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Abstract
The kinetic analysis of solid-state processes aims at obtaining fundamental information that can be used for predicting the 
time evolution of a process within a wide range of conditions. It is an extended belief that the determination of the kinetic 
parameters from the analysis of curves recorded under isothermal conditions is strongly conditioned by the kinetic model 
used to fit the experimental data. Thus, much effort is devoted to finding the model that truly describes a process in order to 
calculate the kinetic parameters with accuracy. In this work, we demonstrate that the value of activation energy determined 
from kinetic analysis of isothermal curves is independent of the kinetic model used to fit the experimental data and, taking 
advantage of the underlying reason for this, a method for determining the activation energy with two isothermal curves is 
proposed.
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Introduction

The kinetic analysis of solid-state processes allows obtain-
ing fundamental information that can be used for modelling 
a myriad of processes with direct application to industry 
[1–11]. Kinetic analysis is quite challenging not only in 
terms of obtaining reliable experimental data [12–14], but 
also from the point of view of extracting the kinetic param-
eters from these experimental curves [9, 15]. The main 
purpose of a kinetic analysis is to determine the kinetic 
parameters that describe the process and allow predicting 
its thermal behaviour with accuracy in a wide range of con-
ditions, usually different from those used for the analysis. 
Recently, it has been recognized that predictions are com-
promised if the selection of the kinetic model is not prop-
erly performed [16]. Moreover, ideal kinetic models in the 

literature have been proposed assuming ideal conditions that 
are rare in real systems that present intrinsic features. For 
example, these ideal models assume homogeneous materi-
als in terms of particle size, while ideal samples usually 
present a broad particle size distribution (PSD). Previous 
studies have shown that the PSD might influence the results 
of kinetic analysis [17]. For instance, it has been demon-
strated that interface reaction models can be confused with 
diffusion or nucleation models if the PSD is not taken into 
account [18].

The experimental data used in the kinetic analysis can 
be recorded under a wide range of conditions and using dif-
ferent thermal analysis techniques, including differential 
scanning calorimetry (DSC), thermogravimetric analysis 
(TGA) and high-temperature X-ray diffraction. The experi-
mental conditions are often limited by the process studied 
and the method employed. Concerning this, the isothermal 
kinetic analysis presents certain advantages as compared to 
other conditions employed to study solid-state processes. 
For instance, kinetic studies conducted under isothermal 
conditions are more effective when discriminating the 
kinetic model as compared to other approaches, since the 
shape of the extent of conversion versus time curves directly 
reflects the kinetic model obeyed by a process [19]. The 
isothermal kinetic analysis continues to be amply employed 
nowadays to study a wide range of processes. Thus, it is 
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the most feasible option for reactions studied under realistic 
conditions of operation [19, 20], long-term curing [21, 22], 
oxidation and reduction processes [23, 24], hydration and 
dehydration processes [25–27], reactions followed through 
X-ray diffraction [28] or those studies intended to discrimi-
nate the kinetic model under isothermal conditions [29–32].

Here, we demonstrate mathematically that the value of 
activation energy determined from kinetic analysis of iso-
thermal curves is independent of the selected model used 
to fit the data. To the best of our knowledge, this demon-
stration is unprecedented and has significant implications, 
as reported values of activation energy are valid indepen-
dently of the assumed kinetic model. Furthermore, taking 
advantage of some of the mathematical arguments that led to 
that conclusion, we present a simple methodology to obtain 
the values of the activation energy through analysis of two 
curves recorded under isothermal conditions. The method is 
validated by analysing different experimental curves, corre-
sponding to different processes, namely the thermal degrada-
tion of ethylene–propylene–diene, the thermal decomposi-
tion of limestone and the cure of a clear laminating epoxy 
resin, and comparing the results with those reported in the 
literature.

Theoretical foundation

The equation that describes the rate of solid-state processes 
is [7]:

where t is the time, � is the extent of conversion, f (�) is the 
kinetic model, and k(T) is the Arrhenius function given by:

Being A a pre-exponential factor, Ea the activation energy, 
R the gas constant and T the temperature. In isothermal con-
ditions, k(T) becomes a constant and Eq. 1 can be integrated 
as follows:

where g(�) =
�∫
0

d�∕f (�) is the integral form of the kinetic 

model. Let us consider a process studied under isothermal 
conditions at two different temperatures, T1 and T2 . Accord-
ing to Eq. 2, different values of the rate constant k will be 
obtained, so that:

(1)
d�

dt
= k(T)f (�)

(2)k(T) = A exp

(
−
Ea

RT

)

(3)

�

∫
0

d�

f (�)
= k

t

∫
0

dt → g(�) = kt

Therefore:

From this equation, we can derive the relationship between 
the time invested in reaching a given value of � in the two 
isothermal experiments.

Figure 1 illustrates the proportionality relationship between 
the times required to reach a certain value of � at two different 
temperatures, being the constant of proportionality equal to the 
ratio between the rate constants. Data shown in Fig. 1a were 
calculated using a Runge–Kutta method to solve Eq. 1 for T1 = 
750 K and T2 = 800 K, assuming f (�) = 3(1 − �)2∕3 (contract-
ing volume model R3) [7], Ea = 180 kJ mol−1 and A = 109 s−1. 
As might be observed in Fig. 1b, both curves overlap when the 
values of time corresponding to the curve calculated for T2 are 
multiplied by the ratio between the two rate constants k1∕k2.

The standard method based on the fitting to ideal models to 
determine the activation energy from isothermal experiments 
consists of recording several curves at different temperatures 
and representing some selected kinetic models g(�) as a func-
tion of t to estimate which of them best linearizes the data [7]. 
The process is supposed to obey the model that provides the 
value of the correlation coefficient closest to one, and the slope 
of the best-fitting line to the data is assumed to be the rate con-
stant k . Then, the activation energy and the pre-exponential fac-
tor can be determined by plotting the logarithm of k versus 1∕T.

Let’s suppose that we have a set of n isotherms recorded at 
different temperatures: T1,T2 , T3….Tn . If we represent g(�) as a 
function of t for an arbitrary given model and apply the linear 
least squares approximation, the slope for the isotherm cor-
responding to Ti is given by:

Being N the number of points (t, �) recorded during the 
experiment. According to Eq. 6, each value tj

|||Ti
 is related to 

tj
|||T1

 through the following equation:
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Substituting this into Eq. 7, we get:

(8)tj
|||Ti

=
k1

ki
tj
|||1

(9)
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�
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B y  t a k i n g  l o ga r i t h m s ,  c o n s i d e r i n g  t h a t 
ki = A exp

(
−Ea∕RTi

)
, and rearranging terms it follows:

Thus, regardless of the kinetic model used, si linearly 
depends only on 1∕Ti with slope −E

a
∕R . Equivalently, the 

activation energy determined by this approach will be the 
same for any kinetic model employed. Note that when the 
kinetic model actually obeyed is selected, s1 = k1 and Eq. 10 
becomes:

Thus, the activation energy can be determined from the 
slope and the pre-exponential factor from the intercept of 

(10)ln si = ln

(
s1

k1

)
−

Ea

RTi
+ lnA for i > 1

(11)ln ki = −
Ea

RTi
+ lnA
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the line logarithm of k versus 1∕T  . Figure 2a shows the 
extent of conversion as a function of time for four tempera-
tures: 750 K, 775 K, 800 K and 825 K. Data were simulated 
assuming isothermal conditions, the kinetic model R3, Ea

=180 kJ mol−1 and A = 109 s−1. Table 1 collects the results 
obtained from fitting these data to Eq. 3 assuming differ-
ent kinetic models. As expected, the value of the correla-
tion coefficient obtained is maximum for the kinetic model 
R3. This analysis illustrates that the value of the activation 
energy does not depend on the kinetic model assumed; the 

slope of the line ln s versus 1∕T is the same for all the kinetic 
models studied, consistently with Eq. 10.

The relationship expressed by Eq. 6 enables us to develop 
a simple method for determining the activation energy with 
two curves recorded under isothermal conditions, which sig-
nificantly simplify the typical procedure. Indeed, by plotting 
the time required to attain a certain value of the extent of 
conversion at T2 against the time needed when the isotherm 
is conducted at T1 , we obtain a line which slope is given by 
m = k1∕k2 . Thus, taking into account Eq. 2 for the Arrhenius 
function, the activation energy can be calculated as:

Let us apply this method to data plotted in Fig. 1. Figure 3 
shows the values of t|800K as a function of t|750K for differ-
ent values of the extent of conversion. The slope of the best-
fitting line is m = 0.16445, and applying Eq. 12 we obtain 
Ea = 180 kJ mol−1 as expected, which validate the method for 
determining the value of the activation energy with two of the 
isothermal curves shown in Fig. 2.

Experimental section

The method described in Sect. 2 was applied to the study 
of three different reactions: the pyrolysis of ethylene–pro-
pylene–diene (EPDM), the thermal decomposition of 
limestone and the curing of an epoxy resin. The sample 

(12)Ea = R
T1 ⋅ T2(
T1 − T2

) lnm

Table 1   Values of activation 
energy, rate constants and 
correlation coefficients obtained 
from fitting the data plotted 
in Fig. 2a to Eq. 3 assuming 
different kinetic models

Kinetic model 750 K 775 K 800 K 825 K Ea/kJ mol−1

s/s−1 R2 S/s−1 R2 s/s−1 R2 s/s−1 R2

F0 0.00034 0.8355 0.00087 0.8355 0.00209 0.8355 0.00474 0.8355 180
F1 0.00229 0.7923 0.00581 0.7923 0.01391 0.7923 0.03160 0.7923 180
R2 0.00032 0.9752 0.00081 0.9752 0.00194 0.9752 0.00440 0.9752 180
R3 0.00029 1 0.00073 1 0.00174 1 0.00396 1 180
A2 0.00079 0.9687 0.00201 0.9687 0.00482 0.9687 0.01094 0.9687 180
A3 0.00051 0.9354 0.00130 0.9354 0.00310 0.9354 0.00705 0.9354 180
A4 0.00039 0.8720 0.00098 0.8720 0.00235 0.8720 0.00534 0.8720 180
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Fig. 4   SEM micrograph and 
particle size distribution of the 
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work
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of (EPDM) used was supplied by ExxonMobil (Vistalon 
Rubbers): 69 mass% ethylene, 5 mass% ethylidene nor-
bornene and 26 mass% propylene. The limestone (ESKAL 
60) was provided by KSL Staubtechnik GmbH (Germany). 
Figure 4 shows a scanning electron micrograph and the 
particle size distribution (PSD) of the sample of limestone 

used. As might be observed, the sample exhibits a narrow 
PSD with a peak around 60 μm. Both the thermal deg-
radation of EPDM and the decomposition of limestone 
were studied in isothermal conditions using a thermo-
gravimetric analyser Q5000IR from TA instruments. The 
experiments started with a heating ramp at 300 °C min−1 
from room temperature to the temperature of the isotherm. 
Then, the temperature was maintained constant for two 
hours in the experiments with EPDM and seven hours in 
the case of limestone. The experiments were carried out 
in nitrogen with a flow rate of 200 mL min−1. On the other 
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hand, the data corresponding to the curing of the epoxy 
resin were taken from the literature [22].

Results and discussion

Figure 5a shows the time evolution of the extent of degra-
dation of EPDM corresponding to two isothermal experi-
ments carried out at 683 K and 693 K. As can be observed 
in Fig. 5b, there is a linear relationship between the values 

of time needed to reach a certain value of � at the two dif-
ferent temperatures employed. The value of apparent activa-
tion energy calculated from the slope, after applying Eq. 12, 
is Ea = (253.4 ± 0.7) kJ mol−1, which is in agreement with 
that reported in the literature Ea = (252 ± 8) kJ/mol [33]. 
Figure 5c illustrates that both isotherms overlap when Eq. 6 
is applied using the value of Ea calculated from the slope of 
the line plotted in Fig. 4b.

Data corresponding to the thermal decomposition of 
limestone are plotted in Fig. 6. These curves were recorded 
at 873 K and 893 K. The value of activation energy obtained 
in this case is Ea = (182.1 ± 0.6) kJ mol−1. This reaction has 
received a great deal of interest in recent years because it is 
in the core of the so-called “calcium looping” technology 
for CO2 capture and the storage of concentrated solar power 
[34, 35]. Thus, the reaction has been amply studied and the 
values of activation energy reported in the literature are in 
good agreement with the one determined in this work [19, 
36–38].

The same method was applied to data corresponding to 
experiments in which clear laminating epoxy resin curing 
was monitored by DSC at two distinct temperatures: 338 K 
and 343 K. As aforementioned, the experimental results, 
shown in Fig. 7a, were published by Tziamtzi et al. [22]. 
The value of activation energy determined using the method 
proposed, (55 ± 7) kJ mol−1, is in agreement with the values 
reported in the work from which the data were obtained. 
Besides, it is also in line with other results previously 
reported in the literature for this type of material [39, 40].

The three cases analysed above served us to validate the 
method with data recorded under different experimental 
conditions, demonstrating its general applicability.

Conclusions

In this work, it has been demonstrated that the apparent 
activation energy calculated from isothermal analysis 
based on the fitting to ideal kinetic models is independ-
ent of the model selected to do the fitting. Furthermore, 
a method to calculate the activation energy from two iso-
thermal experiments has been presented. The method was 
applied to the analysis of data corresponding to experi-
ments conducted in a TGA, namely the pyrolysis of EPDM 
and the thermal decomposition of limestone. The com-
parison with the apparent activation energies previously 
reported for these reactions demonstrated the reliability of 
the method. Moreover, to extend its range of applicability, 
the method has been also validated through its application 
to data from the literature recorded by differential scan-
ning calorimetry.
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