
Knowledge-Based Systems 254 (2022) 109644

i
h
t
m
i
m
v

p
P
t

m
f

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

DIAFAN-TL: An instanceweighting-based transfer learning algorithm
with application to phenology forecasting
M.A. Molina-Cabanillas a, M.J. Jiménez-Navarro b, R. Arjona a, F. Martínez-Álvarez b,
G. Asencio-Cortés b,∗

a easytosee AgTech S.L., Diego Martínez Barrio 10 (3rd floor), ES-41013 Seville, Spain
b Data Science & Big Data Lab, Universidad Pablo de Olavide, ES-41013 Seville, Spain

a r t i c l e i n f o

Article history:
Received 20 December 2021
Received in revised form 26 July 2022
Accepted 5 August 2022
Available online 10 August 2022

Keywords:
Transfer learning
Phenology
Time series forecasting
Supervised learning

a b s t r a c t

The agricultural sector has been, and still is, the most important economic sector in many countries.
Due to advances in technology, the amount and variety of available data have been increasing over
the years. However, compared to other economic sectors, there is not always enough quality data
for one particular domain (crops, plantations, plots) to obtain acceptable forecasting results with
machine learning algorithms. In this context, transfer learning can help extract knowledge from
different but related domains with enough data to transfer it to a target domain with scarce data.
This process can overcome forecasting accuracy compared to training models uniquely with data
from the target domain. In this work, a novel instance weighting-based transfer learning algorithm is
proposed and applied to the phenology forecasting problem. A new metric named DIAFAN is proposed
to weight samples from different source domains according to their relationship with the target
domain, promoting the diversity of the information and avoiding inconsistent samples. Additionally, a
set of validation schemes is specifically designed to ensure fair comparisons in terms of data volume
with other benchmark transfer learning algorithms. The proposed algorithm, DIAFAN-TL, is tested
with a proposed dataset of 16 plots of olive groves from different places, including information
fusion from satellite images, meteorological stations and human field sampling of crop phenology.
DIAFAN-TL achieves a remarkable improvement with respect to 15 other well-known transfer learning
algorithms and three nontransfer learning scenarios. Finally, several performance analyses according
to the different phenological states, prediction horizons and source domains are also performed.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The agricultural sector has been presented as one of the most
mportant economic sectors, as it has provided the basic liveli-
oods of the population throughout history. In recent years, due
o a growing world population, increased crop security and cli-
ate change, monitoring, as well as introducing new technologies

n this sector have become essential. These new technologies
ake it possible to monitor the current state of crops, providing
aluable information to help farmers in their decision-making.
Among all the parameters that can be monitored, we find the

henological stages of the crop to be one of the most important.
recision monitoring of phenological stages over time is essential
o understand the impact of climate change on plants. Recent
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studies show the reaction of such changes throughout the timing
of phenological stages, thus affecting crop productivity [1].

Moreover, if such monitoring is combined with the prediction
or forecasting of these phenological stages through the appli-
cation of artificial intelligence algorithms, it becomes a useful
tool for small and large farmers for planning irrigation schedules,
pesticide and disease control and fertilization management [2].

However, although all the new technologies developed are
positioned as fundamental tools to help farmers make decisions,
their implementations in the agricultural sector have been stag-
nant for several years. However, in recent years, there has been
a greater interest in their applications, especially by large com-
panies that are accessing the agricultural sector and require a
greater cost and farm management control.

This incipient data collection means that a sufficiently large
historical database is not yet available to be effectively used to
train machine learning-based models. New techniques capable
of extracting relevant knowledge from low available data are
essential, especially in geographies where such data are scarce.

Moreover, those techniques should produce general models able
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to accurately predict the evolution of phenology in different
crops. For this reason, data with diversity, in terms of both input
features and label spaces, must be provided as training for such
models. In this context, the transfer learning paradigm has proven
to be as an effective way to capture diverse patterns from differ-
ent problems (domains) and use them together to improve the
prediction accuracy on a target domain. In this study of phenology
forecasting it is assumed that each domain represents a crop of
olive grove in a different place.

Phenology forecasting is an especially complex problem due
o the relationships among the large number of different factors
hat can affect crop evolution. For this reason, a vast number
f variables taken from different sensors and places could be
eeded to extract the complex patterns that can explain the phe-
ology evolution and, consequently, produce accurate forecasting
odels.
In general, time series forecasting models that are based on

achine learning algorithms use input training sets with lagged
alues of the time series as features and future ahead values as
he different classes to predict the regression. Such data prepro-
essing is simple and effective in many cases, but some relation-
hips among time series values cannot be captured by machine
earning algorithms. For example, complex relationships between
verages of values in different windows of the time series, are
specially present in agronomics problems. Averaging very old
alues of some variables of the time series could be useful as
nput features along with more detailed recent values.

Usually, many transfer learning proposals for supervised learn-
ng published in the literature are validated including a compari-
on of those proposals with nontransfer learning strategies using
he same datasets [3]. However, this type of comparison is unfair
nd it does not reflect whether the performance improvement
f a transfer learning algorithm occurs due to the nature of the
lgorithm of the higher volume of data it receives as training,
ompared to the lower volume given to the nontransfer learners.
pecifically, transfer learning algorithms receive as training one
r more source domains as training along with a training part of
he target domain (assuming a single-target approach). However,
here are usually two nontransfer learning strategies: (1) The first
trategy includes a base learner trained with a source domain and
ested with a subset of the target domain. (2) The second strategy
ncludes a base learner trained with a subset of the target domain
nd tested with the rest of samples. Comparing a transfer learning
lgorithm with both strategies is unfair, because the volume sizes
re always different and such a difference could be considerably
arge (especially in the second nontransfer learning strategy).

To solve the problems previously described, a new transfer
earning algorithm, DIAFAN-TL, is proposed and applied to phe-
ology forecasting in several crops of olive groves. DIAFAN-TL is
n instance weighting-based algorithm that weights each sample
rom multiple source domains in such a way that favors informa-
ion diversity and penalizes false neighbors. The dataset to train
nd test the algorithm was specifically collected and prepared for
his work, integrating an information fusion of satellite images,
eteorological stations and human field sampling of phenology

rom olive grove crops. Moreover, vast feature engineering for
he time series was performed, including variables that were not
agged but averages, maximums, minimums, sums, dispersions
nd value changes for different window sizes and temporary
isplacements.
To validate the proposal, a fair comparison with 15 other

ell-known transfer learning algorithms and three nontransfer
earning strategies using the same volume of training data for
ll the algorithms was performed. The aim was to isolate the
ause of the performance improvement to the nature of the

lgorithm, as explained before. Moreover, several performance

2

analyses according to the different phenological states, prediction
horizons and source domains were also performed.

The rest of the paper is structured as follows: Section 2
overviews recent and relevant papers in the field of transfer
learning, as well as its application to phenology forecasting. Sec-
tion 3 describes the proposed methodology and how it is applied
to predict a phenology time series. Section 4 reports and discusses
the results achieved from the different experiments that have
been carried out. Finally, Section 5 summarizes the conclusions.

2. Related works

Transfer learning is becoming one of the fields of research
where most of effort is being put [4]. In fact, many applications
can now be found in the literature.

Within the possible classifications and configurations of trans-
fer learning, we can find domain adaptation, unsupervised learn-
ing and even fine-tune.

Unsupervised learning is the case of abundant labeled source
data and no labeled target data. In fact, [5] refers to inductive
transfer learning as the case of having available labeled target
domain data, transductive transfer learning as the case of having
labeled source and no labeled target domain data, and unsuper-
vised transfer learning as the case of having no labeled source
and no labeled target domain data. A Unsupervised transfer learn-
ing method that mitigates nontransferable prior-knowledge by
self-supervision can be seen in [6]

Fine tune transfer learning enables to start with a model, pre-
trained for a specific task, and then fine-tune (train) only certain
layers of the neural network for a related but different target
task. However, the selection of fine-tunable layers is one of the
major problems of such an approach. In [7] a new method for
the selection of fine-tunable layers for a target dataset under the
given constraints is described.

Domain adaptation, which is particularly interesting in the
context of this paper since instance weighing is used as a tech-
nique included in this area, is the process of adapting one or more
source domains for the means of transferring information to im-
prove the performance of a target learner. The domain adaptation
process attempts to alter a source domain in an attempt to bring
the distribution of the source closer to that of the target.

Exploring into instance weighting approaches, included in the
domain adaptation configuration, many studies have been de-
veloped, most of them refers to inductive transfer learning. For
example, in [8], these techniques are applied to model, analyze
and detect reference points of faces. The importance of applying
transfer by weighing instances during learning is emphasized
over its application afterward to adjust the models.

In [9], two methods for regression based on importance
weighting are presented, where, for each instance of the do-
main data, a weight is assigned such that the data contributes
positively to the prediction of the target data.

Additionally, in [10], a new metric based on weighted in-
stances is used to measure the similarity between two domains
using common spatial patterns to reduce the amount of training
data that needs to be collected at the beginning of each session
to calibrate the parameters of brain–computer interfaces.

Further advances and an extended version of these techniques
are used in other fields, especially in image processing. Further-
more, the technique itself has been studied in some recent articles
due to the benefits it presents [4,5,11].

Other works applying these transfer learning and deep trans-
fer learning techniques can be found in Refs. [12,13]. In [13],
a domain adaptation extreme learning machine (DAELM) was
developed to establish a simple soft sensor model suitable for
multigrade processes with limited labeled data, inspired by the
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a

idea of transfer learning. In [12], a novel framework of an ad-
versarial transfer learning (ATL)-based soft sensing method was
designed for the quality inference of multigrade processes. By
treating each grade as a domain, the concept of ATL was adopted
to learn a suitable feature transformation between different do-
mains, which reduced the data distribution discrepancy and en-
riched the information provided by the target domain containing
limited labeled data.

Distance studies have been developed in works with deep
ransfer learning techniques and they have achieved remarkable
esults with reference to the effects of dataset similarity. Thus,
n [14] some time series were classified using a distance based
pproach.
All the techniques applied in the works in the previous para-

raphs were gradually being extended to the agricultural sector,
aking up most of the information generated in recent years.
hese techniques were not yet widespread in the agricultural
ector. Only some papers introducing these techniques in this
ector can be found in the literature, such as the one described
n [15] where basic algorithms were used for yield prediction,
isease detection or crop quality.
In this kind of study, satellite images play a key role. In recent

ears, satellite observations have been widely used in research
ork requiring difficult to obtain field data, due to their public
ccessibility and low cost, covering a large area with increasingly
ccurate resolutions [16–20].
Hence, time series of the MODIS NDVI index were used to

istinguish different crop types according to their phenological
volution in [21]. Even in [22], these images were used to detect
he optimal conditions for a given crop type and sowing areas,
eing able to distinguish each one before harvest.
Another work that also used the MODIS satellite (and the

orresponding NDVI index) to perform a spatiotemporal analysis
f crop phenology in a given area can be found in Ref. [23] which
imed to classify crop types. A similar study can be found in
ef. [24].
Other early works published in the agricultural sector that

pply new machine learning techniques, including deep learning
nd transfer learning can be found in Refs. [25–28]. In [27] deep
earning techniques are applied to detect phenological stages of
he rice crop through images taken by air vehicles to estimate
f production and harvest dates. Additionally, in [29,30], some
orks can be seen using deep learning for the recognition of
henological patterns or for the prediction of the phenology and
ncidence of pests and diseases in crops. Especially in Ref. [29] the
ata taken for the analysis comes from half-hourly captures from
ameras mounted on agronomic stations.
Phenological patterns of crop growth are similar in different

arts of the world. This makes it possible to apply models trained
n some areas to others. In fact, [31] proposed a method of
rop identification with LANDSAT satellite images (with a better
esolution than MODIS) and the NDVI index, while the authors
n [32] identified the phenological differences between different
rops.
Another work that has also used satellite imagery to apply

eep transfer learning techniques for yield prediction is described
n Ref. [33]. It predicts the yield of soybean crops in Argentina and
ses this information to predict these crops in Brazil, due to the
imited availability of data in this country.

Transfer learning techniques have also been applied to the
gricultural sector for crop type detection in different regions
ith limited access [28].
Fuzzy-based approaches can be found in the literature in the

ransfer learning context too. Hence, in [34] a fuzzy system with
nowledge-leverage capability is proposed in order to solve prob-

ems where the available data from that scene are insufficient. i

3

In [35] Transfer learning is introduced for recognition of epileptic
electroencephalogram signals. In [36] a new feature transforma-
tion method is developed with fuzzy systems. In [37] the concept
of transfer learning is applied to prototype-based fuzzy clustering.
Finally, in [38], the most recent advances in deep transfer learning
are presented.

Finally, more advanced techniques, such as image-based deep
transfer learning, have been used for disease detection in crops, as
can be read in Ref. [25]. Papers explaining how transfer learning
techniques work can be found in Refs. [26,39].

3. Methodology

The goal of the methodology is to create an end-to-end val-
idation framework that ensures the benefits of using transfer
learning in a machine learning task starting from some data
sources as input and a set of metrics as output. Moreover, a novel
method in the field of transfer learning is assessed by means of
such a validation framework.

This section is structured as follows. Section 3.1 formulates
the problem. Section 3.2 describes the data sources obtained in
the application studied in this paper. Section 3.3 describes the
preprocessing functions applied to the data obtained. Section 3.4
describes the data engineering step where expert knowledge
is used to create features. Section 3.5 describes the validation
framework divided into different schemes to make a fair com-
parison. Section 3.6 describes some background of the transfer
learning area that this paper is focused on. Section 3.7 shows the
training process of the proposed method.

3.1. Problem formulation

Before diving into details of mentioned techniques, let us first

provide a definition of transfer learning. Let DS =

{
(x(i)S , y(i)S )

}L
i=1

enote a data set from a source domain DS = {XS, pS(x)} and
ource task TS = {YS, pS(y|x)}, where x(z)S ϵ XS , y

(z)
S ϵ YS , XS

s the input space, YS is the output space, pS(x) is the marginal
robability distribution and pS(y|x) is the posterior probability
istribution. Similarly, let us define the target data, domain and

ask as follows: DT =

{
(x(i)T , y(i)T )

}M
i=1

, DT = {XT , pT (x)} and TT =

YT , pT (y|x)}. If there is more than one source domains, we have
multi source problem. In this case, let us denote a multi source
omain DSi = {XS, pS(x)}Ni=1 and source task TSi = {YS, pS(y|x)}Ni=1,
here each domain is defined as described above.
The goal of transfer learning is to use the knowledge learnt

rom the source/s to improve the predictive performance of a
redictive model fT (x) : X → Y for the target, despite the fact
hat the source and target tasks and domains may differ.

The case under study is collected in the category of induc-
ive transfer learning, where the label information of the target
omain instances is available. Inductive transfer learning ap-
roaches transfer knowledge between different tasks (e.g. TS ̸=

T ) while DS = DT or DS ̸= DT .
The general methodology is illustrated in Fig. 1, showing the

iagram with all steps to make predictions. Subsequent sec-
ions are devoted to explain every step involved in such general
lowchart.

.2. Data acquisition

The first step is data acquisition, where different data sources
re joined by time to generate the dataset. The data sources used
n this paper are:
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Fig. 1. Flowchart for the proposed methodology.
Table 1
Sentinel bands used from satellite images.
Band number Band description Wavelength range (nm) Resolution (m)

B1 Coastal aerosol 433–453 60
B2 Blue 458–523 10
B3 Green 543–578 10
B4 Red 650–680 10
B5 Red-edge 1 698–713 20
B6 Red-edge 2 733–748 20
B7 Red-edge 773–793 20
B8 Near infrared (NIR) 785–900 10
B8A Near infrared narrow (NIRn) 855–875 20
B9 Water vapor 935–955 60
B10 Shortwave infrared/Cirus 1360–1390 60
B11 Shortwave infrared 1 (SWIR1) 1565–1655 20
B12 Shortwave infrared 2 (SWIR 2) 2100–2280 20
t
v
h
i

1. The first dataset is the satellite data. The dataset is taken
from Sentinel, with historical data since 2015, 5 day peri-
odicity and up to 12 bands with different wavelengths (see
Table 1).

2. The second dataset is the meteorological data. Different
meteorological stations measure different variables, such
as temperature, humidity, solar radiation and precipitation.
These stations have a daily sampling periodicity.

3. The third dataset is the field sampling data. This is the
target to forecast in this work. It consists of the phenol-
ogy sampling obtained by experts of crops. The phenology
usually consists of a set of states for which the crop evolves
over time. Such data are usually collected on a weekly basis
in this work.

In this work, the same data sources are obtained from different
lots where phenology has been sampled from their crops. Each
lot is considered a different domain as each plot demonstrates
ifferent behavior for the same task. With the data obtained, a
4

different dataset is constructed for each domain and plot with a
feature for each variable of each data source obtained. The dataset
constructed is called the event table and is the starting point of
the entire process.

3.3. Data preprocessing

Field sampling data for each domain is collected on a weekly
basis. As the data depends on the attendance of a technician at
the plot to collect the information, it is possible that there are
some weeks without available data.

A simple strategy is followed to impute data. We let Pt be
he phenology value observed at time t . If subsequent phenology
alues Pt+1, . . . , Pt+n (n ≥ 1) has an unknown value, Pt+n+1
as the same value as Pt , and the phenologies Pt+1, . . . , Pt+n are
mputed with the value of P .
t
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3.4. Feature engineering

Feature engineering is the process of using domain knowledge
o extract features from raw data. These features can be used
o improve the performance of machine learning algorithms. To
his end, the following functions have been carried out for each
eature:

1. The first function is for window size definition. This refers
to the definition of the time intervals used to calculate
different statistical functions.

2. The second function is the statistic function definition. This
is the definition of the statistical functions to be applied to
each of the variables in these time windows. The statistical
functions used in this work are: means, accumulates, maxi-
mums and minimums, and they are calculated between the
values of a variable in a temporal space.

3. The third function is for relevant events. These are the val-
ues of the series that exceed some thresholds are marked
as relevant events. Those events are used as the beginning
or end for further window calculation.

4. The fourth function id for target variables. These are the
variables that are used for prediction. In this case, the
phenological state is predicted in the following four weeks
after the prediction date.

In that way, averages of temperature or precipitation accumu-
ations in windows to the past in the short, medium and long
erm are calculated. Other extreme conditions are also consid-
red into account when defining these features, e.g., extreme
emperature thresholds or extreme rainfall.

.5. Validation schemes

To compare the improvements obtained by applying trans-
er learning techniques with traditional techniques, a validation
ramework composed of different schemes is built. This frame-
ork arises from the need to make fair comparisons in an im-
alanced data context from different domains. The goal of these
chemes is to ensure the benefits of using transfer learning in
ifferent scenarios balancing the data and ensuring that the com-
arisons are fair enough to make conclusions.
The validation schemes are applied to our method and tra-

itional algorithms extracted from the literature as a baseline.
hese algorithms are shown in the comparative tables in Sec-
ion 4.

The taxonomy of the different validation schemes has two
ain branches: no transfer learning and transfer learning. The no

ransfer learning includes all the techniques that do not apply any
ransfer learning and consider the data from different domains to
e the same. The transfer learning branch uses several techniques
hat consider the different domains and apply adaptation from
he sources and domains to the target domain. Moreover, these
wo branches are divided into reduced data (if we limit the source
ata) and full data (if we use all the data available from the
ources).
The no transfer learning scheme is described below:

1. Reduced data

(a) We described the reduced data for the target only.
In this case, only data from the target domain are
used for validation. This is the most basic scheme
reflecting cases where very limited historical data
is available. Using random forest (RF) and logistic
regression (LR) as the base algorithms, the last year
of the target domain is taken as the test and the
penultimate year as training.
5

(b) We described the reduced data for sources + targets.
In this experiment, we study the influence of the
source domains for predicting the test set by linking
the training sets. For this purpose, we take all the
years of the target domain except the last one and all
the years of the source domains (domain by domain)
except the last ones for the training set. The last year
of the target domain is again left as the test set.

2. Full data. For this experiment, all years from all the source
domains and the target domain except for their last years
are used. Using RF and LR as the base algorithms, the last
year of the target domain is taken as the test and the rest
of the years are used for the training.

Analogously, the transfer learning scheme, based on RF and LR
is detailed below:

1. The reduced data can divided into one source or random
sources:

(a) When the reduced data is considered one source,
in this experiment, each source domain is taken as
a separate source. For each iteration, the following
steps are followed:

i. The model was trained with all years of the
source domain except the last two years.

ii. We retrain the model with the penultimate
year of the target domain.

iii. It is tested with the last year of the target
domain.

(b) When the reduced data is divided into random
sources, the same methodology is followed as in the
previous experiment but each year of the training set
might belong to a different source domain and this
experiment is repeated n times.

2. The full data in this experiment is intended to prove that
transfer learning improves the simple union of all the in-
formation provided by the source sets. For this purpose, we
train with all the source domains except for those from
their last year. Subsequently, it is retrained with all the
years of the target set except the last one. Again, the last
year is left as the test set.

3.6. Proposed method

In this paper, a novel instance weighting transfer learning
method has been developed based on the use of a specific metric
named DIAFAN that provides diverse information and penalizes
false neighbors in training sets.

Instance weighting is a subfield in transfer learning whose
objective is, during the training step, to assign a weight to the
instances from the sources and domains to learn more from the
most informative examples and prove the final results. In the
literature, these weights are usually assigned by a distance func-
tion, such as log-likelihood or cosine. In our method, a Siamese
network was trained to estimate the distance function between
instances from different domains [40]. The next section describes
the complete training process used in this method.

3.7. Training process

To calculate the DIAFAN metric it is necessary to have the data
of all the domains: the target and all the sources. The procedure
consists in weighting the instances of the source domains by their
similarity in attributes and classes with the instances of the target
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Fig. 2. The training and test phases of the proposed transfer learning methodology to assign weights to instances from source domains.
b

omain, so that the preprocessing of assigning weights to the
nstances of the source domains is done jointly with the target
omain. Then, the data of all the training samples of the target set
re taken and the weighted instances of the source domains are
dded. Finally, a single model is trained with all the data: target
omain and source domains together.
The DIAFAN metric can be included in contrastive algorithms.

ontrastive learning, in general, learns a distance function but
here are cases in which this function is already given, and this is
he case in which the DIAFAN metric is included. With respect to
lgorithms in which a distance function is learned, the advantage
f the DIAFAN metric is that it does not fit a black box, where the
eights are iteratively adjusted during the learning process. The
IAFAN metric is based on prior similarities between attributes
nd classes and does not rely on the number of iterations to adjust
t. This helps in the greater efficiency of DIAFAN in the case of
roblems with model re-training since there is no need to re-train
o re-obtain the weights with consequent time savings. If new
omains are included, it is only necessary to calculate the metric
or them and not for the previous ones. In addition, with DIAFAN
ess weight is given to instances of false neighbors by identifying
uch cases. Also in our case, the weights are more interpretable
han mathematically learned weights.

The training process of our method consists of calculating
weight for each sample from source domains and building a
odel generated by a base classifier using weighted instances

rom source domains along with the training part of the target
omain with a fixed weight of 1.
First, a weight (wC

j ) is assigned to each instance from each
ource domain. This weight is assigned based on the similarity,
6

assessed by a Euclidean distance, among the h future phenology
values of such instances and each instance of the target domain.

Second, for each pair of instances, the cosine distance between
attributes is also calculated, from which we will obtain another
weight (wA

j ).
With both weights, a final weight is calculated. This distance

is named DIAFAN, which stands for DIversity Avoiding FAlse
Neighbor. It is defined in Eq. (1).

DIAFAN Weight =

√
(S − 1)2 + A2

√
2

(1)

In Eq. (1), S represents the weight that measures the similarity
etween classes and A represents the weight given by the cosine

distance function between attributes. For DIAFAN ranges between
[0, 1], the extreme scenarios are described as follows:

1. S = 0 and A = 0. In this case, we have the minimum
distances between both classes and attributes; thus, they
seem very similar to each other. It is therefore given a
weight 1

√
2
in order to favor the third point.

2. S = 1 and A = 0. In this case, the classes are not very
similar and the attributes are very much alike. A weight of
0 is given so as not to introduce false neighbors.

3. S = 0 and A = 1. In this case, the attributes are very
similar, and the classes are very similar. This case brings
variability and is given a weight of 1.

4. S = 1 and A = 1. When everything has little resemblance,
it is given a weight, 1

√
2
as this is a good example to transfer

knowledge.
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Fig. 3. Geographic location of the 16 parcels for the proposed study of transfer learning (Andalusia, Spain).
Fig. 4. More detailed view of plots for each region.
Finally, the pair of instances and the newly calculated weight
eed the base algorithm (RF and LR). The base algorithm uses
he weights calculated by the DIAFAN weight for the sources and
omains training set and a value of Wk = 1 for the target domain
raining instances. The model is trained considering these weights
nd then, once trained, tested with the test dataset. Fig. 2 shows
he complete pipeline followed to train and test the model.

Finally, in the prediction phase, the test part of the target
omain is passed to the previously adjusted model, obtaining a
rediction for the four weeks after the prediction date (Fig. 2).
7

3.8. Transfer learning benchmark algorithms

To compare the effectiveness of our proposed method, we
selected a list of previously published well-known algorithms of
transfer learning. These algorithms are briefly described below:

• STRUT [41]. This algorithm adapts a decision tree trained on
the source samples to the target samples by discarding all
numeric threshold values in the tree and working top-down,
selecting new thresholds using the target examples.
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Fig. 5. Geographic distance between domains (plots) (in km).
Table 2
Characteristics of the 16 domains (plots) used in the study.
Code Plot name Region Coordinates Altitude Surface Slope Dry/Irrigated Density Main variety

P01 C1_Algodonales1 Cádiz 36.86,−5.43 360 8,54 19 Dry 58 Lechín, Zorzaleño, Ecijano
P02 C1_Algodonales2 Cádiz 36.87,−5.45 770 2,26 19 Dry 138 Lechín, Zorzaleño, Ecijano
P03 C1_Olvera1 Cádiz 36.94,−5.25 350 1,04 5 Dry 134 Picual/Marteño
P04 C1_Olvera2 Cádiz 36.94,−5.30 425 3,1 11 Dry 74 Lechín
P05 C2_LosCorrales Sevilla 37.05,−5.01 600 1,93 15 Dry 119 Picual/Marteño
P06 C2_ElSaucejo1 Sevilla 37.10,−5.04 460 31,59 15 Irrigated 156 Manzanillo
P07 C2_ElSaucejo2 Sevilla 37.05,−5.08 520 1,78 20 Dry 120 Hojiblanco
P08 C2_ElSaucejo3 Sevilla 37.07,−5.06 510 2,87 25 Dry 150 Hojiblanco
P09 C3_Baena Córdoba 37.67,−4.33 300 42,53 3 Irrigated 154 Picual/Marteño
P10 C3_NuevaCarteya Córdoba 37.60,−4.42 460 9,58 9 Dry 76 Picual/Picudo
P11 C3_Aguilar Córdoba 37.44,−4.69 280 6,3 1 Dry 194 Picual/Marteño
P12 C3_PuenteGenil Córdoba 37.44,−4.71 320 19,52 1 Irrigated 208 Manzanillo
P13 C4_PozoAlcon1 Jaén 37.71,−2.96 700 6,015 2 Irrigated 178 Picual
P14 C4_PozoAlcon2 Jaén 37.68,−2.94 700 2,86 5 Irrigated 200 Picual/Marteño
P15 C4_PozoAlcon3 Jaén 37.66,−2.93 700 1,09 1 Irrigated 140 Picual/Marteño
P16 C4_PozoAlcon4 Jaén 37.67,−2.91 700 0,96 3 Irrigated 92 Picual
• SER [41]. This algorithm pairs two local transformations of
a decision tree structure. It first specializes rules induced
over the source data to the target data (expansion) and then
generalizes rules induced over the source data by pruning
(reduction).

• MIX [42]. This algorithm generates two forests using both
SER and STRUT, and then it defines MIX as a majority voting
ensemble whose underlying model is the union of all the
trees. in these forests.

• TreesMixedEntropy [41]. Tree construction is done via
shared information gain (IG). The final IG is calculated using
a weighted mixture of IGs of each training set.

• NaiveBiasRegularizator [41]. The weights in the original
forest are changed from a uniform distribution to one, which
favors trees with lower error rates on the available target
training samples.

• NaivePrunningTree [41]. This algorithm constructs a tree-
based algorithm using the source domain and then uses the
target domain to perform pruning on the original forest.
8

• NaiveRelabelingTree [41]. This algorithm updates the
leaves of a forest trained on the source examples using the
target samples.

• CORAL [43]. This algorithmminimizes domain shift by align-
ing the second-order statistics of source and target distribu-
tions without requiring any target labels.

• KMM [44]. This algorithm resolves the estimation problem
of the above unknown ratios by matching the means be-
tween the source-domain and the target-domain instances
in a reproducing kernel Hilbert space (RKHS).

• TCA [45]. This algorithm learns a linear mapping from an
empirical kernel feature space to a low-dimensional feature
space using the maximum mean discrepancy (MMD).

• ConsensusRegularization [46]. This algorithm exploits the
distribution differences and learns the knowledge among
training data from multiple source domains to boost the
learning performance in a target domain. For that purpose,
a local classifier is trained at each source domain by consid-
ering both local data and the prediction consensus with the
classifiers from other source domains.
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Table 3
Accuracy, recall, precision and F-measure of methods obtained from the state of the art and the
developed DIAFAN-TL method.
Base Transfer Acc Recall Prec F1

None STRUT 74.69% 48.65% 45.89% 47.23%
SER 72.22% 45.90% 44.54% 45.21%
MIX 73.53% 47.48% 44.61% 46.00%
TreesMixedEntropy 74.54% 48.10% 46.18% 47.12%
NaiveBiasRegularizator 59.50% 28.21% 21.51% 24.41%
NaivePruningTree 79.69% 47.39% 46.63% 47.01%
NaiveRelabelingTree 78.13% 45.80% 45.45% 45.62%

LR (Only Target reduced - no TL) 68.63% 43.82% 42.68% 43.24%
(Only Target full data - no TL) 73.50% 55.62% 47.00% 50.95%
(Source + Target reduced data - no TL) 75.18% 58.62% 49.19% 53.49%
CORAL 69.77% 48.22% 43.96% 45.99%
TCA 47.12% 26.19% 26.91% 26.54%
ConsensusRegularization 67.74% 41.37% 40.77% 41.07%
FEDA 57.23% 34.09% 34.17% 34.13%
TrBagg 63.41% 39.76% 38.29% 39.01%
TrAdaBoost 59.68% 41.16% 36.46% 38.67%
KMM 70.36% 48.31% 43.77% 45.93%
KRR 77.81% 48.39% 47.34% 47.86%
DIAFAN-TL 85.73% 69.82% 61.89% 65.62%

RF (Only Target reduced - no TL) 78.44% 60.78% 46.74% 52.84%
(Only Target full data - no TL) 87.25% 62.09% 61.10% 61.59%
(Source + Target reduced data - no TL) 88.51% 63.47% 64.58% 64.02%
CORAL 83.12% 54.91% 54.75% 54.83%
TCA 52.51% 26.88% 33.48% 29.88%
ConsensusRegularization 81.44% 47.82% 50.78% 49.26%
FEDA 85.22% 53.56% 56.41% 54.95%
TrBagg 85.28% 53.89% 54.37% 54.13%
TrAdaBoost 86.40% 58.17% 58.10% 58.13%
KMM 86.24% 57.24% 56.88% 57.06%
KRR 79.25% 46.96% 47.78% 47.36%
DIAFAN-TL 90.19% 67.76% 70.75% 69.22%
• FEDA [47]. This algorithm spans the feature space to gen-
erate a more suitable feature space for source and tar-
get domains using three representations: source, target and
shared. Then, the learning algorithm adapts using extra in-
formation.

• TrBagg [48]. First, the algorithm generates many weak clas-
sifiers from target and source data. Then, these classifiers are
filtered using target data making and the selected classifiers
are used in the bagging ensemble.

• TrAdaBoost [48]. This algorithm extends the AdaBoost to
the transfer learning scenario. A new weighting mechanism
is designed to reduce the impact of the distribution differ-
ence and is used in classical Adaboost joining the source and
target data.

• KRR [49]. This algorithm combines Ridge regression and
classification (linear least squares with l2-norm regulariza-
tion) with the kernel trick. It thus learns a linear function in
the space induced by the respective kernel and the data. For
non-linear kernels, this corresponds to a non-linear function
in the original space.

4. Results

4.1. Datasets description

The datasets used to test the proposed methodology were
etrieved from three different sources.

First, index and the band information (10 bands) was collected
rom the Sentinel [50] satellite images. This satellite has been
apturing images since 2015, increasing the sampling rate over
he years. Now, an image is captured every 4 or 5 days (from 15
ays, on average, in 2015). From these images, different indices
nd the values of color bands are calculated for each pixel of the
9

image. In this work, the mean value of the pixels of each band are
used for each image to train the model.

Second, the olive phenology states of each studied parcel were
retrieved from the open dataset, property of ‘Red de Alerta e
Información Fitosanitaria’ [51] belonging to ‘Junta de Andalucía’.
Olive cultivation consists of 14 phenological stages, according to
De Andrés scale [52]. To ensure clarity and reliability in the results,
these 14 stages are reduced to 4 as follows:

1. Stage 1. The first stage consists of the first two phenological
stages, corresponding to the Winter Bud and Moved Bud
stages.

2. Stage 2. The second stage includes all stages of flowering
(stages 3–8): Inflorescence, corolla, flowering and petal fall.

3. Stage 3. The third stage consists of all stages of fruit set
and the hardening of the fruit (9–10): fruit set and stone
hardening

4. Stage 4. The fourth stage includes all stages of the fruit set
(11–14).

These stages are in line with the official classification based
on the BBCH scale [52]. Both scales converge to the 4 phases
described above and are broadly grouped in the same way.

This phenology dataset was obtained from sixteen parcels for
four regions of Andalusia, Spain (four for each one), as can be
observed in Fig. 3, with different characteristics among them,
such as variety, altitude, type of crop (traditional, intensive or
super-intensive), etc. A more detailed view of parcels for each
region is shown in Fig. 4.

The characteristics of these parcels are shown in Table 2. The
main characteristics that represent each domain are the altitude
(in meters), surface (in hectares), the slope (in %) and the density
(trees per square meter). Fig. 5 shows a heatmap of the distances
(in km) between the domains.
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Table 4
Bayesian test for DIAFAN in the RF group.
left right p(left>right) p(undetermined) p(right>left)

NaiveBiasRegularizator DIAFAN-RF 4.53E−08 4.94E−08 1.0000
TCA RF DIAFAN-RF 2.46E−06 2.94E−06 1.0000
SER DIAFAN-RF 0.0011 0.0019 0.9970
e ConsensusRegularization-RF DIAFAN-RF 0.0012 0.0024 0.9964
Only target reduced - no TL -RF DIAFAN-RF 0.0014 0.0022 0.9964
MIX DIAFAN-RF 0.0024 0.0038 0.9938
NaiveRelabelingTree DIAFAN-RF 0.0023 0.0040 0.9937
KRR-RF DIAFAN-RF 0.0031 0.0039 0.9931
NaivePruningTree DIAFAN-RF 0.0025 0.0046 0.9929
TreesMixedEntropy DIAFAN-RF 0.0044 0.0060 0.9896
STRUT DIAFAN-RF 0.0073 0.0098 0.9828
CORAL RF DIAFAN-RF 0.0045 0.0147 0.9808
FEDA-RF DIAFAN-RF 0.0075 0.0179 0.9746
TrBagg-RF DIAFAN-RF 0.0158 0.0386 0.9456
TrAdaBoost-RF DIAFAN-RF 0.0151 0.0506 0.9343
Only target full data - no TL -RF DIAFAN-RF 0.0231 0.0740 0.9029
KMM RF DIAFAN-RF 0.0428 0.0675 0.8897
Source + Target reduced data - no TL -RF DIAFAN-RF 0.0125 0.1974 0.7902
The third data source consists of meteorological variables from
ublic sources of the Junta de Andalucia public organization. These

variables have a daily periodicity and are the average, maximum
and minimum temperatures and humidity, precipitation and solar
radiation.

4.2. Evaluation metrics

To quantify the effectiveness of the methodology proposed,
accuracy, recall, precision and F-measure were computed. These
metrics were obtained from the 4 × 4 confusion matrix derived
from the phenology classification problem with four phenological
stages.

Specifically, for each phenological state, true positive (TP), true
negative (TN), false positive (FP) and false negative (FN) were
considered. For example, for phenological state 1, TP described
the case where phenological state 1 was predicted and correct,
while FP described the case where phenological state 1 was not
predicted, but it still existed. A similar reasoning was done for the
negative cases.

The first metrics were computed for all four phenology classes.
We started from the 4×4 confusion matrix mentioned before and
the accuracy was calculated as defined in Eq. (2).

Acc =
TP + TN

TP + FP + FN + TN
(2)

Subsequently, the metrics of precision, recall and F-1 were
calculated for each phenological stage, and the weighted mean
was also calculated.

Specifically, precision was the ratio of correctly predicted posi-
tive observations to the total predicted positive values, as defined
in Eq. (3).

Prec =
TP

TP + FP
(3)

Recall was the ratio of correctly predicted positive observa-
tions with respect to all actual positive instances, as defined in
Eq. (4).

Recall =
TP

TP + FN
(4)

The F1 score was the weighted average of precision and recall,
as defined in Eq. (5).

F1 = 2 ∗
Recall ∗ Precision
Recall + Precision

(5)

Furthermore, all those metrics were also computed for each
class (phenological state) independently. Each TP, TN, FN, FP
referred to each phenological stage versus the rest.
10
4.3. Baseline comparative results

Table 3 compares all the state-of-the-art methods obtained
with the method developed in this work. The table is divided
into three main parts. The first part is composed of TL algorithms
that do not need a base algorithm to run. The second part in-
cludes non-TL based algorithms and TL based algorithms that
are based on a logistic regression (LR) algorithm. Finally, the last
part includes those based on a random forest (RF) algorithm. In
each column we observe the four evaluation metrics described in
Section 4.2.

Among the methods included in the first section, the
NaivePruningTree and the NaiveRelabelingTree stand out with the
best results with a 79.69% and a 78.13% accuracy, respectively.
However, as we have an imbalanced problem and it is prefer-
able to consider a metric that considers the imbalance, the F1
metric has been added. Regarding the F1 metric, the best algo-
rithms are STRUT and NaivePruningTree, with 47.23% and 47.01%,
respectively.

In the group of algorithms that do not use TL, the one that uses
the source domain plus the complete target yields better results
using either of the two base algorithms described above with a
75.18% accuracy and an F1 metric of 53.49% in the case of logistic
regression as the base. In the case of the random forest, the
accuracy is 88.51%, and the F1 is 64.02%. Both logistic regression
and random forest cases improve the algorithms that do not use
bases in the best cases of each metric in comparing nonbase and
base with a difference of 16.79% of F1 and 8.82% of accuracy.

Focusing just on the TL algorithms, CORAL is the best with
the logistic regression base with an accuracy of 69.77% and an
F1 of 46.00%. Using the random forest as a base yields better
results using the TrAdaboost algorithm with an 86.40% accuracy
and a 58.13% F1 score. However, this method does not surpass
the results of the Source + Targetreduceddata − noTL with any of
the bases.

The developed DIAFAN-TL method improves all the previous
methods. Compared with Source+Targetreduceddata−noTL, which
is the best method from the baseline there is an improvement
in call the metrics with an accuracy difference of 3.79%, 5.2%
in F1, 3.99% in Recall and 6.17% in Precision. Moreover, in the
logistic regression base, DIAFAN-TL also presents the best results
with an even greater improvement, showing the robustness of
this method regarding the base. The best methods in general are
better with a random forest base, presumably due to the large
space of attributes that hinder the convergence of the logistic
regression.
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In order to compare DIAFAN-TL with other methods of similar
ature, Kernel Mean Matching (KMM) and Kernel Ridge Regres-
ion (KRR) metrics have been considered (TrAdaBoost also uses
nstance weighting but is iterative during the model training
rocess).
For KMM, the equation to optimize is:

inw

1
2
wTKw − kTw subject to wiϵ [0, B] and

⏐⏐⏐⏐⏐
ns∑
i=1

wi − ns

⏐⏐⏐⏐⏐ ⩽ mϵ

(6)

here:

• Kij = k(xi, xj) with xi, xjϵXS and k a kernel.
• ki =

nS
nT

∑
xjϵxT

k(xi, xj) with xi ϵ Xj.
• wi are the source instance weights.
• XS, XT are the input source and target dataset, respectively.
• B, ϵ are two KMM hyperparameters.

Furthermore, the Kernel Ridge Regression (KRR) metric, based
on the same characteristics as our DIAFAN metric, has been con-
sidered for comparative purposes. This method uses the labeled
data for the source and target data. First, a kernel ridge regression
a on just source data. Then, the weights α are calculated using the
vector a optimizing a cost function. The weight function takes the
form:

ŵα(x, y) =

N∑
l=1

αl exp

(
−

(x, y) −
(
x′

l, y
′

l

)2
2η2

)
, (7)

where:

• N represents the number of source instances.
• (x, y) represents the features and labels for the instance to

be weighted.
• x′

l, y
′

l represents the centerpoint of each source instance.
• αl represents the values obtained from kernel ridge regres-

sion.

And the equation to optimize is:

min
α≥0

M∑
i=1

(
yPi − atŴα

(
xPi , y

P
i

)
k
(
xPi
))2

+ γ ∥α∥
2 , (8)

here:

• M represents the number of target instances.
• yPi represents the labels for the target instance i.
• at is the coefficients for the linear combination in the feature

space in target data using the ridge regression dualization.
• k

(
xPi
)
represents the kernel applied to the target instance

xPi .
• γ represents the regularization factor for the norm of alphas.
• Ŵα represents the weight function previously presented.

.4. Statistical analysis

In order to study the goodness of fit of the results obtained, the
esults are compared using the Bayesian analysis approach [53].
imilarly to Wilcoxon signed-rank test [54], this approach com-
ares the results of each pair of methods with the same dataset
nd estimates if the methods tested belong to the same dis-
ribution. The input of the Bayesian analysis for each method
ses the F1-score for each plot using the test set. The output of
his method is not the usual p-value due to several issues [53],
nstead, the analysis obtains the probability that a method A
 w

11
is better than a method B, method B is better than method A
and both methods belong to the same distribution. To determine
when the methods are considered from the same distribution,
a threshold must be established. The threshold determines the
F1-Score percentage range in which the results are considered
similar, in all the experiments a threshold selected determines
than a difference of 1% in F1-Scores are considered similar.

Similarly to the original work in Bayesian analysis, the meth-
ods have been structured as left for all methods compared with
DIAFAN in right. For the output of the Bayesian analysis, the
probabilities have been divided as p(left>right), p(right>left) and
p(undetermined) representing that the method in the left is bet-
ter than right, the method in the right is better than left and the
probability of similar distribution respectively.

The experiments and training and test sets used are the same
as those of Table 3. For this purpose, two groups of methods have
been made: those based on RF (see Table 4) and those based on
LR (see Table 5). DIAFAN is compared with all the algorithms in
its group and with those that do not depend on the base.

On the one hand, for the LR-based group or none, the range of
significance or precision ranges from P>1.0000 obtained against
rAdaBoost , TCA, NaiveBiasRegularizator and FEDA to P>0.9255
btained for the Source + Target reduced data − no TL method.
n the other hand, for the RF-based group or none, the range
s between P>0.7902 for the Source + Target reduced data −

o TLmethod and P>1.000 for the NaiveBiasRegularizator and TCA
ethods. Hence, it is shown that DIAFAN is statistically better

n all cases when evaluating the F1-Score, especially with the
R-based algorithms.

.5. Phenological states analysis

Table 6 shows the F-measure for each of the domains studied
or each of the phenological stages. Each column, represented
rom 1 to 4, is each of the phenological stages described in
ection 4.1. Additionally, for each phenological stage, the number
f samples it contains is shown.
It is clear that phenological stages 1 and 4 are much less

epresented. In fact, not in all domains are the samples with
hese stages. For that reason, we have an imbalanced problem.
ecause of this, there is a higher F measure in phenological stages
and 3, with averages of 90.30% and 94.08%, respectively. The

owest percentages correspond to those domains with low repre-
entativeness of these stages. Additionally, phenological state 2 is
lightly worse than state 3 even when it has half the number of
amples.

.6. Forecasting horizon analysis

Table 7 shows the F-measure metric for each of the domains
tudied and the horizons to be predicted. Each column, repre-
ented from H1 to H4, is each one of the horizons. The last column
ndicates the weighted average of the four horizons.

Regarding the achieved average results, the best performing
orizon is H2, and the worst is H4. H1 is slightly below the results
f H2, possibly overfitting the model inputs from previous weeks.
n general, the first two horizons perform better than the last two
resumably because the nearest weeks are easier to predict than
urther weeks. Additionally, obtaining better results for H2 can
e beneficial, as it can help to see a better future and plan with
ore time. By domain, C3_NuevaCarteya has the lowest average
it, followed by the C4_PozoAlcon4, C1_Olvera2, C4_PozoAlcon1,
1_Olvera1, C4_PozoAlcon3 and C4_PozoAlcon2 domains. The do-
ain with the best results is C2_ElSaucejo1. It is possible that the
haracteristics of the plots themselves influence these results and
ill be studied in future works.
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Table 5
Bayesian test for DIAFAN LR.
left right p(left>right) p(undetermined) p(right>left)

NaiveBiasRegularizator DIAFAN-LR 9.84E−08 1.25E−07 1.0000
TCA LR DIAFAN-LR 1.65E−06 2.37E−06 1.0000
TrAdaBoost-LR DIAFAN-LR 0.0000 0.0000 1.0000
FEDA-LR DIAFAN-LR 0.0000 0.0000 1.0000
Only target reduced - no TL -LR DIAFAN-LR 0.0001 0.0001 0.9998
TrBagg-LR DIAFAN-LR 0.0001 0.0001 0.9998
ConsensusRegularization-LR DIAFAN-LR 0.0003 0.0006 0.9991
KMM LR DIAFAN-LR 0.0004 0.0012 0.9985
Only target full data - no TL -LR DIAFAN-LR 0.0012 0.0050 0.9938
CORAL LR DIAFAN-LR 0.0024 0.0055 0.9921
SER DIAFAN-LR 0.0056 0.0105 0.9839
KRR LR DIAFAN-LR 0.0060 0.0146 0.9794
MIX DIAFAN-LR 0.0105 0.0178 0.9717
NaiveRelabelingTree DIAFAN-LR 0.0119 0.0210 0.9671
NaivePruningTree DIAFAN-LR 0.0120 0.0236 0.9644
TreesMixedEntropy DIAFAN-LR 0.0145 0.0219 0.9636
STRUT DIAFAN-LR 0.0316 0.0395 0.9289
Source + Target reduced data - no TL -LR DIAFAN-LR 0.0192 0.0553 0.9255
Table 6
Experiment with reduced data with random Sources and Target: F-Measure by
phenology state with the best base algorithm.
Target Phenological state

1 2 3 4

Number of samples 36 464 1042 58

P01 91.72% 91.53% 38.24%
P02 90.88% 91.15% 32.06%
P03 92.56% 95.79%
P04 89.98% 95.65%
P05 75.71% 93.39% 90.11%
P06 95.78% 92.74% 67.61%
P07 94.80% 94.39%
P08 95.78% 94.37%
P09 88.65% 90.11%
P10 86.27% 95.58%
P11 7.69% 81.93% 91.00%
P12 46.97% 78.88% 92.96% 86.88%
P13 86.43% 97.03%
P14 87.19% 96.63%
P15 89.97% 96.89%
P16 87.72% 89.30% 96.56%
Total 39.36% 90.25% 94.03% 49.68%

Table 7
Experiment with reduced data with random Sources and Target: F-Measure by
horizon with the best base algorithm.
Target Horizon Average

H1 H2 H3 H4

P01 68.90% 83.22% 82.06% 78.07% 70.23%
P02 61.28% 80.99% 80.83% 78.63% 69.12%
P03 61.78% 61.89% 78.79% 75.25% 62.84%
P04 74.54% 77.87% 75.57% 72.06% 62.20%
P05 78.92% 76.02% 64.71% 62.94% 74.71%
P06 82.30% 92.60% 87.87% 84.47% 87.50%
P07 64.08% 79.27% 75.38% 73.30% 63.47%
P08 77.59% 79.19% 75.30% 73.38% 76.33%
P09 74.04% 93.30% 89.17% 87.27% 72.42%
P10 71.74% 61.92% 73.82% 93.07% 60.87%
P11 73.25% 65.01% 71.57% 93.64% 72.82%
P12 84.26% 83.09% 74.75% 66.05% 81.32%
P13 70.07% 75.54% 63.94% 94.41% 62.23%
P14 60.50% 75.64% 75.38% 74.75% 62.29%
P15 61.59% 93.99% 74.47% 77.68% 62.63%
P16 92.82% 73.85% 75.83% 76.41% 78.55%
Total 69.40% 73.79% 64.22% 57.50% 69.22%
12
4.7. Source domains analysis

Table 8 shows the results of the reduced data experiment
with a single source domain and the target domain. Each row
represents the target domains and the columns represent the
source domains. Domains 11 and 12 have the lowest percentages,
indicating that they are not suitable for use as source domains.
Additionally, there are sources more suitable for some targets
than other ones, indicating that weighting could be beneficial
for transferring knowledge instead of considering all the sources
equally to increase the noise.

4.8. Full data analysis

Table 9 shows the F-measure of the TL experiment with full
data. The structure of the table is similar to that of Table 7.

It should be noted that the average percentage per horizon
and overall is better than that obtained in the reduced data
case, which amplifies the benefits of the proposed methodology.
Using weighting source domains is the best way to transfer the
knowledge.

In addition, comparative plots are shown (Figs. 6 and 7) be-
tween the recall and precision results of the experiments with
random source domains (TL reduced) and with all the complete
domains (TL). Their weighted average is shown. There is a slight
improvement in the full data case due to the availability of more
data in the majority of plots.

5. Conclusions

The proposed method shows an important improvement com-
pared with other transfer learning methods. The results show
that not all transfer learning algorithms with insufficient avail-
able data are beneficial for adding useful information. However,
the proposed model shows not only an improvement compared
with other transfer learning methods but also obtains better
results than the algorithms that do not use any transfer learning
method, since it includes the only transfer learning tested that
improves the no transfer learning algorithms. This result seems to
be independent of the base algorithm used for the evaluation, as
DIAFAN-TL obtains the best results in the logistic regression and
random forest is the last one the best bases. The results support
the idea that the effectiveness of using the weighting function
(DIAFAN) that prioritizes diversity and avoids false neighbors of
the data is beneficial for the algorithms in this application.
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Table 8
Experiment with reduced data with one Source domain and Target: F-Measure by horizon with the best base algorithm.
TG Source

P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 P15 P16

P01 72.01% 63.29% 62.26% 69.90% 91.49% 63.01% 76.03% 74.13% 74.37% 67.99% 87.82% 70.94% 64.39% 62.37% 92.02%
P02 68.77% 63.29% 62.26% 76.30% 92.14% 62.63% 76.24% 74.13% 74.37% 69.68% 84.99% 72.15% 75.24% 75.24% 79.32%
P03 72.01% 72.01% 62.24% 62.92% 87.78% 76.48% 75.48% 72.90% 73.15% 67.38% 76.07% 73.53% 75.17% 76.67% 81.90%
P04 70.99% 72.01% 62.15% 65.72% 92.20% 76.28% 75.48% 72.90% 73.15% 67.97% 76.28% 92.18% 94.62% 94.62% 90.48%
P05 60.09% 70.41% 62.61% 62.03% 89.79% 75.89% 75.48% 72.90% 73.15% 68.24% 80.91% 68.26% 75.59% 73.81% 77.71%
P06 72.01% 72.01% 62.84% 61.45% 81.93% 75.27% 76.45% 75.39% 74.37% 67.49% 79.22% 89.04% 72.76% 74.79% 77.93%
P07 70.41% 70.41% 62.08% 62.85% 73.41% 88.48% 75.89% 72.90% 74.37% 69.17% 80.23% 71.53% 75.59% 76.92% 83.28%
P08 68.77% 72.01% 62.84% 62.44% 82.62% 90.64% 75.69% 72.90% 74.37% 68.62% 81.43% 69.18% 76.13% 75.67% 77.02%
P09 80.10% 80.10% 62.61% 61.45% 72.17% 88.48% 74.75% 75.48% 74.37% 71.53% 85.28% 72.46% 92.75% 92.75% 72.09%
P10 70.99% 80.10% 62.78% 63.05% 67.97% 87.59% 76.09% 76.86% 74.13% 69.24% 83.47% 67.82% 92.83% 90.86% 87.62%
P11 80.10% 77.99% 63.60% 62.46% 70.21% 86.94% 76.09% 76.45% 72.90% 74.37% 71.93% 75.82% 94.62% 94.62% 90.48%
P12 72.01% 72.01% 62.61% 61.65% 63.87% 88.31% 76.28% 76.45% 72.90% 73.15% 70.11% 74.68% 94.64% 75.93% 78.87%
P13 62.14% 62.57% 83.83% 84.11% 83.98% 80.80% 93.34% 94.68% 81.48% 85.41% 79.70% 84.01% 75.00% 85.35% 85.46%
P14 57.85% 59.36% 62.84% 61.29% 75.50% 87.03% 75.18% 75.96% 71.70% 74.78% 66.04% 77.16% 60.89% 74.83% 67.93%
P15 59.94% 58.66% 64.04% 61.14% 69.54% 85.84% 75.87% 75.45% 69.36% 74.78% 67.16% 72.87% 66.95% 73.33% 67.81%
P16 58.66% 50.56% 63.22% 61.69% 70.27% 87.96% 75.45% 75.56% 68.23% 72.47% 66.60% 68.72% 68.41% 75.17% 57.76%
Avg 68.92% 69.17% 62.88% 62.03% 70.38% 88.59% 63.23% 75.99% 72.90% 73.85% 68.18% 78.62% 60.02% 62.50% 62.06% 74.40%
Fig. 6. Average recall values for each target domain considering full and reduced data scenarios.
These studies leave open the possibility for further research
n this field. According the results in Table 8, a possible im-
rovement of the method could be based on a specific filtering
r selection of domains with certain sensitivity thresholds that
mprove the obtained results.
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Fig. 7. Average precision values for each target domain considering full and reduced data scenarios.
Table 9
Experiment with full data: F-Measure by horizon with the best base algorithm.
Target Horizon Average

H1 H2 H3 H4

P01 78.26% 75.07% 83.32% 78.13% 80.10%
P02 78.26% 75.07% 83.32% 78.13% 80.10%
P03 76.92% 59.99% 80.00% 74.93% 53.95%
P04 76.60% 78.16% 95.95% 72.35% 63.05%
P05 85.10% 84.53% 84.00% 77.06% 84.26%
P06 75.40% 86.13% 86.78% 85.95% 85.39%
P07 62.76% 66.10% 75.30% 72.29% 62.83%
P08 96.47% 79.19% 75.30% 75.15% 76.65%
P09 72.43% 93.30% 93.30% 87.27% 72.90%
P10 76.19% 75.68% 72.92% 93.64% 74.78%
P11 69.93% 64.02% 72.92% 93.64% 70.33%
P12 87.69% 88.88% 87.04% 78.93% 87.79%
P13 65.97% 100.00% 100.00% 100.00% 75.81%
P14 94.72% 93.40% 92.10% 71.83% 74.23%
P15 77.19% 93.40% 92.10% 71.83% 62.90%
P16 100.00% 77.61% 94.36% 74.37% 78.82%
Total 81.23% 82.10% 86.62% 81.36% 72.94%
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