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ABSTRACT Heart-Failure (HF) is among the leading hospitalization causes in modern healthcare systems.
In this paper, a method for performing continuous patient monitoring is presented with a focus on low
power consumption. A prototype wearable device is being developed at the University of Sevilla to collect
measurements. Among the sensing components there are two major blocks formed by a commercial
biological impedance analog frontend from Analog Devices (AD5940) and an Inertial Motion Unit (IMU)
capable of estimating attitude of the device. This information could provide a tremendous amount of
information for the physician and help diagnose and remote monitor patients with HF. A major factor that
can be analyzed to provide information on patient status is activity level and body states; time spent walking
or standing, laying down or seated. In this work, a body tracking / activity estimation method is proposed for
low power continuous monitoring. This study reports good results characterizing the laying down position
and discriminating between laying down and standing/walking and seated. The presented results are relevant
for clinical practice since body motion and position can serve as a health marker for patients. Additionally,
the acquired motion information can be further processed to better understand artifacts and variations in the
analog impedance measurements.

INDEX TERMS Body tracking; Position estimation; Patient activity; Low power monitoring

Heart Failure (HF) is a life-threatening disease that appears
as a result of different heart diseases [1]. The diagnosis of
the condition is performed in part by observing body signs
such as dyspnea and swelling of the legs, which are a direct
consequence of deviation from the correct cardiac function
or structure [2]. Heart-failure is a condition that has a huge
impact on the entire healthcare system. This condition is
the leading cause of hospitalization in people over 65 years
of age [3]. The impact is estimated to be on approximately
2% of all healthcare resources in Europe [4]. Furthermore,
if the disease becomes critical, a condition known as acute
decompensated HF, the patient is in a life-threatening high-
risk situation that requires continuous hospitalization and
emergency treatment to manage excess and accumulation of

liquid [2].
Recently, the monitoring of leg volumes [5] has been pro-

posed as a novel method to evaluate the evolution of HF pa-
tients. A potential noninvasive technology to evaluate this liq-
uid accumulation is based on impedance measurements. This
is an interesting approach due to the value as a biomarker
of biological impedance showing a direct association with
HF risk [6]. Among patients with HF, edema tends to form
in the lower extremities due to the effect of gravity. In this
context, continuous monitoring of tissue impedance located
near the ankle would potentially allow one to monitor this
liquid retention and hence to provide a better management of
the HF condition by analyzing changes over time.

These volume changes, however, are a consequence of
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multiple factors such as heart function, body orientation,
and activity of the patient. Therefore, in this context, to
understand if the volume change or the cumulative tendency
implies a clinical emergency, an additional method is re-
quired to evaluate body position. In this paper, an estimate of
activity level (as a measure of how much time the patient is
active throughout the day) and body positions (laying down,
sitting, standing, walking) is proposed through an analytical
method. The importance of an accurate body tracking esti-
mation is to provide a better understanding of the impedance
measurement and the impedance-based local volume changes
acquired with the wearable device.

A growing body of scientific literature has studied the use
of wearable devices to support clinical practice. An overview
of the use of wearable devices and sensors in Parkinson’s
disease has been studied in [7]. Monitoring can be per-
formed for Parkinson’s disease patients for several purposes:
assessment of the patient’s motor status before and after
therapy, evaluation of motor characteristics, and detection
of complications, among others. These kinds of device can
also be used to diagnose the disease early in a potentially at-
risk population. The authors of [8] have also studied the use
of wearable devices in Parkinson’s disease in the literature.
They found that the most common type of wearable sensor
was a six-axis Inertial Motion Unit (IMU), a device which is
similar to the one implemented in the prototype proposed in
this paper.

Wearable technology has also been used to monitor dis-
abilities such as motor impairment, vision and/or sensory
loss, and bowel and bladder dysfunction, in patients with
multiple sclerosis [9]. Limitations identified in this review are
related to improper sensor placement and patient adherence.
Wearable technology has also been studied for the detection
and monitoring of mental health conditions and stress [10]. In
addition, wearable technology has also been widely studied
for cardiovascular disease. In [11], authors propose a wear-
able device for monitoring and control of blood pressure in
pregnant women. Data were collected by mobile phone and
then stored in a remote database. The information was then
made available in real-time for physicians. The authors in
[12] have remotely captured data from six-minute walk tests
perfomed by patients with cardiovascular diseases. This type
of test is a clinical assessment of the prognosis and clinical
status of these patients. The results showed that this type of
technology provides accurate and meaningful insights into
clinical practice and serves as a powerful evaluation tool of
the patient’s clinical status.

The most common commercial wearable devices are re-
ported nowadays in [13]. Activity and biometric sensors
such as accelerometer, barometer, Global Positioning Sys-
tem (GPS), photoplethysmogram, electrocardiograms and
oscilometry are being used for a variety of measurements:
step count, impact force, speed, exercise, heart rate, sleep,
arrhythmia, among many others. Clinical applications are nu-
merous: prediction, management, and diagnosis of different
heart conditions, such as HF, hypertension, acute coronary

syndrome, among others.
There has also been a growing interest in the use of body

tracking for patient monitoring. The authors of [14] used
clinical data and an IMU-based wearale to monitor health
changes in patients with congestive HF. In [15], older HF
patients and healthy individuals wore an IMU system on
both ankles while performing mobility activities (walking,
balancing, sit-to-stand transfer). Body tracking can also be
performed vision-based, using a camera paired with artificial
intelligence (AI) algorithms [16].

Our proposal is to enable a prototype wearable platform
to acquire motion information through an IMU device, the
sensor chip is Bosch BNO055 [17]. This wearable platform
is implementing a biological impedance analog frontend to
perform volumetric measurements in local tissue regions
near the ankle. In addition to the impedance measurement
the IMU sensor will capture orientation and provide the
input to our analytical method periodically. Both biological
impedance and motion measurements are synchronized. In
terms of energy, the power consumption in the device is
pretty low due to the measurement protocol established (15
minutes between measurements) and the adequeate elec-
tronic design to power off everything except the microcon-
troller. The entire developed system is currently being tested
at the Hospital Universitario Virgen del Rocío (HUVR) for
clinical validation.

I. MATERIALS AND METHODS
The work presented in this article uses quaternions [18] as
the mathematical tool to explore and analyze body postures
from the reported attitude measurements of the IMU device.
The following section introduces the equations and relations
governing the orientation measurements from the perspective
of a known reference frame; in our case, earth’s local tangent
plane.

The Bosch BNO055 sensor [17] has a wide range of
configuration options to retrieve several motion parame-
ters, including acceleration, gyroscope, and magnetometer
across all three axes. Additionally, the device is capable of
performing data fusion estimation of the orientation with
respect to the earth’s local tangent plane. This information
can be provided in two different formats; Euler angles and
quaternions. Due to the avoidance of the gymbal lock effect,
quaternions are selected as the best representation to perform
these measurements from the ankle.

A. SENSOR ATTITUDE AND SPATIAL ROTATION
The attitude measurements expressed in the form of quater-
nions that the IMU sensor provides are a representation of the
rotation of the device with respect to the reference frame of
the earth (LTP). This rotation as was mentioned previously
is expressed in the mathematical form of a quaternion. A
quaternion (q) is formed by a unitary vector multiplied by
a scalar (sin( θ2 )

−→v ϵ R3) and a scalar magnitude (cos( θ2 )). θ
represents the angle of rotation around the unit vector −→v .
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−→v = [ q1 q2 q3 ] q0 = cos(
θ

2
) (1)

q = [ cos(
θ

2
) sin(

θ

2
) · −→v ] (2)

Where:
|q| = 1 (3)

From the sensor attitude measurements, the problem to
be addressed is finding the relationship between the device
reference frame (ankle orientation) and the Earth Reference
Frame. To achieve this purpose, the quaternions algebra serve
as a potent useful tool which easily rotates coordinates from
a reference frame a second reference frame. An extensive
analysis of this problem and the full description of the
mathematical method employed to translate across reference
systems can be found in [19], where the authors initially
explore the basic aspects of body tracking from an ankle-
positioned device.

The mathematical relation between a vector defined in
the ERF (−→u ) and a vector defined in the SRF (−→v ) can be
expressed as:

−→v = q ⊙ uq ⊙ qt (4)

−→u = qt ⊙ vq ⊙ q (5)

Where ⊙ denotes the Hamilton product of the quaternion
vectors.

B. WEARABLE DEVICE
Wearable technology is a powerful novel tool with a huge
potential to disrupt healthcare methods in diagnosis, moni-
toring and patient treatment. Currently, there is evidence in
the scientific literature for a ongoing research effort to design
and develop wearable devices that effectively help support
clinical practice [8]–[12], [20]–[23].

In this context, the project reported in this paper is part
of the experimental results of a wearable platform designed
to help physicians monitor heart failure patients. Further-
more, the development may serve as a potent tool to enable
remote monitoring from the patient’s home, avoiding the
inconveniences of hospital care whenever is not necessary.
The proposed device is capable of continuous monitoring of
the biological impedance of the tissue located in the patient’s
ankle. This is used as a biomarker to analyze and evaluate the
accumulation of leg liquid, which tends to form lower limb
aedema in patients with this condition.

Biological impedance analysis serves as a mean to eval-
uate tissue hydration in the local area where the electrodes
are placed. However, this setup is not perfect, and inherent
noise arises whenever the patient is moving of the testing
conditions are changing (motion artifacts, changes in ankle
orientation which may cause device displacement, external
body moist, etc.). The authors considered the addition of
an Inertial Motion Unit to further analyze and characterize

FIGURE 1. Magnetization as a function of applied field. It is good practice to
explain the significance of the figure in the caption.

FIGURE 2. Wearable device placed on the ankle and sensing reference frame
illustrated.

impedance measurements according to the patient’s posture
and to keep track of the activity levels in the patients, which,
as the scientific literature suggests, may be an important
biomarker for monitoring heart failure condition.

Body tracking and activity level estimation must be per-
formed from the data acquired by the IMU device, Bosch
BNO055. As we already know, this information is provided
in the form of a quaternion, which will serve as a translation
method between different reference frames. Figure 1 illus-
trates the wearable device printed circuit board along with the
bosch BNO055 device (highlighted with an orange dot). Next
to the board, the sensing reference frame (SRF) is depicted.
This reference frame will serve as the basis for defining the
vectors we intend to mark as reference for our future analytics
method to discern different body postures. A visualization of
the entire wearable system placed in a volunteer’s ankle is
illustrated in Figure 3.

At this point, we have established the mathematical tools
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which are to be employed and the sensing reference frames.
To meet our purpose of evaluating different body postures,
we need to define a couple of static vectors, which will
be tracked throughout the experimental gathering. An initial
method was proposed in [19]. This method aims to track
the downward-pointing vector as the unique measurement to
analyze body posture. The authors, however, realized that
much more information was potentially extracted if that
methodology was extended to also track heading pointing
vector. These two directions represent, respectively, the di-
rection toward the ground (SSRF ) and the foot direction
(TSRF ) in the sensing reference frame (Fig. 3). From the
sensing reference frame the downward pointing vector SSRF

and the heading vector TSRF are defined as:

−−−→
SSRF = [0 − 1 0] (6)

−−−→
TSRF = [−1 0 0] (7)

The designed wearable device is Bluetooth low-energy
(BLE) enabled and supports data extraction via an Android
mobile phone custom application. The application periodi-
cally retrieves all available data from the wearable and sends
the information to a remote time-series database. The infor-
mation is then further analyzed locally after all experimental
acquisition has been performed.

The microcontroller performs well enough in terms of
energy management; however, to achieve the greatest battery
life possible, we carefully reviewed all the components in-
cluded. Impedance sensor provides a fair standby mode, dras-
tically reducing the current consumption, but the IMU sensor
did not have a similar feature. In order to further reduce
standby power consumption and enable extended operation,
we added electronic switches to the IMU sensor device. The
final energy characterization was performed using a Nordic
Power Profiler Kit II, a potent tool to evaluate the small
current drawn by the device while working in all states. The
device was designed with the aim of achieving the lowest
standby current possible and the value obtained from the
tests performed report a total power consumption of 5µA
continuous current draw while in this mode. The device will
be in this mode for most of the operating life:

Istandby = 5µA (8)

The second step of energy characterization is to evaluate
current consumption while performing the acquisition. This
device is capable of performing a full acquisition cycle; per-
form a biological impedance measurement, acquire battery
voltage, and obtain motion values in a total of 12 seconds.
Using the same Nordic platform, we obtained peak values of
up to 15mA for this process and a mean value of 12mA.

Iacq = 12mA (9)

A typical CR2032 coin cell battery usually can hold up to
220mAh of power charge. The computation of the estimated

battery life with the computed power consumptions reported
by the energy characterization tests are described in the
following lines. First, we need to estimate mean current
consumption over an hour period. This is:

Ih =
3520 · 5µA+ 4 · 20 · 1200µA

3600
= 31, 55µA (10)

With the above averaged value over an hour, we can easily
compute the total number of hours per coin cell battery,
which will be able to support our device operating in the
described measurement protocol.

Ehours =
220000µAh

31, 55µA
= 6973hours (11)

The obtained value of 6973 hours would provide enough
running time to perform continuous monitorization of heart
failure patients for more than 9 months out of a single coin
cell battery. This result is fair enough to provide a long period
without having to consider a battery change that disrupts
device operation.

C. ACTIVITY AND BODY TRACKING ALGORITHM
The wearable device implements a protocol to optimize bat-
tery life and allow extended operation. The acquisition period
was established at a 15-minute cadence. The microcontroller
and all circuit components are in the lowest power config-
uration while the measurements are waiting to be acquired,
thus guaranteeing extended battery operation and minimizing
power consumption. Every 15 minutes, a complete set of
measurements is acquired. This set consists of biological
impedance measurements and battery and orientation results
from the IMU sensor. All measurements are gathered through
the BLE interface. After the acquisition, the device is set to
establish low power mode again until the next measurement
timer expires. This event will reset the cycle, triggering a new
measurement. Orientation data acquisition reports the current
orientation status in quaternion form. At the same time, the
device records an extended inertial measurement period of
5 seconds. This is performed to allow the microcontroller to
compute statistics over the quaternions gathered which would
enable us to analyze whether there was motion or not in
the device (person was walking or moving the ankle). The
Inertial sensor has an acquisition period of 100 ms.

The analytical method presented in this project aims to
classify the patient’s body status into three different cate-
gories with respect to the patient’s position.

• Laying Down: The patient is in horizontal position, i.e.
resting on a bed.

• Sitting: The patient’s body is in a sitting position with
limited motion.

• Standing/Walking: The patient is in the vertical position,
walking or standing.

An initial approach to classifying body posture from ac-
quired attitude measurements would define a region that in-
cludes all potential S vector directions. This can be achieved
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by defining an angle with respect to natural down vector and
rotating 360º degrees over Z axis, forming a sphere fraction.
If the measured vector is contained within this vertical re-
gion, then the wearer is considered as in vertical position;
if the vector is outside of this region, then the wearer is in
horizontal position. With the above protocol established and
the position categories estimation method, we aim at further
identifying activity levels. The following motion (Mi) metric
is defined for such a purpose:

Mi =

 1 if θ(Ti − Ti−1) ≥ TTHR

1 if var(q) ≥ VTHR

0 otherwise
(12)

Being Mi an indicator of orientation variation since the last
period. Vector T is located in the horizontal plane and will
describe the foot direction with respect to the north magnetic
pole. Ti represents the current acquisition T vector and Ti−1

would denote the previous period T vector. TTHR denotes an
angle variation threshold to discern between the two options.
This threshold is the limit above which we consider a heading
change large enough to classify the point as a displacement
from the previous state. In addition to heading analysis and
region classification, the sensor provides a measurement that
helps to understand if the device is in motion or static, we
will mark the point as dynamic (Mi = 1) if the variance of
the quaternion is above a certain threshold (VTHR).

To evaluate body position and perform classification, we
will assume that the wearer is in horizontal position unless a
vertical position is found. A patient who wears the device in
a vertical position will result in all motion values being set
to zero (Mi = 0) even if the dynamic threshold is met. This
enables the system to discern between horizontal and vertical
positions. These distinctions would translate into understand-
ing the patient’s body posture and ultimately discern whether
is laying down (horizontal) or standing/walking/sitting down,
respectively. This initial approach allows us to separate hori-
zontal and vertical postures.

An additional posture classification between standing and
sitting potential positions is estimated by observing the evo-
lution of the device heading (direction of the T vector). In
this context, a vertical position with activity (either variation
across T vector or dynamic captures derived from analyzing
the variance of the quaternion) (Mi = 1) will be considered
as standing/walking, whereas a vertical position with no
activity (Mi = 0) will be considered as sitting down. We will
further evaluate the results for this proposal in a later section
of this paper.

Finally, a metric to estimate patient’s activity on a daily
basis can be provided by defining the following activity index
(Aindex) sum across the whole measurement set for a day:

AIndex =
∑

Mi/n (13)

The Aindex value would range from 0 to 1 and is an
indicator of the activity level of the patient in the selected
period of time.

D. TESTING AND VALIDATION METHODOLOGY
Initial experimental validation for the method presented was
performed recruiting 4 healthy volunteers with an age range
of 28-64 years. Informed consent was prepared and signed by
all of them. Volunteers were provided with a wearable device
and a smartphone. They were asked to wear the device and
log and record every possible position in a notebook provided
to them. The logs needed to be detailed and accurate in terms
of time periods. We asked them to classify their positions
in three different groups; namely laying down horizontally,
walking/standing and sitting down. The values generated by
the volunteers and the wearable device were then analyzed
to validate the proposed algorithm estimation results. A total
period of two days per volunteer was used for the experimen-
tal validation.

The designed wearable device was also tested in a pi-
lot clinical trial at the Hospital Universitario Virgen del
Rocío, Seville, Spain. This clinical test allowed us to acquire
measurements from several healthy volunteers and patients
suffering from Heart Failure, with the objective to verify
different behaviour patterns. Continuous monitoring using
the wearable device was performed to healthy volunteers and
patients for more than 14 days with the system placed in the
ankle.

II. RESULTS
A. EXPERIMENTAL VALIDATION
The method parameters, the vertical threshold for horizontal /
vertical discrimination, dynamic motion (VTHR) and the an-
gle threshold (TTHR) employed for performing the position
estimation from experimental are described in the following
Table 1.

TABLE 1. Algorithm parameters used for the experiment.

Parameter Value
Vertical Threshold 1.25 · π

4
Dynamic Motion Threshold (VTHR) 0.0025

Angle Threshold (TTHR) 30

A total of 4 healthy volunteers were asked to record their
positions over a two-day period. These volunteers would
log continuous activity as instructed by the authors who
managed the experiment. The focus on information tracking
was to adequately log postured corresponding to one of the
three potential body positions (Laying down, sitting down
and standing/walking). Furthermore, to correctly evaluate
the sensing and analytical results against each volunteer
record, they time tracked all the positions during the whole
experiment. The results for the validation of the method are
presented in Table 2.

The Vertical/Horizontal discrimination is scoring 97.6%
accuracy, correctly estimating 83 of 85 measurements. The
next classified value corresponds to sitting down positions
and is correctly determined in 45 of 67 measurements, pro-
viding 67.2 % accuracy. Finally, standing / walking position
returns an accuracy of 63.5% with 61 out of 96 correct
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TABLE 2. Experimental Results from 4 healthy volunteers.

Position Correct Measurements Accuracy (%)
Laying Down 83 85 97,6
Sitting Down 45 67 67,2

Standing / Walking 61 96 63,5

estimates. The overall accuracy calculation provides a 76.2
% accuracy result.

III. DISCUSSION
In this article, we propose a method for body position anal-
ysis and motion tracking in patients with heart failure. This
method uses measurements from an inertial motion unit im-
plemented in a low power device. The acquisition protocol is
established to gather measurements every 15 minutes. Since
the paper is focused on body tracking, we are only using
attitude measurements in the form of quaternions to perform
the estimation of the body positions.

Validation results demonstrate that the method is capa-
ble of discerning between horizontal and vertical positions
(97.6%), with lower accuracy indices for sitting down and
standing/walking determinations. Although the results may
be slightly improved by fine tuning the algorithm parameters
(see Table 2), there is an implicit complexity in performing
a discrimination between sitting down and standing/walking
positions from a sensor in the ankle. Furthermore, motion
artefacts, even after adjusting the parameters, are a source
for determination errors in the proposed method.

A final remark is proposed regarding real data from a
healthy volunteer and a heart failure patient in a fortnight pe-
riod. The acquired measurements and the position estimation
were presented to illustrate the severe differences between
the two individuals. Monitoring the activity index in com-
bination with volumetric impedance values could provide
an additional tool to physicians to monitor and control HF
patients.

Future work of this research project includes the incorpo-
ration of additional measurements, such as the acquisition of
data from the mobile phone, including, but not limited to,
GPS, step counters, and phone orientation. This information
is not restricted in terms of power and can be an useful tool
to further incorporate additional sensor fusion techniques and
to better estimate the position of the patient’s body. Fur-
thermore, exploration of potential Machine Learning (ML)
techniques and algorithms will potentially be able to provide
an even better estimation and understanding of the patients
postures. This is a natural continuation research work which
the authors are already beginning to explore.

Additionally to the work presented in this paper, we pro-
vide the following two figures illustrating the proposed algo-
rithm results over an extended period of time. These results
illustrate the previously mentioned activity index Aindex.
This index would overlap the Standing/Walking classifica-
tion, which is described in red on the daily analysis graph.
Those two figures presented illustrate a big difference in

FIGURE 3. Healthy volunteer Body tracking.

FIGURE 4. Heart Failure Patient, Body tracking.

terms of activity between the two different subjects and also
with respect to how much daily time is spent in a horizontal
position (laying down).

IV. CONCLUSION
This paper has presented an analytical method for body
position analysis and motion tracking, demonstrating encour-
aging experimental results. The significance of this contri-
bution lies in providing a novel and satisfactory method for
discerning the position of a patient laying down from the
positions of standing/walking or sitting. Further research is
required to be able to monitor additional postures (such as
discerning sitting down from standing/walking).

The implications for patients and clinical practice are note-
worthy. Tracking and analyzing the position of the patient
is essential for interpreting how the liquid accumulation
in the patient’s leg is evolving. Body tracking may help
reduce artifact errors that occur when a measurement is taken
whenever the patient is in motion or has recently changed
posture. This is happening because impedance electrodes are
sensitive to variations in contact levels. Furthermore, this
posture traking is relevant to the patient’s health status as
observed in section III. Research into further improving the
results, particularly for standing/walking or sitting positions,
is already in progress. Expectation are set for this research
to achieve greater significance and extended usage in clinical
practice for heart failure disease diagnosis and monitoring.
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