the extracted knowledge to subsequent levels. The results have shown a great improvement in 
terms of efficiency using less training time maintaining a good efficacy, which leads to the use of deeper architectures, optimizing 
the hyperparameters or training several architectures with less computation. The improvement in efficiency is achieved by assigning 
specific tasks with increasing difficulty to different levels. This fact accelerates the convergence time, since learning tasks gradually 
help to provide relevant information to harder tasks quickly. In future work, other smoothing strategies could be followed instead 
of the moving average. Additionally, the development of a custom loss function with different weights for each level and evolving 
with the number of epochs is proposed. Furthermore, the inclusion of a technique that reduces the possible effect of negative transfer 
can be beneficial. Finally, we can use more types of simple tasks that support the main task inspired by self-learning and auxiliary 
830

learning.
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