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There are two objects naturally associated with a braid ˇ2Bn of pseudo-Anosov type:
a (relative) pseudo-Anosov homeomorphism 'ˇ W S

2! S2 ; and the finite-volume
complete hyperbolic structure on the 3–manifold Mˇ obtained by excising the braid
closure of ˇ , together with its braid axis, from S3. We show the disconnect between
these objects, by exhibiting a family of braids

˚
ˇq Wq2Q\

�
0; 1

3

�	
with the properties

that, on the one hand, there is a fixed homeomorphism '0 W S
2! S2 to which the

(suitably normalized) homeomorphisms 'ˇq
converge as q ! 0 , while, on the

other hand, there are infinitely many distinct hyperbolic 3–manifolds which arise as
geometric limits of the form limk!1Mˇqk

, for sequences qk ! 0 .

57M50; 20F36, 37E30, 57M25

1 Introduction

This article presents a somewhat surprising phenomenon on the interface between the
theories of surface homeomorphisms and of 3–manifold geometry. Two theorems due
to Thurston associate to certain mapping classes on a surface — the pseudo-Anosov
mapping classes — two different types of canonical objects:
� The classification theorem for surface homeomorphisms — see Casson and

Bleiler [10], Thurston [26] and Fathi, Laudenbach and Poénaru (editors) [13] —
states that every irreducible mapping class which is not of finite order contains a
pseudo-Anosov homeomorphism, which is unique up to topological conjugacy.
Such a mapping class is said to be of pseudo-Anosov type.

� The hyperbolization theorem for fibered 3–manifolds — see McMullen [20],
Otal [22] and Thurston [27] — states that the mapping torus of a mapping class
admits a complete hyperbolic metric of finite volume (unique up to isometry
by the Mostow–Prasad theorem) if and only if the mapping class is of pseudo-
Anosov type.
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In this paper we consider mapping classes of marked spheres, represented by elements
of Artin’s braid groups: an n–braid ˇ 2 Bn defines a mapping class on the n–marked
disk and hence on the .nC1/–marked sphere. We say that ˇ is of pseudo-Anosov type
if and only if the corresponding mapping class is, and in this case we can associate to it

� a homeomorphism 'ˇ W S
2 ! S2, unique up to conjugacy, which is pseudo-

Anosov relative to the marked points (that is, whose invariant foliations are
permitted to have 1–pronged singularities at these points); and

� the hyperbolic 3–manifold1 Mˇ D S3 n . y̌[A/ — where y̌ is the closure of ˇ
and A is its braid axis — which is homeomorphic to the mapping torus of 'ˇ
(acting on the sphere punctured at the nC 1 marked points).

We will present a family of pseudo-Anosov braids
˚
ˇq W q 2 Q \

�
0; 1

3

�	
, with

ˇm=n 2 BnC2 , with the following properties:

� The pseudo-Anosov homeomorphisms 'q WD 'ˇq
W S2! S2 can be normalized

in such a way that 'q!'0 as q!0, where '0 is a fixed sphere homeomorphism
(the tight horseshoe map, derived from Smale’s horseshoe map).

� The hyperbolic 3–manifolds Mq WD Mˇq
have the property that there are

infinitely many distinct finite-volume hyperbolic 3–manifolds which can be
obtained as geometric limits limk!1Mqk

for some sequence qk ! 0.

The braids ˇq are the NBT braids of Hall [17]: they are pseudo-Anosov braids for
which the corresponding pseudo-Anosov homeomorphisms 'q have particularly simple
train tracks (see Remark 5). The fact that 'q ! '0 as q ! 0 is a straightforward
consequence of results of Boyland, de Carvalho and Hall [6]: the main content of this
paper is an analysis of possible geometric limits of sequences Mqk

.

It is interesting to contrast this work with the surprising discovery due to Farb, Leininger
and Margalit [12] (see also Agol [1]) of a universal finiteness phenomenon for the
mapping tori of small dilatation pseudo-Anosov homeomorphisms: all such mapping
tori can be obtained by Dehn surgery on a finite collection of hyperbolic 3–manifolds.
More precisely, given a constant P > 0, a pseudo-Anosov homeomorphism ' W S! S

of a surface S, with dilatation �, is said to have small dilatation if j�.S/j log�� P. It
follows from a result of Penner [23] that, for sufficiently large P, the set of small dilata-
tion pseudo-Anosovs (as S ranges over all surfaces of negative Euler characteristic) is

1All of the 3–manifolds in this paper are of the form Mˇ for some pseudo-Anosov braid ˇ , and we
consider them equipped with their unique hyperbolic structures without further comment.
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infinite. Nevertheless, it is shown in [12] that, after puncturing at the singularities of the
invariant foliations of each pseudo-Anosov, there is only a finite number of mapping
tori associated with these maps.

Here, on the other hand, we consider sequences of pseudo-Anosov homeomorphisms
of the punctured sphere (punctured, in fact, exactly at the singularities of the invariant
foliations, although these include 1–pronged singularities), all of which converge to the
same sphere homeomorphism, and show that the corresponding sequences of mapping
tori have infinitely many distinct geometric limits. Since our sequences of pseudo-
Anosovs have dilatations converging to 2, and are defined on punctured spheres with
unbounded Euler characteristics, they do not have small dilatations.

The principal technique used in the paper is Dehn surgery, and we now briefly recap
some key definitions and results, in order to fix conventions (which are taken from
Rolfsen’s book [24, Section 9]). Let L D L1 [ � � � [Ln be a link in S3 with com-
ponents Li , and let N be a closed tubular neighborhood of L1 which is disjoint
from the other components of L. Pick a basis .Œ��; Œ��/ for H1.@N;Z/ such that the
“meridian” � is contractible in N and the “longitude” � has linking number 0 with L1 .

If J is a homotopically nontrivial simple closed curve in @N , then we can construct a
3–manifold

M D .S3
n .L[ VN //[h N;

where h W @N ! @N is a homeomorphism which takes � onto J. Writing ŒJ � D

bŒ��C aŒ��, we say that M is obtained from S3 nL by Dehn filling L1 with surgery
coefficient r D b=a: this definition is independent of the choices of orientations
of �, � and J. (This corresponds to Dehn filling coefficient .b; a/ in the notation
used by SnapPy [11], where the coefficients .b; a/ and .�b;�a/ lead to the same
surgery. We will always assume that a and b are coprime.) We define the surgery
coefficient r to be 1 if and only if ŒJ �D˙Œ�� (so that bD 1 and aD 0). In this case
M D S3 n .L2[ � � � [Ln/: that is, filling L1 with surgery coefficient 1 is the same
as erasing the component L1 from the link L.

Suppose now that we have assigned surgery coefficients to some of the components
of L, and that L1 is an unknotted component of L. Applying a positive meridional
twist to the (solid torus) complement of a tubular neighborhood of L1 is referred
to as performing a C1 twist on L1 : if D is a disk bounded by L1 which the other
components of L intersect transversely, then the effect of this twist on the link L is
to replace each segment of L which intersects D with a helix which screws through

Algebraic & Geometric Topology, Volume 21 (2021)
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a collar of D in the right-handed sense. If t 2 Z, then performing a t twist on L1

means performing t such twists if t � 0, or �t left-handed twists if t < 0.

The revised link L0 after a t twist on L1 describes the same 3–manifold as L provided
that the surgery coefficients (on those components of L which have them) are updated
using the formulæ

(1) r1.L1/D
1

tC1=r0.L1/
; r1.Li/D r0.Li/C t.lk.L1;Li//

2 for i > 1;

where r0.Li/ and r1.Li/ are the surgery coefficients on Li before and after the twist,
and lk.L1;Li/ is the linking number of L1 with Li .

In this paper, we will only perform twists in the case where LD y̌[A is the closure of
a braid together with its axis; and we will only perform them on either the braid axis A

or a fixed component of y̌ (one which corresponds to a single string of the braid). It
will therefore be convenient to describe the effects of such twists directly on the braid:

(a) A t twist on the braid axis A replaces ˇ with ˇ��t, where � is the full twist in
the braid group.

(b) Figure 1, far left, is a schematic representation of y̌[A, where ˇ has a fixed string
which links one of the other strings. The effect of a �1 twist on the corresponding
component of y̌ is shown in Figure 1, center left, which is followed by conjugacy
(exchanging the red and the first black string) to obtain the braid of Figure 1, center right.
Because this braid has the same structure as ˇ , the process can be repeated t � 1 more
times to obtain the braid of Figure 1, far right, which is the effect of applying a �t twist
on the fixed string. It has t more strands than ˇ .

We shall also consider twists on fixed strings which link a ribbon of other parallel
strings of the braid. Figure 2 shows the effect of a �t twist in this case, determined
analogously. If the ribbon consists of m strings, then this increases the number of
strings of ˇ by tm.

...

Figure 1: �1 and �t twists on a fixed string which links one other string.

Algebraic & Geometric Topology, Volume 21 (2021)
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...

...

......

... ...

Figure 2: A �t twist on a fixed string which links a ribbon of parallel strings.

In order to carry out a Ct twist on a fixed string, we will conjugate ˇ to take the form
of the right-hand side of Figure 2. The Ct twist will then reduce it to the braid on the
left-hand side.

We will use the following simplified version of Thurston’s hyperbolic Dehn surgery
theorem, which follows from Chapters 4 and 5 of Thurston [28]; see also Benedetti
and Petronio [2] and Neumann and Zagier [21].

Theorem 1 Let L D L1 [ � � � [ Ln be a link in S3 such that M WD S3 n L is
a complete hyperbolic 3–manifold of finite volume, ri D bi=ai be a sequence of
rationals with a2

i C b2
i !1, and Mi be the sequence of 3–manifolds obtained by

Dehn filling L1 with surgery coefficients ri . Then Mi converges geometrically to M,
and the convergence is nontrivial in the sense that Mi and M are distinct for all i , so
that there are infinitely many distinct 3–manifolds Mi .

2 The braids ˇq

Recall that the positive permutation braid ˇ 2 Bn defined by a permutation � 2 Sn

is the unique n–braid which induces the permutation � on its strings, and which has
the properties that every pair of strings crosses at most once, and that every crossing
is in the positive sense (we adopt the convention, following Birman [4], that a braid
crossing is positive if the left string crosses over the right one). Thus a diagram of ˇ
can be constructed by drawing the 1st to the nth strings in order, with the i th string
going from position i to position �.i/ and passing underneath any intervening strings
which have already been drawn.

The following definition is from [17, Theorem 2.1], and the fact that the braids defined
are of pseudo-Anosov type is contained in the proof of Theorem 2.3 of the same paper.

Algebraic & Geometric Topology, Volume 21 (2021)
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(There the braids ˇ0q are also defined for q 2
�

1
3
; 1

2

�
, but this is done in a different way

and, since we are only interested in limits as q! 0, is not relevant here.) Here and
throughout the paper, when we write a positive rational number as m

n
, we will always

assume that m and n are coprime and positive.

Definition 2 (the braids ˇ0q ) Let q D m
n
2Q\

�
0; 1

3

�
. The braid ˇ0q 2 BnC2 is the

positive permutation braid (see Figure 3) defined by the cyclic permutation

(2) �q.r/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

r Cm if 1� r � n� 3mC 1;

r CmC 1 if n� 3mC 2� r � n� 2mC 1;

2n� 2mC 4� r if n� 2mC 2� r � n�mC 1;

n� 2mC 2 if r D n�mC 2;

nC 3� r if n�mC 3� r � nC 2:

It is helpful to organize the strings of ˇ0q in ribbons of parallel strings. The five cases
of (2) yield, in order:
� A ribbon of width n� 3mC 1 which moves m places to the right.
� A ribbon of width m which moves mC 1 places to the right, thus leaving the

target in position n� 2mC 2 unassigned.
� A ribbon of width m which is sent to the final m target positions with a half

twist.
� A “rogue” string, which ends at the unassigned target in position n� 2mC 2.
� A ribbon of width m, which is sent to the first m target positions with a half

twist.

n − 3m +1 m m m

Figure 3: The braid ˇ0
m=n
2 BnC2 .

Definition 3 (the braids ˇq ) It will be convenient for us to conjugate the braids ˇ0q by
a half twist of the final m strings, thereby turning the half twist on the final ribbon into
a full twist, and removing the half twist on the penultimate ribbon: these conjugated

Algebraic & Geometric Topology, Volume 21 (2021)
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n − 3m +1

+ (m +1)

+ m

m −1

m m m

m

n −
 2m

 +1

C.mC1/

Figure 4: The braid ˇm=n 2 BnC2 , and as a circular braid.

braids will be denoted by ˇq (Figure 4). (The braids ˇq can be seen as circular
braids, as shown on the right of the figure, with each string other than the rogue one
rotating around the circle by either m or mC1 positions. This point of view motivates
constructions later in the paper; see Definitions 6 and 10.)

3 Pseudo-Anosov convergence to the tight horseshoe

The tight horseshoe map [7] '0 W S ! S is a 2–sphere homeomorphism which can be
obtained by collapsing the horizontal and vertical gaps in the invariant Cantor set of
Smale’s horseshoe map [25]. In order to define it directly, we start with its sphere S

of definition, which is obtained by making identifications along the sides of a unit
square † as depicted in Figure 5. Infinitely many segments along the boundary of †,
two of length

�
1
2

�i for each i � 0, are folded in half (so that the points of each segment,
other than the center point, are identified in pairs). The top and right edges of † are
each a single folded segment, and the other segments are arranged on the left and
bottom sides in decreasing order of length from the top left and bottom right vertices
respectively. The fold-segment endpoints, together with the bottom left corner, are
identified to a single point 1. It can be shown (see for example [9]) that the space S

so obtained is a topological sphere (and, in fact, that the Euclidean structure on †
induces a well-defined conformal structure on S ).

To define the tight horseshoe map, let F W†!† be the (discontinuous and noninjective)
map defined by

F.x;y/D

(�
2x; 1

2
y
�

if x � 1
2
;�

2� 2x; 1� 1
2
y
�

if x > 1
2
:

Algebraic & Geometric Topology, Volume 21 (2021)
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Figure 5: The sphere S of definition of the tight horseshoe map.

That is, F stretches † by a factor 2 horizontally, contracts it by a factor 1
2

vertically,
and maps its left half to its bottom half, and its right half, with a flip, to its top half. The
identifications on † are precisely those needed to make F continuous and injective, so
that it defines a homeomorphism '0 W S!S, the tight horseshoe map. (It is an example
of a generalized pseudo-Anosov map [8]: it has (horizontal and vertical) unstable
and stable invariant foliations, but these foliations have infinitely many 1–pronged
singularities — at the centers of the fold segments — accumulating on an “1–pronged
singularity” corresponding to the fold-segment endpoints and the bottom left vertex.)

For each q D m
n
2
�
0; 1

3

�
\Q, let 'q W S

2! S2 be a pseudo-Anosov homeomorphism
in the mapping class of the .nC3/–marked sphere defined by ˇq . The convergence
of 'q to '0 as q! 0 is an immediate consequence of results from [6]. The following
statement is a summary of the relevant parts of Theorems 5.19 and 5.31 of that paper.

Theorem 4 There is a continuously varying family f�t W S
2! S2g

t2.
p

2;2�
of home-

omorphisms of the standard 2–sphere , with the properties that

(a) �2 is topologically conjugate to '0 ; and

(b) there is a decreasing function t W
�
0; 1

3

�
\Q ! .

p
2; 2/, satisfying t.q/ ! 2

as q! 0, such that �t.q/ is topologically conjugate to 'q for each q .

Remark 5 A brief discussion of the ideas surrounding Theorem 4 may be help-
ful to the reader. Boyland [5] defined the braid type of a period n orbit P of an
orientation-preserving disk homeomorphism f WD2!D2 to be the isotopy class of
f WD2 nP !D2 nP, up to conjugacy in the mapping class group of the n–punctured

Algebraic & Geometric Topology, Volume 21 (2021)
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disk: the braid type can therefore be described — although not uniquely — by a braid
ˇP 2 Bn . He further defined the forcing relation, a partial order on the set of braid
types: one braid type forces another if every homeomorphism which has a periodic
orbit of the former braid type also has one of the latter. The forcing relation therefore
describes constraints on the order in which periodic orbits can appear in parametrized
families of homeomorphisms.

If f is Smale’s horseshoe map, then standard symbolic techniques associate a code
cP 2 f0; 1g

n to a period n orbit P. This coding establishes a correspondence be-
tween the nontrivial periodic orbits of f and those of the affine unimodal tent maps
Tt W Œ0; 1�! Œ0; 1� defined for t 2 .1; 2� by

Tt .x/Dmin.2C t.x� 1/; t.1�x//;

whose periodic orbits are likewise coded in a standard way. The braids ˇ0q of
Definition 2 — or, more accurately, the braids ˇ0q for q 2

�
0; 1

2

�
\ Q alluded to

before the definition — are precisely the pseudo-Anosov braids describing braid types
of horseshoe periodic orbits Pq which are quasi-one-dimensional, in the sense that the
braid types that they force are exactly those corresponding to the periodic orbits of the
tent map Tt.q/ which has kneading sequence c1

Pq
[17].

Another way to view the braids ˇ0q is as the braids of horseshoe periodic orbits Pq

whose mapping class is pseudo-Anosov and whose associated train tracks are the
simplest possible: if the 1–gons about the orbit points are ignored, then the union of
the remaining edges is an arc. This means that the only singularities of the invariant
foliations of 'q are 1–prongs at points of the orbit and an n–prong at1, where qD m

n
.

This is what makes the orbits Pq quasi-one-dimensional: the induced map on the
reduced train track (which is an interval) is a unimodal interval map.

One way to construct the pseudo-Anosov map in a mapping class is as a factor of the
natural extension of a corresponding train track map. In [6], a similar method is used
to construct a measurable pseudo-Anosov homeomorphism from the natural extension
of each tent map Tt with t >

p
2: these form the continuously varying family �t

of Theorem 4. They are pseudo-Anosov maps if and only if the kneading sequence
of the tent map is periodic and is the horseshoe code of one of the braids ˇ0q , ie if
and only if t D t.q/ for some q 2

�
0; 1

2

�
\Q, and in this case �t.q/ is topologically

conjugate to 'q .

Algebraic & Geometric Topology, Volume 21 (2021)
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Theorem 4 also provides limits of the pseudo-Anosov homeomorphisms 'q as q tends
to an irrational � , or to a rational r either from above or from below (the image of t is
discrete). All such limits are generalized pseudo-Anosov homeomorphisms.

4 Convergence of mapping tori

Let � D `
m
2 Œ0; 1/ \ Q, and consider the corresponding sequence .q.�/

k
/k�3 of

rationals defined by q.�/
k
Dm=.kmC `/. By the description of the ribbon structure

of the braids ˇq in Section 2, the braid ˇq.�/
k

is as depicted in Figure 4, with the first
ribbon having width .k � 3/mC `C 1 and the others having width m.

In this section we will show that, for each � , the mapping tori Mq.�/
k

converge geo-
metrically as k!1 to a hyperbolic manifold �M� of finite volume. In the following
section, we will prove that the set f �M� W � 2 Œ0; 1/\Qg is infinite.

The crucial observation is that the sequence of mapping tori Mq.�/
k

can be obtained
from a single finite-volume hyperbolic 3–manifold �M� by Dehn filling one of its cusps
with a sequence of distinct surgery coefficients rk : it therefore follows from Theorem 1
that the sequence of mapping tori converges geometrically to �M� .

The manifolds �M� are themselves mapping tori, corresponding to braids � which are
obtained from ˇq.�/

3
D ˇm=.3mC`/ by adding one additional string on the left. This

additional string is chosen precisely in order that �M� is the geometric limit of the
sequence Mq.�/

k
(see the proof of Theorem 7).

Definition 6 (the braids � ) Let � D `
m
2 Œ0; 1/\Q. The braid � 2 B3mC`C3 is

obtained from ˇm=.3mC`/ by adding a fixed string on the left, which links with the final
width m ribbon of ˇm=.3mC`/ but not with the other strings, as depicted in Figure 6.
(In the circular representation of Figure 4, this corresponds to adding a fixed string, not
linking the rogue string, through the center of the circle.)

That � is a pseudo-Anosov braid follows from the fact that ˇm=.3mC`/ is. (Any reduc-
ing curve C would bound a disk D containing at least two but not all of the punctures
associated with the strings of � . The disk D cannot contain the puncture associated to
the fixed string, since then its image would also contain that puncture but a different set
of the other punctures; it cannot contain a proper subset of the other punctures, since
then ˇm=.3mC`/ would be reducible; and it cannot contain all of the other punctures
since the associated strings link with the fixed string.) Thus �M� WD S3 n .y� [A/

(where A is the braid axis) is a finite-volume hyperbolic 3–manifold with three cusps.

Algebraic & Geometric Topology, Volume 21 (2021)
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`C 1 m m m

Figure 6: The braid `=m .

Theorem 7 Let � 2 Œ0; 1/\Q and k � 1. Dehn filling the cusp of �M� corresponding
to the fixed string of � with surgery coefficient 1=k yields Mq.�/

kC3
.

Proof It is immediate from Figure 2 that performing a �k twist on the component R

of y� [ A corresponding to the fixed string increases the width of the first ribbon
of � from `C 1 to kmC `C 1. By (1), this changes the surgery coefficient on R

to r1.R/D 1=.�kC 1=.1=k//D1, so that it can be erased, yielding the closure of
the braid ˇm=..kC3/mC`/D ˇq.�/

kC3
(see Figure 4). That is, Dehn filling R with surgery

coefficient 1=k yields Mq.�/
kC3

as required.

The following corollary is now immediate from Theorem 1.

Corollary 8 For each � 2 Œ0; 1/\Q the sequence Mq.�/
k

converges geometrically
to �M� .

5 Infinitely many limit manifolds

Figure 7 is a plot of the volumes of the limit manifolds �M� against � , generated by
SnapPy [11]. The points in red are those for which � is of the form i=.i C 1/. In this
section we show how all of the corresponding manifolds �Mi=.iC1/ can be obtained by
Dehn filling a cusp of another hyperbolic 3–manifold M with a sequence of distinct
surgery coefficients, so that, again by Theorem 1, there are infinitely many distinct
limit manifolds �Mi=.iC1/ (which converge geometrically to M as i !1).

Remarks 9 (a) Other apparently convergent sequences in Figure 7 correspond to
similar sequences �i , such as �i D 1= i and �i D i=.2i C 1/.

Algebraic & Geometric Topology, Volume 21 (2021)
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14

Figure 7: Volumes of the limit manifolds �M� (for � with denominator � 14).

(b) The volume 5:333489: : : of �M0 suggests that it may be the magic manifold.
To see that this is indeed the case, consider the braids depicted in Figure 8, each
representing the 3–manifold obtained by removing the braid closure together
with its axis from S3. The braid on the left is 0=1 , representing �M0 , while the
one on the right represents the magic manifold (see for example [19, Figure 3]).
The operations converting each braid to the next are either twists on components
of the associated links or braid conjugacies, and therefore leave the 3–manifolds
unchanged. Specifically, these operations are, in order: conjugacy by ��1

4
;

a C3 twist on the red component (see Figure 1, far right and far left); conjugacy
by �2 ; a C1 twist on the braid axis; and conjugacy by �1�2 .

Figure 8: �M0 is the magic manifold.

The manifold M is obtained from the 10–braid ı of the following definition (see
Figure 9), whose closure yı is a three-component link. Note that the blue and green
strings in the figure form a braid conjugate to 0=1 (the conjugacy ��1

1
��1

2
��1

3
��1

4
��1

5

moves the fixed string from the left to the right of the braid diagram), and to this braid
has been added a 4–string braid which “shadows” the blue strings. It is not obvious

Algebraic & Geometric Topology, Volume 21 (2021)
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a priori — at least, not to the authors — that Dehn filling the “black” cusp of the resulting
hyperbolic 3–manifold should yield the manifolds �Mi=.iC1/ : rather, the braid ı was
found experimentally using SnapPy [11].

Definition 10 Define ı to be

�6�5�4�3�9�8�8�9�7�6�5�4�3�2�1�8�7�6�5�4�3�2�1�8�6 2 B10:

It can be checked, using the implementation [18] of the Bestvina–Handel algorithm
for train tracks of surface homeomorphisms [3] that ı is pseudo-Anosov, with its
train track and image train track as shown in Figure 10. The corresponding relative
pseudo-Anosov homeomorphism therefore has 1–pronged singularities at the marked
points corresponding to the blue and green strings of Figure 9, a 4–pronged singularity
at 1, and regular points at the black marked points. Therefore M WD S3 n .yı [A/

(where A is the braid axis) is a finite-volume hyperbolic 3–manifold with four cusps.

Theorem 11 Let i � 1. Dehn filling the cusp of M corresponding to the black strings
of Figure 9 with surgery coefficient �4C 1= i yields �Mi=.iC1/ .

Proof The left-hand side of Figure 11 depicts a braid � , which is ı together with an ex-
tra fixed string shown in red. We write B and R for the black and red components of y� ,
which are unknotted. We need to show that filling B with coefficient r0.B/D�4C1= i

and R with coefficient r0.R/ D 1 (ie erasing R from the link y� [A) yields the
3–manifold �Mi=.iC1/ .

The braid on the right-hand side of the figure is obtained by conjugating by the braid
��2

7
��1

2
��1

4
��1

3
��1

6
��1

5
��1

4
. Referring to Figure 1, performing a C3 twist on R

Figure 9: The braid ı 2 B10 .
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a

b

c

d

e

f

g

h

k
tx y z1 2 3 4 5

a
b

c
d

e

f g

h

k

t
x

y z1 2 345

Figure 10: An invariant train track for ı , along with its image.

yields the braid on the left of Figure 12, and a conjugacy by ��1
6
�7 gives the braid on

the right-hand side of the figure. By (1), the updated surgery coefficients are

r1.R/D
1

.3C 1=r0.R//
D

1

3
and r1.B/D r0.B/C 3D�1C

1

i
;

since lk.B;R/D 1.

Performing a C1 twist on the braid axis A yields the braid on the left-hand side
of Figure 13, which a further conjugacy by �7�6�5�4�3�2�1�1�2�3�4�5�6�7 — to
pull the black string around — reduces to the right-hand side of the figure. (Here and
in Figure 14, the parts of the blue strings which participate in the full twist have not been
drawn, to clarify the diagrams.) The red component R and the black component B

1

R

�4C 1= i

B

1

R

�4C 1= i

B

Figure 11: Conjugating � to prepare it for a C3 twist on R .
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1
3

�1C 1= i

Figure 12: A C3 twist on R , followed by a conjugacy.

are now unlinked. The revised surgery coefficients are

r2.R/D
1

3
C 1D

4

3
and r2.B/D�1C

1

i
C 1D

1

i
;

since lk.A;R/D lk.A;B/D 1.

We can now carry out the surgery on B . Performing a �i twist on B yields the
braid of Figure 14 (in which the ribbon contains i � 1 parallel strings). The surgery
coefficient of B is

r3.B/D
1

�i C 1=.1= i/
D1;

4
3

1= i

Figure 13: A C1 twist on the braid axis A , followed by a conjugacy.
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4
3

i � 1

Figure 14: A �i twist on B changes its surgery coefficient to 1 .

so that it can be removed (and is not shown in Figure 14). Because R and B are
unlinked, the surgery coefficient of R is unchanged: r3.R/D r2.R/D

4
3

.

We next perform a �1 twist on A, which produces the braid on the left-hand side of
Figure 15, and changes the surgery coefficient of R to r4.R/D

1
3

. A �3 twist on R

therefore changes its coefficient to 1, so that it can be erased: this results in the braid
on the right-hand side of Figure 15, in which each of the four ribbons contains i � 1

parallel strings.

To complete the proof, we exhibit a braid conjugacy between the braid on the right-
hand side of Figure 15 and the braid i=.iC1/ — that is, the braid of Figure 6 with
all four ribbons containing i C 1 parallel strings. (This conjugacy was discovered

1
3

i � 1 i � 1 i � 1 i � 1 i � 1

Figure 15: A �1 twist on A followed by a �3 twist on R .
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i i i � 1 i i i i � 1 i

Figure 16: Successive conjugacies on the right-hand side of Figure 15.

computationally, using sliding circuit set methods [15; 16] for small values of i and
extrapolating: the braids i=.iC1/ have small sliding circuit sets but large ultra summit
sets [14].) Two successive conjugacies are shown in Figure 16. Here the first, second,
and fourth ribbons have been enlarged by incorporating an additional parallel string, so
that they each contain i parallel strings.

Simplifying the braid on the right-hand side of Figure 16 by isotopy of the strings yields
the braid on the left-hand side of Figure 17. Again, we have incorporated additional
parallel strings into ribbons, so that the first two ribbons contain i C 1 parallel strings,

i C 1 i C 1 i i i C 1 i C 1
i C 1 i C 1

Figure 17: A simplified diagram of the right-hand side of Figure 16, followed
by a conjugacy.
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and the other two contain i parallel strings. A final conjugacy which moves the green
string to the left, underneath all of the other strings, gives the braid on the right-hand
side of the figure, and incorporating additional parallel strings into the rightmost two
ribbons yields i=.iC1/ as required.

Corollary 12 The sequence �Mi=.iC1/ converges geometrically to M as i !1, and
there are infinitely many distinct hyperbolic 3–manifolds �Mi=.iC1/ .
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