
Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier.com/locate/engstruct

Evaluation of optimal sensor placement algorithms for the Structural Health
Monitoring of architectural heritage. Application to the Monastery of San
Jerónimo de Buenavista (Seville, Spain)

Pablo Pachóna,⁎, María Infantesb, Margarita Cámaraa, Víctor Compána, Enrique García-Macíasc,
Michael I. Friswelld, Rafael Castro-Triguerob

a Department of Continuum Mechanics, Universidad de Sevilla, Avenida Reina Mercedes, 41012 Seville, Spain
bDepartment of Mechanics, Universidad de Córdoba, Campus de Rabanales, 14071 Cordoba, Spain
c Department of Civil and Environmental Engineering, University of Perugia, Via G Duranti 93, Perugia 06125, Italy
d Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Crymlyn Burrows, Swansea SA1 8EN, United
Kingdom

A R T I C L E I N F O

Keywords:
Historical building
Uncertainty analysis
Operational modal analysis
Non-destructive test
Ambient vibration test

A B S T R A C T

In recent years, Structural Health Monitoring (SHM) based on Operational Modal Analysis (OMA) and damage
detection tools has become a popular non-destructive solution to assess the real-time integrity of any kind of
structure. This technique is especially well-suited for the condition-based conservation of historical structures,
where minimal invasiveness must be ensured owing to their high cultural and architectural value. Optimal
Sensor Placement (OSP) techniques represent a valuable tool for efficiently designing the sensor layout in a SHM
system in order to achieve an effective modal identification with a reduced number of sensors and, consequently,
an improved cost efficiency. In this light, this paper proposes a design methodology of sensor networks based on
OSP techniques suitable for historical structures. To do so, a preliminary extensive OMA campaign is conducted
in order to construct a reliable finite element (FE) model by fitting the identified modal properties. Afterwards,
an optimal sensor arrangement with a limited number of sensors is obtained by applying different model-based
OSP techniques. In order to improve the robustness of the solution, material uncertainties are included in the
model and the optimal sensor placement is conducted within a statistical framework. This methodology is
presented and evaluated with a case study of a Spanish secular building: the Monastery of San Jerónimo de
Buenavista in Seville (Spain). In particular, this paper presents the results of the preliminary ambient vibration
test and the modal identification of the monastery, the updating process of the FE model, as well as a critical
review of the different OSP techniques within a framework of material parameter uncertainty. The presented
analysis demonstrate that OSP techniques based on the rank optimization of the kinetic energy matrix of the
structure yield robust sensor layout.

1. Introduction

Architectural heritage in Europe consists mainly of masonry struc-
tures, such as historical bridges, castles, palaces and religious buildings.
These structures are part of the national history and hold an important
cultural value, as confirmed by the creation of the World Heritage List
published by UNESCO. In the Spanish context, many of these still
standing heritage buildings were pillaged and burned over the years,
whereby their structural integrity is not always assured. The con-
servation and safeguarding of historical structures against material
degradation and natural/human hazards represent a great concern for

communities and institutions such as the International Council of
Monuments and Sites (ICOMOS), which in 2003 drafted the principles
for the analysis, conservation and structural restoration of architectural
heritage [1].

The assessment of the health condition of historical buildings cannot
usually be carried out by means of destructive tests due to the un-
deniable value of the historical structures. In this context, non-de-
structive and non-invasive methods become a fundamental technique
for this type of structures. Non Destructive Tests (NDTs) such as ther-
mography, endoscopic tests and sonic tests can be used as com-
plementary tools to accurately determine the characteristics of masonry
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elements in order to validate the structural assessment [2,3]. However,
foremost among the different NDTs are OMA and model updating.
These techniques allow the assessment of the structural condition
through the identification and analysis of the modal properties. System
identification is a research topic with decades of history, particularly in
aerospace and automotive industries, where Experimental Modal Ana-
lysis (EMA) is widely used for the dynamic characterization of struc-
tural elements from input-output vibration experimental data. The
implementation of this philosophy into large structures, where ambient
vibration tests are easier to carry out than forced vibration tests, gave
rise to output-only vibration-based system identification methods, also
referred to as OMA techniques. The main objective of OMA is to identify
the modal parameters (natural frequencies, vibration modes and
damping ratios) through the data processing of ambient vibration re-
cords without disturbing the normal operation of the structure under
study. Some basic references regarding different OMA methods and
applications are [4–6]. From early approaches to now, the measure-
ment equipment has evolved and many different algorithms have been
proposed in the literature including Frequency Domain Decomposition
(FDD) and Enhanced Frequency Domain Decomposition (EFDD), Fast
Bayesian FFT method, Poly-Reference Least Squares Complex Fre-
quency method (p-LSCF), Covariance-Driven Stochastic System Identi-
fication (COV-SSI), Data-Driven Stochastic System Identification
(DATA-SSI), Blind Source Separation, etc. Nowadays, reliable and even
automated methods are available [7], making OMA a well-established
and mature technique for the structural assessment of heritage struc-
tures. The consideration of this methodology for the characterization of
masonry structures is relatively recent. The PhD thesis of Ramos at the
University of Minho [8] can be cited as one of the first approaches.
OMA has been successfully used in [9] to identify the modal properties
of a building of the Greek heritage and also in the dynamic identifi-
cation of the bell tower of Trani’s Cathedral [10]. Modal updating
techniques seek to minimize the mismatch between the experimentally
identified modal features and the estimates of a numerical model,
usually based on the Finite Element Method (FEM), through the fitting
of certain modal parameters [11–14].

In the last decade, long-term vibration-based SHM is becoming in-
creasingly popular among researchers. This non-invasive technique is
mainly based on OMA techniques and makes it possible to identify
structural damage over time. In reference [15], SHM technology and
automated OMA techniques are specially applied to structures in seis-
mically prone areas to evaluate the dynamic behaviour in operational
conditions and the earthquake effects. Currently, there are few SHM
systems installed in historical masonry structures that are faithful to the
steps of the paradigm defined by Farrar and Worden [16]. Initially,
most monitoring systems were implemented in bell towers, since in this
type of structures the dynamic properties can be easily identified with
moderate execution costs [17–19]. In recent years, these techniques
have been extended to other typologies of greater geometric complexity
which involve structural models with larger computational demands
[20,21]. In general, SHM systems aim to control the structural beha-
viour of these buildings to identify damage and assist decision-making
for condition-based conservation management [22–24].

To facilitate the implementation of SHM systems in historical
structures, OSP methods constitute a useful tool. The main goal of this
technique is to efficiently design the sensor layout to achieve a correct
identification of the vibrational properties with a reduced number of
measurement points. The reduction of the number of sensors is a very
important issue in historical structures because it implies less invasive
monitoring, and minimal impact on the cultural and artistic value of the
building. Furthermore, it reduces the implementation costs and the
posterior data processing. The efficient design of the sensor layout is
particularly relevant in geometrically complex structures for which
mode shapes are also complex and involve several global and local
modes within the frequency range of interest [25]. In these cases, a
rational approach for the design of SHM systems can certainly take

advantage of OSP techniques in order to achieve an effective modal
identification. Optimal sensor placement methods have been widely
employed in civil engineering structures such as bridges, whereas the
number of applications in historical structures is scarce. Only a few
experiences can be found in the literature [26–28]. In addition, most
works on the application of OSP techniques are based upon simple
benchmark case studies and/or consider deterministic definitions of the
material properties of the monitored structure.

In this work, four different FEM-based OSP methodologies are
considered, including two approaches based on the effective in-
dependence of the target mode shapes (EFI and EFIwm), and two others
based on the concept of energy matrix rank optimization (KEMRO and
SEMRO). The main objective is to evaluate the performance of the
different OSP methods, especially when taking into account the parti-
cular aspects involved in the numerical modelling and monitoring of
historical structures. The analysis of the OSP methods is performed by
considering field data and including material parameter uncertainties
in the modelling. This research is carried out through a case study of the
Monastery of San Jerónimo de Buenavista (Fig. 1) in Seville, Spain.
First, an extensive ambient vibration test was conducted for a pre-
liminary identification of the modal features of the structure. After-
wards, a detailed three-dimensional finite element model of the mon-
astery is calibrated to fit the previously identified modal properties and,
finally, the updated model is used to assist different OSP techniques.
The effect of material parameter uncertainties is evaluated through
Monte Carlo Simulations.

The main novelty of this work is the evaluation of the potentials of
different OSP techniques for the design of optimized sensor layout for
the condition-based maintenance of historical buildings. In the first
place, the use of field data from a preliminary ambient vibration test
with many sensors offers a rigorous framework for the comparison of
different OSP techniques and represents an advanced technique for
devising cost-efficient long-term monitoring systems. Secondly, the in-
corporation of material parameter uncertainties in the three-dimen-
sional modelling of masonry structures, and the comparison of different
OSP techniques through Monte Carlo Simulations also represents a
novel contribution in the field. The paper is organized as follows.
Section 2 presents the case study of the Monastery of San Jerónimo de
Buenavista, including a detailed description of its historical background
and current condition. Section 3 shows the experimental structural
assessment works (ambient vibration tests, OMA) and the model up-
dating process. The optimal number of sensors for a long-term SHM
system and the analysis of the four different OSP methods are addressed
in Section 4, and the analysis of their robustness considering material
uncertainties is presented in Section 5. Finally, the most relevant con-
clusions of this study are highlighted in Section 6.

Fig. 1. View of the current state of the Monastery of San Jerónimo de
Buenavista..
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2. Monastery of San Jerónimo de Buenavista

This study focuses on the west gallery of the main cloister of the
Monastery of San Jerónimo de Buenavista, a historical building located
in the city of Seville, Spain. The beginning of its construction dates back
to the early fifteenth century. Originally, the Monastery of San
Jerónimo consisted of an aggregate of five main buildings: the church,
the eastern cloister, the main cloister, the tower and the printing press
(Fig. 2a). However, only part of the main cloister and the tower of the
church are still preserved today (Fig. 2b). The eastern cloister, the
printing press and a large part of the church disappeared as a result of
the numerous vicissitudes that the monastery has suffered over the
course of centuries [29].

The remains of the main cloister constitute a Renaissance-style
construction consisting of four galleries, which are made up of seven
pillars on each side, attached columns and semicircular arches on the
ground floor and bells on the first floor. These galleries are delimited by
brick masonry walls and covered by ribbed stone vaults. Currently, in
the west gallery, the entire ground floor is conserved while only the
vertical structure and the arches are preserved on the upper floor
(Fig. 3).

In 1964, the monastery was declared a heritage site due to the ar-
chitectural importance of the whole building. Since then, it has been
subjected to several restoration operations [29]. The last one was the
execution of a rehabilitation and adaptation project for a civic centre in
2013 (Fig. 2c). The project basically consisted of the reconstruction of

the southern and eastern galleries annexed to the main cloister [30].
From a structural point of view, a mixed system of load-bearing walls
and pillars supporting large-edged beams was used to construct the new
building (Fig. 4).

As a result of the new protection policy for the Monastery of San
Jerónimo, several damages had already been detected before the con-
struction of the new civic centre. These are related to the following
aspects: cracking of structural elements, cracking in auxiliary elements,
excessive deformations, failures in foundations, concentration of hu-
midity, corrosion of metallic elements, disintegration, cracking, factory
swelling and attacks, etc. (Fig. 5). In January 2015, and due to the fact
that some of the damages listed above were aggravated during the
works, the Town Planning Department of Seville City Council com-
missioned a research project for the structural analysis of the cloister.

The research project indicated above follows the approach ratified
by the ICOMOS 14th General Assembly in Victoria Falls, Zimbabwe, in
2003 [1]. The main objective was to conduct a diagnosis of the building
to justify different conservation proposals to ensure the integrity of all
its elements. A multidisciplinary work team composed of architects,
engineers, archaeologists and historians carried out the research pro-
ject. An extensive historical study of the different interventions in the
building was finally presented, as well as a report about its structural
health condition. To elaborate this report, complex numerical analysis
and several moderately destructive and non-destructive tests were
conducted, including ambient vibration tests, archaeological tastings,
tomography and sonic wave tests and georadar tests on the columns

Fig. 2. Historical development of the Monastery of San Jerónimo: (a) Original configuration, 1650; (b) historical remains, 2000; and (c) current architectural
configuration of the complex, 2018.

Fig. 3. Views of the west gallery of the Monastery of San Jerónimo.
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and ground. This project allowed us to obtain a vast amount of ex-
perimental and numerical information from the west gallery of the
cloister. The data obtained from these previous works were funda-
mental for the development of the present study, since it was possible to
reduce the high level of uncertainty that usually surrounds the struc-
tural characterisation of this type of buildings.

3. FE modelling and analysis

The reparation works in the historical building allowed us to per-
form several extensive experimental campaigns in the monastery be-
tween September and November 2013. Ambient vibration tests were
performed in the west gallery with the aim of identifying the natural
frequencies, mode shapes and damping ratios of the system. In order to
ensure an efficient identification of the modal properties of the case
study, a preliminary finite element model was previously developed
with the aim of properly designing the test set-up. This numerical model
was later updated based on the results obtained from the OMA of the
ambient vibration tests. This model updating process is described in
sections below.

3.1. Preliminary FE model

Based on a complex geometric survey, a sophisticated three-di-
mensional FE model of the whole monastery was developed in order to
conduct a subsequent structural analysis that is not a subject of this
work. Initially, the modal behaviour of the entire structure was ana-
lysed. The results of the modal analysis of the monastery is depicted in
Fig. 6.

In the light of this analysis, the dynamic independence of each

gallery was observed, since each one presents its own uncoupled vi-
bration modes. For instance, the second and fourth global modes cor-
respond to local modes of the west gallery. Regarding that the goal of
the study is the evaluation of the different OSP techniques, it was
decided to perform the analysis considering only the west gallery due to
the large size of the complete model. This last consideration makes it
possible to reduce the computational cost of the study without losing
generality in the evaluation of the different OSP techniques for their
application in masonry structures. A numerical sub-model of this gal-
lery (Fig. 7) was generated with ANSYS [31]. The influence of the other
parts of the structure were considered through appropiate boundary
conditions to simulate the connection with the rest of the structure.

With regard to the numerical definition of the preliminary FE
model, the whole gallery was modelled with 4-node solid elements,
with the exception of a 5-centimetre concrete compression layer located
above the vaults which was modelled with 3-node triangular shell
elements. In this way, the model has a total of 1,462,311 elements
(1,454,047 solid and 8264 shell elements), 275,475 nodes and 826,425
degrees of freedom. The boundary conditions are defined as constrained
displacements and free rotations in the foundation, whilst the lateral
boundary conditions are extracted from the general model. Table 1
summarizes the material properties used in the modelling. Note that the
repair works allowed us to reliably test some elements, such as the
material properties of the fillings. Dynamic tests were also carried out
on the stone and brick masonries to identify the Young’s moduli and
densities of these elements. However, it was not possible to determine
these parameters with certainty due to the great variability of the ob-
tained results. Thus, these four parameters will be subsequently se-
lected as the variables to be updated.

As noted above, a modal analysis of this preliminary FE model was

Fig. 4. Views of the civic centre annexed to the Monastery of San Jerónimo.

Fig. 5. Detected damage in the main cloister of the Monastery of San Jerónimo.
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performed to identify which points experience larger modal displace-
ments in as many vibration modes as possible. The first five mode
shapes are shown in Fig. 8. It is observed that the complex geometric
configuration of the arches on the first floor makes the dynamic features
of the structure quite complex.

3.2. Ambient vibration tests

An extensive ambient vibration campaign with a large number of
sensors was performed on the west gallery on November 22th, 2013.
Following the results obtained from the preliminary FE model, Fig. 9
shows a representation of the considered measuring points. There are
two different levels, one on the first floor of the gallery (+ 6.6m.), and
the other one on the start of the upper arches (+ 12.2m). Accelerations
were registered in X and Y directions with the aim of identifying the
vibration modes in the lateral and longitudinal directions of the gallery.
Eight accelerometers were used placing four of them as references (blue
points in Fig. 9). The other four accelerometers were moved along the
columns and the walls in the two different levels. In total, the resulting
number of testing set-ups was fifteen.

The equipment used for these tests was composed of force balance
accelerometers with a bandwidth ranging from 0.01 to 200 Hz, a dy-
namic range of 140 dB, a sensitivity of 10 V/g and a mass of 0.35 kg
(model ES-U2). These accelerometers were connected via eight 40m
long cables to a twelve-channel data acquisition system with a 24-bit
ADC, provided with anti-alias filters (model GRANITE). The equipment

is manufactured by the company KINEMETRICS. The parameters set for
the dynamic tests were a sampling frequency of 100 Hz and approxi-
mately 15min time duration for each test. These assumptions assure
that frequencies from 1 to 50 Hz would be properly measured.
Excitation was always associated with environmental ambient noise,
and similar conditions of temperature and humidity were considered
during the tests [32].

Fig. 6. Three-dimensional FE model of the monastery and numerical identification of the first five global modes.

Fig. 7. Three-dimensional FE model of the west gallery.

Table 1
Material properties used in the preliminary FE model.

Property Unit Value

Young’s modulus of brick masonry (wall) MPa 1300
Poisson’s ratio of brick masonry – 0.2
Density of brick masonry kg/m3 1700
Young’s modulus of stone masonry (vaults and columns) MPa 1800
Poisson’s ratio of stone masonry – 0.2
Density of stone masonry kg/m3 2000
Young’s modulus of concrete slab MPa 23,000
Poisson’s ratio of concrete slab – 0.2
Density of concrete slab kg/m3 2500
Young’s modulus of filling (wall) MPa 500
Poisson’s ratio of filling (wall) – 0.2
Density of filling (wall) kg/m3 1500
Young’s modulus of filling (vaults) MPa 350
Poisson’s ratio of filling (vaults) – 0.2
Density of filling (vaults) kg/m3 900
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3.3. OMA and model updating

The data obtained in-situ were processed with the software
ARTEMIS [33] using two different identification methods: Enhanced
Frequency Domain Decomposition (EFDD) [34] and Stochastic Sub-
space Identification (SSI-UPC Merged) [35,36] (Fig. 10).

Regarding the signal processing, a decimation factor of 5 and a
spectral density resolution of 1024 was used, which leads to a frequency
line spacing of 0.005 Hz. In this way, the mode shapes and the modal
frequencies of the gallery were obtained. The resulting modal para-
meters of the gallery are summarized in Table 2.

As indicated in Table 2, the first five vibration modes of the gallery
have been identified in the frequency range from 0 to 5 Hz. Frequency
values are obtained with a high degree of reliability, with differences
between both methods always lower than 2%. However, the values of
the damping ratios present larger variability. This typical fact indicates
that higher levels of excitation are usually necessary for the correct
identification of the modal damping of such structures. Time domain
methods have been proved to have better performance in the

identification of damping ratios under operational conditions while the
EFDD method, based on computation of the response spectrum data,
usually requires longer records to obtain an acceptable error in spec-
trum estimation and, therefore, to extract modal parameters in a reli-
able way [37]. Finally, in relation to the mode shapes, with the ex-
ception of the first mode, which is a bending mode of the full gallery, all
the modes are induced by the changing shape of the transverse arches of
the first floor. The great complexity of these modes can be seen in
Fig. 11.

Based on the experimental results, the preliminary numerical model
is updated to simulate the current modal behaviour of the gallery and
assist the evaluation of the OSP methods. The same procedure as in
previous works by the authors was followed [38]. Hence, iterative
methods are used to perform the FE model updating [39], introducing
changes directly to some of the physical parameters that define the
structure. As indicated above, the parameters to be updated are the
Young’s moduli of the stone and brick masonries due to the high degree
of dispersion detected during the characterization tests. The selection of
more parameters is not necessary, since their values have been reliably

Fig. 8. First five numerical vibration modes and undeformed configuration of the FE model.

Fig. 9. Plan view of the accelerometer locations (reference accelerometers in blue). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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identified by laboratory tests.
Taking into account the good quality of the experimental data, the

five identified modes are selected as target modes in the updating
process. Only the values of the natural frequencies are selected due to
the lower reliability of the identified mode shapes in comparison with
the measured natural frequencies. This fact is due to the great com-
plexity of the mode shapes (see Fig. 11). Nevertheless, the mode shapes
are later validated using the Modal Assurance Criterion (MAC) [40]:
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where φj and φk are two mode shapes to be compared and the super-
script T designates transposition.

Therefore, considering five identified natural frequencies, the four
parameters are adjusted and the residuals are minimised during the
model updating. The updating process has been performed via a genetic
algorithm, as implemented in Matlab [41], according to an objective

function defined by the relative differences between the experimental
and the numerical modal parameters. This function is usually for-
mulated as a least-squares problem as follows:
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where z θ( )NUM j, are the values related to the physical parameters of the
numerical model, θ (Ec and ρc), while the variables zEXP j, are the cor-
responding data values obtained from the experimental campaign. The
differences between these variables are set as residues, r θ( )j .

Fig. 12 illustrates the convergence of the updating process using a
genetic algorithm. Taking as a reference the parameters of the pre-
liminary model, a controlled variability range is established for the
updating parameters. Thus, the estimation of unrealistic solutions is
avoided (Table 3). In each iteration, a population of 1000 vectors is
created that, by using the rules of the genetic algorithm, minimize the
objective function in Eq. (2). The calibration process finishes when the
difference between the mean value (blue points, Fig. 12) and and the
best value (black points, Fig. 12) of the population is less than × −1 10 3.

Table 3 shows the considered lower and upper bounds for the up-
dating parameters and their corresponding initial and updated values.
The updated values differ by up to 20% with respect to those defined in
the initial model.

Table 4 summarizes the results following the updating process and
confirms the high correspondence of the results between the calibrated
model and those obtained from ambient vibration tests. It can be noted
that the updated frequencies are close to the experimental ones, dif-
fering by less than 5% while exhibiting MAC values in a range from 0.82
(mode 3) to 0.98 (mode 1) for the five considered vibration modes.

Fig. 10. Experimental identification by the EFDD and SSI-UPC-Merged methods.

Table 2
Experimental modal parameters: natural frequencies ( f ), damping ratios (ξ )
and standard deviation (std).

Mode No EFDD SSI

f (Hz) std( f ) ξ (%) std(ξ ) f (Hz) std( f ) ξ (%) std(ξ )

1 2.330 0.023 0.864 0.119 2.345 0.002 2.728 0.429
2 3.359 0.021 1.292 0.468 3.357 0.002 1.411 0.104
3 3.857 0.049 0.582 0.307 3.910 0.003 2.971 0.126
4 4.311 0.056 1.565 0.799 4.286 0.001 2.019 0.054
5 4.561 0.042 1.348 0.473 4.532 0.002 1.718 0.076
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4. Sensor placement

Vibration-based structural health monitoring is a suitable non-in-
vasive technique for the long-term control of the condition of

architectural heritage buildings. The placement of the sensors is a
crucial design parameter of the monitoring system to efficiently identify
the condition data. In this light, OSP techniques represent a very useful
tool to design efficient monitoring set-ups, particularly in complex
structures such as historical buildings.

After a concise theoretical background on OSP techniques, different
OSP methods are applied to the present case study: the Monastery of
San Jerónimo de Buenavista. The measuring points for the OSP problem
are the same as for the ambient vibration tests (see Fig. 8). The chosen
set-up has 32 possible locations for the sensors, with three different
measuring directions at each point: i.e. the x y, and z directions.
Therefore, a total of 96 possible sensor positions are considered in the
OSP problem.

4.1. Theoretical background

Let us consider a monitoring system consisting of n sensors for the
dynamic identification of a structural system. Let us also assume that
the system consists of N degrees of freedom (DOFs) associated with the
finite element mesh, and the numerical mode shapes φj are extracted by
performing modal analysis. Typically, only a limited number of DOFs
and mode shapes of the FE model can be monitored due to accessibility
or physical limitations (e.g. rotations or internal nodes). Therefore,
considering Nd candidate DOFs and Nm target mode shapes, the OSP
methods aim to identify the optimal positions of the n sensors among
the Nd available DOFs. In this work, four different FEM-based OSP
methodologies are considered, including two approaches based on the

Fig. 11. First five experimental vibration modes and undeformed configuration of the experimental model.

Fig. 12. Convergence plot of the genetic algorithm. Blue points: Mean values of
the objective function of all the population of the corresponding generation.
Black points: Best values result of an individual of the population. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 3
Summary of updated parameters of the FE model computed by a genetic al-
gorithm.

Parameter Initial value Range of variation Updated value

Lower Upper

Eb (MPa) 1300 900 1700 1000.51
ρb (kg/m3) 1700 1300 2100 1805.72
Es (MPa) 1800 1200 2200 1520.36

ρs (kg/m3) 2000 1600 2400 1954.86

Table 4
Comparison of numerical and experimental modal parameters, the latter
identified by the SSI algorithm.

Mode fexp (Hz) fnum (Hz) −MACexp num fupd (Hz) −MACexp upd

1 2.345 2.534 (8.05%) 0.979 2.344 (0.04%) 0.980
2 3.357 3.869 (15.25%) 0.915 3.510 (4.77%) 0.933
3 3.910 4.126 (5.52%) 0.819 3.873 (0.94%) 0.825
4 4.286 4.699 (9.63%) 0.872 4.380 (2.19%) 0.923
5 4.532 4.947 (9.15%) 0.841 4.502 (0.66%) 0.862

[∗]The percentages in parenthesis correspond to the relative differences be-
tween frequencies.

P. Pachón, et al. Engineering Structures 202 (2020) 109843

8



effective independence of the target mode shapes (EFI and EFIwm), and
two others based on the concept of energy matrix rank optimization
(KEMRO and SEMRO). In the following, the theoretical background of
these techniques is concisely outlined.

The Effective Independence (EFI) method [42,43] seeks the optimal
location of sensors as those DOFs of the FE model that maximize the
linear independence of the mode shapes. Based upon the modal analysis
of the FE model, the target modal matrix ×φN Nd m can be computed,
which contains the retained target modes as columns and the candidate
DOFs as rows. Thereby, the Fisher Information Matrix, ×FIMN Nm m, of
the target modal matrix reads [44]:

= φ φFIM T (3)

which can be diagonalized by solving the eigenvalue/eigenvector pro-
blem:

− =ψλFIM I 0( )i i (4)

as = −ψ ψFIM Λ 1, where ×ΛN Nm m is the diagonal matrix of the eigen-
values λi of the FIM, and ×ψN Nm m contains the corresponding eigen-
vectors ψi by columns. Given that the FIM is symmetric and positive
definite, the eigenvectors are orthogonal (i.e. =−ψ ψ1 T) and form an
orthogonal basis in an Nm-dimensional space. Therefore, the product φψ
yields an ×N Nd m matrix that represents the projection of the mode
shapes φi onto the Nm-dimensional space spanned by the vectors ψi.
Squaring each element in the φψ matrix as = ⊗φψ φψA , with ⊗
denoting term-by-term matrix multiplication, the elements Aij of the
resulting matrix represents the contribution of each i-th DOF to each j-th
mode shape. If weighted by the inverse of the eigenvalue matrix of the
FIM as = ⊗ −φψ φψA Λ 1, each element in this matrix has equal im-
portance. The summation by columns of the A matrix leads to a ×N 1d

vector F whose components = ∑ =F Ai j
N

i j1 ,
m represent the contribution of

every i-th DOF to all the retained modes of interest. Alternatively, the
orthogonal projection matrix E can be defined as [42]:

= =− −φψ φψ φ φE Λ FIM( )1 T 1 T (5)

The elements on the diagonal of the E projection matrix equals the
components of the F vector and, therefore, represent the relative con-
tribution of the candidate DOFs to the target mode shapes. It can be
proved that the E matrix is idempotent [42], that is =E E2 . A well-
known property of idempotent matrices is that their trace is equal to
their rank. Therefore, the optimal placement of sensors can be related
to the DOFs where the diagonal terms of E are maximum or, in other
words, the DOFs with maximum contribution to the linear in-
dependence of the target mode shapes. In this light, the EFI method is
defined in an iterative way by eliminating those candidate DOFs whose
contribution to the rank of the projection matrix is minimal, and the
procedure finishes when the number of remaining DOFs reaches the
desired number of sensors.

An alternative OSP method considering the mass weighting of the
effective independence of the target mode shapes is also considered,
usually referred to as the EFIwm method. In this case, the Fisher in-
formation matrix FIM takes the form:

= φ φFIM MT (6)

and, consequently, the projection matrix E reads [45]:

= −φ φE M FIM M( )1/2 1 T 1/2 T (7)

where M stands for the numerical mass matrix extracted from the FE
model. Given that the mass matrix is diagonalizable, the square roots
M1/2 in Eq. (7) can be readily obtained by eigen-decomposition. In
addition, in order to eliminate the DOFs with minimum contribution to
the rank of E, Guyan reduction must be implemented at each iteration
to reduce the mass matrix M to the remaining candidate DOFs.

On the other hand, Energy Matrix Rank Optimization (EMRO)
techniques are based upon the deployment of sensors at locations that
maximize the energy of the monitored system, typically the strain

energy or the kinetic energy [44]. Following the modal analysis of the
FE model of the system, the strain energy (SE) and kinetic energy (KE)
matrices can be written as [46,47]:

= =φ φ φ φSE K KE M,T T (8)

where K is the numerical stiffness matrix computed by the FEM. In this
regard, the FIM matrices can be assembled by using the Cholesky de-
composition of the stiffness and mass matrices as follows:

= =K C C M D D,T T (9)

with C and D being upper triangular matrices. Accordingly, the FIM
matrices take the forms:

= =φ φ φ φFIM C C FIM D D( ) , ( )SE KE
T T (10)

and the projection matrices:

= =− −φ φ φ φE C FIM C E D FIM D( ) , ( )SE SE KE KE
1 T 1 T (11)

where subscripts “SE” and “KE” relate the corresponding quantities to
the strain and kinetic energies, respectively. Once the projection ma-
trices are defined, the procedure for finding the optimal sensor locali-
zations is identical to the previously introduced EFI algorithms. In a
similar way to the EFIwm method, Guyan reduction is needed to reduce
the stiffness and mass matrices at each iteration. The OSP algorithms
based on the elimination of candidate DOFs with minimum contribu-
tions to the rank of EKE and ESE matrices are referred to as the KEMRO
and SEMRO methods, respectively.

4.2. Identification of the optimal number of sensors

The application of the above OSP techniques to the case study is
now addressed. First of all, the required number of sensors is de-
termined. Different scenarios were explored by varying the number of
accelerometers of the monitoring system from 2 to 16. The EFI method
is employed to find the optimal configuration for each case. In order to
analyse the goodness of the OSP solution, the data of the ambient vi-
bration tests are used. The difference between the modal properties
obtained via OMA using the complete test data (reference) and those
obtained only by using the data from sensors placed at the optimal
configuration is analysed. In particular, the error is computed as:

∑= ⎡

⎣
⎢

⎤

⎦
⎥

=

Rtotal error(%)
i

N

i
1

2
1/2m

(12)

where Nm is the total number of considered modes and Ri is the relative
error between the reference natural frequency of mode i f; ref i, , and the
frequency identified using only data from sensors in the OSP solution;
fosp i, . That is:

= ⎡

⎣
⎢

− ⎤

⎦
⎥R

f f

f
(%) 100·i

ref i osp i

osp i

, ,

, (13)

In Fig. 13, the total error is shown for several cases considering
different numbers of sensors in the OSP problem. Note that the error is
stabilized for a number of sensors greater than 8. Given these results, it
can be considered that 8 is the optimal number of accelerometers for
the case of the Monastery of San Jerónimo, since a reasonable increase
in the number of sensors does not significantly reduce the error in the
identification of the natural frequencies of the structure.

4.3. Evaluation of the performance of OSP methods

Once the required number of sensors for the long-term monitoring
system has been determined, the OSP problem is performed to obtain
the best positions for these 8 sensors. Four different OSP methods are
evaluated, namely EFI, EFIwm, KEMRO and SEMRO.

In Fig. 14, the relative error in the identification of natural fre-
quencies and the total error are shown for each method. For the EFI and
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EFIwm methods, the relative error is very low in all cases (below 0.5%).
In the case of the EMRO methods, the error is considerably greater.
Especially for the KEMRO method, for which the error in the identifi-
cation of the third natural frequency amounts to almost 6%. As a partial
conclusion, it can be said that the EFI methods allow the identification
of the natural frequencies of the structure with a lower error.

Regarding the solution, the optimal locations of the 8 considered
sensors obtained with the different OSP methods are shown in Fig. 15.
In this bar plot, a chosen placement for a particular OSP method is
represented by a bar of height 0.25. In this way, a sensor location se-
lected by all the methods is plotted with a value of 1 on the ordinate
axis. There are three common positions that are selected by all the
methods: points 5, 7 and 11, all in the y direction. Another three points
are selected by three of the four methods: points 6, 10 and 12, all also in
the y direction. There is only one other common point chosen by both
EFI methods: point 11 in the x direction. The eighth optimal position
could be chosen between any of the alternatives proposed by the dif-
ferent methods separately.

Although in a particular case the optimal locations would finally
depend on the choice of one of the OSP algorithms, this analysis is
useful for comparing the consistency of the different methods. As a
general conclusion, the solution of the EFI, EFIwm and SEMRO methods
are largely similar, while that of the KEMRO method is considerably
different.

5. An optimal sensor placement strategy considering material
parameter uncertainty

This section assesses the robustness of the previously introduced
OSP techniques considering material parameter uncertainties. In par-
ticular, the elastic moduli of the brick and the stone masonries are as-
sumed to be stochastic with Gaussian distributions with mean values of

=E 1000.51MPab and =E 1520.36MPas , respectively, and standard de-
viations of 20% with respect to their mean values. The optimal selection
of sensors is evaluated within a stochastic framework by applying
Monte Carlo Simulations (MCS) as sketched in Fig. 16. Monte Carlo
methods constitute a highly popular and widely used solution for the
uncertainty propagation analysis of structures [48]. These techniques
leverage the random description of certain model parameters, whereby
the structural analysis can be performed by a deterministic simulation
framework. Albeit these techniques usually require a large number of
simulations and, as a consequence, considerable computational costs,
the uncertainty analysis can be performed using the deterministic FE
model. In this work, the MCS process first considers a random sampling
of the elastic moduli of the brick and the stone masonries using MA-
TLAB. Subsequently, the FE model of the monastery is built in the finite
element modelling software ANSYS, and a modal analysis is performed
to extract the mode shapes and natural frequencies. Afterwards, the
previous information is retrieved in MATLAB, and the optimal positions
of the sensors are obtained using the EFI, EFIwm, KEMO and SEMRO
algorithms. Finally, this process is repeated ns times until a statistically
significant population of sensor locations is achieved.

5.1. Determination of the optimal number of samples in the MCS

An important parameter of the Monte Carlo approach is the number
of samples ns required to have a representative population of the si-
mulated stochastic process. In this case study, several simulations with
different number of samples from 2 to 516 were performed. The EFI
method is employed in the OSP problem. In order to determine the
optimum number of samples for the MCS, the dispersion percentage is
calculated for each case. The dispersion is defined as the percentage of
times during the MCS that the algorithm chooses a location which is
finally not part of the solution, where the solution is represented by the
eight sensors that are chosen most often. It can be computed as:

=
∑ = p

ns n
dispersion (%) 100·

¯
·

i
ns

i1
(14)

where ns is the number of samples in the MCS, n is the number of sensor
of the monitoring system (8 in this case) and p̄i represents the number
of selected points for sample i which are not present in the final solu-
tion.

The dispersion percentage for MCS with different number of sam-
ples is presented in Fig. 17. For a low number of samples, the dispersion
percentage experience strong fluctuations. However, the dispersion is
stabilized for a number of samples greater than 64. Consequently, 64
samples or more are considered in the following calculations.

5.2. Effects of uncertainties on the OSP methods

Once the minimum number of iterations for the MCS has been de-
termined, the OSP problem is performed to evaluate the robustness of
the different methods. For this purpose, first a Gaussian distribution of
Young’s moduli of brick and stone with standard deviations of 20% with
respect to their mean values is considered. The dispersion percentage
and the solution for each method is analysed.

In Fig. 18, the dispersion percentage computed with different
numbers of samples of the MCS is shown for the four OSP methods. The
EFI and KEMRO methods exhibit dispersion percentage about 10% and
22%, respectively. The SEMRO method seems to be the most stable

Fig. 13. Total error function for several scenarios with different numbers of
sensors.

Fig. 14. Relative error function for different OSP methods.
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when considering uncertainty in the value of the model parameters,
with less than 3% dispersion of the results.

The solution considering a parametric variability of 20% is re-
presented in Fig. 19 for different OSP methods. In this case, the prob-
ability of sensor selection is computed for each method and represented
in the plot in a normalized form. There are two common positions se-
lected by all the methods at all iterations: points 7 and 11, both in the y
direction. The point y5 is also selected for the four methods with a
combined probability greater than 95%. As in the case with no

parametric uncertainties, the points 6, 10 and 12 in the y direction are
selected with a high probability for the EFI, EFIwm and SEMRO
methods. Another interesting result is that the point y3 is selected by the
four methods but with a very low probability (below 25%). In view of
these results, the effect of considering a parameter variability of 20%
does not strongly affect the solution of the OSP problem.

Fig. 15. Normalized sensor selection for different OSP methods considering deterministic material parameters.

Fig. 16. The Monte Carlo simulation process.

Fig. 17. Dispersion percentage for different number of samples in the MCS.

Fig. 18. Dispersion percentage for different OSP methods with 20% of para-
meter variability.
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Finally, different standard deviations for the brick and stone
Young’s moduli are considered. In particular, several percentages of
variation between 2.5% and 40% are used to evaluate the robustness of
the four considered OSP methods. The number of samples in the MCS is
64. The results are presented in Fig. 20. There is a progressive in-
creasing trend of dispersion as the variability of the parameters grows.
The SEMRO method is again the one that seems to be more stable while
the KEMRO generates a greater dispersion of the results in all cases. For
the two EFI methods, the dispersion percentage is similar for the dif-
ferent standard deviation values of the parameters.

6. Conclusions

The paper has presented the application of the OSP methodology to
historical masonry buildings such as the Monastery of San Jerónimo de
Buenavista. The use of this technique becomes relevant in this kind of
structures to reduce the number of sensors in a SHM monitoring system
in order to be less-invasive. In this study, four different FEM-based OSP
methodologies are analysed, including two approaches based on the
concept of energy matrix rank optimization (KEMRO and SEMRO), and
two others based on the effective independence of the target mode
shapes (EFI and EFIwm). The modelling of historical buildings is

usually subjected to a high level of uncertainty derived from numerous
aspects such as material properties. Due to this, the effect of model
parametric uncertainty on the results of the different OSP algorithms is
also discussed in this work.

First, the optimal number of sensors for the monitoring system has
been determined. The results demonstrate that, with only eight sensors,
the natural frequencies of the structure could be identified with a
maximum error less than 1% in comparison to the extensive monitoring
with ninety-six measurement points. The suitability of the OSP tech-
niques to find a convenient set-up for a cost-efficient continuous mon-
itoring in complex structures is thus proven. Among the four OSP al-
gorithms analysed, the EFI methods provide a solution that allows the
identification of natural frequencies with less error, whereas the solu-
tion of the KEMRO method is the one that gives the greatest error in the
modal identification.

Including parametric uncertainty in the OSP methodology involves
performing Monte Carlo simulations with a sufficient number of sam-
ples to represent the stochastic process. The SEMRO method is the one
that presents the lowest dispersion in its solution, for all the different
scenarios analysed. A general conclusion for the case study presented is
that the choice of the optimal sensor placements do not change dras-
tically when considering a 20% variability in value of the parameters.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.engstruct.2019.109843.
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