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Abstract: One of the most important threats to public health is the appearance of multidrug-resistant
pathogenic bacteria, since they are the cause of a high number of deaths worldwide. Consequently,
the preparation of new effective antibacterial agents that do not generate antimicrobial resistance
is urgently required. We report on the synthesis of new linear cationic antibacterial polytriazoles
that could be a potential source of new antibacterial compounds. These polymers were prepared
by thermal- or copper-catalyzed click reactions of azide and alkyne functions. The antibacterial
activity of these materials can be modulated by varying the size or nature of their side chains, as
this alters the hydrophilic/hydrophobic balance. Antibacterial activity was tested against pathogens
of the ESKAPE group. The P3TD polymer, which has butylated side chains, was found to have the
highest bactericidal activity. The toxicity of selected polytriazoles was investigated using human red
blood cells and a human gingival fibroblast cell line. The propensity of prepared polytriazoles to
induce resistance in certain bacteria was studied. Some of them were found to not produce resistance
in methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa. The interaction of these
polytriazoles with the Escherichia coli membrane produces both depolarization and disruption of
the membrane.

Keywords: ESKAPE; cationic polymer; antibacterial polymer; antibiotic resistance; click polymerization

1. Introduction

Since penicillin was discovered and systematically produced, infectious diseases were
relegated to noncommunicable diseases, such as cardiovascular disease or cancer, both
leading causes of death. The discovery of penicillin and subsequent new broad-spectrum
antibacterial drugs marked the beginning of a new era. However, the ability of bacteria to
develop mutations and the overuse of those antibiotics have induced the appearance of
bacterial strains that could resist drugs to which they were originally sensitive [1].

In this context, there is a group of antibiotic resistant pathogens that exhibit high
virulence, especially in nosocomial infections acquired by immunosuppressed patients,
known as ESKAPE pathogens. This acronym represents six bacterial genres or species:
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii,
Pseudomonas aeruginosa, and Enterobacter spp. These bacteria acquired resistance deter-
minants to avoid antibiotic effects, such as the production of enzymes that can degrade
bioactive compounds, the development of biofilms that create a mechanical and biochemi-
cal wall, or the overproduction of efflux pumps in the outer membrane that do not allow
drugs to reach the cytosol at therapeutic concentrations [2]. These resistance genes are
a significant risk to public health, and the World Health Organization (WHO) has recom-
mended establishing research strategies focusing on the discovery and development of
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new antibiotics active against multidrug resistant bacteria [3–5]. Today, the emergence of
multidrug and pandrug-resistant bacteria has become a challenging issue to address, as
antibiotic-resistant bacteria are predicted to cause 10 million deaths by 2050 [6].

The challenge consists in developing well-tolerated, effective, and low-toxicity antimi-
crobial agents. In this regard, the design and synthesis of antimicrobial macromolecular
systems, polymers, and copolymers have the potential to become a long-term solution to
tackle these hazardous bacteria. This kind of structure is less likely to induce resistance
than other antibiotics such as penicillin derivatives, cephalosporins, or carbapenems [7].
Antimicrobial polymers also have some important advantages over other structures like
antimicrobial peptides because the polymers have greater stability, are cheaper, and are easy
to prepare. They have also been proposed as next-generation biocides, as their preparation
is more environmentally friendly [8].

Not only are antimicrobial polymers useful as antibiotics, but they also have other uses,
such as surface coatings, preventing adhesion and colonization of bacteria on biomedical
devices, and other relevant surfaces [9]. Briefly, antimicrobial polymers contain at least
two types of domains: hydrophobic domains (aliphatic, aromatic, etc.) and positively
charged domains (ammonium, thiazolium, guanidinium, etc.), also known as cationic
domains, that can be found at side chains [10,11], at the backbone [12,13], or both [14].
On this basis, there are some modulating parameters that seem to play a key role in the
efficacy of antibacterial polymers: amphipathicity, cationicity, molecular weight, chain
length, and functional group [15]; however, the architecture of the polymer also seems to
play an important role in the efficacy of those polymers. For example, recently, Liu et al. [16]
prepared polymers containing subunits that differ in their stereochemistry, showing that
these differences could lead to differences in the biological properties of the polymers.
In addition, differences between regiospecific and non-regiospecific polymers obtained
through azide-alkyne ‘click’ chemistry [12] or variations in topology and flexibility of
polymers [13] influence activity against different microorganisms.

In recent decades, a wide variety of polymeric materials based on poly(1,2,3-triazole)
have been synthesized using click chemistry. For the preparation of these materials, the cy-
cloaddition reaction between azide and alkyne groups, catalyzed by copper
(CuAAC) [17–20], which is highly efficient and regiospecific, or carried out in the ab-
sence of a metal catalyst, such as those promoted by tension (strain promoted alkyne-azide
cycloaddition, SPAAC) [21–24], or by heat (Huisgen cycloaddition) in the presence [25,26]
or absence of solvent [27–29], has been widely used. The growing interest in click chemistry
is evidenced by the large number of applications that can be found in very different areas
of research, for example, its use for the controlled synthesis of macromolecules of different
structures [30–35], for the preparation of biobased materials [36,37] and hydrogels [38,39],
in glycoscience [40], in biomedicine [41,42], or in industry [43].

The present work describes the synthesis, characterization, and in vitro antibacterial
activity of new polycationic polymers with side chains of different sizes and, in some cases,
of a different nature, with the purpose of modulating and improving their antibacterial
properties and biocompatibility. These polymers have been obtained through azide-alkyne
‘click’ polymerization, by CuAAC and solvent- and metal-free 1,3-dipolar cycloaddition
reactions, using, on the one hand, a derivative of tetraethylenepentamine as diyne monomer,
which will give rise to three protonatable amines in the repeating unit of polymers after
deprotection, and on the other hand, a diazido monomer that was synthesized by alkylation
of the alcohol functions present in 1,12-diazido-4,9-dioxadodecan-2,11-diol using different
alcohols and alkyl halides.

The synthesized polycationic polymers were evaluated against ESKAPE pathogens.
In addition, their hemolytic activity, toxicity against human cell lines, membrane permeabi-
lization/disruption, and induced resistance were tested.
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2. Materials and Methods
2.1. Materials

The chemicals, including fluorescent probes, were all used as purchased from Mil-
liporeSigma. Heptyl iodide was obtained from Alfa Aesar. The solvents were dried
and purified, when necessary, by appropriate standard procedures. Butyl methanesul-
fonate was synthesized following previously reported protocols [44,45]. 1,12-Diazido-4,
9-dioxadodecan-2,11-diol (1) [46], 5 [47], 6 [48] and P1T [49] were synthesized following
the procedures previously described. Vancomycin-resistant Enterococcus facecium (VRE),
methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Klebsiella pneumoniae,
multidrug-resistant Pseudomonas aeruginosa, and Enterobacter spp. were obtained from
Hospital Virgen de Valme (Sevilla, Spain). Escherichia coli CECT 101 was purchased from
Colección Española de Cultivos Tipo (Valencia, Spain). Mueller-Hinton Broth (MHB) and
Tryptic Soy Agar (TSA) were obtained from Scharlab (Barcelona, Spain). Bovine fetal serum,
Dulbecco’s Modified Eagle’s Medium, antibiotics, N-(2-Hydroxyethyl)piperazine-N′-(2-
ethanesulfonic acid) (HEPES), and trypsin were acquired from Thermo Fisher Scientific
(Waltham, MA, USA). Fresh human blood was obtained from a healthy volunteer. Human
gingival fibroblasts were purchased from Innoprot (Vizcaya, Spain).

2.2. Measurements

Thin-layer chromatography (TLC) was performed on Silica Gel 60 F254 (E. Merck,
Darmstadt, Germany) with detection by UV light or charring with H2SO4 or phospho-
molybdic acid. Flash column chromatography was performed using E. Merck Silica Gel
60 (230–400 mesh). Fourier transform infrared (FTIR) spectra were recorded on a Bruker
Invenio-X equipped with an ATR spectrometer in the wavenumber range from 600 to 4000
cm−1 in the CITIUS of Universidad de Sevilla. 1H and 13C NMR spectra were recorded
with a Bruker (Billerica, MA, USA) Avance Neo 500 MHz spectrometer in the CITIUS
of the Universidad de Sevilla. Chemical shifts are reported as parts per million down-
field from tetramethylsilane. COSY and HETCOR pulse sequences were used to record
two-dimensional 1H–1H homonuclear and 13C–1H heteronuclear shift correlation spectra,
respectively. Bruker Topspin software (version 3.1) was used for data acquisition and
analyses. The thermal behavior of the polymers was examined by differential scanning
calorimetry (DSC) using a TA DSC Q200 Instrument, calibrated with indium. Samples
of about 2–3 mg were heated at a rate of 10 ◦C/min under a nitrogen flow rate of 20
mL/min and cooled to −35 ◦C. Thermogravimetric analyses (TGA) were carried out by
a SDT Q600 TA instrument at a heating rate of 10 ◦C/min under a nitrogen flow of 100
mL/min, and the temperature range was from room temperature to 600 ◦C. A Waters
apparatus equipped with a Waters 2414 refractive-index detector and two µStyragel HR
columns (7.8 mm × 300 mm) linked in series, thermostatted at 60 ◦C, were used for Gel
permeation chromatography (GPC) analyses. N, N-dimethylformamide containing 0.5
mg/mL LiBr was used as the mobile phase, at a flow rate of 1.0 mL min−1. Calibration was
performed using polystyrene samples of narrow molecular-weight distribution. The total
content of copper in the polymer samples was determined at m/z 63 with an Agilent 8800
inductively coupled plasma mass spectrometer (ICP-MS/MS) from Agilent technologies
(Santa Clara, CA, USA) in the CITIUS of the Universidad de Sevilla with rhodium-103 as
an internal standard. UV-vis absorbance was measured using a Bio Tek Sinergy HT plates
reader (Winooski, VT, USA).

2.3. Monomer Synthesis
2.3.1. Preparation of Monomer 2

Compound 1 (0.49 g, 1.7 mmol) was dissolved in DMSO (5.0 mL), and finely com-
minuted KOH (0.39 g, 7.0 mmol) was added to the solution under continuous agitation.
Next, methyl iodide (0.57 g, 4.0 mmol) was added dropwise, and the reaction mixture was
stirred for 24 h at room temperature. Then, water (7.5 mL) was added, and extractions were
performed with dichloromethane (3 × 20 mL). The organic phase was dried over Na2SO4,
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filtered, and the solvent was removed under reduced pressure. The residue was purified by
flash column chromatography using hexane-acetone (3:1) as eluent to give 2 as pale-yellow
oil (0.48 g, 90%). IR: νmax 2094 (N3), 1114 cm−1 (C-O); NMR data (300 MHz, CDCl3): 1H, δ
3.52–3.42 (m, 10H, H-2, 3, 4), 3.47 (s, 6H, H-6), 3.24–3.28 (m, 4H, H-1), 1.63 (m, 4H, H-5); 13C,
δ 79.31 (C-2), 71.39, 69.74 (C-3, 4), 57.91 (C-6), 51.54 (C-1), 26.27 (C-5). HRMS: m/z 339.1744
(calcd. for [M+Na]+: 339.1751).

2.3.2. Preparation of Monomer 3

To a mixture of compound 1 (0.35 g, 1.2 mmol), finely comminuted KOH (0.34 g, 6.1 mmol),
tetrabutylammonium bromide (0.16 mg, 0.5 mmol), and H2O (50.0 µL), butyl methane-
sulfonate (1.52 g, 10.0 mmol) in toluene (1.0 mL) was added. The reaction mixture was
refluxed at 120 ◦C for 24 h. Then dichloromethane (5 mL) was added, the mixture was
filtered, and the solvents were removed under vacuum. Flash column chromatography was
performed using a gradient of hexane-acetone as eluent (from 10:1 to 5:1). The fractions
were collected, and solvents were removed to give 3 as a pale-yellow oil (0.20 g, 43%).
IR: νmax 2095 (N3), 1112 cm−1 (C-O); NMR data (300 MHz, CDCl3): 1H, δ 3.65–3.39 (m,
14H, H-2, 3, 4, 6), 3.39–3.22 (m, 4H, H-1), 1.68–1.50 (m, 8H, H-5, 7), 1.46–1.31 (m, 4H, H-8),
0.92 (t, 6H, H-9); 13C, δ 77.87 (C-2), 71.33, 70.28, 70.14 (C-3, 4, 6), 52.03 (C-1), 32.07 (C-7),
26.29 (C-5), 19.18 (C-8), 13.82 (C-9). HRMS: m/z 423.2689 (calcd. for [M+Na]+: 423.2690).

2.3.3. Preparation of Monomer 4

Compound 1 (1.0 g, 3.5 mmol) was dissolved in DMSO (10.0 mL), and finely com-
minuted KOH (1.0 g, 18.0 mmol) was added to the solution under continuous agitation.
Next, heptyl iodide (1.82 g, 8.0 mmol) was added dropwise to the mixture and the reaction
mixture was stirred at room temperature overnight. Then H2O (15.0 mL) was added and
extracted with dichloromethane (3 × 20 mL). The organic phase was dried over Na2SO4,
filtered, and the solvent removed under vacuum. Undesired products were removed
by flash column chromatography using hexane-acetone (5:1) as eluent. Compound 4
was obtained as an oil (1.46 g, 85%). IR: νmax 2097 (N3), 1114 cm−1 (C-O); NMR data
(300 MHz, CDCl3): 1H, δ 3.60–3.50 (m, 6H, H-2, 6), 3.50–3.39 (m, 8H, H-3, 4), 3.39–3.25 (m,
4H, H-1), 1.68–1.49 (m, 8H, H-5, 7), 1.42–1.20 (m, 16H, H-8, 9, 10, 11), 0.88 (t, 6H, H-12);
13C, δ 77.86 (C-2), 71.34, 70.14 (C-3, 4), 70.63 (C-6), 52.03 (C-1), 31.79, 29.09, 25.97, 22.59 (C-8, 9, 10,
11), 30.01 (C-7), 26.30 (C-5), 14.05 (C-12). HRMS: m/z 507.3627 (calcd. for [M+Na]+: 507.3629).

2.4. Polymer Synthesis
2.4.1. Catalytic Method

Stoichiometric amounts of the corresponding bis-azide and bis-alkyne monomers were
mixed in a flask and dissolved in tert-butanol (2 mL) under argon atmosphere. CuSO4·5H2O
(5%) and sodium ascorbate (10%) were added to the solution, and then deionized water
was added dropwise until light turbidity was observed. The mixture was stirred while
heating at 50 ◦C. After 24 h, dichloromethane (5 mL) was added, and the reaction mixture
was washed with deionized water (3 × 10 mL) and a saturated solution of NaCl in water
(3 × 10 mL). The organic phase was separated, evaporated until dryness, dissolved in a
minimum amount of dichloromethane, and precipitated in hexane. The isolated yields and
their infrared and NMR spectroscopy data are listed below.

2.4.2. Thermal Method

Stoichiometric amounts of the corresponding bis-azide and bis-alkyne monomers were
mixed in a flask and the mixture was stirred and heated at 75 ◦C under argon atmosphere
until the bis-alkyne monomer was completely melted. The temperature was then increased
to 100 ◦C. After 24 h of heating, a minimum amount of dichloromethane was added to
dissolve the residue and the solution was precipitated in hexane. The isolated yields and
their infrared and NMR spectroscopy data are listed below.
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P2C. Yield: 100% IR: νmax 3333 (NH), 1671 (CO), 1517 cm−1 (amide II); NMR data
(500 MHz, CDCl3): 1H, δ 8.15 (d, 2H, H-8), 7.67, 7.44 (bs, 2H, NH), 4.65 (bd, 2H, J1a,1b
13.6 Hz, H-1a), 4.44 (dd, 2H, J1b,2 7.1 Hz, J1a,1b 13.6 Hz, H-1b), 3.69 (m, 2H, H-2),
3.58 (m, 4H, H-3), 3.55–3.25 (m, 16H, H-4, b, c, d), 3.55–3.25 (m, 4H, H-a), 3.34 (s, 6H, H-6),
1.63 (m, 4H, H-5), 1.43 (s, 27H, H-9); 13C, δ 160.50, 155.30 (CO), 143.06 (C-7), 126.60 (C-8),
80.21 (C-10), 78.53 (C-2), 71.53 (C-3), 68.82 (C-4), 58.02 (C-6), 51.67 (C-1), 46.86–44.72 (C-b, c, d),
38.12 (C-a), 28.33 (C-9), 26.29 (C-5).

P2T. Yield: 85% IR: νmax 3330 (NH), 1669 (CO), 1520 cm−1 (amide II); NMR data
(500 MHz, CDCl3): 1H, δ 8.15, 7.96 (d, H-8,8′), 7.65, 7.42 (bs, NH), 5.01–4.79 (m, H-1′),
4.65 (bd, J1a,1b 13.6 Hz, H-1a), 4.44 (dd, 2H, J1b,2 7.2 Hz, J1a,1b 13.6 Hz, H-1b), 3.85 (m, H-2′),
3.69 (m, H-2), 3.65–3.20 (m, H-3, 3′, 4, 4′, a, a′, b-d, b′-d′), 3.34 (s, H-6, 6′),
1.66 (m, H-5, 5′) , 1.43 (s, H-9, 9′); 13C, δ 160.50, 158.24, 155.50 (CO), 143.03, 131.49 (C-7, 7′),
133.91, 126.65 (C-8, 8′), 80.36–80.24 (C-10, 10′), 79.16 (C-2′), 78.52 (C-2), 71.59 (C-3′), 71.53 (C-3),
70.23 (C-4′), 68.81 (C-4), 58.29 (C-6′), 58.01 (C-6), 51.68 (C-1), 50.36 (C-1′), 46.80–44.72 (C-b,
c, d, b′, c′, d′), 38.11 (C-a, a′), 28.44 (C-9′), 28.33 (C-9), 26.28 (C-5), 26.26 (C-5′).

P3T. Yield: 80% IR: νmax 3335 (NH), 1674 (CO), 1572 cm−1 (amide II); NMR data
(500 MHz, CDCl3): 1H, δ 8.13, 7.96 (d, H-11,11′), 7.63, 7.49 (bs, NH), 4.97–4.80 (m, H-1′),
4.64 (bd, H-1a), 4.42 (m, H-1b), 3.93 (m, H-2′), 3.78 (m, H-2), 3.68–3.20 (m, H-3, 3′, 4, 4′, 6,
6′, a, a′, b-d, b′-d′), 1.65 (m, H-5, 5′), 1.60–1.40 (m, H-7, 7′), 1.44 (s, H-12, 12′), 1.40–1.16 (m,
H-8, 8′), 0.94–0.79 (t, H-9, 9′); 13C, δ 160.39, 158.26, 155.21 (CO), 142.94, 131.58 (C-10, 10′),
133.89, 126.60 (C-11, 11′), 80.32 (C-13, 13′), 77.66 (C-2′), 77.02 (C-2), 71.49, 71.33, 70.47, 70.32,
70.12, 69.35 (C-3, 4, 3′, 4′, 6, 6′), 52.10 (C-1), 50.90 (C-1′), 47.00–44.00 (C-b, c, d, b′, c′, d′),
38.08 (C-a, a′), 32.05, 31.82 (C-7, 7′), 28.43, 28.33 (C-12, 12′), 26.29, 26.35 (C-5, 5′), 19.10,
18.96 (C-8, 8′), 13.80, 13.74 (C-9, 9′).

P4C. Yield: 95%. IR: νmax 3318 (NH), 1683 (CO), 1572 cm−1 (amide II); NMR data
(500 MHz, CDCl3): 1H, δ 8.12 (s, 2H, H-14), 7.64, 7.41 (bs, 2H, NH), 4.63 (bd, 2H, H-1a),
4.22 (dd, 2H, J1b,2 7.3 Hz, J1a,1b 13.6 Hz, H-1b), 3.77 (m, 2H, H-2), 3.58 (m, 4H, H-a),
3.53–3.25 (m, 24H, H-3, 4, 6, b, c, d), 1.65 (m, 4H, H-5), 1.46 (m, 4H, H-7), 1.44 (s, 27H, H-15),
1.33–1.17 (m, 16H, H-8, 9, 10, 11), 0.87 (t, 6H, H-12); 13C, δ 160.43, 155.30 (CO), 142.99 (C-13),
126.55 (C-14), 80.18 (C-16), 77.10 (C-2), 71.50 (C-3), 70.70 (C-6), 69.38 (C-4), 52.20 (C-1), 46.30,
45.30 (C-b, c, d), 38.10 (C-a), 31.80, 28.90, 25.70, 22.70 (C-8, 9, 10, 11), 29.80 (C-7), 28.30 (C-15),
26.30 (C-5), 14.20 (C-12).

P4T. Yield: 100% IR: νmax 3320 (NH), 1680 (CO), 1570 cm−1 (amide II); NMR data
(500 MHz, CDCl3): 1H, δ 8.12, 7.95 (d, H-14, 14′), 7.64, 7.41 (bs, NH), 4.98–4.79 (m, H-1′),
4.64 (bd, H-1a), 4.42 (m, H-1b), 3.93 (m, H-2′), 3.78 (m, H-2), 3.70–3.20 (m, H-3, 3′, 4, 4′, 6, 6′),
3.65–3.54 (m, H-a, a′), 3.52–3.25 (m, H-b, c, d, b′, c′, d′), 1.65 (m, H-5, 5′), 1.46 (m, H-7, 7′),
1.33–1.17 (m, H-8, 9, 10, 11, 8′, 9′, 10′, 11′), 1.44 (s, H-15, 15′), 0.87 (t, H-12, 12′); 13C, δ 160.38,
158.24, 155.42 (CO), 142.99, 131.59 (C-13, 13′), 133.91, 126.61 (C-14, 14′), 80.18 (C-16, 16′),
77.70 (C-2′), 77.10 (C-2), 71.49, 71.33, 70.85, 70.70, 69.38 (C-3, 4, 3′, 4′, 6, 6′), 52.10 (C-1),
50.80 (C-1′), 47.00–44.50 (C-b, c, d, b′, c′, d′), 38.10 (C-a, a′), 31.80, 31.73, 29.05, 29.00, 25.88,
25.77, 22.70 (C-8, 9, 10, 11, 8′, 9′, 10′, 11′), 29.81 (C-7, 7′), 28.43, 28.33 (C-15, 15′), 26.40–26.25
(C-5, 5′), 14.20 (C-12, 12′).

P5C. Yield: 100%. IR: νmax 3319 (NH), 1667 (CO), 1571 cm−1 (amide II); NMR data
(500 MHz, CDCl3): 1H, δ 8.26 (bs, 2H, H-12), 7.64, 7.41 (bs, 2H, NH), 4.67 (dd, 2H, J1a,2
2.0 Hz, H-1a), 4.45 (dd, 2H, J1b,2 7.0 Hz, J1a,1b 14.0 Hz, H-1b), 3.87 (m, 2H, H-2), 3.80–3.24
(m, 40H, H-3, 4, 6, 7, 8, 9, a, b, c, d), 3.36 (s, 6H, H-10), 1.64 (m, 4H, H-5), 1.44 (s, 27H, H-13);
13C, δ 160.49, 155.33 (CO), 143.00 (C-11), 126.86 (C-12), 80.20 (C-14), 77.43 (C-2), 71.87, 71.44,
70.70, 70.53, 69.75, 69.49 (C-3, 4, 6, 7, 8, 9), 58.97 (C-10), 51.72 (C-1), 46.40, 45.05 (C-b, c, d),
38.09 (C-a), 28.43, 28.33 (C-13), 26.29 (C-5).

P5T. Yield: 95%. IR: νmax 3320 (NH), 1668 (CO), 1570 cm−1 (amide II); NMR data
(500 MHz, CDCl3): 1H, δ 8.26, 7.91 (s, H-12, 12′), 7.63, 7.40 (bs, NH), 5.00–4.75 (m, H-1′),
4.67 (bd, H-1a), 4.45 (dd, H-1b), 3.96 (m, H-2′), 3.88 (m, H-2), 3.82–3.10 (m, H-3, 3′, 4, 4′, 6,
6′, 7, 7′, 8, 8′, 9, 9′, a, a′, b, b′, c, c′, d, d′), 3.36 (s, H-10, 10′), 1.63 (m, H-5, 5′), 1.44 (s, H-13,
13′); 13C, δ 160.50, 158.26, 155.33 (CO), 143.04, 131.68 (C-11, 11′), 133.96, 126.81 (C-12′, 12),



Pharmaceutics 2022, 14, 2518 6 of 24

80.26 (C-14, 14′), 78.17 (C-2′), 77.51 (C-2), 72.00–69.40 (C-3, 4, 3′, 4′, 6, 6′, 7, 7′, 8, 8′, 9, 9′),
58.95 (C-10, 10′), 51.71 (C-1), 50.73 (C-1′), 46.50, 45.31 (C-b, c, d, b′, c′, d′), 38.02 (C-a, a′),
28.43, 28.33 (C-13, 13′), 26.29 (C-5, 5′).

2.4.3. Removal of the N-Boc Protecting Groups of Polytriazoles

The selected polytriazole (0.4 g) was dissolved in dry dioxane (3.0 mL) and treated
with 4N HCl in dioxane (10.0 mL) and stirred for about 3 h at room temperature to remove
the N-Boc protecting groups. The reaction mixture was filtered, and the isolated solid was
washed with ether and dried in vacuum to obtain the compound as the amine hydrochloride
derivative in very high or quantitative yield. The isolated yields and their infrared and
NMR spectroscopy data are listed below.

P1TD. Yield: 75%; IR: νmax 3315 (OH), 2685 (broad,+NH2), 1655 (CO), 1572 cm−1

(amide II); NMR data (500 MHz, D2O): 1H, δ 8.40, 8.18 (s, H-7, 7′), 4.81 (dd, H-1′a),
4.73 (dd, H-1′b), 4.60 (dd, H-1a), 4.48 (dd, H-1b), 4.22 (m, H-2, H-2′), 3.74 (t, H-a),
3.70 (t, H-a′), 3.60–3.42 (m, H-3, H-3′, H-4, H-4′, H-c-d, H-c′-d′), 3.39 (t, H-b), 3.37 (m, H-b′),
1.57 (bs, H-5, H-5′); 13C, δ 163.00, 160.19 (CO), 141.55 (C-6), 134.80 (C-7′), 131.63 (C-6′),
127.97 (C-7), 71.49 (C-3′), 71.24, 71.20 (C-3, C-4, C-4′), 68.90 (C-2′), 68.43 (C-2), 53.28 (C-1),
52.53 (C-1′), 48.10 (C-b), 47.70 (C-b′), 43.58, 43.54, 43.23, 43.14 (C-c-d, C-c′-d′), 36.02 (C-a′),
35.77 (C-a), 25.29 (C-5, C-5′).

P2CD. Yield: 98%. IR: νmax 3321 (NH), 2800–2250 (broad, +NH2), 1656 (CO), 1573 cm−1

(amide II); NMR data (500 MHz, D2O): 1H, δ 8.42 (bs, 2H, H-8), 4.77–4.67 (dd, 2H, J1a,2
3.9 Hz, H-1a), 4.58 (dd, 2H, J1b,2 6.6 Hz, J1a,1b 14.6 Hz, H-1b), 3.91 (m, 2H, H-2),
3.77 (t, 4H, Ja,b 5.5 Hz, H-a), 3.64 (dd, 2H, J4a,5 4.20 Hz, J4a,4b 11.20 Hz, H-4a), 3.54 (m, 4H, H-3),
3.46 (dd, 2H, J4b,5 5.3 Hz, H-4b), 3.57–3.52 (m, 8H, H-c, d), 3.41 (t, 4H, H-b), 3.33 (s, 6H, H-6),
1.60 (m, 4H, H-5); 13C, δ 163.01 (CO), 141.69 (C-7), 128.06 (C-8), 77.91 (C-2), 71.27 (C-3),
68.74 (C-4), 57.38 (C-6), 50.84 (C-1), 48.07 (C-b), 43.16, 43.54 (C-c, d), 35.74 (C-a), 25.28 (C-5).

P2TD. Yield: 100%. IR: νmax 3324 (NH), 2800–2250 (broad, +NH2), 1660 (CO), 1572 cm−1

(amide II); NMR data (500 MHz, D2O): 1H, δ 8.42, 8.18 (bs, H-8, 8′), 4.80 (m, H-1′),
4.77–4.61 (H-1a), 4.54 (dd, J1b,2 6.7 Hz, J1a,1b 14.6 Hz, H-1b), 3.95–3.79 (m, H-2, 2′),
3.73 (t, Ja,b 5.5 Hz, H-a, a′), 3.65–3.30 (m, H-3, 3′, 4, 4′, c, c′, d, d′), 3.37 (t, H-b, b′), 3.30, 3.20 (s,
H-6, 6′), 1.60 (m, H-5, 5′); 13C, δ 163.01, 160.26 (CO), 141.62 (C-7), 134.78 (C-7′), 131.64 (C-8′),
128.00 (C-8), 78.55 (C-2′), 77.88 (C-2), 71.24 (C-3, 3′), 68.70 (C-4, 4′),
57.60 (C-6′), 57.32 (C-6), 50.79 (C-1), 50.11 (C-1′), 48.04 (C-b), 47.55 (C-b′), 43.48, 43.17,
43.05 (C-c, c′, d, d′), 35.92 (C-a′), 35.71 (C-a), 25.20 (C-5, 5′).

P3TD. Yield: 100%. IR: νmax 3302 (NH), 2800–2250 (broad, +NH2), 1654 (CO), 1573 cm−1

(amide II); NMR data (500 MHz, D2O): 1H, δ 8.42, 8.20 (s, H-11,11′), 4.83 (bd, H-1′),
4.69 (H-1a), 4.53 (dd, J1b,2 7.8 Hz, J1a,1b 14.6 Hz, H-1b), 3.98 (m, H-2, 2′), 3.81–3.69 (m, H-a, a′),
3.68–3.20 (m, H-3, 3′, 4, 4′, 6, 6′), 3.59–3.45 (m, H-c, c′, d, d′), 3.39 (m, H-b, b′), 1.62 (m, H-5, 5′),
1.40–1.20 (m, H-7, 7′), 1.16–1.00 (m, H-8, 8′), 0.72 (t, H-9, 9′); 13C, δ 163.00, 160.14 (CO), 141.63,
131.58 (C-10, 10′), 134.91, 128.17 (C-11, 11′), 77.20 (C-2′), 76.67 (C-2), 71.31, 71.27, 70.55,
70.32, 69.75, 69.35 (C-3, 4, 3′, 4′, 6, 6′), 51.51 (C-1), 50.82 (C-1′), 48.00, 47.58 (C-b, b′), 43.55,
43.35, 43.22 (C-c, c′, d, d′), 35.89 (C-a′), 35.69 (C-a), 30.95 (C-7′), 30.90 (C-7), 25.33 (C-5, 5′),
18.45 (C-8), 18.37 (C-8′), 13.02 (C-9′), 12.98 (C-9).

P4CD. Yield: 95%. IR: νmax 3321 (NH), 2800–2250 (broad, +NH2), 1657 (CO), 1572 cm−1

(amide II); NMR data (500 MHz, D2O): 1H, δ 8.42 (s, 2H, H-14), 4.75–4.57 (m, 2H, H-1a),
4.50 (m, 2H, H-1b), 3.90 (m, 2H, H-2), 3.78 (m, 4H, H-a), 3.66–3.28 (m, 24H, H-3, 4, 6, b, c, d),
1.55 (m, 4H, H-5), 1.40 (m, 4H, H-7), 1.15 (m, 16H, H-8, 9, 10, 11), 0.76 (bt, 6H, H-12); 13C,
δ 162.53 (CO), 141.68 (C-13), 127.91 (C-14), 77.03 (C-2), 71.23, 70.20, 69.97 (C-3, 4, 6), 51.34
(C-1), 48.05 (C-b), 43.83 (C-c, d), 35.70 (C-a), 31.81, 29.03, 25.86, 22.50 (C-8, 9, 10, 11), 29.70
(C-7), 25.89 (C-5), 13.83 (C-12).

P4TD Yield: 100%. IR: νmax 3319 (NH), 2800–2250 (broad, +NH2), 1657 (CO), 1574 cm−1

(amide II); NMR data (500 MHz, D2O): 1H, δ 8.39, 8.22 (s, H-14, 14′), 4.81–4.65 (m, H-1′),
4.54 (m, H-1), 3.92 (m, H-2′), 3.86 (m, H-2), 3.80–3.63 (m, H-a, a′), 3.50–3.23 (m, H-3, 3′,
4, 4′, 6, 6′), 3.56 (m, H-c, d, c′, d′), 3.40 (m, H-b, b′), 1.52 (m, H-5, 5′), 1.38, 1.32 (m, H-7,
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7′), 1.13 (m, H-8, 9, 10, 11, 8′, 9′, 10′, 11′), 0.75 (bt, H-12, 12′); 13C, δ 162.46, 159.56 (CO),
141.63, 131.10 (C-13, 13′), 134.82, 127.84 (C-14, 14′), 77.53 (C-2′), 76.95 (C-2), 71.32–69.64
(C-3, 4, 3′, 4′, 6, 6′), 51.31 (C-1), 50.94 (C-1′), 48.02, 47.61 (C-b, b′), 43.90–43.38 (C-c, c′, d, d′),
35.85, 35.64 (C-a, a′), 31.80, 29.03, 25.85, 25.50 (C-8, 9, 10, 11, 8′, 9′, 10′, 11′), 29.70 (C-7, 7′),
25.90 (C-5, 5′), 13.83 (C-12, 12′).

P5CD. Yield: 100%. IR: νmax 3317 (NH), 2800–2250 (broad, +NH2), 1655 (CO), 1572 cm−1

(amide II); NMR data (500 MHz, D2O): 1H, δ 8.45 (bs, 2H, H-12), 4.80–4.65 (dd, 2H, J1a,2
3.6 Hz, H-1a), 4.58 (dd, 2H, J1b,2 7.3 Hz, J1a,1b 14.6 Hz, H-1b), 4.05 (m, 2H, H-2),
3.76–3.48 (m, 24H, H-3, 4, 6, 7, 8, 9), 3.77 (t, 4H, Ha), 3.57–3.36 (m, 8H, H-c, d), 3.40 (t, 4H, H-b),
3.31 (s, 6H, H-10), 1.62 (m, 4H, H-5); 13C, δ 162.96 (CO), 141.58 (C-11), 128.16 (C-12),
76.92 (C-2), 71.33, 71.00, 69.77, 69.34, 69.12, 68.99 (C-3, 4, 6, 7, 8, 9), 58.08 (C-10), 51.36 (C-1),
47.97 (C-b), 43.53, 43.27 (C-c, d), 35.73 (C-a), 25.31 (C-5).

P5TD. Yield: 100%. IR: νmax 3315 (NH), 2800–2250 (broad, +NH2), 1654 (CO), 1571 cm−1

(amide II); NMR data (500 MHz, D2O): 1H, δ 8.45, 8.19 (s, H-12, 12′), 4.85 (bd, H-1′),
4.80–4.63 (H-1a), 4.57 (dd, H-1b), 4.04 (m, H-2, 2′), 3.82–3.29 (m, H-3, 3′, 4, 4′, 6, 6′, 7, 7′, 8,
8′, 9, 9′, a, a′, b, b′, c, c′, d, d′), 3.31, 3.30 (s, H-10, 10′), 1.61 (m, H-5, 5′); 13C, δ 162.96, 160.19
(CO), 141.57 (C-11), 131.11 (C-11′), 134.91 (C-12′), 128.15 (C-12), 77.52 (C-2′), 76.91 (C-2),
71.50–68.60 (C-3, 4, 3′, 4′, 6, 6′, 7, 7′, 8, 8′, 9, 9′), 58.08 (C-10, 10′), 51.35 (C-1), 50.68 (C-1′),
47.96, 47.56, 43.53, 43.28 (C-b, c, d, b′, c′, d′), 35.95 (C-a′), 35.73 (C-a), 25.30 (C-5, 5′).

2.5. Antibacterial Activity

The Minimum Inhibitory Concentration (MIC) was measured following the guidelines
of the European Committee on Antimicrobial Susceptibility Testing by the microdilution
method with minor modifications against clinical isolates of drug-resistant
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa,
and Enterobacter spp. Stock solutions of each polymer were prepared in MHB, then serially
diluted 2-fold in a 96-well plate from 1024 to 2 µg/mL. Colonies of each bacterial strain (3–4)
were isolated, suspended in MHB and incubated at 37 ◦C under constant shaking. After 4
h, the turbidity of the bacterial suspensions was adjusted to 0.5 McFarland and diluted to
reach a stock suspension of 1.5 × 106 CFU/mL. Wells containing polymer solutions and
growth control wells were inoculated with 100 µL of the bacterial suspension, and MHB
(200 µL) was used as sterility control. The 96-well plate was incubated at 37 ◦C for 24 h,
and MIC was defined as the lowest polymer concentration that inhibited the visible growth
of the microorganism tested.

Minimum Bactericidal Concentration (MBC) was determined taking aliquots (10 µL)
from the wells that did not have turbidity when MIC assays were performed and plating
those aliquots in TSA plates. The TSA plates were then incubated at 37 ◦C for 24 h.
MBC was defined as the lowest polymer concentration that prevented the growth of the
microorganism tested after subculture onto polymer-free media. The experiments were
carried out in triplicate.

2.6. Time-Kill Curves

Colonies of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, and
Pseudomonas aeruginosa were isolated and cultured in MHB at 37 ◦C with constant agitation
(180 rpm). After 4 h, the turbidity was adjusted to 0.5 McFarland and 100 µL of this stock
suspension was added to a previously prepared solution of selected polymers in MHB
at MIC concentration to reach a final concentration of around 5 × 104 CFU/mL. The in-
oculated MHB without polymer was used as a growth control. Aliquots of the bacterial
suspension were taken at 2, 4, and 8 h, serially diluted, and plated on TSA. After 24 h,
colonies were counted. The experiment was repeated for triplicate readings.

2.7. Induced Resistance Test

Resistance studies were carried out following procedures [12,50] described previously.
Colonies of P. aeruginosa and MRSA were cultured overnight in MHB at 37 ◦C under con-
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stant agitation. Bacterial suspensions were corrected to 0.5 McFarland, and their MIC
values were calculated against P3TD, P2CD and P1TD, following the procedures described
in Section 2.5. Cells growing at the highest polymer concentration ( 1

2 MIC) were harvested,
centrifuged, and resuspended in MHB. Bacterial suspensions were corrected to 0.5 McFar-
land and incubated at 37 ◦C to determine the MIC value of bacterial cells exposed to these
polycationic polymers. The experiment was carried out in 14 passages.

2.8. Hemolysis Assay

A stock solution of polymer was prepared in phosphate buffered saline (PBS, pH = 7.4)
and serially diluted from 1024 to 2 µg/mL (100 µL). Fresh human blood was diluted in PBS
and centrifuged at 700 G for 10 min, and the supernatant was discarded. Then, the human
red blood cells (hRBC) pellet was resuspended in PBS and the procedure was repeated
three times. PBS was added to reach 5% hematocrit and 100 µL of hRBC suspension was
added to each well. The plate was incubated 1 h at 37 ◦C and centrifuged at 700 G for
10 min. Aliquots of 150 µL were transferred to a new 96-well plate, and the absorbance
was measured at 540 nm. Wells containing only PBS were employed as negative control.
Wells containing 2% Triton-X and hRBC were used as positive controls. The experiment
was carried out three independent times, and the following equation was used to calculate
the hemolytic activity:

% hemolysis = (Apolymer
540 − Anegative

540 )/(Apositive
540 − Anegative

540 )

2.9. Cytotoxicity Assay

Cytotoxicity produced by antibacterial polymers in human gingival fibroblasts (HGnF)
was measured using the widely applied MTT method based on the enzymatic-mediated
reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to the colored
water-insoluble crystal formazan. Cell culture was carried out in tissue flasks using Dul-
becco’s modified Eagle medium (DMEM) supplemented with fetal bovine serum (FBS,
10%), L-glutamine and penicillin-streptomycin (1%). To perform cytotoxicity assays, HGnF
cells were dissociated using trypsin, washed with supplemented DMEM and centrifuged.
The pellet was resuspended in a complete medium; cells were counted, and a cell suspen-
sion was prepared (1.5 × 105 cells/mL). 100 µL of this suspension were transferred to a
96-well plate and incubated at 37 ◦C with 5% CO2 for 24 h. The medium was then removed,
and polymer dilutions were added in complete DMEM to the wells containing HGnF
(1024 to 4 µg/mL). The medium without HGnF was used as a negative control, and HGnF
with the polymer-free medium was used as a positive control. The plate was incubated
for 24 h, and the medium was removed. Then 100 µL of fresh medium and 20 µL of MTT
in PBS (5 mg/mL) were added to each well. The plate was incubated for 4 h at 37 ◦C in
5% CO2, the medium was removed and 150 µL of DMSO was added to each well. The
absorbance was measured at 570 nm. The assays were performed in triplicate at three
different times.

2.10. Cytoplasmic Membrane Depolarization Assay [51,52]

Colonies of E. coli CECT 101 were cultured in MHB. Mid-log phase bacteria were
harvested and washed with buffer containing HEPES, glucose (5 mM) and KCl (100 mM).
The turbidity of the bacterial suspension was corrected to optical density at 600 nm (OD600)
0.1, and DiSC3(5) (3,3′-dipropylthiadicarbocyanine iodide) was added to reach a final
concentration of 1 µM; 190 µL was added to a 96-well black bottom plate. The plate
was incubated for 35 min, and the fluorescence of DiSC3(5) was measured (Ex = 620 nm,
Em = 670 nm). Then, 10 µL of polymer in buffer solution was added to reach a final
concentration of 0.5 mg/mL. Fluorescence was measured every 5 min. The assays were
performed in triplicate at three different times.
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2.11. Outer Membrane Permeabilization [51,52]

Colonies of E. coli CECT 101 were cultured in MHB. Mid-log phase bacteria were
harvested and washed with HEPES-glucose 1:1 (5 mM). The turbidity of the bacterial
suspension was corrected to OD600 0.1, and NPN (N-phenyl-1-naphtylamine) was added
to reach a final concentration of 10 µM; 190 µL were taken and placed on a 96-well black
bottom plate. The plate was incubated for 5 min, and the fluorescence of NPN was
measured (Ex = 350 nm, Em = 420 nm); then 10 µL of polymer solution was added to reach
a final concentration of 0.5 mg/mL. Fluorescence was measured every 5 min. The assays
were performed in triplicate at three different times.

2.12. Inner Membrane Permeabilization [51]

Colonies of E. coli CECT 101 were cultured in MHB. Mid-log phase bacteria were
harvested and washed with HEPES-glucose 1:1 (5 mM). The turbidity of the bacterial
suspension was corrected to OD600 0.1 and propidium iodide was added to reach a final
concentration of 10 µM; 190 µL was added to a 96-well black bottom plate. The plate was
incubated for 5 min, and the propidium iodide fluorescence was measured (Ex = 535 nm,
Em = 617 nm); then 10 µL of polymer solution was added to reach a final concentration
of 0.5 mg/mL. Fluorescence was measured every 5 min. The assays were performed in
triplicate at three different times.

2.13. Statistical Analysis

The results of the studies performed in triplicate are represented as mean ± stan-
dard deviation. The statistical significance of the results was determined by Student’s
t-test. p < 0.05 was considered statistically significant. IBM SPSS statistics 26.0 (SPSS Inc.,
Chicago, IL, USA) software was used to perform the statistical analyses.

3. Results and Discussion
3.1. Synthesis and Characterization

We are interested in the preparation of polytriazoles because it constitutes a universal
linking tool in polymer science, and the presence of triazole rings in the polymer chain could
induce the development of biological activity by association with biological targets through
hydrogen bonding and dipole interactions [53]. A large volume of research has been carried
out on triazoles and their derivatives, demonstrating the pharmacological importance of
this heterocyclic nucleus [54]. Here we describe the synthesis and characterization of
seven new linear polytriazoles prepared by azide-alkyne click polymerization, in a solution
catalyzed by copper (PnC) or by thermal cycloaddition (PnT).

Monomers represented in Figure 1 were used to obtain protected PnC and PnT poly-
mers. Monomers 2–5 were prepared by alkylation reactions of the two secondary alcohol
functions present in the structure of 1,12-diazido-4,9-dioxadodecan-2,11-diol (1). The
syntheses of monomers 2 and 4 were approached using methyl and heptyl iodide, re-
spectively, obtaining these compounds in high yield. On the other hand, monomers
3 and 5 were prepared by reacting the alcohol functions of monomer 1 with butyl and
2-(2-methoxyethoxy)ethyl mesylates, respectively, and the reaction yields were only modest.
Monomers 2, 4, and 5 were polymerized with monomer 6, using the copper-catalyzed
azide-alkyne cycloaddition reaction (CuAAC) to obtain the regiospecific polytriazoles P2C,
P4C, and P5C (Figure 2).

Furthermore, monomers 2–5 were also polymerized with bis-alkyne 6 by thermal
cycloaddition reactions in the absence of solvent and catalyst. In this way, the PnT polymers
were synthesized and obtained as a mixture of 1,4- and 1,5-disubstituted triazoles. Infrared
spectroscopy and nuclear magnetic resonance data for all products described in this paper
are shown in the Materials and Methods section. Infrared spectra show absorption bands
for N-H stretching (3317–3335 cm−1), carbonyl group (1654–1683 cm−1), and N-H bending
for amide II (1517–1573 cm−1). The 1H and 13C nuclear magnetic resonance data support
the chemical constitution expected for these polymers that were isolated in high yield. As
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a representative example, Figure 3 shows the 1H NMR spectra of polytriazoles P2C and
P2T, recorded in deuterochloroform, together with the assignments of the signals appearing
in the P2T spectrum. The signal assignment was performed based on the information
provided by the two-dimensional homonuclear and heteronuclear correlation spectra
(shown in Supplementary materials Figures S1–S4).
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The 1H NMR spectra of the prepared polymers clearly show the presence of the triazole
rings, which must be formed during the click polymerization process. Thus, in the 1H NMR
spectrum of the polymer P2C (Figure 3A), which is obtained by the catalytic procedure,
a single signal was observed at 8.15 ppm that was assigned to the aromatic proton of the
1,4-triazole rings. On the other hand, in the spectrum of the P2T polymer (Figure 3B),
obtained by thermal cycloaddition reactions, two signals centered at 8.15 and 7.96 ppm
were observed, corresponding to the aromatic protons of the 1,4- and 1,5-triazole rings,
which are formed by this procedure. In addition, in the spectrum of the P2T polymer, the
splitting of some signals, such as H-1 and H-2, was observed due to the presence of the two
regioisomeric triazole rings in the polymer chain. This fact is most clearly revealed in the
13C NMR data of the thermally obtained polymers, as detailed in the NMR spectroscopic
data of the Experimental Section.

Elimination of N-Boc-protecting groups with HCl in dry dioxane affords the corre-
sponding polycationic polymers in practically quantitative yields (Figure 2). 1H and 13C
NMR spectra of the deprotected polymers P2CD and P2TD are shown in Figures 4 and 5
together with the assignments of the signals that appear in the spectra, for illustration.

The signal corresponding to the resonance of the methyl groups of the tert-butyl
carbamate functions, which appeared at 1.43 ppm (H-9, H-9′) in the protected polymer
spectra (Figure 3), is no longer observed in the 1H NMR spectra of the deprotected polymers
(Figure 4). Likewise, 13C NMR spectra (Figure 5) also support the removal of N-Boc
protecting groups in the polymers. Thus, the signals that appeared at approximately
28, 80, and 155 ppm in the spectra of the protected polymers (see experimental section),
and which corresponded to the tert-butyl and carbonyl groups of the carbamate functions,
are no longer observed.

The presence of traces of the metallic catalyst in PnCD polycationic polymers was
measured by ICP-MS analysis. As expected, the introduction of positive charges along
the polymer backbone made these materials very readily soluble in water. However, in
other protic solvents, such as methanol, they were only slightly soluble. The deprotected
polymers, PnCD and PnTD, also readily dissolved in polar aprotic solvents such as DMSO
and DMF but were insoluble in organic solvents such as acetone, dichloromethane, or ether.
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triazole rings in the polymer chain. Signals marked with an asterisk correspond to solvents.

3.2. Gel Permeation Chromatography

Table 1 shows the mass-averaged molar-mass (Mw) values for PnC and PnT protected
polymers, which range from 43,000 to 269,000 g/mol. When the polymers obtained from
the same monomers are compared, those obtained by the thermal cycloaddition reactions
always have lower molar mass values than those obtained by the catalytic means. In the
case of the deprotected polymers PnCD and PnTD, the molar mass values could not be
determined because the final part of their chromatograms showed retention times close to
the system signals and could not be integrated under the measurement conditions.
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Table 1. GPC 1 data of N-Boc-protected polytriazoles.

Polymer Yield (%) Mw Mw/Mn

P2C 100 269,200 2.0
P2T 85 139,800 2.2
P3T 80 43,000 1.3
P4C 95 136,400 1.3
P4T 100 78,800 1.6
P5C 100 155,300 1.9
P5T 95 102,000 1.6

1 Mass average molecular weight (Mw), number average molecular weight (Mn) in g/mol and dispersity (Mw/Mn)
measured by GPC analysis in DMF/LiBr as mobile phase against polystyrene standards.

3.3. Thermal Analysis

The thermal behavior of the protected and unprotected polymers was studied by
thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC); the corre-
sponding data are shown in Table 2. The thermal stabilities of polytriazoles were studied
by following the mass loss of the sample as a function of temperature, using TGA. The
thermal decomposition of protected polymers PnC and PnT, determined by TGA, begins,
measured for 10% weight loss, around 217 ◦C. The decomposition processes took place in
three stages, the first occurring around 230–240 ◦C, and the last is, in most cases, a shoulder
of the second stage (Figure 6). The first thermal decomposition step can be attributed to the
loss of the tert-butyl groups of the N-Boc protecting groups [55]; this decomposition step
does not appear in the deprotected samples, and the mass loss corresponding to this first
thermal decomposition is in good agreement with the value that should result according to
the expected structure of the repeating unit of the polymer.

The deprotected polymers, PnCD and PnTD, have a higher decomposition tempera-
ture, measured at 10% weight loss, than the corresponding protected polymers. Thermal
decomposition of these polymers occurs in two stages. Differential scanning calorimetry
(DSC) provided the glass transition temperature values of the amorphous phase of the
polymers (Tg). Tg values range between 27 and 80 ◦C for protected polymers and between
39 and 112 ◦C for deprotected polymers. No melting endotherms were observed, suggesting
that they exhibit essentially amorphous behavior.

In general, it is observed that the polymer samples obtained by the thermal process
have lower Tg values than the polymers obtained by catalytic means, Tg (PnT) < Tg (PnC).
The same is observed in unprotected polymers: Tg (PnTD) < Tg (PnCD). This behavior
is probably related to the differences imposed by the main chain of the polymer, which
is not regular in the case of the polymers obtained by the thermal route, as they present
1,4/1,5-disubstituted triazole units; in the case of the polymers obtained by catalytic means,
their structure is regular, presenting only 1,4-disubstituted triazole units. The P1T and P1TD
polymers have the highest Tg values between the protected and deprotected polymers,
respectively (Table 2). The presence of the two alcohol functions in their repeating units
would be responsible for these results, as hydrogen bonds can be established between the
polymer chains. In the other polymers, a correlation can be observed between the Tg values
presented by the polymer and the chain size of the alkyl radicals introduced by alkylation
of the alcohol functions present in P1T. Thus, if we compare the protected polymers
obtained by thermal treatment, PnT, or the polymers obtained by catalytic treatment,
PnC, as the size of the alkyl chain (methyl, butyl, and heptyl) increases, the value of Tg
progressively decreases. The same is observed if we use the deprotected polymers. The
presence of diethylene glycol chains, instead of heptyl chains, in the repeating units of the
P5T, P5C, P5TD and P5CD polymers causes these polymers to have the lowest Tg values.
The introduction of short chains (methyl-heptyl) by alkylation of the alcohol functions of
monomer 1 exerts a plasticizing effect on the thermal properties of the polymers obtained.
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Table 2. Thermal analysis data of N-Boc-protected and deprotected polytriazoles.

Polymer Tg
1 (◦C) T10%

2 (◦C) Tdec
3 (◦C)

P1T 80.0 219.0 235.0, 301.0
P2C 66.5 227.0 240.3, 300.0, 390.0 (s)
P2T 61.2 222.7 239.4, 306.0, 390.0 (s)
P3T 48.8 226.1 240.8, 312.5
P4C 38.2 232.1 244.1, 318.0, 354.0 (s)
P4T 31.9 232.6 243.5, 317.6, 354.1 (s)
P5C 28.6 227.0 241.0, 306.0, 380.0 (s)
P5T 27.2 217.5 234.4, 304.1, 380.8

P1TD 112.4 258.0 309.0, 338.0 (s)
P2CD 91.4 269.0 298.0, 358.0
P2TD 87.7 271.0 298.0, 353.0
P3TD 71.2 263.0 297.0, 371.0
P4CD 85.9 267.4 305.8, 360.9
P4TD 66.0 274.0 315.8, 359.8
P5CD 44.9 272.3 294.0, 368.0
P5TD 39.2 271.0 295.5, 367.5

1 Glass transition temperature taken as the inflection point of the second heating DSC traces recorded at 10 ◦C/min.
2 Temperature at which 10% weight loss was observed in TGA traces recorded at 10 ◦C/min. 3 Temperature for
maximum degradation rate measured by TGA at 10 ◦C/min.
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3.4. Antibacterial Activity

In order to evaluate the ability of the synthetized polymers to inhibit bacterial growth,
antibacterial activity was tested against some pathogens in the ESKAPE group (E. faecium,
S. aureus, K. pneumoniae, P. aeruginosa, and Enterobacter spp.). The MIC of polycationic
polymers was investigated through broth microdilution assay. The results obtained (Table 3)
against Gram-positive strains (E. faecium and MRSA) by unbranched (P1TD) and methylated
branches polymers (P2TD and P2CD) were similar (16 µg/mL). When the length of the side
chains was increased from one to four carbon atoms, P3TD improved its MIC (4 µg/mL)
against the same strains. However, if the size of the side chains continues to increase, the
MIC does not decrease but increases to higher values against all strains tested, as shown in
the case of polymers P4CD and P4TD, which have heptylated branches.

Polymers P5TD and P5CD with hydrophilic side chains derived from diethylene glycol
methyl ether (DEGME) were prepared. The P5TD polymer had MIC values of 256 µg/mL
and 128 µg/mL against E. faecium and MRSA, respectively. In the case of the P5CD
polymer, the MIC was somewhat lower, at 64 µg/mL, against both Gram-positive strains.
K. pneumoniae presented high MIC values (> 1024 µg/mL) against polycationic polymers
with hydrophilic branches (P5TD and P5CD). However, these values decreased significantly
when methylated, butylated and unbranched polymers were used. The butylated polymer
showed the lowest MIC (8 µg/mL). Table 3 shows that the P3TD polymer, which has
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butylated side chains, is the one with the highest antibacterial activity against bacterial
species tested from the ESKAPE group, compared to the other polycationic polymers
synthesized in this study.

Table 3. Antibacterial activity of polycationic polymers MIC/MBC (µg/mL).

Polymer Enterococcus faecium Staphylococcus aureus Klebsiella pneumoniae Pseudomonas aeruginosa Enterobacter spp.

P1TD 16/16 16/16 32/32 32/32 16/16
P2CD 16/32 16/16 64/128 32/64 16/16
P2TD 16/32 16/16 256/512 128/512 16/16
P3TD 4/4 4/8 8/8 8/8 4/4
P4CD >1024 >1024 >1024 128/256 32/32
P4TD >1024 >1024 >1024 >1024 64/128
P5CD 64/128 64/64 >1024 >1024 256/512
P5TD 256/256 128/128 >1024 >1024 >1024

Similarly, differences were found between the MIC values of thermal (non-regiospecific)
and catalytic (regiospecific) polymers (Table 3). P2TD and P2CD had MICs of 256 and 64 µg/mL
against K. pneumoniae, respectively; while in the case of P. aeruginosa the observed MIC
values were lower, but in the same direction, that is, 128 and 32 µg/mL, respectively. In the
case of the P4TD and P4CD pair, the same trend was observed against Enterobacter spp., in
which the catalytic polymer (P4CD) had a somewhat lower MIC value than P4TD. Similar
behavior was observed when P. aeruginosa was tested. The P4CD polymer presented a MIC
of 128 µg/mL while the thermal polymer (P4TD) had values higher than 1024 µg/mL.
The heptylated pair of polymers showed low antibacterial activity against Gram-negative
strains and no activity against Gram-positive species. These results are in line with those of
Oh et al., who prepared polymers with different side chains [56]. They found that, unlike
polymers with shorter side chains, polymers with seven-atom side chains did not exhibit
antibacterial activity. Finally, the polymer pair P5TD and P5CD, with hydrophilic side
chains, also showed high MIC values against E. faecium and S. aureus, and in both cases,
the P5CD polymer showed values somewhat lower than those of the P5TD polymer. In
general, as seen for most cationic antimicrobial polymers, these polymers also showed
better inhibition against Gram-positive bacteria.

The PnCD polytriazoles studied in this work were prepared by the catalytic procedure
known as CuAAC, which carries the risk of using copper that can be toxic to mammalian
cells. The amount of residual copper present in the final deprotected polymers can be easily
and accurately determined by inductively coupled plasma mass spectrometry analysis.
This technique showed that PnCD polymers had 0.006 g of copper per g of polymer as
a maximum. This fact should not influence the results, since it is known [12,57] that a
copper concentration of around 100 µM does not produce harmful effects.

3.5. Bactericidal Kinetics

To determine whether the polymers have a bactericidal or bacteriostatic activity over
time, kinetic studies were assessed. Polymers which showed low MIC values were selected
to carry out in vitro killing kinetic studies against K. pneumoniae, E. faecium, MRSA, and
P. aeruginosa. When polymers P1TD, P2TD, P2CD and P3TD were tested against MRSA
(Figure 7A), all polymers showed bacteriostatic effects at 2 and 4 h, and P2CD and P2TD
showed bactericidal effects, which is defined as the reduction of at least 3 log10 CFU/mL [58],
after 8 h. Polymers P1TD, P2CD, and P3CD were tested against E. faecium (Figure 7B).
P1TD did not show a significant reduction in survival, but P2CD and P3TD killed 99%
of CFU and maintained their bactericidal effects during all experiments. Polycationic
polymers P1TD, P2CD, and P3TD were tested against K. pneumoniae (Figure 7C). After 2 h,
P1TD and P2CD showed bacteriostatic effects, while P3TD showed a bactericidal effect.
This bactericidal effect was maintained during the experiment. After 4 h, P1TD showed
a significant regrowth, and P2CD reached a bactericidal effect that lasted (99% killing).
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Finally, the polymers P1TD, P2CD and P4TD were tested against P. aeruginosa (Figure 7D),
and all presented bacteriostatic effects at 2, 4, and 8 h.
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Figure 7. Concentration of viable cells given in log colony-forming units per milliliter plotted
as a function of time. The polymer concentrations were used at their respective MIC values.
(A) Staphylococcus aureus cells after incubation with P1TD, P2CD, P2TD, P3TD, and under con-
trol conditions. (B) Enterococcus faecium cells after incubation with P1TD, P2CD, P3TD, and under
control conditions. (C) Klebsiella pneumoniae cells after incubation with P1TD, P2CD, P3TD, and under
control conditions. (D) Pseudomonas aeruginosa cells after incubation with P1TD, P2CD, P3TD, and
under control conditions. Control conditions implied no polymer added.

3.6. Induced Resistance

Repeated or prolonged use of antimicrobial and anticancer drugs can cause bacteria to
develop resistance [59,60]. Therefore, multiple drug-resistant strains have been isolated,
such as MRSA, which are causing serious health problems due to the failure of clinical
treatments. Antimicrobial polymers are often proposed as good candidates to combat
bacteria because they do not usually induce resistance. However, it is important to study the
susceptibility that bacteria may have to these materials, since in certain cases they also cause
the appearance of resistance. We selected P. aeruginosa and MRSA as representative Gram-
negative and -positive species to determine if their MICs increase after continuous exposure
to sub-MIC concentrations of P1TD, P2CD and P3TD. To do this, they were exposed to the
corresponding polymers in concentrations equal to half the MIC for 14 passages, and the
ability of these antibacterial polymers to produce resistance was evaluated by checking
their MIC values after each passage.

Figure 8 shows the variation of the MIC values of the polymers studied as a function
of the number of passages for P. aeruginosa and MRSA. As seen in Figure 8B, MICs of
P3TD against tested strains did not suffer any variation after 14 passages. On the other
hand, MIC of P2CD did not fluctuate against P. aeruginosa, but in the case of MRSA, MIC
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increased 4-fold after seven passages and 16-fold after nine passages (Figure 8A). MIC of
P1TD did not change in the case of MRSA (Figure 8B). However, after three passages its
MIC increased 4-fold for P. aeruginosa. P1TD MIC value was 32-fold higher after seven
passages (Figure 8A).
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3.7. Membrane Stability Studies

Three assays were performed to determine whether the selected polytriazoles interact
with the bacterial membrane or not. We focused on a Gram-negative model microorganism
of medical relevance, such as E. coli. Bacterial membrane depolarization was carried out
using DiSC3(5) (3,3′-dipropylthiadicarbocyanine iodide), which is a cationic, fluorescent,
and hydrophobic compound. DiSC3(5) produces an automatic quenching of its fluorescence
when distributed on the surface of the hyperpolarized state of the cell membrane under the
effect of KCl. When a polymer binds to the bacterial membrane, its membrane potential is
disrupted, ion channels are generated, and unregulated ion transmembrane movements
occur [61]. DiSC3(5) is released into the medium, producing an increase in the intensity of
the fluorescence.

Correct electrical potential across the membrane is crucial, as it is a source of free
energy (membrane transport, ATP synthesis and mobility). This potential is generally
assumed to be homeostatic (pH, cell division and dynamic communications) [62]. Any
disturbance in the polarization of the bacterial membrane could lead to dysfunctional
membrane protein performance and subsequently cell death. To monitor the phenomenon
of membrane depolarization, E. coli was incubated with polymers P2TD, P3TD, and P1TD,
in HEPES-glucose containing DiSC3(5) 0.5 µM. The assay showed an increase of the de-
tected fluorescence intensity upon the addition of the polymer, which was indicative of
membrane depolarization. Figure 9 shows that in E. coli, polymers P3TD and P1TD induced
a significant increase in DiSC3(5) fluorescence, while in the case of polymer P2TD the
increase was not significant (Figure 9).
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In addition, the permeability of the inner and outer membranes was checked. The
outer membrane acts as a permeability barrier that prevents hydrophobic substances from
entering the cytosol. For this reason, NPN, a fluorescent marker, cannot pass through it and
shows weak fluorescence in the buffered medium. However, when membrane integrity
is compromised by the presence of a permeabilizing agent, NPN enters the phospholipid
bilayer (hydrophobic environment), resulting in increased fluorescence. The addition
of polymers P3TD, P2TD, or P1TD to E. coli, in the presence of NPN, produced a time-
dependent increase in fluorescence emission (indicative of NPN uptake). The polymers
bonded electrostatically to the cell surface, and this interaction led to an enhancement of
cell permeability. We observed that the membrane permeation ability of polymers increased
with an increase in the overall hydrophobicity of polytriazole (Figure 10A). Propidium
iodide (PI) was used to determine the permeability of the inner membrane. Cells with
damaged membranes take up this compound, which binds to nucleic acids, producing
an increase in fluorescence. A similar trend is observed, with polytriazole P3TD being
the one that initially produced a higher intensity of fluorescence. However, its value
decreased over time, while in the other polymers it remained the same during the analyzed
time (Figure 10B).

Polymers P3TD, P2TD and P1TD at 0.5 mg/mL showed depolarization and per-
meabilization of the cytoplasmic membrane when tested against E. coli, in the presence
of DiSC3(5), NPN, and PI. Based on the results, as well as on the bibliography [63,64],
one mechanism of antibacterial activity could be suggested. First, the cationic domains of
polytriazoles possibly interact with the bacterial electrostatic net negative surface charge.
Second, the hydrophobic domains might directly insert into the lipid core of the target
membrane, leading to its disruption, which promotes cell death.
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(A) Outer-membrane by the increase in NPN fluorescence; (B) Inner-membrane by the increase in PI
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0.5 mg/mL.

3.8. Hemolytic Activity

An initial way to evaluate the toxicity of new therapeutic agents to the human body
is to check that they are not harmful to human red blood cells. hRBC lysis was evaluated
spectrophotometrically by measuring the absorbance of the medium at 540 nm, which
is directly proportional to the release of hemoglobin. To measure the selectivity that
a polymer shows for bacteria against red blood cells, the HC50/MIC ratio is widely used,
as it represents the polymer concentration that induces 50% of hemoglobin release from
hRBC into the medium related to the MIC values (Table 4). Alkylation of the alcohol
functions present in monomer 1, and therefore the presence of alkyl chains in repeating
units of the different polymers (Figure 2), generally caused a notable increase in hemolysis
activity. Only polymers P5CD and P5TD, which carry diethylene glycol-derived radicals
and therefore are hydrophilic in nature, were not hemolytic at all. However, the butylated
polymer P3TD showed higher hemolytic activity than the heptylated pair of polymers P4TD
and P4CD, which were expected to be more hemolytic due to their higher lipophilicity. In
addition, although differences were observed between thermal and catalytic polymers, we
did not find clear correlations. Under the conditions studied, the selectivity of the polymers
tested by selected bacteria versus red blood cells is favorable for the P2CD, P4TD, P5CD,
and P5TD polymers. The selectivity values in the case of the P2CD polymer were at least
64 for Enterococcus faecium, Staphylococcus aureus and Enterobacter spp., 32 for Pseudomonas
aeruginosa and 16 for Klebsiella pneumoniae. In the case of the P4TD polymer, it presented
a value of 16 for Enterobacter spp.
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Table 4. HC50/MIC ratio of polycationic polymers.

Polymer Enterococcus faecium Staphylococcus aureus Klebsiella pneumoniae Pseudomonas aeruginosa Enterobacter spp.

P1TD >256 >256 >128 >128 >256
P2CD >64 >64 >16 >32 >64
P2TD 1 1 <1 <1 1
P3TD <1 <1 <1 <1 <1
P4CD <1 <1 <1 <1 <1
P4TD <1 <1 <1 <1 16
P5CD >16 >16 -a -a -a

P5TD >4 >4 - a - a >4
a HC50 and MIC values out of studied range. HC50/MIC could not be calculated.

3.9. Cytotoxicity Assay

The toxicity of the polymers was assessed using the MTT method. For this, human
gingival fibroblast cells (HGnF) were used as representative mammalian cells, and the
data corresponding to cell viability as a function of polymer concentration, after one
day of incubation, is shown in Figure 11. The cytotoxicity and antimicrobial activity of
the polymers depend on the ratio of hydrophobic to hydrophilic content. Therefore, the
incorporation of hydrophilic fragments such as poly(ethylene glycol) [65,66] and sug-
ars [67] can considerably improve the biocompatibility of antibacterial polymers. Although
these modifications can be made without significantly reducing antibacterial activity, in
our case an appreciable reduction in antibacterial activity was found when more hy-
drophilic side chains were introduced, such as those derived from diethylene glycol in
P5CD and P5TD polymers. Polymers P5CD and P5TD had low antibacterial activity against
Enterococcus faecium and Staphylococcus aureus. Furthermore, in the case of polymer P5CD,
cellular viability was 100% at the MIC concentration and 80% at a concentration twice its
MIC; while in the case of the polymer obtained under thermal conditions, P5TD, the viabil-
ity values were lower, 60 and 40%, respectively. The polymers, P2CD and P4CD, obtained
under catalytic conditions showed greater cytotoxicity than their corresponding thermal
polymers. The P4TD and P4CD polymers showed low antibacterial activity against Enter-
obacter spp. At concentrations close to their MIC, cell viability values of around 40% were
obtained. In the case of P2CD and P2TD, viabilities of 71% and 100%, respectively, were
confirmed at the MIC concentration found for E. faecium, S. aureus and Enterobacter spp.,
and lower cell viabilities were found when concentrations corresponding to the MICs for
P. aeruginosa (32 mg/mL) and K. pneumoniae (64 mg/mL) were used. The polymer that
showed the greatest antibacterial activity was P3TD, which showed a cell survival of 100%
at the concentration of its MIC (E. faecium, S. aureus and Enterobacter spp.), and 86% at
a concentration twice its MIC (K. pneumoniae and P. aeruginosa), but greatly increased its
cytotoxicity by increasing the concentration.
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Figure 11. Cell viability of human gingival fibroblast cells was determined after 24 h of incubation
with polymers P1TD, P2CD, P2TD, P3TD, P4CD, P4TD, P5CD, and P5TD, by the MTT assay. Standard
deviation is plotted with error bars in the graph. Control conditions implied no polymer added.
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4. Conclusions

Several polytriazoles have been synthesized containing the same main chain but dif-
fering in their side chains. In this way, the hydrophobicity-hydrophilicity relationship in
the antibacterial polymer can be modulated as a function of the length of the alkyl radical
of the side chains or by their nature. In general, the resulting cationic polymers are antibac-
terial and active against different ESKAPE pathogens. Polymers carrying ethylene glycol
(more hydrophilic) and heptyl (more lipophilic) side chains were found to have milder
antibacterial activity. The P3TD polymer, which was prepared by a thermal cycloaddition
reaction and has butylated side chains, was the one with the highest antibacterial activity
against bacteria in the tested ESKAPE group, although it also had a high hemolytic activity.
Methylated polymers (P2CD and P2TD) have a better balance between hydrophilicity and
hydrophobicity, since they had good antibacterial properties and acceptable biocompati-
bility with hRBC and HGnF. The resistance that P. aeruginosa, selected as a Gram-negative
strain, and MRSA, selected as a Gram-positive species, could develop against polymers
P1TD, P2CD, and P3TD was studied. It is shown that neither P. aeruginosa nor MRSA
increased their MICs to the polymeric antibacterial agents tested: P2CD and P3TD in
the first case, and P3TD and P1TD in the second. Based on MIC values, the regiospe-
cific polymers, PnCD, exhibited better antibacterial activity than their non-regiospecific
analogs, PnTD. This effect may be due to the difference in regiospecificity or differences in
molecular weight, since the polymers obtained by catalytic means had higher molecular
weight values.
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www.mdpi.com/article/10.3390/pharmaceutics14112518/s1: Figure S1: Two-dimensional homonu-
clear correlation spectrum (COSY) of polymer P2C recorded in deuterochloroform. Figure S2: Two-
dimensional heteronuclear correlation spectrum (HSQC) of polymer P2C recorded in deuterochlo-
roform. Figure S3: Two-dimensional homonuclear correlation spectrum (COSY) of polymer P2T
recorded in deuterochloroform. Figure S4: Two-dimensional heteronuclear correlation spectrum
(HSQC) of polymer P2T recorded in deuterochloroform.
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