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Abstract: We propose two classes of symplecticity-preserving symmetric splitting methods for
semi-classical Hamiltonian dynamics of charge transfer by intrinsic localized modes in nonlinear
crystal lattice models. We consider, without loss of generality, one-dimensional crystal lattice models
described by classical Hamiltonian dynamics, whereas the charge (electron or hole) is modeled
as a quantum particle within the tight-binding approximation. Canonical Hamiltonian equations
for coupled lattice-charge dynamics are derived, and a linear analysis of linearized equations with
the derivation of the dispersion relations is performed. Structure-preserving splitting methods are
constructed by splitting the total Hamiltonian into the sum of Hamiltonians, for which the individual
dynamics can be solved exactly. Symmetric methods are obtained with the Strang splitting of exact,
symplectic flow maps leading to explicit second-order numerical integrators. Splitting methods that
are symplectic and conserve exactly the charge probability are also proposed. Conveniently, they
require only one solution of a linear system of equations per time step. The developed methods
are computationally efficient and preserve the structure; therefore, they provide new means for
qualitative numerical analysis and long-time simulations for charge transfer by nonlinear lattice
excitations. The properties of the developed methods are explored and demonstrated numerically
considering charge transport by mobile discrete breathers in an example model previously proposed
for a layered crystal.

Keywords: semi-classical Hamiltonian dynamics; splitting methods; symplectic integrators; lattice
models; charge transfer; intrinsic localized modes; discrete breathers

MSC: 65P10; 37M05

1. Introduction

In this introduction, we briefly recall the phenomenon of the coupling of electric charge
and lattice vibrations, the concept of intrinsic localized modes in nonlinear lattices, first
without charge and then with it. Then, we describe the numerical challenges and introduce
the methods this paper proposes to overcome them. The introduction finishes with the
outline of the paper.

1.1. Coupling of Electric Charge and Lattice Vibrations

The coupling of electric charge with lattice vibrations has been of interest since long
ago, perhaps starting with the pioneering work by Landau, where the self-trapping of an
electron in a crystal due to the lattice deformation by the electron was described [1]. It was
followed by Pekar, who proposed the term polaron [2], and subsequently in [3]. These works
describe a localized deformation coupled to a localized charge and apply, for example, to
ionic crystals, polar semiconductors, molecular crystals, and polymers. The development
of the subject can be read in the review book by Alexandrov [4]. The concept of a polaron
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can be extended to other lattice systems in which an electron or hole can be described by an
atomic wave function and therefore bound to a specific particle, which can be an atom, ion,
or molecule. This approach is named the tight-binding approximation (TBA) [5]. Often, the
electron or hole is described by quantum mechanics, but the particle is treated classically,
and these models are therefore called semi-classical models. The resulting Hamiltonian
usually has three components, a quantum or electronic Hamiltonian, a classical or lattice
Hamiltonian, and an interaction term. A well-known model was proposed by Holstein [6,7].
In these systems, localized solutions of the electron or hole probability appear.

1.2. Intrinsic Localized Modes without Charge

Localized excitations without charge have also been studied in discrete nonlinear lat-
tices. Important steps were the Frenkel–Kontorova model in the 1930s [8,9] and Davidov’s
solitons in the 1970s [10]. If these excitations have a topological charge, they are called
kinks and antikinks. In a lattice, they correspond to moving vacancies and interstitials,
respectively, the latter also named crowdions. If they do not have a topological charge,
they do not transport mass and are called solitons. If they also have a vibration, they are
called breathers or intrinsic localized modes (ILMs) [11]. However, the term ILM, being
unspecific, is also used as a synonym for nonlinear localized excitation. Kinks and breathers
are sometimes associated with a finite amplitude extended wave, a wing, and are called
pterokinks or nanopterons and pterobreathers, respectively [12,13].

1.3. Nonlinear Lattice Excitations Transporting Charge

In a tight-binding, semi-classical model in a nonlinear lattice, nonlinear lattice excita-
tions can bind to the wave function and in this way transport charge, bringing about objects
that have received different names from different authors, such as polarobreathers [14–17],
electron-vibron breather [17], and solectrons or soliton-elecrons [18–22]. For example, in
Figure 1, we illustrate the evolution of charge probability carried by a mobile discrete
breather in the model example of Section 2.7, where we plot the amplified lattice particle
displacements together with the charge probability indicated by the color plot. Note that a
kink or crowdion in an ionic crystal transports charge by itself but could also be bound to
an additional one [23,24].

Figure 1. Charge transfer by a mobile discrete breather in the model example of Section 2.7. Solid
lines indicate the lattice particle displacements amplified by the factor 1.5, while the color plot
illustrates the probability of finding the charge at a lattice site at a given time. Numerical results are
obtained with the explicit, symplecticity-preserving, symmetric numerical method PQDABADQP,
see Section 4.3. See also Section 5 for additional numerical results of charge transfer by discrete
breathers.
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Recently, charge transport in absence of an electric field was observed experimentally
in layered silicates, a phenomenon called hyperconductivity [25–28]. This is a characteristic
of moving localized excitations coupled to a charge, called quodons by the authors. The
energy is given to the lattice by incident alpha particles, and quodons propagate long
distances within the lattice without a potential bias. Semi-classical tight-binding models
can, in principle, model this behavior as well.

1.4. Existing and Proposed Numerical Methods

ILMs have been extensively studied from analytic and numerical points of view in
crystal lattice models [12,21,29–35], to mention but a few references. Traditionally, such
lattice models at constant energy are described by classical Hamiltonian dynamics with
empirical particle interaction potentials and by thermostated Hamiltonian dynamics at
a given temperature [36]. There exist very successful numerical methods, such as, for
example, the Verlet method, that preserve the underlying structure of the Hamiltonian
equations [36,37].

The transport of charge (electrons or holes) by ILMs poses new numerical simulation
challenges due to the different oscillation time scales of the charge and the lattice dynamics
because an electron mass is '104 times smaller than most lattice atoms or ions and the
small value of the Planck constant. In addition, the dynamics is conservative. Thus, we may
be required to use very small time steps to resolve high-frequency oscillations in charge and
limit the amount of dissipation in (standard) explicit numerical integration. This motivates
the consideration of structure-preserving splitting and composition methods [38] for the
numerical integration of coupled lattice-charge differential equations. We demonstrate
that lattice-charge dynamics can be stated into classical canonical Hamiltonian form, and
while the total Hamiltonian is not separable in all variables, it is possible to construct
explicit numerical methods that are symplectic, preserve the time-reversibility, and have
good approximate energy conservation in long-time numerical simulations. This property
can be attributed to the existence of the modified Hamiltonian of a symplectic method
applied to a Hamiltonian system [37]. We show that different splitting strategies allow
computations with larger time steps, e.g., compared to the standard fourth-order Runge-
Kutta method. Computational analysis is performed in linear and nonlinear regimes,
where, in the latter case, we consider charge transfer by mobile discrete breathers. The
performed analysis demonstrates that explicit splitting methods not only approximately
conserve the Hamiltonian up to the second order but also the total charge probability in
long-time numerical simulations.

Apart from computationally efficient explicit methods, we also develop semi-implicit
splitting methods that are symplectic and conserve the charge probability exactly. Moreover,
they require only one solution of a linear system per time step. They provide charge
probability amplitude solutions that are unconditionally stable. In addition, semi-implicit
methods exactly preserve the rotational invariance of the charge amplitude variables, which
is not exactly preserved by the explicit symplectic splitting methods. We demonstrate that
semi-implicit splitting methods have Hamiltonian conservation errors that are smaller or
on par with the errors of the explicit methods.

Such a splitting method approach will further allow the development of multiple time-
stepping schemes, such as the impulse method [36,37], to further improve numerical inte-
gration of the multiscale dynamics and construct higher-order composition methods [39,40]
(see also [36–38]) to improve the numerical accuracy of charge transfer simulations. Im-
portantly, the proposed methods can be easily incorporated into splitting methods for the
thermostated dynamics to achieve efficient and accurate sampling [36], i.e., to study charge
transport in thermalized crystal lattice models at different temperatures.

1.5. Outline

The paper is organized in the following way. In Section 2 we derive the general
model of lattice-charge dynamics described in canonical Hamiltonian form. At the end
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of Section 2, we present an example model for numerical simulations in Section 5. Linear
analysis of the linearized Hamiltonian system of equations is demonstrated in Section 3
with the derived lattice and charge dispersion relations. Two classes of splitting methods
are proposed in Section 4, i.e., explicit and semi-implicit, both preserving symplecticity and
time-reversibility. All methods in explicit representation forms are listed in Appendix A. In
Section 5, we demonstrate numerical results and perform a detailed numerical study of the
proposed splitting methods. Discussion and conclusions are provided in Sections 6 and 7,
respectively.

2. Semi-Classical Hamiltonian Dynamics

In this section, we describe the classical Hamiltonian dynamics of a crystal lattice cou-
pled with a quantum Hamiltonian to model a charge (electron or hole) transfer by nonlinear
lattice excitations. After variable and parameter rescaling, we obtain the dimensionless
total semi-classical Hamiltonian for which we derive canonical Hamiltonian equations.
In addition, we present a model example for the numerical analysis and simulations of
Sections 4 and 5.

2.1. The Lattice Hamiltonian

Classical one-dimensional nonlinear lattice dynamics of N particles are modeled by
the lattice Hamiltonian in the following form [12,31,33]:

Hlat = KE + UE + VE =
N

∑
n=1

(
1

2Mn
p2

n + U(qn) +
1
2

N

∑
n′=1
n′ 6=n

V(|qn − qn′ |)
)

, (1)

where KE is the kinetic energy, UE is the on-site potential energy, and VE is the radial
interparticle potential energy. In our considerations, the crystal lattice model (1) is a one-
dimensional model of a three-dimensional layered crystal, where the on-site potential
UE models the periodic energy of the particles in a close-packed line due to the rest of
the crystal. The interparticle potential VE models the interaction between the particles
in the close-packed line. This interaction is generically repulsive at short distances and
attractive at larger ones. qn ∈ Ω ⊂ R is the nth particle’s position, where Ω is a bounded
computational domain (segment) containing the crystal lattice imposed by the periodic
boundary conditions on qn. Alternatively, some form of confining potentials of q1 and
qN could be added to (1) to impose boundary conditions [36]. pn ∈ R and Mn > 0 are
the nth particle’s momentum and mass, respectively. From (1), we derive the system of
Hamiltonian equations:

q̇n =
1

Mn
pn, (2)

ṗn = −U′(qn)−
N

∑
n′=1
n′ 6=n

∂qn V(|qn − qn′ |), (3)

for all n = 1, . . . , N, subject to initial conditions at time t = 0, where the dot indicates time
derivative with respect to t ≥ 0, i.e., qn and pn are functions of time variable t.

A special case of (1) includes the so-called fixed close neighbor interaction model with
the Hamiltonian:

H f ixed
lat =

N

∑
n=1

(
1

2Mn
p2

n + U(qn) +
1
2 ∑

n′∈Nn

V(|qn − qn′ |)
)

, (4)

where Nn is a set of n′ indices specifying a particle’s qn fixed neighbors, i.e., if n′ ∈
Nn, then n ∈ Nn′ . Commonly, in one-dimensional models Nn = {n − 1, n + 1}. Such
model (4) provides a computationally efficient approximation of (1) when only close-range
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interaction potentials V are considered. Alternatively, a smooth cut-off of the potentials V
can be considered, with Nn being adjusted in time along the solution of the Hamiltonian
dynamics (2) and (3). Note that for generality in the formulation (1), we have included
both types of empirical potentials, but their actual use and form will highly depend on
the problem in question. Below, we list the most general properties of the on-site and
interaction potentials commonly used in practice.

We assume that U and V are smooth functions of qn and satisfy the conditions for any
n that we present below.

2.1.1. The On-Site Potential

Conditions on U are:

U(q0
n) = 0, U′(q0

n) = 0, U′′(q0
n) > 0, (5)

where q0
n = σ(n− 1) are the lattice equilibrium particle positions at which all forces add to

zero, i.e., for all n there is an index pair (n′, n′′), n′ 6= n′′ 6= n, where also n′, n′′ ∈ Nn in (4),
such that

∂qn V(|q0
n − q0

n′ |) = −∂qn V(|q0
n − q0

n′′ |), (6)

where σ > 0 is the lattice constant and defines the length scale of the lattice particle
interaction. It is often convenient to define the on-site potential function U independently
of the lattice site index n, i.e.,

U(qn) = U
(

qn − q0
n

σ

)
, ∀ n = 1, . . . , N. (7)

The definition (7) and conditions (5) imply that we have a harmonic approximation of
the on-site potential U at the particle equilibrium:

Uh(qn) =
1
2

ω2
0(qn − q0

n)
2, ω0 =

√
U′′(q0

n), (8)

where ω0 defines the oscillation frequency of isolated oscillators of unit mass for the
linearized equations with V = 0.

2.1.2. The Interaction Potential

Modeling the particle interactions with a radial potential V(r), where

r = rn,n′ = |qn − qn′ | > 0, n′ 6= n,

we differentiate between two types of potentials, i.e., potentials with energy minimum,
if both forces of repulsion and attraction are considered, and potentials without energy
minimum, e.g., when only particle repulsion is considered. In the latter case, we achieve an
equilibrium state, e.g., by considering periodic boundary conditions.

In the former case, we impose that the functions V(r) and V′′(r) are monotonically
decreasing in the interval (0, σ), such as V′(r) < 0, and the function V(r) is monotonically
increasing for r > σ, such as V′(r) > 0, and

V(σ) = −V0, V′(σ) = 0, V′′(σ) > 0

as well as
lim
r→∞

V(r) = 0−, lim
r→∞

V′(r) = 0+, (9)

where V0 > 0 describes the relative strength of the potential and σ > 0 is an equilibrium
interaction distance between two particles. The conditions (9) (see also (11)) imply that
the interaction strength between particles diminishes as the distance between particles
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increases. Examples of such radial interparticle potentials include the Lennard–Jones and
Morse potentials:

VLJ(r) = V0

((σ

r

)12
− 2
(σ

r

)6
)

(10)

and
VM(r) = V0

(
exp

(
−2b

( r
σ
− 1
))
− 2 exp

(
−b
( r

σ
− 1
)))

, b > 0,

respectively, where the dimensionless parameter b controls the width of the Morse potential
well.

In the latter case, when only repulsion forces are considered in the models of equally
charged particles, e.g., ions, the functions V(r) > 0 and V′′(r) > 0 are assumed to be
monotonically decreasing for all r > 0, while the function V′(r) < 0 is assumed to be
monotonically increasing as well as V(σ) = V0 and the following conditions hold:

lim
r→∞

V(r) = 0+, lim
r→∞

V′(r) = 0−. (11)

Examples of such radial potentials include the Coulomb and Pauli repulsion potentials:

VC(r) = V0
σ

r

and
VP(r) = V0

σ

r
exp

(
−b
( r

σ
− 1
))

, b > 0,

respectively, where the dimensionless parameter b models the rate of the potential decay,
and σ > 0, as already stated above, defines the length scale of the interaction.

In either case, the interaction potentials can be expanded in the Taylor series at r = σ,
i.e.,

V(r) = V(σ) + V′(σ)
( r

σ
− 1
)
+

1
2

V′′(σ)
( r

σ
− 1
)2

+ . . .

In the former case, since V′(σ) = 0, we obtain the harmonic approximation of the potential
V in the following form:

Vh(r) = −V0 +
1
2

V′′(σ)
( r

σ
− 1
)2

.

To ensure that the Hamiltonians (1) and (4) at the lattice equilibrium (q0
n, p0

n) =
(σ(n− 1), 0) for all n = 1, . . . , N are equal to zero. Without loss of generality, we redefine
the interaction potential V in (1) and (4) as:

V = V(|qn − qn′ |)−V(|q0
n − q0

n′ |), (12)

which does not alter the Hamiltonian Equations (2) and (3).

2.2. The Charge Hamiltonian

While the lattice dynamics is modeled by the classical Hamiltonian dynamics (1), an
extra charge is treated as a quantum particle. The coupled motion of the charge with the
lattice (1) is modeled within the tight-binding approximation [5]. With index n, we indicate
the internal quantum number of the charge state corresponding to the lattice (1) particle at
the position qn. In addition, we assume that there is only one quantum state per particle
that the charge can occupy.
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2.2.1. The Wave Function and the Charge Probability

The extra charge dynamics are described by the wave function, also called state
function [41]:

|φ(t)〉 =
N

∑
n=1

cn(t) |n〉 , (13)

where the ket |n〉 represents the element of the orthonormal basis describing the state in
which the charge is bound to the site n and cn(t) ∈ C are time-dependent dimensionless
complex coefficients known as probability amplitudes. The adjoint operator of |φ(t)〉 is:

〈φ(t)| =
N

∑
n=1

c∗n(t) 〈n| , (14)

where c∗n is the complex conjugate of cn. The ket and bra operators, |n〉 and 〈n|, satisfy the
property 〈n|n′〉 = δn,n′ , where δn,n′ is the Kronecker delta function. Accordingly, we can
define a space-discrete, time-dependent wave function

ψn(t) = 〈n|φ(t)〉 =
N

∑
n′=1

cn′(t) 〈n|n′〉 =
N

∑
n′=1

cn′(t)δn,n′ = cn(t),

to obtain a probability of an electron or hole being at a state n at time t, i.e.,

|ψn(t)|2 = ψ∗n(t)ψn(t) = c∗n(t)cn(t) = |cn(t)|2 =: Pn(t), (15)

which defines the probability function Pn. Thus, we have the total probability conservation
in the following form:

N

∑
n=1

Pn(t) = 1. (16)

To simplify the notation, in what follows, we omit explicit dependence on t from the
variables cn, i.e., cn = cn(t).

2.2.2. The Evolution of the Wave Function: The Schrödinger Equation

The state function (13) is the solution to the discrete Schrödinger equation:

ih̄ |φ̇(t)〉 = Hc |φ(t)〉 , (17)

where h̄ is the Planck constant, andHc is the charge Hamiltonian operator:

Hc =
N

∑
n=1

(
En(q1, . . . , qN) |n〉 〈n| −

N

∑
n′=1
n′ 6=n

J(qn, qn′) |n〉 〈n′|
)

, (18)

where indices n and n′ indicate internal quantum numbers of the charge states correspond-
ing to the lattice (1) particles at positions qn and qn′ , respectively. Notice that we have not
added factor 1/2 in front of the second sum in the Hamiltonian operator (18) as in (1), since
|n〉 〈n′| 6= |n′〉 〈n| for arbitrary different n and n′. Similarly to the lattice Hamiltonian (4),
we can consider the charge Hamiltonian operator with fixed close neighbor interactions:

H f ixed
c =

N

∑
n=1

(
En(qn′ |n′ ∈ Nn ∪ {n}) |n〉 〈n| − ∑

n′∈Nn

J(qn, qn′) |n〉 〈n′|
)

(19)

for which the following derivations hold as well.
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2.2.3. The Local Charge Energy

Smooth multivariable function En(q1, . . . , qN) ∈ R describes the local charge energy
at site n and, in general, will depend on the lattice particle positions, or can be modeled as
a constant. In addition, we impose that at the lattice equilibrium

∂qn En(q0
1, . . . , q0

N) = 0, ∀ n = 1, . . . , N, (20)

and for any n′ there exists n′′ such that

∂qn En′(q
0
1, . . . , q0

N) = −∂qn En′′(q
0
1, . . . , q0

N). (21)

In practice, the charge energy function En can be modeled to consist of a sum of charge
on-site and interaction potentials, i.e.,

En(q1, . . . , qN) = QUc(qn) + Q
N

∑
n′=1
n′ 6=n

Vc(|qn − qn′ |), (22)

respectively, where −Uc (note the minus sign) and Vc are smooth functions and share the
same properties of the on-site and interaction potentials U and V of Section 2.1, constant
Q = 1 for a positive charge, and Q = −1 for a negative charge. Note that, depending on
the model, charge energy functions E1 and EN must be adjusted if non-periodic boundary
conditions are used.

2.2.4. The Charge Transition Matrix

The symmetric transition matrix elements Jn,n′ = J(qn, qn′) ≥ 0, i.e., Jn,n′ = Jn′ ,n, of
charge transfer between states n and n′ will depend on the particle interaction distance
rn,n′ and is often modeled with exponential decay: [18,19,21,22]:

J(qn, qn′) = J(rn,n′) = J0 exp
(
−α

rn,n′

σ

)
, lim

rn,n′→∞
J(rn,n′) = 0, (23)

where the dimensionless parameter α > 0 specifies the rate of exponential decay, while
σ > 0 defines lattice particle interaction length scale, see Section 2.1. Constant J0 ≥ 0
models the relative strength of the charge transfer from one site to another and is model
dependent. In a general setting, we assume that J is a smooth monotonically decreasing
function of particle interaction distance r > 0 or taken to be constant.

2.2.5. Dynamical Equations for the Charge Probability Amplitude

Notice that the right-hand side of the Schrödinger Equation (17)

Hc |φ(t)〉 =
N

∑
m=1

cmHc |m〉

=
N

∑
m=1

cm

N

∑
n=1

(
En(q1, . . . , qN) |n〉 〈n|m〉 −

N

∑
n′=1
n′ 6=n

J(qn, qn′) |n〉 〈n′|m〉
)

=
N

∑
n=1

(
En(q1, . . . , qN)

( N

∑
m=1

cm |n〉 〈n|m〉
)
−

N

∑
n′=1
n′ 6=n

J(qn, qn′)

( N

∑
m=1

cm |n〉 〈n′|m〉
))

=
N

∑
n=1

(
En(q1, . . . , qN)cn |n〉 −

N

∑
n′=1
n′ 6=n

J(qn, qn′)cn′ |n〉
)

, (24)
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and the projection of the Equation (17) onto the state n:

ih̄ 〈n|φ̇(t)〉 = 〈n|Hc|φ(t)〉 ,

ih̄
N

∑
m=1

ċm 〈n|m〉 =
N

∑
m=1

(
Em(q1, . . . , qN)cm 〈n|m〉 −

N

∑
n′=1
n′ 6=m

J(qm, qn′)cn′ 〈n|m〉
)

,

leads to dynamical equations for the probability amplitude cn, i.e.,

ih̄ċn = En(q1, . . . , qN)cn −
N

∑
n′=1
n′ 6=n

J(qn, qn′)cn′ , (25)

where n = 1, . . . , N, with the charge classical Hamiltonian

Hc = 〈φ(t)|Hc|φ(t)〉

=
N

∑
m=1

N

∑
n=1

(
En(q1, . . . , qN)c∗mcn 〈m|n〉 −

N

∑
n′=1
n′ 6=n

J(qn, qn′)c
∗
mcn′ 〈m|n〉

)

=
N

∑
n=1

(
En(q1, . . . , qN)c∗ncn −

N

∑
n′=1
n′ 6=n

J(qn, qn′)c
∗
ncn′

)
, (26)

where we have applied the adjoint operator (14) to (24) and used the Kronecker delta
property of the ket and bra operators.

2.3. The Coupled Hamiltonian

In the previous sections, we derived the lattice and charge Hamiltonians (1) and (26),
respectively, with their dynamical Equations (2), (3) and (25). In this section, we formulate
the coupled Hamiltonian system with the total Hamiltonian

Htotal = Hlat + Hc

and the associated lattice-charge coupled system of equations:

q̇n =
1

Mn
pn, (27)

ṗn =−U′(qn)−
N

∑
n′=1
n′ 6=n

∂qn V(|qn − qn′ |)−
N

∑
n′=1

∂qn En′(q1, . . . , qN)c∗n′cn′ +
N

∑
n′=1
n′ 6=n

∂qn J(qn, qn′)(c
∗
ncn′ + c∗n′cn), (28)

ih̄ċn = En(q1, . . . , qN)cn −
N

∑
n′=1
n′ 6=n

J(qn, qn′)cn′ , (29)

for all n = 1, . . . , N, where we have obtained the additional charge-lattice force term
entering Equation (28). Recall that

c∗ncn′ + c∗n′cn = 2Re(c∗ncn′).

With the energy function En given by (22), we have that

N

∑
n′=1

∂qn En′(q1, . . . , qN)c∗n′cn′ = QU′c(qn)c∗ncn + Q
N

∑
n′=1

N

∑
m=1
m 6=n′

∂qn Vc(|qn′ − qm‖)c∗n′cn′ ,
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where the double sum on the right-hand side is equal to

N

∑
m=1
m 6=n

∂qn Vc(|qn − qm|)c∗ncn +
N

∑
n′=1
n′ 6=n

N

∑
m=1
m 6=n′

∂qn Vc(|qn′ − qm|)c∗n′cn′ =
N

∑
m=1
m 6=n

∂qn Vc(|qn − qm|)c∗ncn +
N

∑
n′=1
n′ 6=n

∂qn Vc(|qn′ − qn|)c∗n′cn′

=
N

∑
n′=1
n′ 6=n

∂qn Vc(|qn − qn′ |)(c∗ncn + c∗n′cn′)

and we obtain that

N

∑
n′=1

∂qn En′(q1, . . . , qN)c∗n′cn′ = QU′c(qn)c∗ncn + Q
N

∑
n′=1
n′ 6=n

∂qn Vc(|qn − qn′ |)(c∗ncn + c∗n′cn′).

Thus, it is also easy to see that we can obtain the model with fixed close nearest neighbor
interaction with Equations (27)–(29) just by restricting the sums to the indices n′ ∈ Nn.

2.4. Rotational Invariance and Redefinition of the Charge Local-Energy Origin

Notice that under the transformation

cn(t) = exp((−E0h̄−1t + θ)i)dn(t), (30)

where E0 and θ are arbitrary real constants, the charge probability conservation (16) and
Equation (28) do not change, since |cn| = |dn| and c∗ncn′ = d∗ndn′ for any n and n′, but only
the Equation (29) transforms into the following form:

ih̄ḋn = (En(q1, . . . , qN)− E0)dn −
N

∑
n′=1
n′ 6=n

J(qn, qn′)dn′ ,

and is independent of the constant θ. Thus, if all En in (22) are constant and equal to E0 at
the lattice equilibrium, then, without loss of generality, in (22), we can redefine the charge
interaction potential

Vc = Vc(|qn − qn′ |)−Vc(|q0
n − q0

n′ |),

equivalently to the lattice interaction potential in (12), such that at the lattice equilibrium

En(q0
1, . . . , q0

N) = 0, ∀ n = 1, . . . , N. (31)

2.5. Scaled Hamiltonian Equations

To obtain the system of Equations (27)–(29) in dimensionless form we consider the
characteristic mass M > 0, length scale σ > 0, time scale T > 0, and energy scale E > 0
values such that the relation E = Mσ2T−2 holds. Thus, we define dimensionless variables
through the following rescaling:

t = Tt̃, Mn = MM̃n, qn = σq̃n, pn = MσT−1 p̃n, cn = c̃n,

q̇n =
σ

T
˙̃qn, ˙̃qn =

1
M̃n

p̃n, ṗn = Eσ−1 ˙̃pn, ċn = T−1 ˙̃cn, ∂qn = σ−1∂q̃n ,

U = EŨ, V = EṼ, Uc = EŨc, Vc = EṼc, En = EẼn, J = E J̃,

Hlat = EH̃lat, Hc = EH̃c, Htotal = EH̃total .
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Substituting relations above into the system (27)–(29) and dropping the tildes from
the variables, Equations (27)–(29) do not change apart from the Planck constant in the
Equation (29), i.e., we obtain

iτċn = En(q1, . . . , qN)cn −
N

∑
n′=1
n′ 6=n

J(qn, qn′)cn′ , (32)

where τ = h̄(ET)−1 > 0 is the dimensionless Planck constant rescaled with respect to the
energy and time scales. Thus, depending on the model we can define either energy scale E
or time scale T to obtain the value of τ, or, on the other hand, for any value of τ, we can
find associated energy and time scales given by the following expressions:

E =
h̄2

τ2M2σ2 , T =
τMσ2

h̄
.

Note that the rescaled coupled Equations (27), (28) and (32) are not in the canonical
Hamiltonian form, which we derive in the following section.

2.6. Canonical Hamiltonian Equations

The charge Equation (32) is in the complex form for the variable cn and can be rewritten
in the real form for cn = (an + ibn)/

√
2τ, i.e.,

ȧn =
1
τ

En(q1, . . . , qN)bn −
1
τ

N

∑
n′=1
n′ 6=n

J(qn, qn′)bn′ , (33)

ḃn = − 1
τ

En(q1, . . . , qN)an +
1
τ

N

∑
n′=1
n′ 6=n

J(qn, qn′)an′ , (34)

where the scaling of cn by 1/
√

2τ does not alter the Equation (32) but will add a factor
1/(2τ) into the Hamiltonian (26), see also (36), and in front of the last two force terms
in (28). Note that the total probability conservation (16) in the new variables an and bn now
reads:

N

∑
n=1

(a2
n + b2

n) = 2τ. (35)

Thus, we have obtained the charge Hamiltonian Equations (33)–(34) for the canonical
variables an and bn with the classical Hamiltonian derived from (26), i.e.,

Ha,b =
N

∑
n=1

(
1

2τ
En(q1, . . . , qN)

(
a2

n + b2
n

)
− 1

2τ

N

∑
n′=1
n′ 6=n

J(qn, qn′)(anan′ + bnbn′)

)
, (36)

where the factor 1/2 in front of the second sum is trivially justified, since anan′ = an′ an and
bnbn′ = bn′bn. To obtain (36) from (26) notice that

c∗ncn =
1

2τ

(
a2

n + b2
n

)
, Re(c∗ncn′) = Re(c∗n′cn) =

1
2τ

(anan′ + bnbn′) (37)

and the double sum in (26)

N

∑
n=1

N

∑
n′=1
n′ 6=n

J(qn, qn′)c
∗
ncn′ =

N

∑
n=1

N

∑
n′=1
n′ 6=n

J(qn, qn′)

(
Re(c∗ncn′) + Im(c∗ncn′)i

)
=

N

∑
n=1

N

∑
n′=1
n′ 6=n

J(qn, qn′)Re(c∗ncn′),
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since
Im(c∗ncn′) = −Im(c∗n′cn), J(qn, qn′) = J(qn′ , qn).

2.6.1. Hamiltonian Equations in Real Form

For completeness, before stating the equations in vector form, we state the rescaled
canonical Hamiltonian equations in the component form:

q̇n =
1

Mn
pn, (38)

ȧn =
1
τ

En(q1, . . . , qN)bn −
1
τ

N

∑
n′=1
n′ 6=n

J(qn, qn′)bn′ , (39)

ṗn =−U′(qn)−
N

∑
n′=1
n′ 6=n

∂qn V(|qn − qn′ |)

− Q
2τ

U′c(qn)
(

a2
n + b2

n

)
− Q

2τ

N

∑
n′=1
n′ 6=n

∂qn Vc(|qn − qn′ |)
(

a2
n + b2

n + a2
n′ + b2

n′

)

+
1
τ

N

∑
n′=1
n′ 6=n

∂qn J(qn, qn′)(anan′ + bnbn′), (40)

ḃn =− 1
τ

En(q1, . . . , qN)an +
1
τ

N

∑
n′=1
n′ 6=n

J(qn, qn′)an′ , (41)

for all n = 1, . . . , N.
The canonical Hamiltonian Equations (38)–(41) are derived from the Hamiltonian:

H(q, a, p, b) = Hlat(q, p) + Ha,b(q, a, b), (42)

i.e., the sum of (1) and (36), where

q =

 q1
...

qN

 ∈ RN , p =

 p1
...

pN

 ∈ RN , a =

 a1
...

aN

 ∈ RN , b =

 b1
...

bN

 ∈ RN .

The Hamiltonian Hlat(q, p) in (1) is separable, i.e., Hlat(q, p) = Hq
lat(q) + Hp

lat(p), the
Hamiltonian Ha,b(q, a, b) in (36) is also separable and quadratic in variables a and b, i.e.,

Ha,b(q, a, b) = Ha
a,b(q, a) + Hb

a,b(q, b) =
1
2

aTΠ(q)a +
1
2

bTΠ(q)b,

and the canonical Hamiltonian Equations (38)–(41) in vector form read:

q̇ = ∂pHp
lat(p) = M−1 p, (43)

ȧ = ∂bHb
a,b(q, b) = Π(q)b, (44)

ṗ = −∂qHq
lat(q)− ∂qHa,b(q, a, b) = F(q) + G(q, a, b), (45)

ḃ = −∂aHa
a,b(q, a) = −Π(q)a, (46)

where M ∈ RN×N is the nonsingular diagonal mass matrix of masses Mn, F(q) + G(q, a, b) ∈
RN and describes the total forces acting on the lattice particles and both Equations (44)
and (46) are system of Equations (39) and (41) written in the matrix-vector form with the
symmetric system matrix Π(q) ∈ RN×N .
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2.6.2. Conservation Laws and Properties of the Semi-Classical Hamiltonian Dynamics

Apart from the energy conservation Ḣ = 0 and the second invariant, i.e., the charge
probability conservation law (35), which in the vector form is expressed as

aTa + bTb = 2τ, (47)

the canonical Hamiltonian dynamics (43)–(46) is also symplectic. Recall that symplecticity
also implies phase volume preservation [37] by the flow map φt of the dynamical sys-
tem (43)–(46). For future reference, we recall the basic properties of analytic flow maps φt
of which not all are commonly shared by numerical flow maps, i.e.,

φ0 = id, φt ◦φs = φt+s, φ−1
−t = φt, (48)

for all t and s the flow map exists and is invariable, where id is an identity map. With ◦, we
identify the composition operator.

We say that the flow map φt of the canonical Hamiltonian dynamics (43)–(46) is
symplectic if the following equation holds:

∂φt(q, a, p, b)
∂(q, a, p, b)

T

J−1 ∂φt(q, a, p, b)
∂(q, a, p, b)

= J−1, J =

(
0 I
−I 0

)
, J−1 = −J, (49)

for all states (q, a, p, b)T and t the flow map is defined, where I ∈ R2N×2N is an identity
matrix and ∂φt(q, a, p, b)/∂(q, a, p, b) denotes the Jacobian matrix of the flow map φt.

In addition to symplecticity, the Hamiltonian dynamics (43)–(46) are also time-reversible
under the transformation

ρ(q, a,−p,−b,−t) = (q, a, p, b, t),

which leaves the equations unchanged. Accordingly, the flow map φt of (43)–(46) is ρ-
reversible and satisfies the relation

ρ ◦φt = φ−1
t ◦ ρ, (50)

and for all t, the map φt and its inverse exist.
We already noted the transformation (30), i.e., the rotation of the charge variable cn by

a constant angle θ, which leaves the Hamiltonian Equations (43)–(46) unchanged under the
following transformation

η(q, cos(θ)a− sin(θ)b, p, sin(θ)a + cos(θ)b, t) = (q, a, p, b, t), ∀ θ ∈ R.

The property can be restated as
η ◦φt = φt ◦ η. (51)

To summarize, we aim to construct efficient numerical integration methods for solving
Hamiltonian Equations (43)–(46), while preserving as many as possible structural properties
of the system mentioned above, which we discuss in Section 4.

2.7. Model Example: Frenkel–Kontorova with Lennard–Jones Interaction Coupled to a Charge

In this section, we describe a model example of the canonical Hamiltonian
Equations (38)–(41) ((43)–(46)) for numerical analysis and simulations in Sections 4 and 5,
see also Figure 1.

2.7.1. Lattice Classical Hamiltonian for the Model Example

Without loss of generality, we consider a one-dimensional periodic crystal lattice of N
particles of equal masses, i.e., M = Mn for all n = 1, . . . , N, coupled with close neighbor
interactions. Note that in dimensionless form M = 1 and Nn = {n− 1, n + 1}. The model
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is thought to be a reduced-order model of a row of particles within a three-dimensional
layered crystal lattice, where the periodic lattice on-site potential

U(qn) = U0(1− cos(2πqn)), U0 > 0, (52)

models forces acting on the particle qn from the rest of the crystal. This system is known
as the Frenkel–Kontorova model [8,9]. Particle equilibrium positions are q0

n = n− 1 with
σ = 1 in the dimensionless form, such that r0 = r0

n+1,n = |q0
n+1 − q0

n| = 1 for all n, where
qN+1 = q1. We find that

U(q0
n) = 0, U′(qn) = 2πU0 sin(2πqn), U′(q0

n) = 0,

U′′(qn) = 4π2U0 cos(2πqn), ω0 =
√

U′′(q0
n) = 2π

√
U0.

For the lattice particle interactions, we consider the Lennard–Jones potential (10) and
find that

V(r0) = −V0, V′(r) = −12V0

((
1
r

)13
−
(

1
r

)7
)

, V′(r0) = 0,

V′′(r) = 12V0

(
13
(

1
r

)14
− 7
(

1
r

)8
)

, V′′(r0) = 72V0.

Thus, the lattice Hamiltonian (4) is

H f ixed
lat =

N

∑
n=1

(
1
2

p2
n + U(qn) + V(|qn+1 − qn|)−V(r0)

)
, (53)

where we have subtracted V(r0) from the potential V, see (12), such that H f ixed
lat = 0 at the

lattice equilibrium.

2.7.2. Coupling to an Electric Charge in the Model Example

We model the charge energy function En (22) as:

En(qn) = QUc(qn) + E0, E0 ∈ R,

where the charge on-site potential is chosen to be a harmonic potential of the following
form:

Uc(qn) = −
1
2

U0
c (qn − q0

n)
2, U0

c ≥ 0,

such as

En(q0
n) = E0, U′c(qn) = −U0

c (qn − q0
n), U′c(q

0
n) = 0,

U′′c (qn) = U′′c (q
0
n) = −U0

c , ωc0 =
√

U0
c .

Note that we did not choose constant values for En to keep the generality for demonstrating
symplecticity-preserving symmetric splitting methods of Section 4. Alternatively, E0 could
be easily subtracted using the transformation (30).

For the transition matrix element function (23), we find that

J(r0) = J0 exp(−α), J′(r) = −αJ(r), J′(r0) = −αJ0 exp(−α),

J′′(r) = α2 J(r), J′′(r0) = α2 J0 exp(−α).
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The charge Hamiltonian for the fixed close neighbor example model reads:

H f ixed
a,b =

N

∑
n=1

(
1

2τ
En(qn)

(
a2

n + b2
n

)
− 1

τ
J(qn, qn+1)(anan+1 + bnbn+1)

)
.

2.7.3. Hamiltonian Equations for the Model Example

Thus, the canonical Hamiltonian Equations (38)–(41) for the one-dimensional model
example above are in the following form:

q̇n =pn, (54)

ȧn =
1
τ

En(qn)bn −
1
τ

J(rn+1,n)bn+1 −
1
τ

J(rn,n−1)bn−1, (55)

ṗn =−U′(qn) +
1

rn+1,n
V′(rn+1,n)(qn+1 − qn)−

1
rn,n−1

V′(rn,n−1)(qn − qn−1)

− Q
2τ

U′c(qn)(a2
n + b2

n)−
1
τ

1
rn+1,n

J′(rn+1,n)(qn+1 − qn)(anan+1 + bnbn+1)

+
1
τ

1
rn,n−1

J′(rn,n−1)(qn − qn−1)(anan−1 + bnbn−1), (56)

ḃn =− 1
τ

En(qn)an +
1
τ

J(rn+1,n)an+1 −
1
τ

J(rn,n−1)an−1, (57)

where n = 1, . . . , N. For numerical simulations, the obtained Hamiltonian Equations (54)–(57)
can be simplified further by the introduction of the particle displacement function un =
qn − q0

n. Notice that U(qn) = U(un), En(qn) = En(un), since Uc(qn) = Uc(un), and
rn+1,n = qn+1− qn = 1+ un+1− un > 0 for all n, as long as the particles do not cross, which
would give us a nonphysical solution. The reformulated system of Equations (54)–(57) with
respect to the particle displacements un reads:

u̇n =pn, (58)

ȧn =
1
τ

En(un)bn −
1
τ

J(rn+1,n)bn+1 −
1
τ

J(rn,n−1)bn−1, (59)

ṗn =−U′(un) + V′(rn+1,n)−V′(rn,n−1)−
Q
2τ

U′c(un)(a2
n + b2

n)

− 1
τ

J′(rn+1,n)(anan+1 + bnbn+1) +
1
τ

J′(rn,n−1)(anan−1 + bnbn−1), (60)

ḃn =− 1
τ

En(un)an +
1
τ

J(rn+1,n)an+1 −
1
τ

J(rn,n−1)an−1. (61)

The Hamiltonian system (58)–(61) contains seven parameters to be specified, i.e., U0,
V0, Q, U0

c , τ, J0 and α, in addition to the energy values E0, which we specify in the numerical
results Section 5.

3. Analysis of the Linearized Equations

In this section, we discuss the linearized equations of the canonical Hamiltonian
Equations (38)–(41) and derive the so-called dispersion relations, which relate harmonic
wave solution wavenumbers to the wave oscillation frequencies, and obtain time step
restrictions for the linear absolute stability of the numerical splitting methods of Section 4.
Initially, lattice Equations (2) and (3) are treated separately from the charge Equation (32),
thus deriving decoupled lattice and charge dispersion relations, while at the end of this
section we discuss particular charge solutions at which coupled dispersion relations can
be derived for coupled linearized equations. In what follows, linearization of the lattice
equations is performed for the fixed close neighbor interaction model of the Hamiltonian (4)
with Nn = {n− 1, n + 1}. In addition, to derive the dispersion relations, we assume that
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all lattice particle masses are equal, i.e., M = Mn for all n = 1, . . . , N. Although, they are
highly restrictive assumptions, we are still able to obtain very valuable information.

3.1. Linearization of Lattice Forces

The Hamiltonian dynamics (4) admits the following linearized equations. The force
from the interaction potential V of a particle qn′ acting on the particle qn in (3) is given by:

S(qn, qn′) = −∂qn V(|qn − qn′ |) = −
1

rn,n′
V′(rn,n′)(qn − qn′). (62)

The linearized force of (62) at the lattice equilibrium is

Slin(qn, qn′) = ∂qn S(q0
n, q0

n′)(qn − q0
n) + ∂qn′ S(q

0
n, q0

n′)(qn′ − q0
n′),

where the terms S(q0
n, q0

n′) have been omitted, even if S(q0
n, q0

n′) 6= 0, since (see (6)) there
exists a particle qn′′ acting on the particle qn with the force S(q0

n, q0
n′′) = −S(q0

n, q0
n′). Note

also that

∂qn S(q0
n, q0

n′) = −∂qn′ S(q
0
n, q0

n′), ∂qn S(q0
n, q0

n′) = −V′′(r0
n,n′),

where r0
n,n′ = |q

0
n − q0

n′ |.
With introduction of the particle displacement function un = qn − q0

n, we derive linear
coupled oscillator equations:

Mnün = −ω2
0un − ∑

n′∈Nn

V′′(r0
n,n′)(un − un′), ∀ n = 1, . . . , N, (63)

where we have added the linearized force from the on-site potential (8). Equations (63)
are a linearized lattice Hamiltonian system of (4) in Newton’s equation form with the
Hamiltonian:

Hlin
lat =

N

∑
n=1

(
1

2Mn
u̇2

n +
1
2

ω2
0u2

n +
1
2 ∑

n′∈Nn

1
2

V′′(r0
n,n′)(un − un′)

2

)
. (64)

Since Nn = {n− 1, n + 1} and r0
n,n+1 = r0

n,n−1 = σ, the linear Equation (63) simplifies
to:

Mnün = −ω2
0un −V′′(σ)(2un − un+1 − un−1), (65)

which is also the linearized lattice equation of the model example of Section 2.7.

3.2. The Lattice Dispersion Relation

Valuable spectral information of the linear lattice wave solutions of (65) can be obtained
from the dispersion relation when all masses are assumed to be equal. Alternatively, normal
mode solutions, i.e., single frequency linear wave solutions, can be obtained for periodic
primitive lattice cells with particles of different masses.

To derive the dispersion relation for the linearized lattice Equations (65) we make an
ansatz of harmonic wave solutions:

un = A exp(i(−ωt + kn)), A ∈ R 6=0, (66)

where ω = ω̂/
√

M ∈ R is the lattice frequency, and k ∈ R is its wavenumber. Inserting (66)
into (65), we obtain the dispersion relation:

−ω̂2 A = −ω2
0 A−V′′(σ)A(2− exp(ki)− exp(−ki)),

ω̂2 = ω2
0 + V′′(σ)(2− 2 cos(k)),

ω̂2 = ω2
0 + 4V′′(σ) sin2

(
k
2

)
,
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Mω2 = ω2
0 + 4V′′(σ) sin2

(
k
2

)
. (67)

From our assumptions of the interaction potential V in Section 2.1, i.e., V′′(σ) > 0, we
can obtain upper and lower bounds on the lattice frequency ω:

ω2
0 ≤ Mω2 ≤ ω2

0 + 4V′′(σ), (68)

where the case ω0 = 0 leads to acoustic-like dispersion relations, while models with
ω0 > 0 lead to optic-like dispersion relations [31]. With respect to the physical scales
set in Section 2.5, we have that M[M], ω2[T−2], ω2

0 [MT−2], and V′′[Eσ−2]. Thus, in the
dimensionless form, the dispersion relation (67) reads:

ω2 = ω2
0 + 4V′′(1) sin2

(
k
2

)
, ω2

0 ≤ ω2 ≤ ω2
0 + 4V′′(1).

For the model example of Section 2.7, we have that

ω2 = 4π2U0 + 288V0 sin2
(

k
2

)
.

3.3. The Charge Dispersion Relation

The charge dynamical Equations (25) or in dimensionless form (32) and (33)–(34) are
already linear with respect to the variables cn(t) or an(t) and bn(t), respectively. To derive
the charge dispersion relation, we consider the lattice at its equilibrium, i.e., Equation (25)
in the following form:

ih̄ċn = E0cn −
N

∑
n′=1
n′ 6=n

J0
n,n′cn′ , (69)

where

J0
n,n′ = J(q0

n, q0
n′) = J0 exp

(
−α

r0
n,n′

σ

)
and we have assumed that E0 = En(q0

1, . . . , q0
N) ∈ R for all n = 1, . . . , N. Notice that, for

generality, we have not restricted Equation (69) to only the fixed neighbors model.
As already stated in Section 2.1, at the lattice equilibrium q0

n = σ(n− 1) for any n′ 6= n
there is different n′′ 6= n such that r0

n,n′ = r0
n,n′′ . Thus, the Equation (69) can be more

conveniently rewritten in the following form:

ih̄ċn = E0cn − ∑
(n′ ,n′′)

J0
n,n′(cn′ + cn′′), (70)

where the sum is over all such index pairs (n′, n′′). Then, we proceed with an ansatz of
harmonic wave solutions, see also Section 3.2:

cn = B exp(i(−ωct + kcn)), B = ± 1√
N

, (71)

where the amplitude B is chosen such that the probability conservation (16) holds, ωc ∈ R
is the charge frequency and kc ∈ R is its wavenumber. For any fixed n and associated index
pair (n′, n′′), there exists an index jn′ ∈ Z 6=0 such that

cn′ = B exp(i(−ωct + kc(n + jn′))) (72)

and
cn′′ = B exp(i(−ωct + kc(n− jn′))). (73)
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Inserting expressions (71)–(73) into (70), we obtain the dispersion relation:

h̄ωcB = E0B− ∑
(n′ ,n′′)

J0
n,n′B(exp(kc jn′ i) + exp(−kc jn′ i)),

h̄ωc = E0 − 2 ∑
(n′ ,n′′)

J0
n,n′ cos(kc jn′),

h̄ωc = E0 − 2
K

∑
m=1

J(mσ) cos(mkc), (74)

which is real and the frequencies ωc can have positive as well as negative values. With
K = |{(n′, n′′)}|, we identify the total number of index pairs (n′, n′′), which is independent
of the index n. For the general case (69) and a finite periodic lattice of N particles, we have
that K = N − 1. From the assumptions of the function J together with definition (23), we
find that

J0 exp(−α) = J(σ) > J(2σ) > · · · > J(Kσ) > 0, J0 6= 0,

and can estimate the charge frequency ωc from the dispersion relation (74), i.e.,

|ωc| ≤ h̄−1

(
|E0|+ 2

K

∑
m=1

J(mσ)

)
= h̄−1

(
|E0|+ 2J0

K

∑
m=1

exp(−α)m

)
= h̄−1

(
|E0|+ 2J0 exp(−α)

1− exp(−Kα)

1− exp(−α)

)
.

For example, in the one-dimensional fixed close neighbor model of Section 2.7, when
Nn = {n− 1, n + 1} for all n, there is only one index pair (n′, n′′) = (n− 1, n + 1), such as
K = |{(n′, n′′)}| = 1, the dispersion relation (74) reads:

ωc = h̄−1(E0 − 2J0 exp(−α) cos(kc)) (75)

and
|ωc| ≤ h̄−1(|E0|+ 2J0 exp(−α)).

In addition, in the rescaled dimensionless form of Section 2.5, the dispersion rela-
tion (75) and estimate transform to:

ωc = τ−1(E0 − 2J0 exp(−α) cos(kc)), |ωc| ≤ τ−1(|E0|+ 2J0 exp(−α)).

Comparing the charge dispersion relation (75) to the lattice dispersion relation (67)
multiple time scales become evident, especially, when |E0|h̄−1 � 1 or J0 � 1. This
observation is important for designing efficient numerical integrators for solving coupled
charge-lattice Equations (43)–(46).

3.4. The Charge Equilibrium States

After coupling both dynamics and since the Hamiltonian (26) (and (36)) also depends
on the lattice particle positions qn, we have additional force term −∂qHa,b(q, a, b) entering
Equation (45). The force term is explicitly expressed in (28) (and (40)), where from the
definition (23), it follows that:

Z(qn, qn′) = −∂qn J(qn, qn′) = −
1

rn,n′
J′(rn,n′)(qn − qn′), (76)

and, in addition, we find that:

W(qn, qn′) := −∂qn Vc(|qn − qn′ |) = −
1

rn,n′
V′c (rn,n′)(qn − qn′).
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Recall that at the lattice equilibrium (q0, p0), where q0
n = σ(n− 1) and p0 = 0, all

lattice Hamiltonian forces in (45) add to zero, i.e.,

−∂qHq
lat(q

0) = 0,

and for any n′ there exists an index n′′ such that

∂qn J(q0
n, q0

n′) = −∂qn J(q0
n, q0

n′′), (77)

and also for the potential Vc, the relation (6) holds. In addition, with assumptions (20) and
(21) and with any eigenmode charge solution given by (71), conveniently written in the
vector form: (a0(t), b0(t)) = ±(ā0(t), b̄0

(t))/
√

N, for any wavenumber kc and frequency
ωc satisfying the dispersion relation (74), we obtain that (in (28))

−∂qHa,b(q
0, a0(t), b0(t)) = 0.

To observe that, notice (77) and the relations (37) applied to (71) and taking into
account (72) and (73), i.e.,

c∗n(t)cn(t) =
1
N

, Re(c∗n(t)cn′(t)) = Re(c∗n(t)cn′′(t)) =
1
N

cos(kc jn′),

where the expressions are time-independent but depend on the charge wavenumber kc.
This observation motivates to explore linear properties at the lattice equilibrium of the
subsystem:

q̇ = M−1 p, (78)

ṗ = −∂qHq
lat(q)− ε∂qHa,b(q, ā0(t), b̄0

(t)), ε =
1
N

, (79)

which we discuss in the following section. Notice that the additional force term in (79)
is of order ε, which tends to zero when N → ∞. Thus, for a large lattice of particles the
additional force term is negligible and the contributions to the lattice dispersion relations
of Section 3.2 will also be of order ε. Importantly, accordingly scaled (to satisfy probability
conservation (16)) linear combinations of different charge eigenmode solutions (71) are not
charge equilibrium states of the Hamiltonian dynamics (43)–(46) at the lattice equilibrium,
and the force term in (79) will be not of order ε but will contain time-periodic forcing
coefficients of different frequencies. Such induced forcing by linear combinations of charge
eigenmode solutions may lead to resonance in lattice vibrations and localization effects due
to nonlinearity. The study of this phenomenon is left for future research.

3.5. Semi-Coupled Lattice–Charge Dispersion Relation

In this section, we discuss linearization and spectral properties of the fixed close
neighbor model of the subsystem (78) and (79). Considering only the ε order term the
equations can be written in the following form:

Mε−1q̈n = −QU′c(qn) + 2Q ∑
n′∈Nn

W(qn, qn′)− 2 ∑
n′∈Nn

Z(qn, qn′) cos(kc · jn′), (80)

for all n = 1, . . . , N, where all particle masses are assumed to be constant, i.e., M = Mn
for all n, such that the dispersion relation for harmonic wave solution can be derived. In
addition, we will also assume that the on-site potential −Uc has a harmonic approximation
in the form (8) with the isolated oscillator frequency ωc0 per unit mass when Vc = 0.

Linearization of the force terms Z(qn, qn′) and W(qn, qn′) follows the linearization of
the lattice force (62) of Section 3.1, i.e.,

∂qn Z(q0
n, q0

n′) = −J′′(r0
n,n′), ∂qn W(q0

n, q0
n′) = −V′′c (r

0
n,n′),
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respectively. Then the linearized equations of (80) for the particle displacements un read:

Mε−1ün =Qωc
2
0un − 2Q ∑

n′∈Nn

V′′c (r
0
n,n′)(un − un′) + 2 ∑

n′∈Nn

J′′(r0
n,n′)(un − un′) cos(kc jn′)

=Qωc
2
0un − 2

(
QV′′c (σ)− J′′(σ) cos(kc jn′)

)
(2un − un+1 − un−1),

since Nn = {n − 1, n + 1} and r0
n,n+1 = r0

n,n−1 = σ. Thus, together with the lattice
dispersion relation of Section 3.2, we derive the semi-coupled charge–lattice dispersion
relation in the following form:

Mω2 =
(

ω2
0 − εQωc

2
0

)
+ 4
(
V′′(σ) + 2ε

(
QV′′c (σ)− J′′(σ) cos(kc)

))
sin2

(
k
2

)
,

or in the dimensionless form:

ω2 =
(

ω2
0 − εQωc

2
0

)
+ 4
(
V′′(1) + 2ε

(
QV′′c (1)− J′′(1) cos(kc)

))
sin2

(
k
2

)
, (81)

where the contribution to the lattice dispersion relation (67) is of order ε. For the model
example of Section 2.7, the dispersion relation (81) simplifies even further:

ω2 = ω2
0 + 4V′′(1) sin2

(
k
2

)
− εQωc

2
0 − 8εJ′′(1) cos(kc) sin2

(
k
2

)
= 4π2U0 + 288V0 sin2

(
k
2

)
− εQU0

c − 8εα2 J0 exp(−α) cos(kc) sin2
(

k
2

)
≤ 4π2U0 + 288V0 + ε(U0

c + 8α2 J0 exp(−α)).

With the analysis above, we can conclude that approximate linear wave dynamics
of the Hamiltonian system (43)–(46) when N � 1 is predominantly characterized by
decoupled lattice and charge dispersion relations of Sections 3.2 and 3.3, which has to
be taken into account for the absolute linear stability considerations of splitting methods
discussed in the following section.

4. Structure-Preserving Splitting Methods

In this section, we propose symplecticity-preserving symmetric splitting methods of
semi-classical canonical Hamiltonian dynamics (43)–(46), which we restate in the following
form:

q̇ = M−1 p, (82)

ȧ = D(q)b + L(q)b, (83)

ṗ = F(q) + G(q, a, b), (84)

ḃ = −D(q)a− L(q)a, (85)

where Π(q) = D(q) + L(q), D(q) = diag(Π(q)) and L(q)T = L(q), which follows from
Π(q)T = Π(q).

The system of differential Equations (82)–(85) is highly nonlinear and, thus, it is
very desirable to obtain an explicit numerical integration scheme. In addition, from the
linear analysis of Section 3, we observed that linear dynamics at the lattice equilibrium is
(predominately) described by two decoupled lattice and charge dispersion relations (67)
and (74), respectively, which demonstrate the different time scales of lattice and charge
dynamics. This naturally motivates to split the lattice dynamics from the charge dynamics
in numerical integration, while at the same time attempting to preserve as many as possible
structural properties of the Hamiltonian system (82)–(85) stated in Section 2.6. Such splitting
method approach may further allow us to investigate and consider multiple time-stepping
schemes, such as the impulse method [36,37], to further improve numerical integration of
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the multi-scale dynamics, and higher-order methods [39,40], to improve numerical accuracy
of nonlinear wave simulations, which is left for future work.

In Section 3.3, we also observed an effect of the energy density values En divided
by τ on the charge linear wave frequencies, see the charge dispersion relation (74). This
motivates us to split the symmetric matrix Π(q) into the sum of two matrices D(q) and
L(q) consisting of diagonal and off-diagonal entries, respectively, where the matrix D(q)
contains exactly En/τ values on the diagonal, i.e., Dnn(q) = En(q1, . . . , qN)/τ for all
n = 1, . . . , N. Such splitting naturally occurs by splitting the kinetic from the potential
energy in splitting methods for solving continuous Schödinger equations. Importantly,
as illustrated below, for given values of q, the Hamiltonian split lattice–charge dynamics
associated with D(q) terms can be efficiently solved analytically.

4.1. Splitting of Lattice–Charge Dynamics

With the stated motivation above, we consider the following pieces of the right-hand
side vector field of the dynamics (82)–(85):

˙
q
a
p
b

 =


M−1 p

0
0
0


︸ ︷︷ ︸

Q

+


0
0

F(q)
0


︸ ︷︷ ︸

P︸ ︷︷ ︸
L

+


0

D(q)b
GD(q, a, b)
−D(q)a


︸ ︷︷ ︸

D

+


0

L(q)b
GA(q, b)

0


︸ ︷︷ ︸

A

+


0
0

GB(q, a)
−L(q)a


︸ ︷︷ ︸

B︸ ︷︷ ︸
W︸ ︷︷ ︸

C

, (86)

where we have assigned letters Q, P, D, A, and B to identify each piece. We have split
the right hand sides of (82)–(85) in such a way that each piece can be solved exactly with
associated analytic flow maps φQ

t , φP
t , φD

t , φA
t , and φB

t , for which explicit representations
are stated in Table A1 of Appendix A.1. For the analytic solution of the piece D see the
explanations and Equations (87)–(89) below.

Each piece Q, P, D, A, and B represents Hamiltonian dynamics with the Hamiltonian
obtained from splitting the total Hamiltonian (42) into the following terms, i.e.,

H(q, a, p, b) = HQ(p) + HP(q) + HD(q, a, b) + HA(q, b) + HB(q, a),

where

HQ(p) = Hp
lat(p), M−1 p = ∂pHQ(p),

HP(q) = Hq
lat(q), F(q) = −∂qHP(q),

HD(q, a, b) =
1
2

aT D(q)a +
1
2

bT D(q)b, GD(q, a, b) = −∂qHD(q, a, b),

HA(q, b) =
1
2

bT L(q)b, GA(q, b) = −∂qHA(q, b),

HB(q, a) =
1
2

aT L(q)a, GB(q, a) = −∂qHB(q, a).

In addition, with letters L and C, we have identified pieces of (semi-decoupled)
lattice and charge dynamics with associated lattice and charge Hamiltonians Hlat and
Ha,b, respectively. The letter W represents the combination of pieces A and B with the
Hamiltonian:

HW(q, a, b) = HA(q, b) + HB(q, a)

and the force term
GW(q, a, b) = GA(q, b) + GB(q, a).
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Thus, all analytic flow maps associated with pieces Q, P, L, D A, B, W, and C are
Hamiltonian and symplectic (49), which implies phase volume preservation as well. In
addition, they are also time-reversibility (50) preserving. Apart from the flow maps φA

t
and φB

t , all remaining flow maps also preserve rotational invariance (51) and conserve the
probability (16).

Notice that in the pieces C, D, and W, equations for a and b can also be written down
in complex form:

iċ = Π(q)c, iċ = D(q)c, iċ = L(q)c,

respectively, where c = a + bi. Since the matrix D(q) is diagonal, for any given q the
second equation above can be easily solved analytically with the (complex) flow map:

φ
E(q)
t = exp(−D(q)ti),

(
φ

E(q)
t

)
n
= exp(−Dnn(q)ti), ∀ n = 1, . . . , N, (87)

whereas computing analytic solutions of the remaining two equations poses a challenge for
large systems of equations when N � 1, but efficient linear algebra solvers can be used if,
e.g., an implicit charge-preserving integrator is applied to solve C or W dynamics, since
the system of equations for c is linear and both matrices Π(q) and L(q) are symmetric and
potentially sparse as well.

An important observation is that with the application of the flow map φ
E(q)
t (87), we

find that
GD(q, Re(φ

E(q)
t (a + bi)), Im(φ

E(q)
t (a + bi))) = GD(q, a, b) (88)

for all values of q, a, b, and t, e.g., see Equation (28) or (40). Thus, the piece D can be
efficiently solved exactly with the flow map φD

t expressed in the following explicit form:

Q = q,

A = Re(φ
E(q)
t (a + bi)),

P = p + tGD(q, a, b),

B = Im(φ
E(q)
t (a + bi)),

(89)

where, for a given state (q, a, p, b)T , we have found a new system’s state (Q, A, P, B)T at
time t.

In what follows, with φh and ψh, we identify exact and numerical flow maps of
autonomous differential equations advancing a given state (q, a, p, b)T in time to a new
state (Q, A, P, B)T with the time step h > 0. The numerical flow map ψh is symplectic if it
satisfies (49) for all h > 0. Recall that composition of symplectic maps is also symplectic [37];
thus, we can obtain a symplectic numerical method just by the composition of the exact
symplectic flow maps above.

It is well known that symmetric numerical methods preserve time-reversibility (50) [37].
Thus, the construction of symmetric numerical methods, which are ρ-reversible, i.e.,

ρ ◦ψh = ψ−1
h ◦ ρ, ∀ h > 0,

for numerical integration of (82)–(85) is highly desirable. The numerical method is called
symmetric if ψ†

h = ψh, where † indicates the adjoint method of ψh defined as:

ψ†
h = ψ−1

−h,

with respective properties [37]:(
ψ†

h

)†
= ψh, (ψh ◦ ψ̄h)

† = ψ̄†
h ◦ψ†

h,
(

ψh ◦ψ†
h

)†
= ψh ◦ψ†

h,
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where ψh and ψ̄h are two different numerical flow maps, and the last relation tells us
that the numerical method composed with its adjoint method, or vice versa, is symmetric.
Notice that the property ψ†

h = ψh holds for exact flows maps φt, see (48). The symmetry of
the method implies that exchanging

(q, a, p, b)↔ (Q, A, P, B) and h↔ −h

leaves the method unaltered. Similarly to the composition of symplectic methods, the
composition of symmetric flow maps is also symmetric. In addition, all symmetric methods
are of even order [37]. Note that the preservation of rotational invariance (51) and charge
probability (16) will depend on the choice of the exact flow maps above for the construction
of a numerical method based on the flow map composition.

In the following section, we describe semi-implicit splitting methods for the sys-
tem (82)–(85) that are symplectic, symmetric, second-order, preserve time-reversibility, and
conserve exactly the charge probability. Moreover, they require only one force F(q) and
matrix Π(q) elements evaluation and at most two force term G(q, a, b) calculations per
time step.

4.2. Semi-Implicit Methods with Exact Charge Probability Conservation

Modeling charge particle transport by nonlinear lattice excitations is very important
to preserve the conservation of the charge probability (16), which is a quadratic invariant.
We propose four semi-implicit splitting methods that are symplectic, symmetric, and also
conserve the charge probability exactly. They are based on the symplectic and symmetric
implicit midpoint method’s [37] solution of the pieces C and W. All methods require only
one force F(q) and matrix Π(q) element evaluations, as well as one solution of a linear
system of the charge Equations (83) and (85) per time step.

The first method reads:

ψPQCQP
h = φP

h/2 ◦φQ
h/2 ◦ψC

h ◦φQ
h/2 ◦φP

h/2,

where the symmetry follows from ψPQCQP†

h = ψPQCQP
h with ψC†

h = ψC
h and symplecticity

follows from the composition of symplectic flow maps. The charge probability conserva-
tion (16) follows from the application of the implicit midpoint rule, i.e., the map ψC

h :

Q = q,

C =

(
I + i

h
2

Π(q)
)−1(

I − i
h
2

Π(q)
)

c, c = a + bi,

A = Re(C), B = Im(C),

P = p + hG
(

q,
a + A

2
,

b + B
2

)
,

(90)

which requires only one force G
(

q, a + A
2 , b + B

2

)
calculation per time step. Notice that

in the method PQCQP during the application of the lattice flow maps φQ
h/2 and φP

h/2 the
charge variable c is kept constant. Thus, since

η ◦ψC
h = ψC

h ◦ η, ∀ h > 0,

then also
η ◦ψPQCQP

h = ψPQCQP
h ◦ η, ∀ h > 0.

Composition φP
h ◦φQ

h is nothing more than the symplectic Euler method [37] applied
to the decoupled lattice equations, i.e.,

Q = q + hM−1 p,
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P = p + hF(Q),

and, disregarding charge equations, the numerical method based on the Strang splitting
with the flow map

ψLv
h =

(
φP

h/2 ◦φQ
h/2

)
◦
(

φP
h/2 ◦φQ

h/2

)†
= φP

h/2 ◦φQ
h ◦φP

h/2,

i.e.,

p̄ = p +
h
2

F(q),

Q = q + hM−1 p̄,

P = p +
h
2

F(Q),

is the symplectic second-order velocity Verlet method [36], while the numerical method
with the flow map

ψ
Lp
h =

(
φP

h/2 ◦φQ
h/2

)†
◦
(

φP
h/2 ◦φQ

h/2

)
= φQ

h/2 ◦φP
h ◦φQ

h/2

is the so-called symplectic second-order position Verlet method, which are staple methods
in classical molecular dynamics with good energy conservation properties in long-time
simulations due to the existence of the modified differential equation, which is also Hamilto-
nian. Interested readers in theoretical numerical analysis aspects of this subject are referred
to [37]. Thus, we will refer to the method PQCQP as the velocity semi-implicit method and
to the method defined by the flow map

ψQPCPQ
h = φQ

h/2 ◦φP
h/2 ◦ψC

h ◦φP
h/2 ◦φQ

h/2

as the position semi-implicit method. Note that we do not consider methods CPQPC and
CQPQC, since those methods would require two solutions of the linear system of equations
for the charge equations, see (90), per time step. Recall that the time step restriction for the
absolute linear stability of the symplectic Euler and Verlet methods is [36]

|hω| ≤ 2, (91)

where, for the lattice dynamics, frequency ω is given by the lattice dispersion relations (67)
and (81).

It is well known that the implicit midpoint method is an unconditionally stable method
for stable linear dynamical systems. Despite this, large values of En/τ, as indicated by
the charge dispersion relation (74), may require to use small time steps to acquire the
necessary accuracy, i.e., to resolve high-frequency oscillations of the charge particle, which
is demonstrated in numerical results Section 5. Thus, we propose splitting the charge
dynamics piece C into two pieces, D and W, where the piece D can be solved exactly as
already indicated in (89). Note that the analytic charge solution given by (87) conserves
charge probability (16) as well as the properties (50) and (51).

The remaining two proposed semi-implicit splitting methods are of the following
form:

ψPQDWDQP
h = φP

h/2 ◦φQ
h/2 ◦φD

h/2 ◦ψW
h ◦φD

h/2 ◦φQ
h/2 ◦φP

h/2,

ψQPDWDPQ
h = φQ

h/2 ◦φP
h/2 ◦φD

h/2 ◦ψW
h ◦φD

h/2 ◦φP
h/2 ◦φQ

h/2,
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where the map ψW
h of the implicit midpoint rule is

Q = q,

C =

(
I + i

h
2

L(q)
)−1(

I − i
h
2

L(q)
)

c, c = a + bi,

A = Re(C), B = Im(C),

P = p + hGW

(
q,

a + A
2

,
b + B

2

)
.

(92)

As for the methods PQCQP and QPCPQ, we have that

ψPQDWDQP†

h = ψPQDWDQP
h , η ◦ψPQDWDQP

h = ψPQDWDQP
h ◦ η,

ψQPDWDPQ†

h = ψQPDWDPQ
h , η ◦ψQPDWDPQ

h = ψQPDWDPQ
h ◦ η,

for all h > 0.
Comparing methods PQDWDQP and QPDWDPQ to methods PQCQP and QPCPQ,

we still require only one force term GW(q, a, b) evaluation, but two force term GD(q, a, b)
calculations with the same value of q per time step, unless the force GD(q, a, b) is equal to
zero when all En are constant, see Appendix A.2.

In our implementation of the methods PQDWDQP and QPDWDPQ in MATLAB with
double-precision floating-point arithmetic, we observed a gradual linear increase in relative
error in charge probability conservation (16) due to the accumulation of round-off errors.
To address this problem, we propose the normalization of the charge variable c after each
solution of the piece D in (87), i.e.,

c̄ = exp(−tD(q)i)c, c = a + bi,

c̄ =

√
2τ

S
c̄, S = aTa + bTb,

(93)

thus, we obtain āT ā + b̄T b̄ = 2τ to machine double-precision. We identify these methods
with the flow maps ψPQD̄WD̄QP

h and ψQPD̄WD̄PQ
h . We do not add this rescaling of c values

after the implicit midpoint steps (90) and (92), where we did not observe a linear increase
in relative error. In Appendix A.2, we state all semi-implicit methods in explicit forms, see
Tables A2 and A3.

In the numerical results in Section 5, we compare the proposed semi-implicit split-
ting methods above, i.e., PQCQP, QPCPQ, PQDWDQP, QPDWDPQ, PQD̄WD̄QP and
QPD̄WD̄PQ, with the standard fourth-order explicit Runge-Kutta method (RK4) [37],
which is neither a symplectic, symmetric, nor a charge-conserving method, although RK4
is of order four. We identify each method’s strengths and weaknesses, in addition to in
comparison to the explicit symplectic splitting methods derived in the following section.

4.3. Explicit Splitting Methods

There are multiple ways we can construct fully explicit symplecticity-preserving
symmetric splitting methods for Hamiltonian dynamics (82)–(85) considering pieces in (86).
We propose four symmetric Strang splitting methods derived from the composition of two
first-order, one-step splitting methods:

ψPQABD
h = φP

h ◦φQ
h ◦φA

h ◦φB
h ◦φD

h , ψPQDAB
h = φP

h ◦φQ
h ◦φD

h ◦φA
h ◦φB

h , (94)

which are formed from the composition of exact symplecticity-preserving flow maps. Note
that φA

h ◦ φB
h 6= φB

h ◦ φA
h . Since, structurally, pieces A and B are equivalent (see (86)), in

both methods above, we only consider the composition φA
h ◦φB

h . In addition, in numerical
simulations (not shown), we did not observe qualitative differences in numerical solutions
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between considering compositions φA
h ◦φB

h and φB
h ◦φA

h , but we find that it does matter
when the map φD

h is applied, see Section 5.
The adjoint methods of (94) read:

ψPQABD†

h = φD
h ◦φB

h ◦φA
h ◦φQ

h ◦φP
h , ψPQDAB†

h = φB
h ◦φA

h ◦φD
h ◦φQ

h ◦φP
h . (95)

Thus, compositions of methods (94) and (95) lead to four fully explicit symplecticity-
preserving symmetric methods:

ψPQABDBAQP
h =ψPQABD

h/2 ◦ψPQABD†

h/2

=φP
h/2 ◦φQ

h/2 ◦φA
h/2 ◦φB

h/2 ◦φD
h ◦φB

h/2 ◦φA
h/2 ◦φQ

h/2 ◦φP
h/2, (96)

ψDBAQPQABD
h =ψPQABD†

h/2 ◦ψPQABD
h/2

=φD
h/2 ◦φB

h/2 ◦φA
h/2 ◦φQ

h/2 ◦φP
h ◦φQ

h/2 ◦φA
h/2 ◦φB

h/2 ◦φD
h/2

=φD
h/2 ◦φB

h/2 ◦φA
h/2 ◦ψ

Lp
h ◦φA

h/2 ◦φB
h/2 ◦φD

h/2, (97)

ψPQDABADQP
h =ψPQDAB

h/2 ◦ψPQDAB†

h/2

=φP
h/2 ◦φQ

h/2 ◦φD
h/2 ◦φA

h/2 ◦φB
h ◦φA

h/2 ◦φD
h/2 ◦φQ

h/2 ◦φP
h/2, (98)

ψBADQPQDAB
h =ψPQDAB†

h/2 ◦ψPQDAB
h/2

=φB
h/2 ◦φA

h/2 ◦φD
h/2 ◦φQ

h/2 ◦φP
h ◦φQ

h/2 ◦φD
h/2 ◦φA

h/2 ◦φB
h/2

=φB
h/2 ◦φA

h/2 ◦φD
h/2 ◦ψ

Lp
h ◦φD

h/2 ◦φA
h/2 ◦φB

h/2, (99)

where we have applied the property (48) of exact flow maps, i.e.,

φh/2 ◦φ†
h/2 = φ†

h/2 ◦φh/2 = φh/2 ◦φh/2 = φh.

The methods PQABDBAQP (96) and PQDABADQP (98) can be viewed as lattice–
charge–lattice-splitting methods, while the methods DBAQPQABD (97) and BADQPQDAB
(99) can be viewed as charge–lattice–charge-splitting methods. Note that none of the
methods (96)–(99) conserve the probability exactly (16) or preserve the rotational invari-
ance (51). All four methods in explicit forms are stated in Tables A4 and A5 of Appendix A.3,
respectively.

Notice that the composition φA
h ◦φB

h is the symplectic Euler numerical method of the
piece W, i.e., the composition in the compact explicit form reads:

Q = q,

B = b− hL(q)a,

P = p + h(GA(q, B) + GB(q, a)),

A = a + hL(q)B.

Similarly, the composition φB
h ◦φA

h is the adjoint method of the symplectic Euler method
above and reads:

Q = q,

A = a + hL(q)b,

P = p + h(GA(q, b) + GB(q, A)),

B = b + hL(q)A,

and the composition φA
h/2 ◦φB

h ◦φA
h/2 in (98) is the Verlet method applied to the piece W.

Thus, the absolute linear stability for the numerical integration of the piece W is provided
by the condition (91), where the charge frequency ωc is given by the charge dispersion
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relation (74) with E0 = 0, since we have split the piece C into two pieces D and W, where
the piece D containing En/τ values is solved exactly, see Equations (87)–(89).

Similarly to the semi-implicit splitting methods of Section 4.2, the explicit splitting
methods (96)–(99) also require only one lattice force F(q) calculation per time step as well
as one evaluation of the matrix Π(q) elements, but at most two evaluations of the force
terms GA(q, b), GB(q, a), and GD(q, a, b), essentially for the same value of q, see Tables A4
and A5.

In the following section, we perform numerical simulations of the model example
of Section 2.7 with the explicit splitting methods (96)–(99) and compare them to the semi-
implicit integrators from Section 4.2.

5. Numerical Results

In this section, we perform numerical simulations of the example model of Section 2.7
and investigate the performance of the proposed splitting methods in Section 4. In what
follows, for the models (58)–(61), we set the following parameter values: U0 = 1, V0 = 0.05,
Q = 1, τ = 0.001, α = 15, J0/τ = exp(α)/2, and U0

c = τ, where E0 or the ratio E0/τ vary.
With this choice of parameter values in our example model, we can observe the charge
transfer by mobile discrete breathers. We were also able to obtain qualitatively similar
results with Q = −1. All numerical simulations are performed with N = 64, unless stated
otherwise, and we integrate system (58)–(61) in time until Tend, which we vary as well as
the time step value h.

To excite charge transfer by mobile discrete breathers, see Figure 1, we consider lattice
particles in their dynamical equilibrium states while exciting three neighboring particle
momenta with the pattern:

(pn∗−1, pn∗ , pn∗+1)
T = γ(−1, 2,−1)T , γ ∈ R 6=0, (100)

for any chosen n∗ = 1, . . . , N (taking into account periodic boundary conditions), γ > 0
leads to a mobile breather solution traveling to the right, while with γ < 0, we obtain
a traveling breather solution moving to the left. For example, the result in Figure 1 was
obtained with γ = 0.6 and n∗ = 16. The localized charge solution at the initial time t = 0 is
given by the pattern

(an∗ , bn∗)
T =
√

τ(1,−1)T (101)

set at the middle particle of the pattern (100) and with the remaining values of an and bn
being equal to zero. Notice that the chosen initial pattern (101) satisfies charge probability
conservation (16).

5.1. Approximation Order and Convergence

In this section, we numerically demonstrate the second-order approximation error
and convergence of the proposed splitting methods of Section 4, and the importance of
splitting the piece C into two pieces D and W for the semi-implicit splitting methods
of Section 4.2 and splitting the piece C into three pieces, D, A, and B, for the explicit
splitting methods of Section 4.3. We integrate the model example (58)–(61) in time until
Tend = 1. For the reference “exact” solution, we consider the numerically computed
solution of the explicit method PQDABADQP with the time step h = 10−7. In Figures 2–4
we illustrate numerical errors of the solution, the Hamiltonian (42), and the total charge
probability (16) for different time step h values, i.e., left, middle, and right columns of
the figures, respectively. To measure errors, we compute the maximal absolute error of
the numerical solution at the final time Tend, while for the Hamiltonian and total charge
probability, we consider maximal relative error over the whole computational time segment
[0, Tend]. We demonstrate results for two different ratio E0/τ values, i.e., when E0/τ = 100
(top row) and E0/τ = 1000 (bottom row).

In Figure 2, we plot errors of three semi-implicit splitting methods PQCQP, PQDWDQP
and PQD̄WD̄QP of Section 4.2. Not shown but equivalent results were obtained with the
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method QPCPQ in place of PQCQP and with Q = −1. In addition to the proposed splitting
methods, we have also added simulation results with the standard fourth-order Runge-
Kutta method RK4, which requires four force evaluations per time step and it is neither
symmetric nor symplectic. Figure 2a,d illustrate the second-order convergence of the
splitting methods, while, as expected, RK4 is of order four. In order to better observe that,
we have supplemented the figures with lines of slopes two and four, represented by the
solid and dashed black lines, respectively.

Figure 2a,d demonstrate that the solution errors of both methods PQDWDQP and
PQD̄WD̄QP, which differ only by the rescaling (93), are indistinguishable. See also
Figure 2b,e. They have much smaller solution errors compared to the method PQCQP,
where we have not split the piece C, and to RK4, especially for larger time steps h and
ratio value E0/τ. Recall that the value E0/τ appears in the charge dispersion relation (74)
and produces high-frequency oscillations of the charge. From Figure 2, it is easy to see
that to obtain stable numerical solutions with RK4 for large values of E0/τ, we require
smaller time steps compared to the methods PQCQP, PQDWDQP, and PQD̄WD̄QP. When
E0/τ → 0 (not shown), both methods PQCQP and PQDWDQP coincide and RK4 has
smaller errors compared to the splitting methods, which can be attributed to fourth-order
accuracy. Then, only in long-time simulations, the performance of splitting methods can be
appreciated over RK4, since RK4 is a dissipative method. In addition, the case E0/τ → 0
may not be of particular interest in modeling charge transfer in realistic crystals.

(a) (b) (c)

(d) (e) (f)

Figure 2. Numerical convergence study of the semi-implicit splitting methods: PQCQP, PQDWDQP,
and PQD̄WD̄QP, compared to the fourth-order explicit Runge-Kutta method RK4. Top (a–c): E0/τ =

100. Bottom (d–f): E0/τ = 1000. Left (a,d): maximal absolute error of the solution at time t = 1.
Middle (b,e): maximal relative error of the Hamiltonian (42) for t ∈ [0, 1]. Right (c,f): maximal relative
error of the total charge probability (16) for t ∈ [0, 1]. The numerical solution of reference is computed
with the method PQDABADQP and time step h = 10−7 and with initial conditions given by the
patterns (100) and (101), where γ = 0.6.
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In Figure 2b,e, we demonstrate the maximal relative Hamiltonian errors and observe
that with RK4, the Hamiltonian error converges at most with order four, and despite not
splitting the piece C into two pieces D and W, the PQCQP method’s Hamiltonian errors
are almost indistinguishable from the Hamiltonian errors of the two methods PQDWDQP
and PQD̄WD̄QP. Figure 2c,f show, as expected, that RK4 does not exactly conserve the
total charge probability (16) compared to all semi-implicit splitting methods. Notice that
the method PQD̄WD̄QP conserves the total probability to machine precision due to the
rescaling (93), while the errors for the other two methods PQCQP and PQDWDQP fluctuate
close to double machine precision and slightly increase with smaller time steps. It is
important to mention that in numerical results we did not observe differences between
methods PQDWDQP and PQD̄WD̄QP and between methods QPDWDPQ and QPD̄WD̄PQ.
Thus, we postulate that the scaling of the charge variable c in (93) does not affect the
numerical solution, at least in short-time simulations. In addition, the charge probability
is conserved up to machine double-precision, as can be seen in Figure 2c,f, and does not
increase with an increase in Tend.

The results of Figure 2 illustrate the importance of splitting the piece C such that
numerical simulations can be performed with larger time steps. Thus, we will disregard
the methods RK4, PQCQP and QPCPQ, from further numerical study and will concentrate
on the methods PQD̄WD̄QP and QPD̄WD̄PQ in place of the methods PQDWDQP and
QPDWDPQ, respectively.

In Figure 3, we investigate the differences between the velocity and position semi-
implicit splitting methods PQD̄WD̄QP and QPD̄WD̄PQ, respectively, for two different
ratio E0/τ values. As in Figures 2 and 3, we plot the solution, Hamiltonian, and total
probability errors for different time step h values. Figure 3a,d illustrate that the solution
errors are very comparable with slightly smaller errors for the position method QPD̄WD̄PQ.
On the contrary, the velocity splitting method PQD̄WD̄QP, see Figure 3b,e, gives smaller
Hamiltonian conservation errors of greater magnitude compared to the differences in the
solution errors. Figure 3c,f show that both methods exactly conserve the total charge
probability (16). Thus, we advocate the method PQD̄WD̄QP over the position splitting
method QPD̄WD̄PQ if Hamiltonian conservation is of higher importance. Recall that both
methods are of the same computational complexity, see the discussion in Section 4.2 and
Appendix A.2.

So far, in Figures 2 and 3, we have investigated semi-implicit splitting methods that con-
serve exactly the charge probability, as presented in Section 4.2. In Figure 4, we demonstrate
the approximation and the convergence order of the explicit splitting methods proposed
in Section 4.3, i.e., we compare methods PQABDBAQP, BADQPQDAB, DBAQPQABD,
and PQDABADQP for the same two ratio E0/τ values. Figure 4 demonstrates that all
explicit methods are second order. We do not observe significant differences between all
four methods when the solution and Hamiltonian conservation errors are compared, see
Figure 4a,b,d,e. Interesting differences appear in the total probability conservation, see
Figure 4e,f. Figure 4e,f show a sudden drop in the total probability error at some time step
h for the splitting methods DBAQPQABD and PQDABADQP compared to the splitting
methods PQABDBAQP and BADQPQDAB. At which time step such drop in error occurs
depends on the ratio E0/τ value. In our numerical results (see also Figures 5 and 6 from
the following section), the drop in errors occurs when the absolute stability condition (91)
in the form: ∣∣∣∣h E0

τ

∣∣∣∣ ≤ 2, (102)

is satisfied. In future work, we plan to explore this from the analytic point of view. This
observation also motivates to explore in future work multiple time-stepping approaches,
where the charge part, e.g., DABAD or ABA in method PQDABADQP, is applied multiple
times with smaller time step.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Numerical convergence study of the semi-implicit splitting methods: PQDWDQP and
QPD̄WD̄PQ. Top (a–c): E0/τ = 100. Bottom (d–f): E0/τ = 1000. Left (a,d): maximal absolute error
of the solution at t = 1. Middle (b,e): maximal relative error of the Hamiltonian (42) for t ∈ [0, 1].
Right (c,f): maximal relative error of the total charge probability (16) for t ∈ [0, 1]. The numerical
solution of reference is computed with the method PQDABADQP and time step h = 10−7 and with
initial conditions given by the patterns (100) and (101), where γ = 0.6.

To even better indicate the differences between semi-implicit and all explicit split-
ting methods, we investigate in more detail the Hamiltonian and the total probability
conservation errors for different ratio E0/τ values in the following section.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Numerical convergence study of the explicit splitting methods: PQABDBAQP,
BADQPQDAB, DBAQPQABD, and PQDABADQP. Top (a–c): E0/τ = 100. Bottom (d–f):
E0/τ = 1000. Left (a,d): maximal absolute error of the solution at t = 1. Middle (b,e): maxi-
mal relative error of the Hamiltonian (42) for t ∈ [0, 1]. Right (c,f): maximal relative error of the
total charge probability (16) for t ∈ [0, 1]. The numerical solution of reference is computed with the
method PQDABADQP and time step h = 10−7, and with initial conditions given by the patterns (100)
and (101), where γ = 0.6.

5.2. Numerical Accuracy of Conserved Quantities

In the previous section, we numerically demonstrated the approximation and con-
vergence orders of the proposed symplecticity-preserving symmetric splitting methods of
Section 4 and showed the importance of splitting the piece C, which allows us to obtain
more accurate and stable results with larger time steps. In this section, we continue with a
comparison of the semi-implicit and explicit splitting methods by investigating the conser-
vation of several quantities for different values of E0/τ. In Figures 5 and 6, we illustrate
results for three different time step values, i.e., for h = 0.01, h = 0.001, and h = 0.0001.
The top row of Figures 5 and 6 show the maximal relative error of the Hamiltonian (42),
while the bottom row shows the maximal relative error of the total probability (16), over
the computational time segment [0, Tend], where Tend = 100. Numerical simulations are
performed for twenty-five different ratio E0/τ values given by the following formula:

Ej
0/τ = 1000

1.6j−1 − 1
1.624 − 1

τ−1, j = 1, . . . , 25,

and errors are averaged over eleven numerical simulations with different initial conditions,
which are described below.

In Figures 5 and 6, we illustrate the results for two regimes of solutions, i.e., (approxi-
mately) linear and nonlinear, respectively. In the linear regime simulations, we generate
eleven different initial conditions with un, an, pn, and bn values for all n drawn from the
uniform distribution U (−0.01, 0.01). After the generation of values an and bn, we rescale
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them accordingly such that (16) holds. With these initial conditions, the charge probability
is spread across the whole computational domain, and the lattice solutions are dominated
by linear nonlocalized phonon waves. In the nonlinear regime, we generate eleven different
initial initial conditions using patterns (100) and (101), where

γj = 0.4 + jhγ, hγ = 0.05, j = 0, . . . , 10,

i.e., with γ ∈ [0.4, 0.9]. With these initial conditions, we can generate nonlinear and localized
solutions of charge transfer by mobile discrete breathers, e.g., see Figure 1. In addition, in
both Figures 5 and 6 with the reduction in the time step by a factor of 10, we have also
reduced the y-axis scale by a factor of 100 to illustrate the second-order approximation
error. We have also removed the probability errors for the semi-implicit splitting methods
PQD̄WD̄QP and QPD̄WD̄PQ from the probability error plots (bottom rows), since the total
probability is conserved up to the machine precision, see Figure 3c,f.

In Figure 5a–c, it can clearly be seen that the Hamiltonian is conserved up to the
second-order and that the errors of the semi-implicit methods PQD̄WD̄QP and QPD̄WD̄PQ
coincide very well with the errors of the explicit splitting methods DBAQPQABD and
PQDABADQP for all considered ratio E0/τ values. Interestingly, as the value of E0/τ
increases, we observe significant differences in the Hamiltonian errors between the explicit
methods. Such a large discrepancy cannot be seen in Figure 4b,e, since the results there
were demonstrated for E0/τ < 104. In Figure 4c,f, we observed that explicit methods
DBAQPQABD and PQDABADQP can have much smaller probability conservation errors
compared to the methods PQABDBAQP and BADQPQDAB. This observation is more
evident in Figure 5d–f, where, in fact, the PQABDBAQP and BADQPQDAB methods’
Hamiltonians and probability errors are indistinguishable. Notice that the probability
errors of the methods DBAQPQABD and PQDABADQP precisely obey the second-order
reduction in error only for E0/τ values satisfying the condition (102). Despite that, the
DBAQPQABD and PQDABADQP methods’ probability errors are significantly smaller
compared to the errors of the methods PQABDBAQP and BADQPQDAB. In addition, the
PQDABADQP method’s produced errors are slightly smaller compared to errors of the
method DBAQPQABD.

The linear regime results, Figure 5, do not directly reflect the nonlinear regime results,
see Figure 6. First of all, in the nonlinear regime, we observe larger Hamiltonian and
probability errors comparing y-axis scales in Figures 5 and 6. In all plots of Figure 6, we
can see that two explicit methods DBAQPQABD and PQDABADQP, overall, outperform
other two explicit methods PQABDBAQP and BADQPQDAB, especially for larger values
of E0/τ and smaller time steps, with method PQDABADQP having slightly smaller errors
compared to the method DBAQPQABD. We can also observe slightly smaller errors for the
semi-implicit velocity method PQD̄WD̄QP compared to the position method QPD̄WD̄PQ,
see Figure 6a–c, which can also be seen in Figure 3b,e, but not in the linear regime results of
Figure 5a–c.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Hamiltonian and total probability conservation errors of the splitting methods:
PQABDBAQP, BADQPQDAB, DBAQPQABD, PQDABADQP, PQD̄WD̄QP, and QPD̄WD̄PQ. Top
(a–c): maximal relative error of the Hamiltonian (42) for t ∈ [0, 100]. Bottom (d–f): maximal relative
error of the total charge probability (16) for t ∈ [0, 100], where the results for semi-implicit methods
are excluded. Left (a,d): time step h = 0.01. Middle (b,e): time step h = 0.001. Right (c,f): time step
h = 0.0001. The Hamiltonian and probability errors are averaged over eleven numerical simulations
with randomly generated initial conditions from the uniform distribution U (−0.01, 0.01).

To summarize, after performing the computational analysis of the proposed splitting
methods’ convergence and the conserved quantities’ conservation properties, we advocate
the velocity semi-implicit, exactly charge-conserving method PQD̄WD̄QP over the position
method QPD̄WD̄PQ due to the smaller errors in the Hamiltonian conservation. From all the
explicit splitting methods, we advocate the method PQDABADQP, which showed overall
smaller errors and conserves the total probability to a high degree in long-time simulations
of charge transfer by discrete breathers as demonstrated in the following section.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Hamiltonian and total probability conservation errors of the splitting methods:
PQABDBAQP, BADQPQDAB, DBAQPQABD, PQDABADQP, PQD̄WD̄QP, and QPD̄WD̄PQ. Top
(a–c): maximal relative error of the Hamiltonian (42) for t ∈ [0, 100]. Bottom (d–f): maximal relative
error of the total charge probability (16) for t ∈ [0, 100], where results for semi-implicit methods are
excluded. Left (a,d): time step h = 0.01. Middle (b,e): time step h = 0.001. Right (c,f): time step
h = 0.0001. The Hamiltonian and probability errors are averaged over eleven numerical simulations
with initial conditions (100) and (101) and different values of γ ∈ [0.4, 0.9].

5.3. Charge Transfer by Mobile Discrete Breathers

In the example in Figure 1, we demonstrate charge transfer by a mobile discrete
breather in time until Tend = 50 initiated by the patterns (100) and (101) with γ = 0.6 and
computed with the explicit method PQDABADQP and time step h = 0.01. In this section,
we demonstrate the long-time charge transfer until Tend = 104 with the three proposed
splitting methods of Section 4, i.e., with three lattice–charge–lattice methods PQD̄WD̄QP,
PQDABADQP, and PQABDBAQP. Numerical simulations are performed in a lattice with
N = 254 particles, time step h = 0.01, and E0/τ = 1000. We excite the charge transfer with
the patterns (100) and (101) set at n∗ = 64 with γ = 0.6.

In Figure 7a–c, we plot contours of charge probability function Pn(t) = |cn(t)|2 (15).
All three methods illustrate localized charge transport by a mobile discrete breather, where
short-time solutions appear indistinguishable. As time progresses, numerical solutions
start to differ while producing qualitatively acceptable solutions. Importantly, such results
are not possible to obtain with the methods RK4, PQCQP and QPCPQ when h = 0.01, see
Figure 2d–f.

All three methods produce Hamiltonian (42) conservation errors to an equivalent
degree over the whole computational time segment [0, Tend], see Figure 7d. The same
is not true for the total probability conservation (16), as can be seen in Figure 7e. Semi-
implicit method PQD̄WD̄QP exactly conserves the total probability, while the explicit
method PQDABADQP has smaller errors compared to the method PQABDBAQP, which is
consistent with the results of Figure 6d.
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(a) (b) (c)

(d) (e) (f)

Figure 7. Simulation of charge transfer by a mobile discrete breather with three splitting methods:
PQD̄WD̄QP, PQDABADQP, and PQABDBAQP. The solutions are initiated with patterns (100)
and (101), where γ = 0.6. Other parameter values: h = 0.01, N = 254 and Tend = 104. Top (a–c):
contours of the charge probability Pn. Bottom: (d) relative error of the Hamiltonian (42) at each time
step; (e) relative error of the total charge probability (16) at each time step; (f) participation ratio value
at each time step.

To gain more information on the charge probability localization in charge transport
by discrete breathers, in Figure 7f, we plot the normalized participation ratio (adopted
from [19])

Pr(t) =
1

N − 1

(
N

N

∑
n=1

Pn(t)2 − 1

)
/

N

∑
n=1

Pn(t)2 ∈ [0, 1],

as a function of time for all three methods. The participation ratio characterizes the
localization of the charge probability, i.e., the larger the value of Pr, the more localized the
charge probability is. For example, if the charge probability is completely localized at one
site, then Pr = 1, but in the situation when the charge probability is equally spread across
the whole lattice, then Pr = 0. With our charge probability’s initial excitation pattern (101),
we have that Pr(0) = 1. From Figure 7f, we can see that as the time progresses, the
charge probability becomes more and more delocalized and eventually disperses within
the lattice. We have verified this (not shown) by performing simulations with smaller time
steps, and the phenomenon persists, which could be attributed to the properties of our
example model of Section 2.7. Results of Figure 7f do not imply that charge transfer by
mobile discrete breathers may not persist for longer times and distances in different lattice
models. In addition, the excitation patterns (100)–(101) do not provide a means to produce
exact time-periodic and space-translated traveling wave solutions of charge transfer by
discrete breathers. It is still an open question if such solutions even exist. Overall, Figure 7
demonstrates that even the explicit, symplecticity-preserving, symmetric methods, which
do not exactly preserve the charge probability (16), may produce qualitatively good long-
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time results with good approximate probability conservation properties compared to the
exactly charge-probability conserving semi-implicit methods.

6. Discussion

In this work, we have constructed structure-preserving numerical methods for an
important class of Hamiltonian equations to model charge transfer by intrinsic localized
modes in nonlinear crystal lattice models. The importance of the study of charge transfer
phenomena by lattice excitations cannot be overstated and traces back to original works
by Landau L.D. and Pekar S.I. at the beginning of the last century. We demonstrate
that such Hamiltonian equations can be written into a canonical form and address the
question of solving the system of equations by direct numerical integration. The coupling
of classically modeled lattice equations with the charge dynamics described by quantum
mechanics presents serious challenges due to the different time scales of the charge and
lattice dynamics, thus also inducing great important difficulties for the construction of
stable, accurate, and efficient numerical integration schemes. In this work, we were able to
address the problem by effective splitting strategies considering the structural properties of
the equations splitting the piece C of charge dynamical equations into pieces D and W or
into pieces D, A, and B, as explained in Section 4.1.

In the construction of the splitting methods presented in Section 4, we have considered
geometric structural properties of the Hamiltonian dynamics, i.e., symplecticity, which also
implies phase volume preservation, time-reversibility, rotational invariance, and conserved
quantities. We have derived two classes of computationally efficient splitting methods,
i.e., semi-implicit and fully explicit methods. All the methods are symplectic, symmetric,
second-order, and require a single calculation of the lattice force per time step and a single
evaluation per time step of the lattice variable dependent terms in the charge equations.
We have split the dynamical equations into pieces that correspond to explicit flow maps,
which are Hamiltonian, symplectic, and time-reversible. The composition of flow maps will
automatically inherit the same properties. However, to preserve the total charge probability,
which is a quadratic invariant, and the rotational invariance of the probability amplitude,
we require implicit methods for the pieces corresponding to the charge equations. One
convenient method is, for example, the implicit midpoint rule. Since charge equations are
linear with respect to the charge variables, we require only one solution of a linear system
of equations per time step to exactly preserve the total charge probability and the rotational
invariance of charge variables.

Performing numerical computational analysis for all the proposed splitting methods,
we found that the Hamiltonian is conserved up to second-order in long-time simulations,
which we would anticipate from symplectic integrators. The total charge probability is
also preserved with high accuracy even with symplecticity-preserving symmetric explicit
methods, which do not exactly conserve the total charge probability by design.

With both classes of methods, we were able to obtain qualitatively good numerical
results of charge transfer by mobile discrete breathers, but it remains to be seen if the ap-
proximate charge probability conservation by explicit methods is sufficient to reproduce the
physical properties of the phenomenon. Incoherencies may appear when post-processing
the numerical results. To address this question we are developing multiple time-stepping
methods based on the proposed symplectic explicit methods. In addition, explicit splitting
methods do not preserve rotational invariance compared to the proposed semi-implicit
methods. At this stage, it is unclear how important it is for the numerical method to pre-
serve rotational invariance in connection to the study of charge transfer, but we conjecture
that reproducing the physical properties of the equations is extremely beneficial. We will
explore it in future work. It is also unclear at this stage if simulations with large time
steps and second-order accuracy are sufficient to provide meaningful answers regarding
charge transfer properties, despite the ability to obtain qualitatively good numerical results
in long-time simulations. These considerations are of particular importance for spectral
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representation and theory, including simulations to find numerically exact periodic wave
solutions with charge transfer and their stability, see [12,13].

When explicit splitting methods are compared, we find a peculiar sudden increase in
accuracy in the total probability conservation at a certain time step, which is dependent
on the charge oscillation frequency value E0/τ. We plan to address this phenomenon in
a future work from an analytic point of view, in addition to multiple time-stepping or
the development of the impulse method to improve probability conservation by explicit
methods. Since all the proposed methods are only second-order, we plan to explore
higher-order composition methods. It is well known that the number of equations to
evaluate significantly increases with higher-order composition methods. An interesting
prospect to potentially overcome this is to explore the so-called processing and effective order
methods [37,38].

While the computational analysis was performed on an idealized example model, we
have ensured sufficient generality by considering the charge energy function En(q1, . . . , qN)
to be dependent on the positions of the lattice particles. The developed methods can be
directly applied to higher dimensional lattice models and with long-range interaction
potentials. The flexibility of the methods stems from the fact that they can be directly
incorporated into splitting methods of thermostated Hamiltonian dynamics and provide a
means to construct other methods with multiple time-stepping and higher-order.

7. Conclusions

In this article, we have addressed the problem of numerical integration of conservative
semi-classical systems, that is, a lattice of atoms, ions, or molecules that are described
classically and a charge carrier that is described as a quantum particle within the tight-
binding approximation. This approximation implies that the charge carrier states can be
expressed in a basis of localized states at each atom or ion. The much faster dynamics of
the charge carrier due to the small value of the mass of an electron and the very small value
of the Planck constant provide serious challenges to numerical methods that attempt to
resolve mathematical models of realistic systems. Importantly, numerical methods that
do not conserve energy and the probability one of finding the charge carrier in the whole
system can be viewed as unreliable.

We have solved the problem expressing the whole system in a canonical form and
designing integration schemes based on the splitting methods approach. We have proposed
different algorithms with the objective of conserving the underlying properties of the
original mathematical model, i.e., symplecticity, time-reversibility, conservation of the total
charge probability and the Hamiltonian, rotational invariance of the charge variables, and
allowing computations with large time steps and small numerical errors. We have tested
these methods producing polarobreathers, i.e., breathers transporting charge probability, in
a phenomenological model for silicates. Polarobreathers are good candidates to explain
experimental results on charge transport without an electric field.

We have demonstrated that explicit splitting methods conserve the Hamiltonian up to
the second order and approximately conserve the charge probability in long-time simula-
tions. However, semi-implicit methods conserve the charge probability and the rotational
invariance of the charge-probability amplitude exactly. They also have smaller or on par
numerical errors compared to the explicit methods. Moreover, the proposed semi-implicit
methods allow larger time steps with smaller errors than other conventional methods.
Therefore, at least for small models, they are the method of choice for integration of semi-
classical systems. Further developments of the explicit methods are highly motivated by
the numerical integration of charge transfer in two- and three-dimensional crystal lattice
models, where solutions of a large linear system of equations for charge variables per time
can become very cumbersome.

The methods are not limited to the systems tested as they rely on the generic properties
of tight-binding semi-classical models, which are a consequence of the first principles and
the laws of physics, particularly classical Hamiltonian dynamics and the Schrödinger
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equations. We think that the proposed methods will provide efficient computational means
to study the phenomenon of charge transfer by nonlinear lattice excitations in physical and
biological lattice models with realistic potentials and applications.
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Appendix A

In this appendix, we list all the exact flow maps and numerical methods stated in
this manuscript in the explicit vector component forms, where a given system’s state
(q, a, p, b)T is advanced in time to a new state (Q, A, P, B)T at time t or with the time step
h, respectively.

Appendix A.1. Exact Flow Maps

All exact flow maps φQ
t , φP

t , φD
t , φA

t , and φB
t of pieces Q, P, D, A, and B, respectively

(see Equation (86)), are listed in Table A1, where the complex flow map φ
E(q)
t is given

in (87). Notice that we have applied the property (88) in the application of the flow map
φD

t .

Table A1. Explicit representations of exact flow maps φQ
t , φP

t , φD
t , φA

t , and φB
t .

φQ
t φP

t φD
t φA

t φB
t

Q = q + tM−1 p Q = q Q = q Q = q Q = q
A = a A = a A = Re(φ

E(q)
t (a + bi)) A = a + tL(q)b A = a

P = p P = p + tF(q) P = p + tGD(q, a, b) P = p + tGA(q, b) P = p + tGB(q, a)
B = b B = b B = Im(φ

E(q)
t (a + bi)) B = b B = b− tL(q)a

Appendix A.2. Semi-Implicit Numerical Methods

In Tables A2 and A3, we list all symplecticity-preserving, symmetric, semi-implicit,
exactly charge-conserving, numerical methods PQCQP, QPCPQ, PQDWDQP, QPDWDPQ,
PQD̄WD̄QP, and QPD̄WD̄PQ. Explicit representations of the numerical flow maps ψC

h and
ψW

h are stated in (90) and (92), respectively.
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Table A2. Explicit representation of semi-implicit numerical flow maps ψPQCQP
h and ψQPCPQ

h .

ψPQCQP
h ψQPCPQ

h

p̄ = p + h
2 F(q) q̄ = q + h

2 M−1 p

q̄ = q + h
2 M−1 p̄ p̄ = p + h

2 F(q̄)

c = a + bi c = a + bi

C =
(

I + i h
2 Π(q̄)

)−1(
I − i h

2 Π(q̄)
)

c C =
(

I + i h
2 Π(q̄)

)−1(
I − i h

2 Π(q̄)
)

c

A = Re(C) A = Re(C)

B = Im(C) B = Im(C)

p̃ = p̄ + hG
(

q̄, a+A
2 , b+B

2

)
p̃ = p̄ + hG

(
q̄, a+A

2 , b+B
2

)
Q = q̄ + h

2 M−1 p̃ P = p̃ + h
2 F(q̄)

P = p̃ + h
2 F(Q) Q = q̄ + h

2 M−1P

Table A3. Explicit representations of semi-implicit numerical flow maps ψPQDWDQP
h , ψPQD̄WD̄QP

h ,

ψQPDWDPQ
h , and ψQPD̄WD̄PQ

h .

ψPQDWDQP
h ψPQD̄WD̄QP

h

p̄ = p + h
2 F(q) p̄ = p + h

2 F(q)

q̄ = q + h
2 M−1 p̄ q̄ = q + h

2 M−1 p̄

p̃ = p̄ + h
2 GD(q̄, a, b) p̃ = p̄ + h

2 GD(q̄, a, b)

ā = Re(φ
E(q̄)
h/2 (a + bi)) ā = Re(φ

E(q̄)
h/2 (a + bi))

b̄ = Im(φ
E(q̄)
h/2 (a + bi)) b̄ = Im(φ

E(q̄)
h/2 (a + bi))

c̄ = ā + b̄i c̄ = ā + b̄i

c̃ =
(

I + i h
2 L(q̄)

)−1(
I − i h

2 L(q̄)
)

c̄ c̄ =
√

2τ
S c̄, S = aT a + bTb

ã = Re(c̃) c̃ =
(

I + i h
2 L(q̄)

)−1(
I − i h

2 L(q̄)
)

c̄

b̃ = Im(c̃) ã = Re(c̃)

p̂ = p̃ + hGW

(
q̄, ā+ã

2 , b̄+b̃
2

)
b̃ = Im(c̃)

p̆ = p̂ + h
2 GD(q̄, ã, b̃) p̂ = p̃ + hGW

(
q̄, ā+ã

2 , b̄+b̃
2

)
A = Re(φ

E(q̄)
h/2 (ã + b̃i)) p̆ = p̂ + h

2 GD(q̄, ã, b̃)

B = Im(φ
E(q̄)
h/2 (ã + b̃i)) A = Re(φ

E(q̄)
h/2 (ã + b̃i))

Q = q̄ + h
2 M−1 p̆ B = Im(φ

E(q̄)
h/2 (ã + b̃i))

P = p̆ + h
2 F(Q) C = A + Bi

C =
√

2τ
S C, S = ãT ã + b̃T b̃

A = Re(C)

B = Im(C)

Q = q̄ + h
2 M−1 p̆

P = p̆ + h
2 F(Q)
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Table A3. Cont.

ψQPDWDPQ
h ψQPD̄WD̄PQ

h

q̄ = q + h
2 M−1 p q̄ = q + h

2 M−1 p

p̄ = p + h
2 F(q̄) p̄ = p + h

2 F(q̄)

p̃ = p̄ + h
2 GD(q̄, a, b) p̃ = p̄ + h

2 GD(q̄, a, b)

ā = Re(φ
E(q̄)
h/2 (a + bi)) ā = Re(φ

E(q̄)
h/2 (a + bi))

b̄ = Im(φ
E(q̄)
h/2 (a + bi)) b̄ = Im(φ

E(q̄)
h/2 (a + bi))

c̄ = ā + b̄i c̄ = ā + b̄i

c̃ =
(

I + i h
2 L(q̄)

)−1(
I − i h

2 L(q̄)
)

c̄ c̄ =
√

2τ
S c̄, S = aT a + bTb

ã = Re(c̃) c̃ =
(

I + i h
2 L(q̄)

)−1(
I − i h

2 L(q̄)
)

c̄

b̃ = Im(c̃) ã = Re(c̃)

p̂ = p̃ + hGW

(
q̄, ā+ã

2 , b̄+b̃
2

)
b̃ = Im(c̃)

p̆ = p̂ + h
2 GD(q̄, ã, b̃) p̂ = p̃ + hGW

(
q̄, ā+ã

2 , b̄+b̃
2

)
A = Re(φ

E(q̄)
h/2 (ã + b̃i)) p̆ = p̂ + h

2 GD(q̄, ã, b̃)

B = Im(φ
E(q̄)
h/2 (ã + b̃i)) A = Re(φ

E(q̄)
h/2 (ã + b̃i))

P = p̆ + h
2 F(q̄) B = Im(φ

E(q̄)
h/2 (ã + b̃i))

Q = q̄ + h
2 M−1P C = A + Bi

C =
√

2τ
S C, S = ãT ã + b̃T b̃

A = Re(C)

B = Im(C)

P = p̆ + h
2 F(q̄)

Q = q̄ + h
2 M−1P

Appendix A.3. Explicit Numerical Methods

In Table A4, we list both symplecticity-preserving, symmetric, explicit, lattice–charge–
lattice, numerical methods PQABDBAQP and PQDABADQP, while in Table A5, we list both
symplecticity-preserving, symmetric, explicit, charge–lattice–charge, numerical methods
DBAQPQABD and BADQPQDAB.
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Table A4. Explicit representations of explicit numerical flow maps ψPQABDBAQP
h and ψPQDABADQP

h .

ψPQABDBAQP
h ψPQDABADQP

h

p̄ = p + h
2 F(q) p̄ = p + h

2 F(q)

q̄ = q + h
2 M−1 p̄ q̄ = q + h

2 M−1 p̄

ā = a + h
2 L(q̄)b p̃ = p̄ + h

2 GD(q̄, a, b)

p̃ = p̄ + h
2 (GA(q̄, b) + GB(q̄, ā)) ā = Re(φ

E(q̄)
h/2 (a + bi))

b̄ = b− h
2 L(q̄)ā b̄ = Im(φ

E(q̄)
h/2 (a + bi))

p̂ = p̃ + hGD(q̄, ā, b̄) ã = ā + h
2 L(q̄)b̄

ã = Re(φ
E(q̄)
h (ā + b̄i)) p̂ = p̃ + h

2 GA(q̄, b̄)

b̃ = Im(φ
E(q̄)
h (ā + b̄i)) b̃ = b̄− hL(q̄)ã

B = b̃− h
2 L(q̄)ã p̆ = p̂ + hGB(q̄, ã)

p̆ = p̂ + h
2 (GA(q̄, B) + GB(q̄, ã)) â = ã + h

2 L(q̄)b̃

A = ã + h
2 L(q̄)B p′ = p̆ + h

2 GA(q̄, b̃)

Q = q̄ + h
2 M−1 p̆ p′′ = p′ + h

2 GD(q̄, â, b̃)

P = p̆ + h
2 F(Q) A = Re(φ

E(q̄)
h/2 (â + b̃i))

B = Im(φ
E(q̄)
h/2 (â + b̃i))

Q = q̄ + h
2 M−1 p′′

P = p′′ + h
2 F(Q)

Table A5. Explicit representations of explicit numerical flow maps ψDBAQPQABD
h and ψBADQPQDAB

h .

ψDBAQPQABD
h ψBADQPQDAB

h

p̄ = p + h
2 GD(q, a, b) b̄ = b− h

2 L(q)a

ā = Re(φ
E(q)
h/2 (a + bi)) p̄ = p + h

2
(
GA(q, b̄) + GB(q, a)

)
b̄ = Im(φ

E(q)
h/2 (a + bi)) ā = a + h

2 L(q)b̄

b̃ = b̄− h
2 L(q)ā p̃ = p̄ + h

2 GD(q, ā, b̄)

p̃ = p̄ + h
2
(
GA(q, b̃) + GB(q, ā)

)
ã = Re(φ

E(q)
h/2 (ā + b̄i))

ã = ā + h
2 L(q)b̃ b̃ = Im(φ

E(q)
h/2 (ā + b̄i))

q̄ = q + h
2 M−1 p̃ q̄ = q + h

2 M−1 p̃

p̂ = p̃ + hF(q̄) p̂ = p̃ + hF(q̄)

Q = q̄ + h
2 M−1 p̂ Q = q̄ + h

2 M−1 p̂

â = ã + h
2 L(Q)b̃ p̆ = p̂ + h

2 GD(Q, ã, b̃)

p̆ = p̂ + h
2
(
GA(Q, b̃) + GB(Q, â)

)
â = Re(φE(Q)

h/2 (ã + b̃i))

b̂ = b̃− h
2 L(Q)â b̂ = Im(φ

E(Q)
h/2 (ã + b̃i))

P = p̆ + h
2 GD(Q, â, b̂) A = â + h

2 L(Q)b̂

A = Re(φE(Q)
h/2 (â + b̂i)) P = p̆ + h

2

(
GA(Q, b̂) + GB(Q, A)

)
B = Im(φ

E(Q)
h/2 (â + b̂i)) B = b̂− h

2 L(Q)A
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