ORIGINAL PAPER

Constraint relaxation for the discrete ordered median problem

Luisa I. Martínez-Merino ${ }^{1,2} \cdot$ Diego Ponce ${ }^{2,3}$ © \cdot Justo Puerto ${ }^{2,3}$

Received: 18 July 2022 / Accepted: 17 November 2022
© The Author(s) 2022

Abstract

This paper compares different exact approaches to solve the Discrete Ordered Median Problem (DOMP). In recent years, DOMP has been formulated using set packing constraints giving rise to one of its most promising formulations. The use of this family of constraints, known as strong order constraints (SOC), has been validated in the literature by its theoretical properties and because their linear relaxation provides very good lower bounds. Furthermore, embedded in branch-and-cut or branch-price-and-cut procedures as valid inequalities, they allow one to improve computational aspects of solution methods such as CPU time and use of memory. In spite of that, the above mentioned formulations require to include another family of order constraints, e.g., the weak order constraints (WOC), which leads to coefficient matrices with elements other than $\{0,1\}$. In this work, we develop a new approach that does not consider extra families of order constraints and furthermore relaxes SOC -in a branch-and-cut procedure that does not start with a complete formulationto add them iteratively using row generation techniques to certify feasibility and optimality. Exhaustive computational experiments show that it is advisable to use row generation techniques in order to only consider $\{0,1\}$-coefficient matrices modeling the DOMP. Moreover, we test how to exploit the problem structure. Implementing an efficient separation of SOC using callbacks improves the solution performance. This allows us to deal with bigger instances than using fixed cuts/constraints pools automatically added by the solver in the branch-and-cut for SOC, concerning both the formulation based on WOC and the row generation procedure.

Keywords Discrete ordered median problem • Branch-and-cut • Constraint relaxation \cdot Row generation

Mathematics Subject Classification 90-04 • 90-08 •90B80 • 90C10 • 90C57

[^0]
1 Introduction

At times, very hard combinatorial optimization problems contain easy combinatorial subproblems after relaxing some of their constraints. A paradigmatic example is the Traveling Salesman Problem: after the elimination of its subtour elimination constraints it turns into the Linear Assignment Problem which is polynomially solvable. This pattern calls for developing techniques that take advantage of this situation to solve some combinatorial problems based on their constraint relaxation. This approach is not new and the reader is referred to Focacci et al. (1999, 2002a, 2002b) and the references therein for further details.

This behavior is not only observed in problems where formulations include an exponential number of constraints. Actually, it also occurs in many polynomial size formulations. One of these cases is the Discrete Ordered Median Problem (DOMP) modeled with the strong order constraints formulation as introduced in Labbé et al. (2017). If one removes the family of strong order constraints, whose acronym is SOC, the resulting problem is the standard p-median problem that is known to be combinatorially friendly (Hakimi 1964; Marín and Pelegrín 2019; ReVelle and Swain 1970). The aim of this work is to develop solution techniques for DOMP based on constraint relaxations.

The DOMP is a discrete location model that allows to generalize several classical discrete location problems (see, e.g., Nickel and Puerto 2005). For instance, the discrete p-center and p-median are particular cases of DOMP. Assume that we are given a set of clients, a set of candidate locations for facilities, and the allocation costs from each candidate facility to each client. The objective of DOMP is to locate p facilities in such a way that a certain weighted function of the allocation costs is minimized. These weights are not assigned to specific costs but to their sorted values. Namely, the weighted average sorts the allocation costs in a nondecreasing order and then, it performs the scalar product of this so obtained sorted cost vector by the vector of weights.

In the literature, one can find different applications of the ordered median operator. For instance, it has been applied to facility location (Aouad and Segev 2019; Domínguez and Marín 2020; Espejo et al. 2009; Kalcsics et al. 2010; MartínezMerino et al. 2017; Tamir 2001), multicast communication (Fourour and Lebbah 2020), multiobjective Markov decision processes (Ogryczak et al. 2011), voting problems (Ponce et al. 2018), supervised classification (Marín et al. 2022), tomography reconstruction (Calvino et al. 2022), and network design (Puerto et al. 2013), among other situations.

DOMP was first introduced in Nickel (2001) as an integer nonlinear problem. Then, in Boland et al. (2006), this problem was modeled as a mixed integer linear program. Some works on this problem take advantage of some particular characteristics. Specifically, Marín et al. (2009) introduce an efficient covering formulation for DOMP considering free self-service, ties in the cost matrix and a non-negative weighted order vectors in the objective function. Futhermore, Marín et al. (2010) present a covering reformulation for weighted order vectors containing zeros and an extended model for vectors even with negative elements.

In Labbé et al. (2017), a new three-index formulation based on set packing constraints is proposed. These set packing constraints are known as strong order constraints or SOC, and the number of these constraints appearing in the formulation is $\mathcal{O}\left(n^{3}\right)$. In addition, another new formulation, solved by an efficient branch-and-cut procedure that provides good results in terms of time, is introduced.

This second formulation is based on the aggregation of the SOC corresponding to the same position. The resulting order constraints are the weak order constraints (from now on WOC). This formulation includes SOC as valid inequalities. Both formulations present small integrality gaps.

Recently, in Deleplanque et al. (2020), a novel branch-price-and-cut algorithm has been proposed. This procedure is based on a formulation with an exponential number of variables that corresponds to a set partitioning model. The proposed approach allows to handle larger instances since it requires less memory to run the model.

In this paper, we want to explore different exact approaches to solve DOMP. The first one uses branch-and-cut techniques based on one of the most promising formulations, namely the formulation based on WOC proposed in Labbé et al. (2017), adding SOC as valid inequalities. Additionally, we compare the use of cut pools in the branch-and-cut with respect to the use of callbacks to implement an ad hoc separator proposed in Labbé et al. (2017). By setting up pools of cuts, all SOC are initially stored and then, solvers decide which cuts are included during the branch-and-cut process. In contrast, applying the callbacks using the separation algorithm introduced in Labbé et al. (2017), SOC are not initially stored and the implementation of the SOC separation is based on a sequential update of the left-hand side of the corresponding order constraints. This separation can be performed in $\mathcal{O}\left(n^{3}\right)$.

The second method is based on a constraint relaxation on the formulation using SOC to model the order. This procedure, to solve DOMP, starts with a relaxed formulation where all SOC are removed and feasibility is enforced adding model constraints from the SOC family in the searching tree. Although the number of SOC is polynomial, $\mathcal{O}\left(n^{3}\right)$, this number of constraints becomes too large to be handled when n increases. Consequently, it is interesting to study this approach since we could improve the time and memory performance by only including the necessary constraints in the solution process. Again, in this case, we compare the branch-and-cut procedure through callbacks with respect to the branch-and-cut based on constraint pools.

The contributions of this paper can be summarized as follows:
(1) Comparing a branch-and-cut approach to solve DOMP based on the so called WOC formulation with a constraint relaxation approach for DOMP based on removing SOC.
(2) Comparing the performance of the branch-and-cut and the constraint relaxation approach when using callbacks based on specific tailor made separation oracles with respect to the use of fixed pools of cuts/constraints.
(3) Reporting intensive computational tests which show the limits of the different considered solution methods.

The remainder of this work is organized as follows. In Sect. 2, we introduce the notation and description of DOMP. Besides, we recall two formulations for DOMP that will be used along the paper ($\mathrm{DOMP}_{\mathrm{WOC}}$ and $\mathrm{DOMP}_{\mathrm{SOC}}$). In Sect. 3, we present two solution methods for the problem. First, we describe the branch-and-cut procedure for $\mathrm{DOMP}_{\text {WOC }}$ introduced in Labbé et al. (2017). Then, we propose a novel row generation procedure for $\mathrm{DOMP}_{\text {Soc }}$. Section 4 is devoted to the analysis of both solution methods. In addition, we present a comparison between the results of using pools of cuts/contraints and using callbacks for the branch-and-cut and the row generation techniques. Finally, in Sect. 5, we include some conclusions and future research lines.

2 Problem definition and formulations

This section is devoted to recall the definition and some formulations of DOMP that will be instrumental in our discussion. We shall follow the following notation. We denote by $I=\{1, \ldots, n\}$ the set of n clients and, at the same time and without loss of generality, the set of n potential facility locations. Facilities are assumed to be uncapacitated, i.e., they can supply as many clients as desired. Besides, $c_{i j}$ denotes the cost for serving client i from facility j, for $i, j \in I$.

Given a set J composed by p open facilities, $c_{i}(J)$ represents the cost of allocating client i to the facility set J, i.e., $c_{i}(J)=\min _{j \in J} c_{i j}$. In addition, if the vector of costs $c_{i}(J)_{i=1, \ldots, n}$ for $J \subset I$ is sorted in non-decreasing order, we denote by $c^{(k)}(J)$ the allocation cost in position $k \in K=I$ of this sorted vector. Thus, it holds that $c^{(1)}(J) \leq c^{(2)}(J) \leq \ldots \leq c^{(n)}(J)$.

The aim of DOMP is to determine a subset of p facilities $J \subset I$ to open, and to assign each client to an open facility in order to minimize the ordered median objective function. Given a vector $\lambda=\left(\lambda^{k}\right)_{k \in K}$ such that $\lambda^{k} \geq 0, k \in K$, the objective function of DOMP can be expressed as $\sum_{k \in K} \lambda^{k} c^{(k)}(J)$. Consequently, the definition of DOMP is

$$
\min _{J \subset I:|J|=p} \sum_{k \in K} \lambda^{k} c^{(k)}(J) \quad \text { (DOMP). }
$$

Observe that this formulation generalizes several standard discrete location problems. For instance: if $\lambda^{1}=\lambda^{2}=\ldots=\lambda^{n}=1$, this model is the p-median problem; if $\lambda^{1}=\lambda^{2}=\lambda^{n-1}=0, \lambda^{n}=1$, one gets the p-center; if $\lambda^{1}=\lambda^{2}=\ldots=\lambda^{n-k}=0, \lambda^{n-k+1}=\ldots=\lambda^{n}=1$, the resulting problem is the k-centrum; etc.

DOMP is known to be $\mathcal{N P}$-complete, see Nickel and Puerto (2005), and as mentioned in the introduction, different formulations have been proposed to deal with this problem. In this paper, we will elaborate on two of the most recent and promising formulations presented in Labbé et al. (2017). On the one hand, that paper introduces a three-index formulation where order is modeled by a family of set packing constraints, SOC. On the other hand, it also presents an aggregated version of that formulation where the order is ensured by a different set of constraints called WOC.

We will build on those two formulations, thus in order to be self-contained, in the following subsection we provide full details of them.

2.1 Strong order constraints formulation

For the formulation based on strong order constraints, the next families of variables are required:

$$
\begin{aligned}
& y_{j}= \begin{cases}1, & \text { if facility } j \text { is open, for } j \in I, \\
0, & \text { otherwise, }\end{cases} \\
& x_{i j}^{k}=\left\{\begin{array}{ll}
1, & \text { if client } i \text { is allocated to facility } j \text { and the } \\
\text { associated cost is in position } k \text { of the } \\
\text { sorted sequence of allocation costs, } \\
0, & \text { otherwise },
\end{array} \quad \text { for } i, j \in I, k \in K .\right.
\end{aligned}
$$

Besides, we denote the rank of the allocation cost $c_{i j}$ by $r_{i j}$, i.e., $r_{i j}=\ell$ if $c_{i j}$ is the ℓ-th element in the list of the costs $c_{i j}$, for all $i, j \in I$, sorted in a non decreasing sequence and where ties are broken arbitrarily. Then, $\mathrm{DOMP}_{\mathrm{SOC}}$ formulation is the following.

$$
\begin{align*}
\left(\mathrm{DOMP}_{\mathrm{SOC}}\right) \min \sum_{i \in I} \sum_{j \in I} \sum_{k \in K} \lambda^{k} c_{i j} k_{i j}^{k} & \tag{1}\\
\text { s.t. } \sum_{j \in I} \sum_{k \in K} x_{i j}^{k} & =1, \quad i \in I, \tag{2}\\
\sum_{i \in I} \sum_{j \in I} x_{i j}^{k} & =1, \quad k \in K, \tag{3}\\
\sum_{k \in K} x_{i j}^{k} & \leq y_{j}, \quad i, j \in I, \tag{4}\\
\sum_{j \in I} y_{j} & =p, \tag{5}
\end{align*}
$$

$$
\begin{equation*}
\sum_{i^{\prime} \in I} \sum_{j^{\prime} \in I:} x_{i^{\prime} j^{\prime}}^{k}+\sum_{i^{\prime} \in I} \sum_{j^{\prime} \in I:} x_{i^{\prime} j^{\prime}}^{k-1} \leq 1, \quad i, j \in I, k \in K, k \neq 1, \tag{SOC}
\end{equation*}
$$

$$
r_{i^{\prime} j^{\prime}} \leq r_{i j} \quad r_{i^{\prime} j^{\prime}} \geq r_{i j}
$$

$$
\begin{equation*}
x_{i j}^{k}, y_{j} \in\{0,1\}, \quad i, j \in I, k \in K \tag{6}
\end{equation*}
$$

Constraints (2) ensure that each client is served by just one facility in one position. Similarly, constraints (3) are necessary to guarantee that only one allocation cost is
in each sorted position. Constraints (4) ensure that each client is allocated to an open facility and that the allocation cost of a client can only be in at most one position. Constraint (5) restricts that exactly p facilities must be open. Constraints (SOC) are the so-called strong order constraints which ensure the correct sorting of the allocation costs. These constraints are set packing constraints, i.e., at most one of the variables of the 1 . h. s. could take value one. The incompatibility of two or more variables taking value one is due to (4) and the fact that a variable $x_{i j}^{k}$ cannot take value one if $x_{i^{\prime} j^{\prime}}^{k-1}=1$ when $r_{i j}<r_{i^{\prime} j^{\prime}}$, for $i, j, i^{\prime}, j^{\prime} \in I, k \in K, k \neq 1$. We refer the reader to Labbé et al. (2017) for a more detailed explanation. Finally, constraints (6) are the domain of definition of the variables. The reader may note that removing (SOC) the formulation results in the p-median.

2.2 Weak order constraints formulation

Despite the good mathematical properties of $\mathrm{DOMP}_{\text {SOC }}$, as the lower bound given by its linear relaxation, the number of (SOC) is $\mathcal{O}\left(n^{3}\right)$. Consequently, when the number of clients increases, the number of (SOC) becomes too large to be handled by a solver. For this reason, Labbé et al. (2017) introduce an alternative family of constraints to ensure the order of costs. These new constraints are based on the aggregation of (SOC) corresponding to the same position. (The reader is referred to Labbé et al. (2017) for further details.) This alternative formulation results in the following.

$$
\begin{align*}
& \left(\mathrm{DOMP}_{\mathrm{WOC}}\right) \min \sum_{i \in I} \sum_{j \in I} \sum_{k \in K} \lambda^{k} c_{i j} x_{i j}^{k} \\
& \sum_{i \in I} \sum_{j \in I}\left(\sum_{i^{\prime} \in I .(2)-(6),} \sum_{\substack{j^{\prime} \in I \\
r_{i^{\prime} j^{\prime}} \leq r_{i j}}} x_{i^{\prime} j^{\prime}}^{k}+\sum_{i^{\prime} \in I} \sum_{\substack{j^{\prime} \in I: \\
r_{i^{\prime} j^{\prime}} \geq r_{i j}}} x_{i^{\prime} j^{\prime}}^{k+1}\right) \leq n^{2}, k \in K, k \neq 1 .
\end{align*}
$$

Constraints labeled by (WOC) are known as weak order constraints. They ensure that if facility j serves client i and its cost $c_{i j}$ is in position k of the sorted cost vector of the solution, then there must be a smaller or equal allocation cost in position $k-1$. This is due to the coefficients corresponding to each variable in the constraints. In each inequality, there are represented two positions ($k-1$ and k). By constraints (3), only two variables must take value 1 , and the remaining ones take value 0 . Assuming that the variables with value one for position k and $k-1$ correspond to positions s and t of the sorted costs, respectively, the inequality can be expressed as follows:

$$
\left(n^{2}-(s-1)\right) x_{i s j_{s}}^{k}+t x_{i, j_{t}}^{k-1} \leq n^{2}
$$

with $i_{s}, j_{s}, i_{t}, j_{t} \in I$ such that $c_{i_{s} j_{s}}$ and $c_{i_{i} j_{t}}$ are the s-th and t-th smallest allocation costs in matrix $\left(c_{i j}\right)_{n \times n}$. This is valid if and only if $t<s$.

In Labbé et al. (2017), it is shown that $\mathrm{DOMP}_{\text {SOC }}$ formulation provides a relevant improvement of the integrality gap with respect to $\mathrm{DOMP}_{\text {woc }}$ formulation. In other words, for most of the instances, fractional solutions satisfying (WOC) could be cut including (SOC). Thus, it is recommended to use (SOC) as valid inequalities of $\mathrm{DOMP}_{\text {woc }}$.

3 Solution methods

Both formulations, DOMP $_{\text {SOC }}$ and DOMP $_{\text {WOC }}$, can be solved by using standard MIP solvers as CPLEX, Gurobi, Xpress, or SoPlex. However, the good performance of these formulations is rather limited for large sizes of the problem as we will see in Sect. 4. The reader should observe that already for $n=100$ clients the number of (SOC) is almost 10^{6}.

To improve the performance of $\mathrm{DOMP}_{\mathrm{WOC}}$, Labbé et al. (2017) propose a branch-and-cut procedure which starts by solving the linear program relaxation of $\mathrm{DOMP}_{\text {woc }}$, and then it includes (SOC) as valid inequalities whenever necessary. This procedure is described in Sect. 3.1.

In this paper, we propose an alternative solution method which exploits the good properties of $\mathrm{DOMP}_{\text {SOC }}$ avoiding the use of the complete family of strong order constraints. This solution method consists in a row generation procedure which initially considers $\mathrm{DOMP}_{\text {SOC }}$ without (SOC), and then it iteratively includes these order constraints. As far as we know, this row generation method has not been considered before for DOMP. Section 3.2 is devoted to the description of this procedure.

3.1 Branch-and-cut for DOMP woc

The branch-and-cut procedure has become an efficient method for solving large instances of models where the number of constraints is intractable for solvers. For instance, it has been successfully applied to the matching problem with blossoms (Edmonds and Johnson 1973; Grötschel and Holland 1985; Letchford et al. 2004), problems related to trees (Fernández et al. 2017; Magnanti and Wolsey 1995), clustering (Benati et al. 2017), and the orienteering arc routing problem (Archetti et al. 2016), to name a few. In Labbé et al. (2017), a branch-and-cut method for (SOC) in $\mathrm{DOMP}_{\mathrm{woc}}$ formulation is proposed.

This branch-and-cut procedure could be handled by two different perspectives. On the one hand, most of the current solvers have some options to define a fixed pool of cuts that are added automatically when necessary in the cut generation. This means that, changing some parameters in the solver, we can remove some families of constraints from the formulations (thus avoiding to include them initially), which are later added when necessary in the solution process. This automatic feature of solvers is interesting when the constraint separation must be done by enumeration due to the efficient implementation of the solvers in this case.

In our particular case, the use of cut pools in the branch-and-cut method for (SOC) in formulation $\mathrm{DOMP}_{\text {woc }}$ seems to require $\mathcal{O}\left(n^{6}\right)$ operations, since there
are $\mathcal{O}\left(n^{3}\right)$ (SOC) and $\mathcal{O}\left(n^{3}\right) x$-variables in the formulation. Actually, it is $\mathcal{O}\left(n^{5}\right)$ since each constraint has only $\mathcal{O}\left(n^{2}\right)$ variables to check. Nevertheless, based on the knowledge of the structure of the problem, an efficient separation method of (SOC) constraints can be developed. This $a d$ hoc separation can be included by callbacks allowing a more efficient implementation of the branch-and-cut.

Focusing in DOMP, Labbé et al. (2017) propose an algorithm to separate (SOC) with complexity $\mathcal{O}\left(n^{3}\right)$. It is a remarkable quadratic improvement with respect to the pure enumerative approach. Algorithm 1 shows in detail this separation procedure, based on the calculation of left-hand sides of the possible cuts adding and subtracting two values in each iteration.

In Sect. 4, we will develop a complete analysis of the branch-and-cut method using pools of cuts and the branch-and-cut method using callbacks. We will determine whether or not it is advisable to use a separation algorithm that takes advantage of the knowledge of the problem through callbacks.

Remark 1 According to previous experiences (Labbé et al. 2017; Deleplanque et al. 2020), when valid inequalities (SOC) are embedded in a branch-and-cut procedure over $\mathrm{DOMP}_{\mathrm{WOC}}$ formulation, they should be added at the root node, but not deeper, in order to find a compromise between the integrality gap and the size of the problem. Hence, for our computational study, we will use this cut-and-branch procedure to check the performance of the solution method proposed in this section.

3.2 Row generation procedure for DOMP $_{\text {SOC }}$

Since $\mathrm{DOMP}_{\text {woc }}$ formulation presents coefficients that are not zero-one, in this work we explore the use of a (SOC) relaxation of $\mathrm{DOMP}_{\text {SOC }}$ adding iteratively these constraints whenever they are necessary. Therefore, the solution method of this section starts with a formulation which has a zero-one coefficient matrix to later add set packing constraints. Hence, we provide a well-behaved (from the solvers point of view) formulation of DOMP without using a huge number of constraints.

The initial formulation which is considered in this row generation procedure is the following.

$$
\begin{aligned}
\left(\mathrm{DOMP}_{\text {relax }}\right) \min & \sum_{i \in I} \sum_{j \in I} \sum_{k \in K} \lambda^{k} c_{i j} x_{i j}^{k} \\
\text { s.t. } & (2)-(6) .
\end{aligned}
$$

Observe that this formulation corresponds to the DOMP model without imposing the order constraints. Therefore, we are dealing with a relaxation of $\mathrm{DOMP}_{\text {SOC }}$. In this case, the proposed relaxation results in the p-median problem.

For each obtained solution in the branch-and-bound of $\mathrm{DOMP}_{\text {relax }}$, (SOC) are checked by using Algorithm 1 and added to the model when necessary. Consequently, this row generation method ensures the order by only using a moderate number of (SOC). This allows to handle bigger instances to be solved in a reasonable computing time as we will see in Sect. 4.

```
Algorithm 1 (SOC) separation
Input: Let ( \(\widehat{\mathbf{x}}, \hat{\mathbf{y}}\) ) be a solution of (DOMP \(\left.\mathrm{WOC}^{2}\right) /\left(\mathrm{DOMP}_{\text {relax }}\right)\) with a subset
of (SOC).
Output: Violated cuts / model constraints (SOC).
    Let \((i, j)\) such that \(r_{i j}=1\). Then, compute:
                \(l h s:=\sum_{\substack{\hat{\mathrm{i}} \in I}} \sum_{\substack{\mathrm{j} \in I \\ r_{\hat{\mathrm{i}}} \geq 1}} \widehat{x}_{\hat{\mathrm{ij}}}^{1}+\widehat{x}_{i j}^{2}\).
    if \(l h s>1\) then
        Add constraint \(\sum_{\hat{\imath} \in I} \sum_{\substack{\hat{j} \in I, r_{\mathrm{i}} \geq 1}} x_{\hat{\mathrm{i}},}^{1}+x_{i j}^{2} \leq 1\).
    end if
    for \(\ell=2, \ldots, n^{2}\) do
        Let \((i, j),\left(i^{\prime}, j^{\prime}\right)\) such that \(r_{i j}=\ell, \tau_{i^{\prime} j^{\prime}}=\ell-1\). Then, compute:
            \(l h s:=l h s+\widehat{x}_{i j}^{2}-\widehat{x}_{i^{\prime} j^{\prime}}\).
        if \(l h s>1\) then
            Add constraint \(\sum_{\hat{i} \in I} \sum_{\substack{\mathrm{j} \in I: \\ r_{\hat{\mathrm{j}}} \geq \ell}} x_{\mathrm{i} \mathrm{i}}^{1}+\sum_{\hat{\mathrm{i}} \in I} \sum_{\substack{\mathrm{j} \in I \\ r_{\mathrm{ij}} \leq \ell}} x_{\mathrm{ij}}^{2} \leq 1\).
        end if
    end for
    for \(k=2, \ldots, n-1\) do
        Let \((i, j),\left(i^{\prime} j^{\prime}\right)\) such that \(r_{i j}=1, r_{i^{\prime} j^{\prime}}=n^{2}\). Then, compute:
                    \(l h s:=l h s+\widehat{x}_{i j}^{k+1}-\widehat{x}_{i^{\prime} j^{\prime}}^{k-1}\).
    if \(l h s>1\) then
            Add constraint \(\sum_{\hat{\mathrm{i}} \in I} \sum_{\substack{\mathrm{j} \in \geq: \\ r_{\mathrm{i} j} \geq 1}} x_{\mathrm{i}}^{k}+x_{i j}^{k+1} \leq 1\).
        end if
        for \(\ell=2, \ldots, n^{2}\) do
            Let \((i, j),\left(i^{\prime}, j^{\prime}\right)\) such that \(r_{i j}=\ell, r_{i^{\prime} j^{\prime}}=\ell-1\). Then, compute:
                                    \(l h s:=l h s+\widehat{x}_{i j}^{k+1}-\widehat{x}_{i^{\prime} j^{\prime}}^{k}\).
            if \(l h s>1\) then
                    Add constraint \(\sum_{\hat{\mathrm{i}} \in I} \sum_{\substack{\hat{j} \in I: \ell \\ r_{\hat{\mathrm{j}}} \geq \ell}} x_{\mathrm{ij}}^{k}+\sum_{\hat{\mathrm{i}} \in I} \sum_{\substack{\hat{j} \in I \leq \ell \\ r_{\mathrm{i} j} \leq \ell}} x_{\hat{\mathrm{ij}}}^{k+1} \leq 1\).
            end if
        end for
    end for
Return: All violated cuts / model constraints found from (SOC) family.
```


3.2.1 Bounds in constraint relaxations

In constraint relaxations, any integer solution has to be checked to be valid according to the problem definition. However, there are different alternatives for continuing the branch-and-bound tree exploration when a fractional solution arises. One of them is checking all model constraints to improve the lower bound. Another one is to branch in a particular fractional variable.

One issue to be taken into account is the way in which a subset of (SOC), that a solution does not verify, is selected to be included in the formulation in order
to improve the lower bound without increasing too much the formulation size. To develop this idea, we introduce the following proposition.

Proposition 1 Given an integer solution (\hat{x}, \hat{y}) for $\mathrm{DOMP}_{\text {relax }}$, if \hat{x} verifies that

$$
\begin{equation*}
\sum_{\substack{i^{\prime} \in I \\
\sum_{\begin{subarray}{c}{j^{\prime}} }} \sum_{r_{i \prime^{\prime} i^{\prime}} \leq r_{i j}}}\end{subarray}} x_{i^{\prime} j^{\prime}}^{k}+\sum_{i^{\prime} \in I} \sum_{\substack{j^{\prime} \in I: \\
r_{i i^{\prime} i^{\prime}} \geq r_{i j}}} x_{i^{\prime} j^{\prime}}^{k-1} \leq b, \quad i, j \in I, k \in K, k \neq 1 \tag{7}
\end{equation*}
$$

for $b \in[1,2)$, then \hat{x} satisfies all (SOC).
Proof If $b=1$, then (7) are equal to (SOC). Thus, the result follows trivially. Assume that $b>1$. In this case, since \hat{x} is integer and $b<2$, then the left hand side of (7) must be at most one. Consequently, \hat{x} satisfies (SOC).

As a result of Proposition 1, when an integer solution is obtained in the branch-and-bound tree of $\mathrm{DOMP}_{\text {relax }}$, the lhs described in Algorithm 1 could be compared with $b \in[1,2)$ instead of comparing it with 1 . Therefore, if $l h s>b$ in Algorithm 1, then the corresponding (SOC) are included.

However, varying this b value could affect the number of added cuts when a fractional solution is found and thus, the number of explored nodes in the branch-and bound tree. When b is close to 2 , then the number of identified constraints (7) which are not verified by the solution is smaller and they are the most violated cuts. Consequently, for big values of b, the number of added cuts will be reduced. Nonetheless, since the number of added cuts is smaller, the number of explored nodes in the branch-and-bound is expected to be bigger.

Remark 2 Following Remark 1, we separate fractional solutions only at root node. Hence, for deeper nodes, Algorithm 1 is called only when integer solutions are found obtaining upper bounds. Beyond these concerns, lower and upper bounds get closer within the branch-and-bound tree as usually.

In order to experimentally check how the value of b could impact in times, cuts, and nodes of the row generation proposed in this section, we present Table 1. We show the results for the instances of sizes $n=20,30$, and 40 that will be detailed in Sect. 4. Particularly, in Table 1, first column shows the number of clients; the second column reports the number of open facilities; the third set of columns shows the computing time for each b value; the fourth set of columns represents the number of added cuts in the row generation procedure; and finally, the last group of columns reports the number of explored nodes in the branch-and-bound tree. In all cases, each row reports the average value of ten instances. We have tested the results for $b=1, b=1.1$, and $b=1.3$.

In Table 1, we can observe that $b=1$ reports better results than $b=1.1$ and $b=1.3$ when $n=40$. Note that for the largest instances, although the number of added cuts in the branch-and-bound process is bigger, the number of nodes and the
Table 1 Time, cuts, and nodes for different r. h. s. in the row generation procedure using Algorithm 1 to separate (7)

n	p	Time			Cuts			Nodes		
		$b=1.0$	$b=1.1$	$b=1.3$	$b=1.0$	$b=1.1$	$b=1.3$	$b=1.0$	$b=1.1$	$b=1.3$
20	5	11.64	11.73	9.93	1440	1293	1048	1	1	3
	6	6.47	6.83	6.82	1215	1093	917	1	1	3
	10	1.22	1.09	1.12	554	512	438	1	1	1
30	7	158.08	137.63	506.88	4576	3930	3258	11	16	1133
	10	75.47	69.65	131.64	2714	2412	1992	77	122	645
	15	22.15	21.84	27.70	1429	1302	1129	44	43	170
40	10	576.82	859.65	4338.31	7147	6243	5308	91	421	5517
	13	1367.96	1564.24	4222.45	5374	4918	4064	964	1268	6789
	20	1060.18	1091.21	1860.01	2691	2491	2163	2408	2398	5935
Total Average:		328.00	376.40	1110.52	2714	2419	2032	360	427	2020

The minimum values among the compared options are in bold
computing times are smaller since the gaps at the root node are smaller. Consequently, for the computational results reported in Sect. 4, the choice of $b=1$ is used in the row generation procedure.

4 Computational experiments

This section is devoted to the analysis of the solution methods introduced in this paper. The goals of this computational study are the following: (1) checking the differences among the results of formulations $\mathrm{DOMP}_{\mathrm{SOC}}$ and $\mathrm{DOMP}_{\mathrm{WOC}}$ and determining their limitations; (2) comparing two approaches to implement the branch-andcut and the row generation algorithms for DOMP. The difference between these two approaches relies on the fact that the first one uses a fixed constraint/cut pool handled by the solver and the second one applies the separator described in Algorithm 1 implementing a callback; (3) comparing the different results between the two solution methods defined in Sect. 3.

The instances used in this computational study were introduced for the first time in Deleplanque et al. (2020). These instances were created to test different weighted order vectors λ beyond the classical ones, namely p-median, p-center, k-centrum problems, etc. The weighted vector λ was randomly generated such that $\lambda^{k} \in\left[\frac{n}{4}, n\right]$ for $k \in K$. Furthermore, in that data set, there are small- to large-sized instances to perform an exhaustive computational study. The reader can find the mentioned instances in (Deleplanque et al. 2022).

The models were coded in C and solved with SCIP v.6.0.2 (Achterberg 2009; Gleixner et al. 2018) using as optimization solver CPLEX 20.1.0 on a Mac OS Catalina with a Core Intel Xeon W clocked at 3.2 GHz and 96 GB of RAM memory.

In the computational experience, for all the considered formulations and solutions methods, we have included a preprocessing phase. In this stage, we are able to reduce the number of necessary variables to define the problem in terms of optimality. We refer the reader to Labbé et al. (2017) for more details. Besides, we have given an incumbent solution provided by a GRASP heuristic (Deleplanque et al. 2020). This solution let us provide a good upper bound from the beginning of the corresponding solution method.

Table 2 contains the results within two hours of 90 instances up to 40 clients, namely ten instances of each configuration of n and p for two different formulations: $\mathrm{DOMP}_{\text {WOC }}$ and $\mathrm{DOMP}_{\text {SOC }}$. This table and the following ones show the average results for these ten instances: the average CPU time (Time), the number of instances not solved in the time limit (\#Unsolved), the gap at the root node (GAProot (\%)), the gap at termination (GAP (\%)), the number of variables after preprocessing (Vars), the number of constraints (OrigCons), the number of cuts/ constraints added in the procedure (Cuts), the number of nodes (Nodes), and the required memory (Memory (MB)). Observe that, for instances with $n=30$ and $n=40, \mathrm{DOMP}_{\text {SOC }}$ formulation provides better results than $\mathrm{DOMP}_{\text {WOC }} . \mathrm{DOMP}_{\text {SOC }}$ presents a better linear relaxation value (see gap at the root node), and it needs less nodes at the branch-and-bound tree. Consequently, $\mathrm{DOMP}_{\mathrm{SOC}}$ requires less solution
Table 2 Results of formulations ($\mathrm{DOMP}_{\mathrm{woC}}$) and ($\mathrm{DOMP}_{\mathrm{SOC}}$) for $n \in\{20,30,40\}$

[^1]time. In addition, we can conclude that the large number of constraints implies an increment of memory for $\mathrm{DOMP}_{\text {SOC }}$ which makes this formulation too heavy for sizes of n greater than 40 . Then, together with the fact that $\mathrm{DOMP}_{\text {woc }}$ cannot solve any of the instances for $n=40$, we study other alternatives which add (SOC) iteratively until certifying optimality. Thus, in the following tables, we report the results of the methods proposed in Sect. 3.

Nowadays, commercial solvers include options to code valid inequalities in a branch-and-cut procedure. In this context, these valid inequalites are usually known as user cuts, while in constraint relaxations, these model constraints are known as lazy constraints. The coding of the cuts/constraints can be done just giving them as input of the linear program. These automatic strategies need to encode all the cuts/constraints in advance within a fixed pool, with an ensuing waste of computer memory. Also, the management of these potential cuts/constraints follows a preimplemented strategy without taking advantage of the particularities of the formulation beyond the solver pattern recognition based on developers' experience. On the other hand, the use of an oracle (in our case, Algorithm 1) to add the cuts/constraints on the fly implementing callbacks could save memory on the whole process (see, e.g., Ackooij and de Oliveira 2014; Blado and Toriello 2021; de Oliveira and Sagastizábal 2014; Mazzi et al. 2021; Wolf et al. 2014, and the references therein). Besides, it allows to control when to check and to add those cuts/constraints that is an advantage by itself. For instance, in the row generation solution method, we check model constraints (SOC) at the root node (regardless the solution is fractional or integer) and in any node with integer solution. We refer the reader to (CPLEX 2022; SCIP 2022a, b) for a detailed discussion.

Table 3 presents the results, in two hours of time limit, of the branch-and-cut introduced in Sect. 3.1, i.e., ($\mathrm{DOMP}_{\text {wOc }}$) with (SOC) as valid inequalities. Here, we follow two different strategies: we code (SOC) defining a fixed user cut pool in SCIP and the solver decides when to check and to add them (Pool); or we check the constraints using Algorithm 1 which adds them by an user callback when needed at the root node (Callback). The results exhibit that the method using Algorithm 1 shows better solving times than the automatic approach. Besides, the method using the callback can solve nine more instances than the automatic one. Note that these better results are explained by the efficiency of our separation algorithm. Regarding the required memory, observe that memory used by the automatic method increases quickly with n. Therefore, the application of this method does not seem to be useful for bigger instances since they could not be loaded: it requires around 50 GB of RAM memory already for $n=60$.

Table 4 reports the results, in two hours of computing time, of the row generation method, i.e., $\mathrm{DOMP}_{\text {relax }}$ with (SOC) as model constraints not included from the beginning. Two approaches to carry out the row generation are considered: the automatic use of (SOC) defining a fixed lazy constraint pool (Pool) and the application of Algorithm 1 to add (SOC) when necessary (Callback). In this table, we have included the same columns as in Table 3. Note that the callback approach provides the best computing time results and only 16 instances remain unsolved after the time limit. The automatic method requires less cuts and nodes than Callback. However, the required memory increases faster when using the automatic approach because it
Table 3 B\&C: DOMP $_{\text {WOC }}$ with (SOC) as valid inequalities

n	p	Time (\#Unsolved)				GAProot (\%)		GAP (\%)		OrigCons		Cuts		Nodes		Memory (MB)	
		Pool		Callback		Pool	Callback										
20	5	15.06	(0)	15.78	(0)	0.00	0.33	0.00	0.00	8060	460	544	1471	1	1	348	106
	6	9.68	(0)	9.70	(0)	0.01	0.20	0.00	0.00	8060	460	485	1237	1	1	342	101
	10	3.79	(0)	1.51	(0)	0.00	0.01	0.00	0.00	8060	460	297	607	1	1	263	67
30	7	197.98	(0)	168.44	(0)	1.02	1.08	0.00	0.00	27090	990	1627	4753	8	20	1949	430
	10	103.31	(0)	66.60	(0)	1.06	1.17	0.00	0.00	27090	990	1254	2953	28	41	1697	306
	15	54.09	(0)	34.57	(0)	0.33	0.85	0.00	0.00	27090	990	891	2432	26	67	1324	266
40	10	1279.63	(0)	626.38	(0)	4.73	1.55	0.00	0.00	64120	1720	4300	7899	153	95	7142	1041
	13	2316.83	(1)	1343.62	(0)	5.43	2.22	0.21	0.00	64120	1720	5140	6445	688	890	6410	861
	20	1418.48	(1)	717.14	(0)	3.82	2.78	0.24	0.00	64120	1720	2839	4636	813	1126	4897	641
50	12	3223.91	(0)	1858.95	(0)	2.12	0.89	0.00	0.00	125150	2650	4393	12466	90	150	21412	2228
	16	4057.82	(2)	2364.00	(1)	3.41	1.11	0.17	0.05	125150	2650	4756	10172	341	658	19636	1922
	25	3166.70	(1)	2311.38	(2)	4.01	1.27	0.40	0.35	125150	2650	3273	9787	611	912	14404	1512
60	15	6953.04	(8)	5884.18	(5)	5.64	1.14	3.43	0.71	216180	3780	4239	23249	62	58	51404	5013
	20	6762.80	(7)	5267.87	(6)	5.89	1.06	2.77	0.53	216180	3780	4989	22206	111	144	46079	4528
	30	6950.37	(9)	5749.35	(6)	7.61	1.74	1.88	0.72	216180	3780	5655	15535	261	1169	35170	3011
Total Average:		2434.23	(29)	1761.30	(20)	3.01	1.16	0.61	0.16	88120	1920	2979	8390	213	356	14165	1469

[^2]Table 4 Row generation, i.e, SOC (model constraints) added iteratively

n	p	Time (\#Unsolved)				GAProot (\%)		GAP (\%)		OrigCons		Cuts		Nodes		Memory (MB)	
		Pool		Callback		Pool	Callback										
20	5	15.63	(0)	11.64	(0)	0.19	0.29	0.00	0.00	8041	441	514	1440	1	1	346	129
	6	10.28	(0)	6.47	(0)	0.03	0.00	0.00	0.00	8041	441	483	1215	1	1	340	124
	10	3.80	(0)	1.22	(0)	0.00	0.01	0.00	0.00	8041	441	309	554	1	1	260	91
30	7	150.01	(0)	158.08	(0)	0.69	1.11	0.00	0.00	27061	961	1422	4576	4	11	1928	497
	10	88.03	(0)	75.47	(0)	0.96	1.15	0.00	0.00	27061	961	1082	2714	15	77	1668	395
	15	49.04	(0)	22.15	(0)	0.42	0.85	0.00	0.00	27061	961	783	1429	12	44	1321	367
40	10	837.75	(0)	576.82	(0)	1.51	1.57	0.00	0.00	64081	1681	2907	7147	44	91	7059	1256
	13	1061.32	(0)	1367.96	(1)	2.04	2.23	0.00	0.07	64081	1681	3212	5374	207	964	6331	1099
	20	1093.46	(0)	1060.18	(1)	2.55	2.81	0.00	0.13	64081	1681	2404	2691	680	2408	4839	877
50	12	3061.61	(1)	1648.54	(0)	2.08	0.88	0.12	0.00	125101	2601	3858	10720.2	91.7	116	21271	2609
	16	3104.23	(0)	1691.65	(0)	1.09	1.11	0.00	0.00	125101	2601	3429	7236.6	219.9	662	19496	2248
	25	2958.29	(2)	1838.77	(1)	1.23	1.26	0.34	0.28	125101	2601	2993	3919.9	526	2217	14316	1752
60	15	7313.70	(9)	5357.93	(5)	4.45	1.15	3.19	0.67	216121	3721	4515	17078	9.2	63	51469	5346
	20	6439.44	(6)	4529.22	(4)	1.45	1.05	0.94	0.36	216121	3721	4605	11582	33.6	444	46014	4530
	30	6733.81	(8)	5093.43	(4)	2.42	1.74	1.02	0.46	216121	3721	4402	6169.1	256.6	2127	34981	3463
Total Average:		2194.69	(26)	1562.64	(16)	1.41	1.15	0.37	0.13	88081	1881	2461	5590	140	615	14109	1652

[^3]needs to encode all the original (SOC) constraints which are $\mathcal{O}\left(n^{3}\right)$. Consequently, the performance of the row generation following the automatic separation shows, in general, worse results than using Algorithm 1.

From Tables 3 and 4, we can conclude that the performance of the automatic branch-and-cut and the automatic row generation are quite limited in comparison with the use of the separation presented in Algorithm 1. The reason of the better performance of the callback approach is that Algorithm 1 exploits the knowledge of the problem. Therefore, for the study of larger instances, we focus on the branch-and-cut and row generation approaches using Algorithm 1.

Table 5 shows a comparison between the results provided by the callback versions of the branch-and-cut method (B\&C) and the row generation technique (RowGen). For these experiments, we establish a time limit of five hours. Overall, the row generation technique outperforms the branch-and-cut in terms of computational times. Moreover, the row generation is able to solve more instances than the branch-and-cut in five hours.

Note that, for some huge instances, the problem does not get even the root node bounds. For those instances, GAProot(\%) and GAP(\%) report the same value and thus, GAProot(\%) cannot be analyzed as the gap at the root node, but as the gap at the root node at the time limit.

Regarding $n=60$ instances, the branch-and-cut is able to solve 20 out of 30 instances in five hours, whereas this solution method certifies optimality for only 13 instances in two hours (see Table 3). These three extra hours also let the row generation algorithm to solve 24 instances, seven more than the same algorithm in two hours (see Table 4).

For most of the instances, the integrality gap at termination provided by the row generation procedure is smaller than the one obtained by the branch-and-cut, even with less cuts added. This gives us the idea that the added cuts are more accurate when (WOC) family is not included in the formulation. However, for $n=100$, the gap at termination is smaller for the branch-and-cut procedure since the added cuts cannot improve the lower bound given by the linear relaxation of the program in both solution methods within the time limit.

To analyze the differences between the branch-and-cut and the row generation, starting from $\mathrm{DOMP}_{\text {woc }}$ and $\mathrm{DOMP}_{\text {relax }}$, respectively, we give the solver up to 24 hours of time limit. Thereby, the influence of the linear relaxation bound is not so decisive. Furthermore, the branch-and-price-and-cut (B\&P \&) described in Deleplanque et al. (2020) has been tested for those instances in the same computer and with the same time limit. The reader could see, in Table 6, how the gaps at termination are smaller on average for the row generation procedure. In fact, they are reduced by half and for the row generation are less than 2%. This approach needs less cuts to have a reasonable bound at the root node what let it branch faster to generate more nodes and improve the bounds. Thus, whereas the solution method detailed in Sect. 3.1 solves four instances out of 60 for these large-sized instances, the solution method proposed in Sect. 3.2 is able to solve eight instances to optimality and on top of that, the row generation procedure also reduces the gap at termination for those instances which are not solved. The $\mathrm{B} \& \mathrm{P} \& \mathrm{C}$ procedure uses less
Table 5 B\&C vs row generation in 5 hours of time limit

		Time (\#Unsolved)				GAProot (\%)		GAP (\%)		vars	Origcons		Cuts		Nodes		Memory (MB)	
	p	B\&C		RowGen		B\&C	$\underset{\text { Row- }}{\text { Gen }}$	B\&C	$\begin{aligned} & \text { Row- } \\ & \text { Gen } \end{aligned}$		B\&C	$\begin{aligned} & \text { Row- } \\ & \text { Gen } \end{aligned}$	B\&C	$\begin{aligned} & \text { Row- } \\ & \text { Ge } \end{aligned}$	B\&C	$\begin{aligned} & \text { Row- } \\ & \text { Gen } \end{aligned}$	B\&C	RowGen
20	5	15.78	(0)	. 64	(0)	0.33	0.29	0.00	0.00	605	460	441	147	1440	1	1	106	129
	6	9.70	(0)	6.47	(0)	0.20	0.00	0.00	0.00	5706	460	441	1237	121	1	1	101	124
	10	1.51	0)	1.22	(0)	0.01	0.01	0.00	0.00	4211	460	441	607	554	1	1	67	91
30	7	168.44	(0)	158.08	(0)	1.08	1.11	0.00	0.00	0643	990	961	453	4576	20	11	430	497
	10	66.60	(0)	75.47	(0)	1.17	1.15	. 00	0.00	18245	990	961	2953	2714	41	77	306	395
	15	34.57	(0)	22.15	(0)	85	0.85	. 00	0.00	3952	990	961	2432	1429	67	44	266	367
40	10	626.38	(0)	. 82	(0)	1.55	1.57	00	00	065	1720	168	7899	714	95	91	1041	1256
	13	1343.62	(0)	1390.00	(0)	2.22	2.23	0.00	0.00	43664	1720	16	6445	5374	890	981	861	1099
	20	717.14	(0)	1082.8	(0)	2.78	2.81	0.00	0.00	32820	172	16	4636	2691	1126	2546	641	87
50	12	1858.95	(0)	1648.54	(0)	0.89	0.88	0.00	0.00	94784	2650	2601	12466	10720	150	116	2228	2609
	16	2497.71	(0)	1691.6	(0)	1.11	1.11	. 00	0.00	8563	2650	2601	10172	7237	687	662	1923	2248
	25	3425.89	(1)	2918.77	(1)	1.27	1.26	0.29	0.23	63776	2650	2601	9787	3920	1103	3277	1516	1777
60	15	100	(4)	9004	(2)	1.13	1.14	0.33	0.30	161807	3780	3721	23249	17095	291	268	504	5438
	20	9238.02	(3)	6695.45	(1)	1.06	1.05	28	0.17	4983	378	3721	22206	11582	353	599	4542	40
	30	10103.21	(3)	8524.74	(3)	1.74	1.74	0.39	0.24	109804	3780	3721	15535	6169	2071	3381	30	3493
70	17	16541.03	(8)	15920.52	(8)	1.01	0.95	0.67	0.56	259406	5110	5041	31406	23228	95	161	9281	9666
	23	16506.34	(8)	15748.1	(8)	10	1.10	0.68	0.54	231680	51	5041	33833	16004	215	654	8792	7851
	35	18011.10	(10)	17281.08	(8)	2.05	2.04	1.34	13	355	5110	5041	22814	8648	721	1924	5686	6259
80	20	18041.98	(10)	18001.87	(10)	4.22	1.47	4.22	1.37	383199	6640	6561	42109	30421	1	11	14227	13641
	26	18030.43	(10)	17433.69	(9)	1.39	0.78	1.32	0.57	346926	6640	6561	38792	20784	100	325	13194	11930
	40	16047.37	(7)	14613.12	(6)	0.57	0.57	0.32	0.29	259186	6640	6561	17419	10420	794	1273	6530	8940

Table 5 (continued)

	Time (\#Unsolved)				GAProot (\%)		GAP (\%)		Vars	OrigCons		Cuts		Nodes		Memory (MB)	
p	B\&C		RowGen		B\&C	Row- Gen	B\&C	Row- Gen		B\&C	RowGen	B\&C	Row- Gen	B\&C	RowGen	B\&C	RowGen
$90 \quad 22$	18103.76	(10)	18002.56	(10)	8.21	7.34	8.21	7.34	549561	8370	8281	28820	28267	1	1	14849	13946
30	18078.18	(10)	17886.15	(9)	4.35	0.56	4.34	0.46	488316	8370	8281	35203	23544	3	37	15053	16879
45	14629.97	(7)	14340.26	(6)	0.56	0.56	0.36	0.31	368560	8370	8281	18634	13363	410	700	8715	13660
100	18150.10	(10)	18006.01	(10)	8.01	11.71	8.01	11.71	749074	10300	10201	19420	21398	1	1	14407	13231
	18138.18	(10)	18004.78	(10)	7.05	3.88	7.05	3.88	672511	10300	10201	24045	23931	1	1	14681	16009
	18065.05	(10)	17980.43	(9)	0.58	0.58	0.53	0.44	504981	10300	10201	25922	16253	66	351	13819	18941
Total Average:	9239.22	(121)	8778.77	(110)	2.09	1.80	1.42	1.09	216352	4447	4388	17195	11856	345	648	5975	6515

The minimum values among the compared options are in bold
Table 6 B\&P \&C, B \&C, and row generation in 24 hours of time limit

n		100						120							
p		25		33		50		30		40		60		Total Aver	
Time (\#Unsolved)	B\&P \& C	86400.19	(10)	86400.29	(10)	86400.08	(10)	86400.18	(10)	86400.27	(10)	86400.12	(10)	86400.19	(60)
	B\&C	86557.06	(10)	85594.56	(9)	78019.88	(8)	86841.70	(10)	86833.42	(10)	81439.12	(9)	84214.29	(56)
	RowGen	74555.59	(7)	76691.23	(8)	79403.08	(8)	86403.24	(10)	86402.13	(10)	79855.20	(9)	80551.74	(52)
GAProot (\%)	B\&P \& C	4.50		3.65		2.32		5.86		4.59		2.50		3.90	
	B\&C	4.84		1.08		0.58		8.74		7.51		0.49		3.87	
	RowGen	0.57		0.66		0.50		7.60		2.06		0.49		1.98	
GAP (\%)	B\&P \& C	4.50		3.65		2.32		5.86		4.59		2.50		3.90	
	B\&C	4.83		1.01		0.40		8.74		7.51		0.40		3.81	
	RowGen	0.36		0.52		0.28		7.60		2.04		0.37		1.86	
Vars	B\&P \& C	47921		45038		40436		52678		49576		41743		46232	
	B\&C	595107		725934		605525		1293335		1155202		871156		874377	
	RowGen	595107		725934		605525		1293335		1155202		871156		874377	
OrigCons	B\&P \& C	301		301		301		361		361		361		331	
	B\&C	10300		10300		10300		14760		14760		14760		12530	
	RowGen	10201		10201		10201		14641		14641		14641		12421	
Cuts	B\&P \& C	10573		9214		5760		13717		12259		7611		9856	
	B\&C	89913		77195		25922		44518		55814		34981		54724	
	RowGen	25990		49665		26137		44244		42998		24038		35512	
Nodes	B\&P \& C	1		1		1		1		1		1		1	
	B\&C	2		58		1205		1		1		140		235	
	RowGen	1198		88		1245		1		26		324		480	
Memory (MB)	B \& P \& C	1739		1215		663		2105		1413		697		1305	
	B\&C	46512		37105		13992		39891		40861		25062		33904	
	RowGen	23225		32057		23869		35066		40005		35755		31663	

The minimum values among the compared options are in bold
variables but the gap at termination is worse because it is not able to solve even the root node. However, this approach would still be useful for bigger instances since it requires much less memory.

5 Conclusions

In this work, we have introduced a row generation solution method which has improved the best known performances for DOMP regarding the medium-sized instances of the data set described in Deleplanque et al. (2020). In adittion, we have improved the best known solution for an instance with $n=90$ and $p=45$ (domp $90 \mathrm{p} 45 \mathrm{v} 5 . \mathrm{domp}$) that can be found in the mentioned dataset.

For large-sized instances, the lower bound provided by formulations which include (WOC) makes them also a good alternative. For these instances, the lower bound given by the linear relaxation can be barely improved within the time limit. Moreover, comparing with the integrality gap given by the branch-and-price algorithm (Deleplanque et al. 2020), one should note that the column generation of its master problem gives theoretically better lower bounds.

Taking into account that the limits of our row generation algorithm come from the huge number of variables, a combination of row and column generation seems to be a promising approach to be considered as future research line.

Acknowledgements The authors of this research acknowledge financial support by the Spanish Ministerio de Ciencia y Tecnología, Agencia Estatal de Investigación and Fondos Europeos de Desarrollo Regional (FEDER) via projects PID2020-114594GB-C21/C22. The authors also acknowledge partial support from NetmeetData: Ayudas Fundación BBVA a equipos de investigación científica 2019, Junta de Andalucía P18-FR-1422, and project CIGE/2021/161 from Generalitat Valenciana. The first author thanks partial support from project FEDER-UCA18-106895. The second and third authors also acknowledge partial support from projects PID2020-114594GB-C21, B-FQM-322-UGR20, FEDER-US-1256951, and FQM-331. The first author has been supported by Subprograma Juan de la Cierva Formación 2019 (FJC2019- 039023-I) and PAIDI 2020, postdoctoral fellowship financed by European Social Fund and Junta de Andalucía. The second author also acknowledges PAIDI 2020, postdoctoral fellowship financed by European Social Fund and Junta de Andalucía. We would like to thank Reviewers for taking the necessary time and effort to make constructive suggestions that help to improve the quality of the manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Declarations

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licen ses/by/4.0/.

References

Achterberg T (2009) SCIP: Solving constraint integer programs. Math Progr Comput 1(1):1-41. https:// doi.org/10.1007/s12532-008-0001-1
Ackooij W, de Oliveira W (2014) Level bundle methods for constrained convex optimization with various oracles. Comput Opt Appl 57(3):555-597. https://doi.org/10.1007/s10589-013-9610-3
Aouad A, Segev D (2019) The ordered k-median problem: surrogate models and approximation algorithms. Math Progr 177:55-83. https://doi.org/10.1007/s10107-018-1259-3
Archetti C, Corberán A, Plana I, Sanchis JM, Speranza MG (2016) A branch-and-cut algorithm for the orienteering arc routing problem. Comput Oper Res 66:95-104. https://doi.org/10.1016/j.cor. 2015. 08.003

Benati S, Puerto J, Rodríguez-Chía AM (2017) Clustering data that are graph connected. Eur J Oper Res 261:43-53. https://doi.org/10.1016/j.ejor.2017.02.009
Blado D, Toriello A (2021) A column and constraint generation algorithm for the dynamic knapsack problem with stochastic item sizes. Math Progr Comput 13:85-223. https://doi.org/10.1007/ s12532-020-00189-0
Boland N, Domínguez-Marín P, Nickel S, Puerto J (2006) Exact procedures for solving the discrete ordered median problem. Comput Oper Res 33(11):3270-3300. https://doi.org/10.1016/j.cor.2005. 03.025

Calvino JJ, López-Haro M, Muñoz-Ocaña JM, Puerto J, Rodríguez-Chía AM (2022) Segmentation of scanning-transmission electron microscopy images using the ordered median problem. Eur J Oper Res 302(2):671-687. https://doi.org/10.1016/j.ejor.2022.01.022
CPLEX (last accessed November 13, 2022) Differences between user cuts and lazy constraints. https:// www.ibm.com/docs/en/icos/20.1.0?topic=pools-differences-between-user-cuts-lazy-constraints
De Oliveira W, Sagastizábal C (2014) Level bundle methods for oracles with on-demand accuracy. Opt Methods Software 29(6):1180-1209. https://doi.org/10.1080/10556788.2013.871282
Deleplanque S, LabbéM Ponce D, Puerto J (2020) A branch-price-and-cut procedure for the discrete ordered median problem. Informs J Comput 32:582-599. https://doi.org/10.1287/ijoc.2019.0915
Deleplanque S, LabbéM, Ponce D, Puerto J (last accessed November 13, 2022) DOMP repository. https:// gom.ulb.ac.be/gom/wp-content/uploads/2018/12/DOMP_Repository.zip
Domínguez E, Marín A (2020) Discrete ordered median problem with induced order. TOP 28:793-813. https://doi.org/10.1007/s11750-020-00570-1
Edmonds J, Johnson EL (1973) Matching, Euler tours and the Chinese postman. Math Progr 5(1):88124. https://doi.org/10.1007/BF01580113

Espejo I, Marín A, Puerto J, Rodríguez-Chía AM (2009) A comparison of formulations and solution methods for the minimum-envy location problem. Comput Oper Res 36(6):1966-1981. https://doi. org/10.1016/j.cor.2008.06.013
Fernández E, Pozo MA, Puerto J, Scozzari A (2017) Ordered weighted average optimization in multiobjective spanning tree problem. Eur J Oper Res 260(3):886-903. https://doi.org/10.1016/j.ejor.2016. 10.016

Focacci F, Lodi A, Milano M (2002) Embedding relaxations in global constraints for solving TSP and TSPTW. Ann Math Artif Intell 34:291-311. https://doi.org/10.1023/A:1014492408220
Focacci F, Lodi A, Milano M (2002) Optimization-oriented global constraints. Constraints 7:351-365. https://doi.org/10.1023/A:1020589922418
Focacci F, Lodi A, Milano M, Vigo D (1999) Solving TSP through the integration of OR and CP techniques. Electron Notes Discrete Math 1:3-25. https://doi.org/10.1016/S1571-0653(04)00002-2
Fourour S, Lebbah Y (2020) Equitable optimization for multicast communication. Int J Decis Support Syst Technol 12(3):1-25. https://doi.org/10.4018/IJDSST. 2020070101
Gleixner A, Bastubbe M, Eifler L, Gally T, Gamrath G, Gottwald RL, Hendel G, Hojny C, Koch T, Lübbecke ME, Maher SJ, Miltenberger M, Müller B, Pfetsch ME, Puchert C, Rehfeldt D, Schlösser F, Schubert C, Serrano F, Shinano Y, Viernickel JM, Walter M, Wegscheider F, Witt JT, Witzig J (2018) The SCIP Optimization Suite 6.0. ZIB-Report 18-26, Zuse Institute Berlin

Grötschel M, Holland O (1985) Solving matching problems with linear programming. Math Progr 33:243-259. https://doi.org/10.1007/BF01584376
Hakimi SL (1964) Optimum location of switching centers and the absolute centers and medians of a graph. Oper Res 12:450-459. https://doi.org/10.1287/opre.12.3.450

Kalcsics J, Nickel S, Puerto J, Rodríguez-Chía AM (2010) The ordered capacitated facility location problem. TOP 18:203-222. https://doi.org/10.1007/s11750-009-0089-0
Labbé M, Ponce D, Puerto J (2017) A comparative study of formulations and solution methods for the discrete ordered p-median problem. Comput Oper Res 78:230-242. https://doi.org/10.1016/j.cor. 2016.06.004

Letchford AN, Reinelt G, Theis DO (2004) A faster exact separation algorithm for blossom inequalities. In: Bienstock D, Nemhauser G (eds) Integer Programming and Combinatorial Optimization. Springer, Berlin Heidelberg, pp 196-205
Magnanti TL, Wolsey LA (1995) Chapter 9 optimal trees. In: Ball MO, Magnanti TL, Monma CL, Nemhauser GL (eds) Network Models, volume 7 of Handbooks in Operations Research and Management Science. Elsevier, pp 503-615
Marín A, Martínez-Merino LI, Puerto J, Rodríguez-Chía AM (2022) The soft-margin support vector machine with ordered weighted average. Knowl Based Syst 237:107705. https://doi.org/10.1016/j. knosys.2021.107705
Marín A, Nickel S, Puerto J, Velten S (2009) A flexible model and efficient solution strategies for discrete location problems. Discrete Appl Math 157(5):1128-1145. https://doi.org/10.1016/j.dam.2008.03. 013
Marín A, Nickel S, Velten S (2010) An extended covering model for flexible discrete and equity location problems. Math Methods Oper Res 71(1):125-163. https://doi.org/10.1007/s00186-009-0288-3
Marín A, Pelegrín M (2019) p-Median Problems In: Laporte, G., Nickel, S., Saldanha da Gama, F. (eds) Location Science. Springer, Cham, pp 25-50 https://doi.org/10.1007/978-3-030-32177-2_2
Martínez-Merino LI, Albareda-Sambola M, Rodríguez-Chía AM (2017) The probabilistic p-center problem: Planning service for potential customers. Eur J Oper Res 262(2):509-520. https://doi.org/10. 1016/j.ejor.2017.03.043
Mazzi N, Grothey A, McKinnon K, Sugishita N (2021) Benders decomposition with adaptive oracles for large scale optimization. Math Progr Comput 13:683-703. https://doi.org/10.1007/ s12532-020-00197-0
Nickel S (2001) Discrete ordered Weber problems. In: Fleischmann B, Lasch R, Derigs U, Domschke W, Rieder U (eds) Operations Research Proceedings. Springer, Berlin Heidelberg, pp 71-76
Nickel S, Puerto J (2005) Location Theory: a unified approach. Springer-Verlag, Berlin Heidelberg
Ogryczak W, Perny P, Weng P (2011) On minimizing ordered weighted regrets in multiobjective Markov decision processes, volume 6992 LNAI of Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Ponce D, Puerto J, Ricca F, Scozzari A (2018) Mathematical programming formulations for the efficient solution of the k-sum approval voting problem. Comput Oper Res 98:127-136. https://doi.org/10. 1016/j.cor.2018.05.014
Puerto J, Ramos AB, Rodríguez-Chía AM (2013) A specialized branch \& bound \& cut for single-allocation ordered median hub location problems. Discrete Appl Math 16:2624-2646. https://doi.org/10. 1016/j.dam.2013.05.035
ReVelle CS, Swain R (1970) Central facilities location. Geograph Anal 2:30-42. https://doi.org/10. 1111/j.1538-4632.1970.tb00142.x
SCIP (last accessed November 13, 2022a) When should I implement a constraint handler, when should I implement a separator? https://www.scipopt.org/doc/html/FAQ.php\#conshdlrvsseparator
SCIP (last accessed November 13, 2022b) SCIPcreateCons(). https://www.scipopt.org/doc/html/group_ PublicConstraintMethods.php\#ga8d771b778ea2599827e84d01c0aceaf2
Tamir A (2001) The k-centrum multi-facility location problem. Discrete Appl Math 109(3):93-307. https://doi.org/10.1016/S0166-218X(00)00253-5
Wolf C, Fábián CI, Koberstein A, Suhl L (2014) Applying oracles of on-demand accuracy in two-stage stochastic programming-A computational study. Eur J Oper Res 239(2):437-448. https://doi.org/10. 1016/j.ejor.2014.05.010

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Luisa I. Martínez-Merino ${ }^{1,2} \cdot$ Diego Ponce ${ }^{2,3}$ (D) Justo Puerto ${ }^{2,3}$
Luisa I. Martínez-Merino
luisa.martinez@uca.es
Justo Puerto puerto@us.es
1 Departamento de Estadística e Investigación Operativa, Universidad de Cádiz, Cádiz, Spain
2 Instituto de Matemáticas de la Universidad de Sevilla (IMUS), Sevilla, Spain
3 Departamento de Estadstica e Investigación Operativa, Universidad de Sevilla, Sevilla, Spain

[^0]: Luisa I. Martínez-Merino, Diego Ponce, and Justo Puerto contributed equally to this work.

 Diego Ponce
 dponce@us.es
 Extended author information available on the last page of the article

[^1]: The minimum values among the compared options are in bold

[^2]: The minimum values among the compared options are in bold

[^3]: The minimum values among the compared options are in bold

