
Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. (2023) 117:17
https://doi.org/10.1007/s13398-022-01351-0

ORIG INAL PAPER

Total and non-total suborbits for hypercyclic operators

Luis Bernal-González1 · Antonio Bonilla2

Received: 12 February 2022 / Accepted: 1 November 2022 / Published online: 11 November 2022
© The Author(s) 2022

Abstract
In this note, it is proved that if X is a separable infinite dimensional Fréchet space that admits
a continuous norm then, given a closed infinite dimensional subspace of X , there exists a
hypercyclic operator admitting a dense orbit which in turn admits a suborbit all of whose
sub-suborbits are total in the prescribed subspace. This is related to a recently published
result asserting that every supercyclic vector for an operator on a Hilbert space supports a
non-total suborbit. Here we also extend this result to normed spaces.

Keywords Orbit under an operator · Suborbit · Hypercyclic operator · Supercyclic
operator · Total set

Mathematics Subject Classification 46A99 · 47A16

1 Introduction

If X is a topological vector space (TVS) over the field K (= R or C), then a set A ⊂ X
is said to be total provided that its linear span span(A) is dense in X (in such a case, we
say that A spans X ). More generally, if Y is a closed subspace of X , then we say that
A is total in Y if span(A) = Y . As usual, we denote by N the set of positive integers
and N0 := N ∪ {0}. Assume that x0 ∈ X and that T : X → X is a selfmap of X .
Then the orbit and the projective orbit of x0 under T are respectively defined as the sets
O(x0, T ) = {T nx0 : n ∈ N0} and K · O(x0, T ) = {λT nx0 : λ ∈ K, n ∈ N0}. To
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every infinite subset J = {n1 < n2 < n3 < · · · } ⊂ N0 we can associate a suborbit
O(x0, T , J ) = {T nx0 : n ∈ J } = {T n j x0 : j ∈ N} (so O(x0, T ) = O(x0, T ,N0)).

If T is an operator (that is, linear and continuous), then T is said to be hypercyclic (super-
cyclic, cyclic, resp.) provided that there is a vector x0 ∈ X –called hypercyclic (supercyclic,
cyclic, resp.) for T – such that O(x0, T ) (K · O(x0, T ), span(O(x0, T )), resp.) is dense in
X . The reader is referred to, for instance, [12] or [14] for background on TVSs, while the
fundamentals on hypercyclicity theory can be found in [4, 9].

Observe that hypercyclic implies supercyclicity, and in turn, supercyclicity implies cyclic-
ity, and that these three kinds of operators can only live in separable TVSs. Moreover, only
infinite dimensional TVSs can support hypercyclic operators (see [9]). If X supports a super-
cyclic operator then either X is infinite dimensional or dim(X) ∈ {0, 1, 2} if K = R (or
dim(X) ∈ {0, 1} if K = C, resp.) (see [10]). The intermediate notion of supercyclic operators
was introduced in 1974 by Hilden andWallen in [11]. The existence of hypercyclic operators
on separable infinite dimensional Banach (Fréchet, resp.) was proved in [5] (in [2, 6], resp.).

Recently, and inspired by the fact that –for metrizable TVSs– a hypercyclic vector must
possess a suborbit tending to zero, Faghih and Hedayatian [7] have established the following
interestingTheorem1 below,wherewe have used the terminology given in the first paragraph.

Theorem 1 Let X be an infinite dimensional Hilbert space and T be an operator on X. If
x0 is a supercyclic vector for T , then there is a suborbit of x0 under T that is non-total in
X.

This statement opens a door to research the dynamics of suborbits of linear operators
enjoying some cyclicity property.

The aim of this short note is to contribute to this research in the setting of a certain class
of Fréchet spaces including Banach spaces. Our findings are connected to the conclusion
of Theorem 1. In fact, we shall establish the existence of hypercyclic (hence supercyclic)
operators admitting dense orbits enjoying the property that every infinite subset of some
suborbit spans a prescribed closed infinite dimensional subspace. The precise statement will
be provided in Theorem 2.4 of the next section. The result is preceded by an assertion on
existence of total subsets being infinitely compressible in some sense. Finally, in Sect. 3,
Theorem 1 will be extended to normed spaces, so giving in this setting an affirmative answer
to Question 1 posed in [7].

2 Total suborbits

We begin with an assertion (Theorem 2.2) about existence of infinite total sets that cannot
be “trivially minimalized” we respect to totality. Prior to this, let us recall the following
important statement, that is due to Bonet and Peris [6, Lemma 2] in the case that the space
is not isomorphic to K

N. It will be used in our proof. By X∗ we shall denote, as usual, the
topological dual space of X . And ω will stand for the space K

N of all scalar sequences, that
becomes a Fréchet space when endowed with the product topology.

Theorem 2.1 If X is an infinite dimensional separable Fréchet space, then there is a sequence
{en}n≥1 ⊂ X as well as a sequence {ϕm}m≥1 ⊂ X∗ with the following properties:

(a) ϕn(en) ∈ (0, 1] for all n ∈ N and ϕm(en) = 0 if m �= n.
(b) The set {en : n ∈ N} is total in X.
(c) en → 0 as n → ∞.
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Proof As said before, the conclusion was provided by [6, Lemma 2] in the case that X
is not (isomorphic to) ω. If X = ω, then simply take en := (0, 0, . . . , 0, 1, 0, 0, . . . )
(with the nonzero term at the nth place), and ϕm := πm , the mth projection, that is,
πm(x1, x2, x3, . . . ) = xm . 
�
Theorem 2.2 Assume that X is a separable Fréchet space. Then there exists an infinite total
subset A of X enjoying the property that any infinite subset of it is also total.

Proof We first deal with the finite dimensional case, which will later inspire the infinite
dimensional one. Then X is isomorphic to K

N for some N ∈ N, so that we can assume
X = K

N . Consider the infinite set A := {u1, u2, u3, . . . } of KN given by

uk := (k, k2, . . . , kN ) (k ∈ N).

Note that the conclusion is trivial if N = 1, so that we can suppose N ≥ 2. If B is an infinite
subset of A, then B = {uk : k ∈ M}, where M is an infinite subset of N. Take N pairwise
different vectors v j = uk j = (k j , k2j , . . . , k

N
j ) ∈ B, so that k j ∈ M for j = 1, . . . , N .

Now the matrix of the v j ’s with respect to the canonical basis of KN is
(
klj

)
( j,l)∈{1,...,N }, a

Vandermonde matrix, whose determinant is

k1 · · · kN ·
∏

1≤i< j≤N

(k j − ki ),

which is nonzero because the ki ’s are pairwise different. Then the v j ’s are linearly indepen-
dent. Hence

K
N = span{v j }1≤ j≤N ⊂ span(B) ⊂ span(B) ⊂ K

N ,

and so span(B) = K
N , that is, B is total.

Next, we face the infinite dimensional case. According to Theorem 2.1, we can select a
pair of sequences {ep}p≥1 ⊂ X , {ϕq}q≥1 ⊂ X∗ satisfying properties (a)–(b)–(c). Since X
is locally convex and metrizable, its topology can be defined by an increasing sequence of
seminorms

‖ · ‖1 ≤ ‖ · ‖2 ≤ ‖ · ‖3 ≤ · · · .

For each a > 1, consider the sequence of vectors

Sν :=
ν∑

n=1

a−nen (ν = 1, 2, 3, . . . ).

Fix a neighborhood U of 0. Then there are m ∈ N and ε > 0 such that

U ⊃ Bm,ε := {x ∈ X : ‖x‖m < ε}.
It follows from (c) that ‖en‖m → 0 as n → ∞, and also a−n → 0, so that there is n0 ∈ N

such that

‖en‖m ≤ 1 and a−n <
ε(a − 1)

a
for all n ≥ n0. (2.1)

If ν > μ ≥ n0 then we get from (2.1) that

‖Sν − Sμ‖m = ‖
ν∑

n=μ+1

a−nen‖m ≤
ν∑

n=μ+1

a−n‖en‖m ≤
ν∑

n=μ+1

a−n

< a−μ(a−1 + a−2 + a−3 + · · · ) = a−μ · a

a − 1
< ε.
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Therefore Sν − Sμ ∈ Bm,ε, and so Sν − Sμ ∈ U for all ν > μ ≥ n0. In other words, {Sν}n≥1

is a Cauchy sequence in X . The completeness of X implies the existence of a limit ua ∈ X
for this sequence. Thus, we obtain a family of vectors

ua =
∞∑

n=1

a−nen (a > 1). (2.2)

These vectors are linearly independent. Indeed, assume, by way of contradiction, the exis-
tence of m (≥ 2) nonzero scalars λ1, . . . , λm and of pairwise different reals a1, . . . , am ∈
(1,+∞) with λ1ua1 + · · · + λmuam = 0. By using the convergence of the series defining
the uai ’s, we derive that

∞∑

n=1

(
λ1a

−n
1 + · · · λma−n

m

)
en = 0. (2.3)

Since the ϕq ’s are linear and continuous, an application of (a) for q = 1, . . . ,m to (2.3)
yields (after dividing by ϕq(eq), that is nonzero) the squared homogeneous linear system

a−n
1 λ1 + · · · a−n

m λm = 0 (n = 1, 2, . . . ,m)

with unknowns λ1, . . . , λm . Again, its associated matrix is a Vandermonde one with nonzero
determinant, because the numbers a−1

1 , . . . , a−1
m are nonzero and pairwise different. Thus,

the unique solution of such a system is

λ1 = · · · = λm = 0,

which is a contradiction. This shows the linear independence of the vectors ua and, in passing,
we obtain that they are mutually different. In particular, the set

A := {u1+k : k ∈ N} (2.4)

is infinite.
Finally, assume that B is an infinite subset of A. Then there is a strictly increasing

sequence k1 < k2 < k3 < · · · of natural numbers such that B = {u1+k j : j ∈ N}. Our goal
is to prove that span(B) = X . By a well known consequence of the Hahn–Banach theorem,
it is enough to show that, if a functional ϕ ∈ X∗ vanishes on B, then ϕ = 0. Take ϕ ∈ X∗
such that ϕ(x) = 0 for all x ∈ B. Then ϕ(u1+k j ) = 0 for all j ∈ N. According to (2.2),
we get

∞∑

n=1

(1 + k j )
−nϕ(en) = 0 for all j ∈ N. (2.5)

Since ϕ is continuous and the seminorms ‖ · ‖n define the topology of X , there are m ∈ N

and a constant C ∈ (0,+∞) such that

|ϕ(x)| ≤ C ‖x‖m for all x ∈ X .

But the sequence {‖en‖m}n≥1 is bounded as it converges (to 0). In particular, |ϕ(en)| ≤ K
for all n ∈ N and some absolute constant K . It follows that the radius of convergence
of the power series

∑∞
n=1 ϕ(en)λn (λ ∈ K) is at least one. Consequently, the function

F : {|λ| < 1} → K given by

F(λ) :=
∞∑

n=1

ϕ(en)λ
n
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is well defined and analytic. It follows from (2.5) that

F
( 1

1 + k j

)
= 0 for all j ∈ N.

Since 1
1+k j

→ 0 as j → ∞ and 0 ∈ {|λ| < 1}, we get that F vanishes at all points
of a subset of {|λ| < 1} having an accumulation point in {|λ| < 1}. Now, the Analytic
Continuation Principle tells us that F ≡ 0. Therefore all of its Taylor coefficients at the
origin are zero, that is, ϕ(en) = 0 for all n ∈ N. By linearity, we get ϕ(x) = 0 for
all x ∈ span({en}n≥1). To conclude, the continuity of ϕ together with property (b) of
Theorem 2.1 yields ϕ = 0, as required. 
�

The following crucial assertion about existence of hypercyclic operators with prescribed
orbits will be needed. It is due to Albanese [1], who extended a corresponding result in the
setting of Banach spaces given by Grivaux [8].

Theorem 2.3 Let X be a separable infinite dimensionalFréchet space admitting a continuous
norm. Suppose that {vn : n = 0, 1, 2, . . . } is a dense set of linearly independent vectors of
X. Then there is a hypercyclic operator T on X such that orb(v0, T ) = {vn : n ∈ N0}.

We are now ready to establish our main result.

Theorem 2.4 Suppose that X is a separable infinite dimensional Fréchet space that admits
a continuous norm. Let u0 ∈ X \ {0} and Y be a closed infinite dimensional subspace of X.
Then there exists a hypercyclic operator T on X satisfying the following properties:

(a) u0 is hypercyclic for T .
(b) There exists an infinite subset J ⊂ N0 such that orb(u0, T , L) is total in Y for any

infinite L ⊂ J .

Proof Let us fix u0 ∈ X and Y ⊂ X as in the assumptions of the theorem. Since Y is also a
separable infinite dimensional Fréchet space, we infer from Theorem 2.2 (and its proof) the
existence of a countably infinite linearly independent set

A = {x1, x2, x3, . . . , xn, . . . } ⊂ Y

all of whose infinite subsets are total in Y .
Two cases are possible: either u0 ∈ span(A) or u0 /∈ span(A). In the second case we

keep A as it stands now. In the first one, there is a unique, finite set F ⊂ N such that u0
can be expanded as a linear combination of the xi ’s (i ∈ F) with nonzero coefficients.
Then we would replace A by A \ F , which is also infinite, so sharing the same property
of A with respect to its infinite subsets. Therefore we are allowed to start with the fact that
u0, x1, x2, x3, . . . are linearly independent.

Since X is separable andmetrizable, there is an open basis {Gn : n ∈ N} for the topology
of X . As an easy consequence of the Baire category theorem, the dimension of X cannot
be countable. Then span(A ∪ {u0}) is a proper subspace of X , and so it has empty interior.
Hence we can choose a vector

y1 ∈ G1 \ span(A ∪ {u0}).
By a similar reason, we can pick a vector

y2 ∈ G2 \ span(A ∪ {u0, y1}).
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By following this procedure, we get a sequence {yn}n∈N ⊂ X satisfying yn ∈ Gn (so
{yn}n∈N is dense) and yn+1 is not in the linear span of {u0, x1, x2, . . . } ∪ {y1, . . . , yn}. This
implies that the set

S := {u0, x1, y1, x2, y2, x3, y3, . . . }
is dense (because {yn}n∈N is) and linearly independent. Then an application of Theorem 2.3
with

v0 := u0 and {vn : n ∈ N0} := S

provides a hypercyclic operator T such that orb(u0, T ) = S. Since S is dense, we have (a).
Finally, (b) is fulfilled if we select

J := {n1 < n2 < n3 < · · · },
where nk is defined as the unique m ∈ N for which Tmu0 = xk . 
�

3 Non-total suborbits of supercyclic vectors

This short section is devoted to extend Theorem 1 from Hilbert spaces to the wider setting
of normed spaces. Our approach will be necessarily different because the inner product of
the space played a central role in the proof of [7, Theorem 1]. We shall make use of the
following auxiliary result that is a weak version of Lemma 2.3 in [3] due to Bamerni, Kadets
and Kiliçman. We remark that the completeness of X is not needed in the proof of such
lemma.

Lemma 3.1 Let A be a dense subset of a normed space X and e ∈ X be a fixed vector with
‖e‖ > 1. Then for every finite dimensional subspace Y ⊂ X with dist(e, Y ) > 1 there is a
vector a ∈ A such that

dist(e, span(Y ∪ {a})) > 1.

We are now ready to prove the promised extension of Theorem 1.

Theorem 3.2 Let X be an infinite dimensional normed space and T be an operator on X.
If x0 is a supercyclic vector for T , then there is a suborbit of x0 under T that is non-total
in X.

Proof Let e ∈ X be a fixed vector with ‖e‖ > 1, and let Y0 := {0}. Then
dist(e, Y0) = ‖e‖ > 1.

It follows from Lemma 3.1 and the denseness of A1 := K ·O(x0, T ) \ Y0 the existence of a
vector y1 ∈ A1 such that

dist(e, span(Y0 ∪ {y1})) > 1.

Hence dist(e, span(Y1)) > 1, where we have set Y1 := span({y1}). There exist n1 ∈ N0

and λ1 ∈ K \ {0} for which y1 = λ1T n1x0. Let

Z1 := span({x0, T x0, T 2x0, . . . , T
n1x0}.
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Now, Y1 (and also Z1) is a finite dimensional subspace of X the set A2 := K ·O(x0, T ) \ Z1

is dense, because Z1 is closed and has empty interior. A further application of Lemma 3.1
yields the existence of a vector y2 = λ2T n2 x0 ∈ A2 such that dist(e, Y2) > 1, where

Y2 := span(Y1 ∪ {y2}) = span({y1, y2}).
Again, there exist n2 ∈ N0 and λ2 ∈ K \ {0} for which y2 = λ2T n2 x0. Observe that, since
y2 /∈ Z1, we have n2 > n1. Define

Z2 := span({x0, T x0, T 2x0, . . . , T
n2 x0}

and consider A3 := K · O(x0, T ) \ Z2. By following this procedure we can construct
inductively a sequence of vectors yk = λnT nk x0 such that

n1 < n2 < n3 < . . . , λk �= 0 and dist(e, Yk) > 1 for all k ∈ N,

where

Yk := span{y1, . . . , yk} = span({T n1x0, T
n2 x0, . . . , T

nk x0}).
Finally, let J := {n1, n2, . . . }, consider the suborbit O(x0, T , J ) and note that its linear
span equals

⋃∞
k=1 Yk . Therefore

dist(e, span(O(x0, T , J ))) = dist(e, span(O(x0, T , J ))) ≥ 1.

Thus, span(O(x0, T , J )) �= X , as required. 
�

4 Final remarks

1. Concerning Theorem 2.1, it should be said that Lemma 2 in [6] actually gives more
information about the system ((en), (ϕn)). Namely, the family (ϕn) can be chosen to be
equicontinuous in X∗ (not possible if X = ω : see [6, p. 589]). In fact, the result is a
generalization of a theorem due to Ovsepian and Pelczynski [13] about existence of complete
total biorthogonal systems in separable infinite dimensional Banach spaces.
2.From the proof of Theorem 2.2 it is easily derived the following strengthening: Assume that
X is a Fréchet space. Then X is infinite dimensional and separable if and only if it contains
an infinite linearly independent subset A all of whose infinite subsets are total. Furthermore,
according to (2.4), we can choose A to be a sequence; namely, {u1+n}n≥1. Moreover, if
{Vn}n≥1 is a nondecreasing of 0-neighborhoods in X , then there exist cn ∈ (0,+∞) such
that cnu1+n ∈ Vn for all n ∈ N, so cnu1+n → 0. Now, for every J ⊂ N, it is clear that
{cnu1+n}n∈J spans the same subspace as {u1+n}n∈J . Consequently, the set A can be selected
to be, in addition, relatively compact.
3. Theorem 2.4 holds in the special case Y = X , so providing for every nonzero vector u0
an operator T such that u0 is hypercyclic for T and all infinite subsets of some suborbit
orb(u0, T , J ) are total. Note that this does not contradict Theorem 1 in [7] (see Sect. 1) nor
Theorem 3.2. All that can be inferred is that J must be non-cofinite (as constructed, in fact,
in the proof of Theorem 2.4).
4. The space ω is the most emblematic separable Fréchet space lacking a continuous norm.
It would be interesting to know whether or not the conclusion of Theorem 2.4 holds for ω.
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