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ABSTRACT. In this paper we present a refined version of MacLane’s theory of key polynomials,
similar to those considered by M. Vaquié and reminiscent of approximate roots of Abhyankar
and Moh.

Given a simple transcendental extension of valued fields, we associate to it a countable
well-ordered set of polynomials called key polynomials. We define limit key polynomials and
give explicit formulae for them. We give an explicit bound on the order type of the set of key
polynomials.

1. INTRODUCTION

Let ¢ : (K,vk) < (K(z),v) be a simple transcendental extension of valued fields such that
rank vg = 1. In the case when v is discrete (that is, the value group of v is Z), S. Mac Lane
described all such extensions in the nineteen thirties. His description was based on the theory
of key polynomials associated to ¢ that he introduced for that purpose ([24]-[26]).

This seminal work of Mac Lane is connected to the resolution of fundamental arithmetic—
geometric problems like the computation of prime ideal decomposition in number fields or the
design of polynomial factorization algorithms over henselian fields. On the geometric side, limit
key polynomials are linked to the defect of the extensions of valued fields, which is a well-known
obstacle for the solution of the local uniformization problem in positive characteristic.

Let (Ry,, My, , k., ) denote the valuation ring of vx. The purpose of this paper is to present
a refined version of MacLane’s theory of key polynomials [24], [25], similar to those considered
by M. Vaquié [36]-[39], and reminiscent of related objects studied by M. Lejeune-Jalabert [23],
Abhyankar and Moh (approximate roots [1], [2]) and T.C. Kuo [21], [22]. Related questions were
studied by Ron Brown [7]-[8], Alexandru-Popescu—Zaharescu [4]-[5], S. K. Khanduja [16], [17],
F.-V. Kuhlmann [18] and Moyls [27]. The study of key polynomials continues to be a vibrant
subject and since the first version of the present paper appeared on the aryiv in 2014 several
other works on the topic were published by various authors: [3], [10], [11], [12], [13], [28], [29],
[30], [33].

Precisely, we associate to ¢ a countable well-ordered set

Q = {Qi}iea C Kla],

where A is an index set whose order type will be explicitly bounded later in the paper; the @Q; are
called key polynomials. Key polynomials @); that have no immediate predecessor are called
limit key polynomials

We consider the main achievements of this paper compared to the earlier works on the subject
to be the following.
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(1) Explicit formulae for each key polynomial @;, particularly for limit key polynomials
(Proposition 9.2), in terms of the key polynomials preceding @Q;. If there exists an infinite
sequence of linear key polynomials then the first limit key polynomial (if it exists) can always
be chosen to be a p-polynomial in Kaplansky’s terminology (p-polynomials may be viewed as a
generalization of Artin—Schreier polynomials).

(2) An upper bound on the order type of the set of key polynomials. Namely, we show that
the order type of the set of key polynomials is bounded by w x w, where w stands for the first
infinite ordinal. If char k,, = 0, the order type is bounded by w + 1. If char k,,, = 0 and
rank v = 1, the set of key polynomials has order type at most w.

The results comparing the value of a polynomial f € K[z] with the values of its Hasse
derivative O, f (the definition of 9y is recalled later in the Introduction) proved in §7 led to an
axiomatic characterization of key polynomials in [12]. As well, this approach was used in [33] to
obtain another proof of the existence of a complete set of key polynomials.

The main application of the theory of key polynomials (particularly, of point (1) above)
that we have in mind is proving the local uniformization theorem for quasi-excellent noetherian
schemes in positive and mixed characteristic. It has been shown recently that to prove the local
uniformization theorem in the positive equicharacteristic case, assuming local uniformization
in lower dimensions, it is sufficient to monomialize the first limit key polynomial of a certain
explicitly defined simple field extension K — K(z) (see [34], Chapter IV, [35], Theorem 6.5
and S. D. Cutkosky—H. Mourtada [9]). In Chapter V of his Ph.D. thesis ([34], Institut de
Mathématiques de Toulouse, 2013), J.-C. San Saturnino proved a similar reduction for local
uniformization in the case of mixed characteristic, but under somewhat restrictive additional
hypotheses.

Chapter 3 of the Ph.D. thesis of W. Mahboub (Institut de Mathématiques de Toulouse, 2013)
develops the theory of key polynomials for valuations of arbitrary rank. Here we limit ourselves
to the case rank v = 1.

The particular importance of the case rank vg = 1 is witnessed by a theorem of Novacoski—
Spivakovsky that says that local uniformization along rank one valuations implies local uni-
formization in its full generality [31]-[32].

Let Ty (resp. T') denote the value group of vg (resp. v). Let Iy := Iy ®z Q (the group T'g
is called the divisible hull of T'y). Fix an embedding [y = R once and for all. In this sense,
we will talk about the supremum of a certain subset of Ty (the supremum can be either a real
number or infinity) or about a certain sequence of elements of Iy tending to infinity.

For an ordered abelian group A, the notation A will stand for the semigroup formed by all
the non-negative elements of A.

The well-ordered set Q = {Q;}iea of key polynomials of v will be defined recursively in i.

Notation. We will use the notation N for the set of strictly positive integers and Ny for the set
of non-negative integers.

For an element ¢ € A, we will denote by ¢+1 the immediate successor of £ in A. The immediate
predecessor of £, when it exists, will be denoted by ¢ — 1. For a strictly positive integer ¢, £ 4 ¢t
will denote the immediate successor of ¢ + (¢ — 1). For an element ¢ € A, the initial segment
{Qi}i<e of the set of key polynomials will be denoted by Q. For the rest of this paper, we let
p = char k,, if char k,,, > 0 and p =1 if char k,, = 0. For an element g € I' U Lo, let

Py ={yeK(z) |v(y) >B}U{0}
Psy ={yeK(z) | v(y) >B}U{0}.
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Put
Py
(1.1) G, =P 5
ger Py
and
- Ps
1.2 G, = —
(1.2) S B
BTy

We regard G, and G, as k,-algebras. Note that even though I’y need not be contained in T, we
have G, C G, since for each 8 € I'y\T" the corresponding summand in (1.2) is 0. For y € K (z)*,
let in,y denote the natural image of y in Pp—ﬁi C G, where 8 =v(y).

Let Az be an independent variable. For f € Kiz] and j € N let 9;f denote the

j-th formal (or Hasse) derivative of f with respect to . The polynomials 0;f are, by
definition, the coefficients appearing in the Taylor expansion of f: f(z + Az) = > 9, f(x)Az7.
J

In papers on local uniformization the Hasse derivatives J; are often denoted by %6‘%, this no-

tation is regarded as one indivisible symbol; its parts such as % do not make sense on their own.

Details about Hasse derivatives can be found in [19], Chapter 24.10, starting on p. 701, as
well as in [20].

For an ordinal £ € A we will use the following multi-index notation: 41 = (7;)i<¢, where
the ~; are non-negative integers, all but finitely many of which are equal to 0, and

(1.3) Q) =[Jar

i<t
An /-standard monomial in Qg is a product of the form
(1.4) CYeqa QZiJrll ’

where c5,,, € K and the multiindex %, satisfies certain additional conditions to ensure a form
of uniqueness (see Definition 3.4). An {¢-standard expansion is a finite sum of ¢-standard
monomials satisfying a mild additional condition. A Qg-expansion is an expression of the form

s¢
(1.5) > @,
=0

where ¢; , € K[z] and deg, ¢; ¢ < deg, Q, for all j.

Note. Starting with an /-standard expansion and grouping together all the terms involving Qg
for each exponent j produces a Qg-expansion.

Iterating Euclidean division of f by Qy, it is easy to see that every f € K|[z] admits a unique
Q-expansion

Se
(1.6) F=3 iy
7=0
In §3 we will show that for all £ € A and all f € K[z] the element f admits an ¢-standard

expansion.

Let 8; = v(Q:).



200 F. J. HERRERA GOVANTES, W. MAHBOUB, M. A. OLALLA ACOSTA, AND M. SPIVAKOVSKY

S
A product of the form a [] Zj, where a € K, i; € A and v; € N is said to be a standard
j=1
monomial if it is /-standard for some £ € A.
A set of key polynomials is said to be complete if for every 3 € T the additive group PsNK|x]
is generated by standard monomials, contained in PgN K[z]. It is said to be I'y-complete if the

above condition holds for all 8 € T, in other words, if for all 8 € Ty every polynomial f € K [«]

with v(f) = S belongs to the additive group generated by standard monomials a [] QZJJ such
j=1

that E ’Yjﬁij + VK(CL) > B.
j=1
Remark 1.1. If Q = {Q;}ien is a complete set of key polynomials, the data {Q;, 8;} completely
determines the ideals P for all 5 € I', hence also all the ideals Pg., since Pgy = 5U5 P;. For
>
an element y € K(x) we have v(y) = § if and only if y € Ps \ Pgy. Thus the valuation v is
completely determined by the data {Q;, 5;}.

We define the (-truncation vy of v by ve(f) = 0g1_i<n {v(cje) + jBe} for each f € K[z] with
<j<se
Qe-expansion (1.6). By the ultrametric triangle law, we have

(17) v(f) > vl f)

for all f € K[z]. Then the statement that Q is a complete set of key polynomials can be
expressed as follows: for all f € K|[z] there exists £ € A such that equality holds in (1.7); see
Remark 3.34 for details.

The paper is organized as follows. §2 is devoted to generalities on algebras, graded by ordered
semigroups. There we define the notion of the saturation G* of a graded algebra G (Definition
2.3). We consider an extension G C G’ of graded algebras and a homogeneous element z € G’.
We study the condition that = be algebraic over G. We note that z is algebraic over G if and
only if it is integral over G*. We show that if x is algebraic over G then the algebra G*[z] is
saturated (Lemma 2.6). Finally, we prove the simple but useful characterization of the strict

S
inequality v (Z yz> > 11221 {v(y;)} in terms of the elements in,y;.
i=1 158

In §3 we define the notion of a set of key polynomials (not necessarily complete) and study
its properties. By definition, letting Qo = x, the one element set {x} = {Qo} is a set of key
polynomials. We remark that if a set of key polynomials is complete then the images of the
key polynomials in G, generate the field of fractions of G, over the field of fractions of G .
The element in, @y is algebraic over G,, [in, Qy], where Qp = {Q;}i<¢ (in particular, 8; € f‘o)
whenever ¢ is not a maximal element of A (Propositions 3.35 and 3.36).

In §4 we associate to each pair h € K[z], i € A, a positive integer numerical character

0;(h) < % to be used in later sections and study its properties. Among other things we
prove that
(1.8) 8;(h) > 6;(h)  whenever i <i';

in particular, ¢;(h) stabilizes for ¢ sufficiently large. We also show that the equality in (1.8)
imposes strong restrictions on h. The numerical character §;(h) helps analyze infinite ascending
sequences of key polynomials in §§8-9 and is crucial for applications to Local Uniformization.
The main step of our recursive construction of sets of key polynomials is carried out in §5.
Namely, we start with a set {Q;}ica of key polynomials that is not complete and enlarge it to a
strictly greater set {Q;}ica, of key polynomials. The well-ordered set A is a union of A with
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a sequence that may be finite or infinite, depending on the situation. Roughly speaking, (Qs41
is defined to be a lifting to K[z] of the monic minimal polynomial, satisfied by in,Q, over the
graded algebra G, [in,Qg]. This gives rise to explicit formulae describing each non-limit key
polynomial in terms of the preceding key polynomials.

In §6 we iterate the procedure of §5 until the resulting set of key polynomials is complete.
Namely, we start our recursive construction of the @; by putting Q¢ := . We assume, in-
ductively, that a set Q = {Q¢}een of key polynomials is already defined. If the set Q of key
polynomials is complete, the algorithm stops here. In particular, this occurs whenever our al-
gorithm produces a key polynomial @Q; whose value does not lie in Ty or, more generally, such
that in,@; is transcendental over G, [in,Q;] (Propositions 3.35 and 3.36). If Q is not com-
plete, we replace it by the set {Q;}iea, constructed in §5 and repeat the procedure. We remark
(Remark 6.1) that the well-ordered set A resulting from this construction has order type at most
w x w. The set A contains a maximal element ¢ if and only if it contains an element ¢ such that
in, Qy is transcendental over G, [in, Q¢], where Q; = {Q; }i<¢ (Propositions 3.35 and 3.36).

§7 is auxiliary, to be used in §§8-9. We study the effect of Hasse derivatives 0; on key
polynomials and standard expansions. Let b; denote the smallest element b of N which maximizes
the quantity %‘W. We show that b; is of the form

(1.9) b; = p®  for some e; € Ny

(Corollary 7.9). The non-negative integers e;, ¢ € A, are important numerical characters of
the extension ¢ : (K,vk) < (K(x),v) of valued fields. Most importantly, given an ¢-standard
monomial ¢y, , Q

Ye+1
0+1

(1.10) v <8pec.—w+1QZi+11> = (5‘1,6(:,7“1(22?11) :

and derive an explicit formula for the quantity v (8pec:w o QZfﬁl ), for integers e > e;, and under

certain additional conditions. Also, for every /-standard expansion f and every integer e > e;,
we derive a formula for vy (Ope f) (Proposition 7.2).

The importance of this type of explicit formulae can be explained as follows. The importance
of differential operators for resolution of singularities is well known. One difficulty with dealing
with differential operators up to now has been the fact that they obey no simple transformation
law under blowing up. Since key polynomials become coordinates after blowing up, formulae
(1.10) can be viewed as comparison results for derivatives of the defining equations of a singularity
before and after blowing up.

The main subject of study of §§8-9 are infinite sequences {Qyt}ren of key polynomials of a
fixed degree and the corresponding limit key polynomials Q..

In §8 we let § denote the stable value of d¢4+(Qe.) for a sufficiently large positive integer ¢
(such a stable value exists by (1.8)). We use the results of §7 to show that § must be of the form
0 = p° for some e € Ny (Propositon 8.6).

Next, we assume that char k, = char K, that the sequence {v (Q;)},cy is unbounded in Ty
and that deg, @Q; = 1 for all t € N. We show that Q. € K [2°] (Remark 8.7).

The third set of main results of §8 starts with Proposition 8.10 which asserts that if

char k, = 0,

we prove the equality

then for an infinite sequence {Q;}ien, the sequence {S;}ien, of their values is unbounded in
[o. In particular, there are no limit key polynomials Q; such that 8; € I'y. This explains why
A < w + 1 whenever char k, = 0.

The main goal of §9 is to derive explicit formulae for limit key polynomials in terms of the
preceding key polynomials. We assume that char k£, = p > 0 and consider a limit ordinal
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{+w € A. We assume that the sequence {v (Q4¢)},cy is bounded in Ty. We prove that Q..
can be chosen in such a way that for some ¢ € N the Q4 ;-standard expansion of Qg4 is weakly
affine. By definition, this means that

ertw—1
€ltw J
(1.11) Quaw =QV "+ D QY + coi,

Jj=0

where i = £+t and co; and c,; ; are Q;-free i-standard expansions (See Definition 3.5 for the
notion of “Q;-free”).

The results of this paper are related to those contained in the paper [14] (see also [39]).
However, there are some important differences, which we now explain. We chose to rewrite the
whole theory from scratch for the following reasons.

(1) In [14] we work with an algebraic extension ¢ while for local uniformization we need to
consider purely transcendental extensions. We note that the case of algebraic extensions
can easily be reduced to that of transcendental ones using composition of valuations. In-
deed, let ¢ : (K,vk) — (K(z),v) be a simple algebraic extension of valued fields. Write
K(z) = %, where f is the minimal polynomial of « over K. Let v¢ denote the (f)-adic
valuation of K[X] and put v* := vy o v (the composition of vy with v). Complete sets
{Qi}ien of key polynomials of the transcendental extension ¢ : (K,vk) — (K(X),v*)
constructed in the present paper are very closely related to complete sets {Q; }ica_ of
key polynomials of the algebraic extension (K,vk) — (K(x),v), constructed in [14].
Namely, we have A = A_ U {A_} (extension by one element), Q); is the image of Q;
under the natural map K[X] — K(z) and Qx_ = f.

In other words, a complete set {Q;} of key polynomials for ¢ can be obtained from
that of «_ by lifting each key polynomial Q; to K[X] and then adding one final key
polynomial f. In this sense the theory presented here can be viewed as a generalization
of [14].

(2) Our main interest in [14] was to classify all the possible extensions v of a given vi; in
the present paper we content ourselves with a fixed v.

(3) The crucial formulae for (0, f) were not made explicit in [14].

(4) We take this opportunity to correct numerous mistakes which, unfortunately, made
their way into the paper [14]: an inaccuracy in the definition of complete set of key
polynomials, the failure to take into account the case of mixed characteristic, a mistake
in the definition of the numerical characters e; and many others which made the paper
[14] unreadable.

Acknowledgements. We thank Anna Blaszczok, Julie Decaup, Franz-Viktor Kuhlmann,
Gérard Leloup and all the anonymous referees of the earlier versions of the paper for many
useful comments and suggestions and for pointing out errors.

2. ALGEBRAS GRADED BY ORDERED SEMIGROUPS

Graded algebras associated to valuations will play a crucial role in this paper. In this section,
we give some basic definitions and prove several easy results about graded algebras. Throughout
this paper, a “graded algebra” will mean “an algebra without zero divisors, graded by an ordered
semigroup”. As usual, for a graded algebra G, ord will denote the natural valuation of G, given
by the grading.

Let G = @ G, be a graded algebra, where I' is an ordered abelian semigroup.

acl
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Definition 2.1. An element x € G is said to be homogeneous if there exists a € T" such that
z € Gy,

For a homogeneous element x € G, C G we will write ord x = a.
Now let X be an independent variable and consider the ring G[X]. Fix a polynomial

d
f=Y aX" €G[X]

i=0
such that a; is a homogeneous element of G for all i € {0,...,d}. Fix an element 3 € T

Definition 2.2. We say that f is quasi-homogeneous with w(X) = Sifforalli,j € {0,...,d}
we have ¢3+ord a; = j5+ord a;. In this situation we will also say that 3 is the weight assigned
to X.

Definition 2.3. Let G be a graded algebra without zero divisors. The saturation of G, denoted
by G*, is the graded algebra

G* = {% ‘ g,h € G, h homogeneous, h # O} .
G is said to be saturated if G = G*.

An element ¢ € G* is homogeneous in G* if and only if g is homogeneous in G. If f; = }%

and fo = % are two non-zero elements of G*, where hq, hs, g1, go are non-zero elements of G
with hy, ha, go homogeneous, then % = g;—;ﬁ € G*. Thus G* = (G*)* for any graded algebra G,
so that G* is always saturated.

Example 2.4. The main example of graded algebras we are interested in this paper are graded
algebras associated to valuations, centered in prime ideals of integral domains. Namely, let R
be a domain, K its field of fractions and v : K* — I a valuation of K, centered at a prime ideal
P of R (this means, by definition, that R C R, and P = M, N R, where (R,, M,) denotes the
valuation ring of v). Let ® = v(R \ {0}). For each 8 € ®, consider the ideals

Ip:={zeR|v(z)>ptU{0} and
Ipt :={z € R |v(z) > B}U{0}.
1Ig is called the v-ideal of R of value §.
If By > B2 > ... is an infinite descending sequence of elements of ® then I, G I, G ...
is an infinite ascending chain of ideals of R. Thus if R is noetherian then the ordered set v(R)

contains no infinite descending sequences, that is, v(R) is well-ordered.
If I is an ideal in a noetherian ring R and v a valuation of R, v(I) will denote

(2.1)

min{v(z) | z € I}.

We can now define the graded algebra, associated to the valuation v. Let R, v and ® be as
above. For 8 € ®, let Ig and Ig4 be as in (2.1). We define

The algebra gr, R is an integral domain. For any element 2 € R with v(z) = /3, we may consider

the natural image of x in PPE fir C gr,R. This image is a homogeneous element of gr, R of degree

B, which we will denote by in,z. The grading induces an obvious valuation on gr, R with values
in ®; this valuation will be denoted by ord.



204 F. J. HERRERA GOVANTES, W. MAHBOUB, M. A. OLALLA ACOSTA, AND M. SPIVAKOVSKY

Next, suppose that (R, M, k) is a local domain and v is a valuation with value group T,
centered at R. Let K denote the field of fractions of R. Let (R,, M,,k,) denote the valuation
ring of v. For 8 € I, consider the following R,-submodules of K:

Iy = {v € K | v(z) > B},
Io, = {e € K | v(a) > B).

I
GV:@I—"

ger A+

(2.2)

We define

Again, given € K, we may speak of the natural image of  in G, also denoted by in,z (since
gr, R is naturally a graded subalgebra of G,, there is no danger of confusion). Then ord is a
valuation of the common field of fractions of gr, R and G, with values in I.

We have G, = (gr,R)*; in particular, G, is saturated.

Remark 2.5. Let G, G’ be two graded algebras without zero divisors, with G C G’. Let = be a
homogeneous element of G’, satisfying an algebraic dependence relation

(2.3) apx” + a1zt + - 4a, =0
over G (here a; € G for 0 < j < n). Without loss of generality, we may assume that the integer
n is the smallest possible.

Claim. Without loss of generality, we may further assume that (2.3) is homogeneous (that is,
all the a; are homogeneous and the quantity j ord x +ord a; is constant for 0 < j < n such that
a; 7£ 0)

Proof of Claim. Let p := Ogljg {j ord = + ord a;}. Then each a; can be written as a finite

<j<n

sum of homogeneous elements of G, all of orders greater than or equal to p — j ord z. For
j €40,...,n} write a; = agj + @;, where ag; = 0 or ord ag; = u — j ord z, and a; is a sum of
homogeneous elements of G of orders strictly greater than u — j ord  (note that there exist at
least two different values of j for which ag; # 0). Now, x satisfies the equation

(24) aogl’n + CLOll‘nil + -+ agy = 0.
This proves the Claim. From now on we will always take the coefficients a; to be homogeneous
without mentioning it explicitly.

Dividing (2.3) by ag, we see that z satisfies a monic homogeneous relation over G* of degree n
and no algebraic relation of degree less than n. In other words, z is algebraic over G if and only

if it is integral over G*; the conditions of being “algebraic over G*” and “integral over G*” are
one and the same thing (as usual, “integral” means “satisfying a monic polynomial relation”).

Let G C G’, let x be as above and let G[z] denote the graded subalgebra of G’, generated by
x over G. By Remark 2.5, we may assume that x satisfies a homogeneous integral relation
(2.5) " +ax" M+ a, =0
over G* and no algebraic relations over G* of degree smaller than n.

Lemma 2.6. Every element of (G[z])* can be written uniquely as a polynomial in x with coef-

ficients in G*, of degree strictly less than n.

Proof. Let y be a homogeneous element of G[z]. Since z is integral over G*, so is y ([6], p. 59,
Proposition 5.1, implications (i) <= (ii) <= (iii)). Let

(2.6) Y™ by e by = 0
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with b; € G*, be an integral dependence relation of y over G*, with b; homogeneous elements
of G*, by, # 0, where j ord y + ord b; is constant for all j such that b; # 0. By (2.6),

1
L= W T T e b),

Thus, for any z € G|z], we have

(2.7) e GMal.
Y
Since y was an arbitrary homogeneous element of G[x], we have proved that
(Glz])" = G"[x].

Now, for every element y € G*[x] we can add a multiple of (2.5) to y so as to express y as a
polynomial in x of degree strictly less than n. Moreover, this expression is unique because x
does not satisfy any algebraic relation over G* of degree smaller than n. (]

Notation. If A C A’ are ordered semigroups and 3 is an element of A’, then A : 8 will denote
the positive integer defined by

A:f=min{n e N|ng e A}

If the set on the right-hand side is empty, we put A : § = co.
Note that g € A if and only if A: g =1.

Lemma 2.7. Let G, G’ be as in Remark 2.5 and x a homogeneous element of G'. Assume
that the degree 0 part of G (that is, the subring of G consisting of all the elements of degree 0)
contains a field k and that G is generated as a k-algebra by homogeneous elements wy, ..., w,.
Let

ﬁj:Owaj, ]-SJST,

T

and let A denote the group A = {ord y | y € G*} = {Z n;B;

j=1

n; € Z}. Assume that the

following two conditions hold:

(1) A:(ord z) < ©
(2) Letn:=A: (ord z). Let ny,...,n, € Z be such that

(2.8) noord © = an,é’j.
j=1

T

Lety =[] w;lj. Assume that the element
j=1

(2.9) z:=—¢€(G")"

s algebraic over k.

Then x is integral over G*. An integral dependence relation of x over G* can be described as
follows. Let z be as in (2.9). Let Z be an independent variable and let

d—1
(2.10) [(2)=2"+) ez
1=0
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denote the minimal polynomial of z over k. Then x is a root of the polynomial

d—1
(2.11) XY eyt X =0,

i=0
Conversely, suppose x is integral over G*. Then (1) holds. Suppose, furthermore, that 51, ..., By
are Z-linearly independent. Then (2) also holds. In this case, (2.11) is the minimal polynomial
of x over G*. In particular, the degree n of the minimal polynomial of x over G* is given by

(2.12) n = di.
Proof. If (1) and (2) hold, z is integral over G* because it is a root of the polynomial (2.11) (this

is verified immediately by substituting (2.9) for Z in (2.10) and multiplying through by y¢). In
particular, if n denotes the degree of x over G*, the equation

d—1

(213) S(}dﬁ + Z Ciyd_ixiﬁ = 0
i=0

shows that

(2.14) n < dn.

Conversely, suppose x is integral over G*. Then z satisfies a homogeneous integral relation of
the form (2.5) with a, # 0. Since (2.5) is homogeneous, we have the equality

(2.15) i ord x + ord a,_; = ord a,, for all i such that 0 <i <n and a,_; # 0.
Hence
(2.16) n ord x = ord a,.
Now, a,, € G* so that
(2.17) ord a, € A.
Putting together (2.16) and (2.17), we obtain (1) of the Lemma.
Now, assume that fi,...,8, are Z-linearly independent. We wish to prove (2). Since
Bi,...,Br are Z-linearly independent, all the monomials w{*...w)", v; € Z, have different

values with respect to ord. Since (2.5) is homogeneous with respect to ord, each a; must be a
monomial in the w; with (not necessarily positive) integer exponents. Also by the Z-linear in-
dependence of 8y, ..., 8., the coefficients n1, ..., n, in (2.8) are uniquely determined. Moreover,
any relation of the form

T
(2.18) iordx—Zn;ﬂj:O, ieN, ni,...,n.€Z
j=1
is a positive integer multiple of the relation
T
(2.19) noord x — anﬁj =0.
j=1

By (2.15), if a term an_;x' appears in (2.5), we have ¢ ord = ord a,, — ord a,,—; € A. This
proves that * may appear in (2.5) only if 7 | i; in particular, 7 | n. Let d’ := 2. Let 0 <i<d.
To find each nonzero coefficient a,,_;7 in (2.5), note that

nordx=d ford z =17 ord x4 ord an_;s,
so that
(2.20) (d'—1i) nord z = ord ap_;z.
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Since a,_;7 is a monomial in wy,...,w,, (2.20) gives rise to a Z-linear dependence relation of
the form (2.18), which therefore must be equal to (2.19) multiplied by d’—4. This determlnes the
monomial a,_;; uniquely up to multiplication by an element of k: we must have a,,_;5 = czy -,

where ¢; € k. Then z = 7 satisfies the algebraic dependence relation

d -1

(2.21) A3 et =0,
=0

This proves (2) of the Lemma. Now, we have shown that, under the hypothesis of linear inde-
pendence of the 3;, if « has degree n over G* then 72 | n and z is a root of a polynomial of degree
d' = 2. Letting d denote the degree of z over k, as above, we obtain

(2.22) d=">4d

n
Combining (2.22) with (2.14), we obtain (2.12); in particular, (2.13) is the smallest degree
algebraic relation satisfied by  over G. This completes the proof of Lemma 2.7. (]
Corollary 2.8. Let G, w,...,w, and B, ..., B be asin Lemma 2.7. If 51, ..., B, are Z-linearly
independent in A then wq, ..., w, are algebraically independent over k.

Proof. Induction on r. For » = 1 there is nothing to prove. For the induction step, assume that

the Corollary is true for r = 4. If w;41 were algebraic over k[wy, ..., w;], we would have

(223) (Bl, ce ,,BZ) : /Bi-l-l < o0

by Lemma 2.7, applied to the graded algebra k[ws, ..., w;] and the element w; ;. (2.23) contra-
dicts the linear independence of g1, ..., 5., and we are done. Alternatively, the Corollary can be
proved by observing that by linear independence of 31, ..., 3,, all the monomials in wy,...,w,
have different degrees, thus any polynomial in wy, ..., w, over k contains a unique monomial of
smallest degree. Hence it cannot vanish by the ultrametric triangle law. O

Definition 2.9. Let G be a graded algebra and xx := {z)}rea a collection of homogeneous
elements of G. Let k be a field, contained in the degree 0 part of G. Let k[x,] denote the k-
subalgebra of G, generated by 2:5. We say that 25 rationally generate G over k if G* = k[zx]*.

The following result is an immediate consequence of definitions:

Proposition 2.10. Let G, be the graded algebra associated to a valuation v : K — T, as above.

S
Consider a sum of the formy = > y;, withy; € K. Let 8 = 121121 v(y;) and
i=1 S1SS

S={ief{l,....n} | v(y:) = B}

The following two conditions are equivalent:

(1) v(y) =8
(2) EZZSinyyi # 0.

Let G be a saturated graded algebra, graded by a group I', L the field of fractions of G, T
an independent variable and g € T'y := (I' ®z Q)+. We regard G[T] as an algebra graded by
I' + BZ, where 3 is the weight assigned to T

t
Definition 2.11. Take an element a € G. Write a = ) a;, where each a; is a homogeneous
j=0
element of G and ord ag < ord a; < --- < ord a;. The element ag is called the initial form of
a and will be denoted by a.
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d
Definition 2.12. Take a polynomial g = > a;77 € G[T]. Let
§=0

S(g):={je{0,....d} | ord(ajTj) =ordg}.
The homogeneization of g is the polynomial g := > ajTj.
JES(9)

Remark 2.13. A polynomial f in G[T] is said to be irreducible if it cannot be factored as a
product of two polynomials, both of which have degrees strictly smaller than degy f. Every
quasi-homogeneous polynomial f admits a unique factorization of the form

t
(2.24) f=a H g9,
j=1

where a is the leading coeflicient of f, the v; are strictly positive integers and the g; are irreducible
monic quasi-homogeneous polynomials of strictly positive degrees (we allow the possibility ¢ = 0,
in which case our claim holds trivially). Indeed, the factorization (2.24) exists in L[T]. Clearing
denominators in (2.24), we can write

t
(2.25) bf=a]] 3}
j=1

where b € G and §; € G[T] for all j. Replace b by b and each of the g; by its homogeneization g;.
Since a is homogeneous and f quasi-homogeneous, this operation does not affect the truth of the
equality (2.25). In other words, without loss of generality we may assume that b is homogeneous
and all the §; quasi-homogeneous. Replacing g; by g—bl, we may assume that b = 1. Dividing
each g; by its leading coefficient and modifying a accordingly, we arrive at the situation where
g; € G[T] for all j. This proves the existence of the factorization (2.24). The uniqueness of the
factorization follows from its uniqueness in L[T].

3. SETS OF KEY POLYNOMIALS

Let K — K(x) be a simple transcendental field extension, v a valuation of K (z) and vy the
restriction of v to K. We will assume that rank vg = 1 and

(3.1) v(z) > 0.

Let A be a countable well-ordered set.
Let {a;}iea be a set of strictly positive integers with

(3.2) ap = 1.

For an ordinal ¢ € A, we use the notation ayy1 := {@; }o<i<e and Je41 = {7V:}o<i<e, where all
but finitely many -; are equal to 0.

Definition 3.1. Let i € A. We say that i is inessential if i+w € A and a;4; = 1 for all t € Nj.
Notation. For i € A with ¢ not the maximal element of A, let
i+ =i4w if 4 is inessential
=1+1 otherwise.

Remark 3.2. In the sequel A will be an index set for a set of key polynomials. By a recursive
construction we will increase A and the set of key polynomials indexed by it. It is important to
note that, given two totally ordered sets A C A’, with A an initial segment of A’ it may happen
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that an index ¢ € A is essential in A but inessential in A’. By the same token, the meaning of
i+ may depend on whether we view 7 as an element of A or of A’.

Our next goal is to define the notion of a set of key polynomials. We start with some
preliminary definitions and notation, before giving the main definition (Definition 3.11).

Definition 3.3. A set {Q;}iean C K[z] of monic polynomials with
(33) QO =,
is said to be a set of pre-key polynomials if for all non-maximal ¢ > 1 and ig < 7 such that

ig+ = 1 we have
degzxz QZ =y degzxz Qio'

We will use the following notation: for £ € A, Q;Yf'll = [1 Q). Welet 5; = v(Q;) for each

i<t
i€ A.
Definition 3.4. Let £ € A. A multiindex 9,4, is said to be standard with respect to a1
if
(3.4) 0 <7 <ayy fori <,

and if 4 is inessential then the set {j < i+ | j+ =i+ and 7; # 0} has cardinality at most one.
An /-standard monomial in the elements Q. (resp. an ¢-standard monomial in the
elements in, Q1) is a product of the form ¢s,,, Q/1Y", (resp. ¢5,,,in, Q') where ¢5,,, € K
(resp. cy,,, is a homogeneous element of G,,,.) and the multiindex 7,1 is standard with respect

to oy,

Keep the notation of Definitions 3.3-3.4 and let {Q;};en C K[x] be a set of pre-key polyno-
mials.

Ye+1

41 is said to be Q-free if it does not involve

Definition 3.5. An {-standard monomial ¢;,,, Q
Qy, that is, if v, = 0.

Definition 3.6. A Q,-free /-standard expansion is a finite sum of Qy-free ¢-standard mono-
mials whose v-value equals the minimum of the v-values of the monomials. An /¢-standard

S .
expansion of an element g € K[z] is an expression of the form g = Y ¢;Q7, where each ¢; is a

7=0
Qe-free (-standard expansion.

Remark 3.7. Starting with an f-standard expansion and grouping together all the terms involving
Q; for each exponent j produces a Q-expansion.

For an element y € G, an expression of the form y = Zé:yin,,QZH, where each ¢y is a
B

homogeneous element of G, and each QZ 41 is an f-standard monomial, will be called an ¢-
standard expansion of y.

Remark 3.8. We note that a Q-free ¢-standard expansion is not just an ¢-standard expansion
for some ¢ < ¢. Namely, it is required, in addition, that the exponent of the last appearing key
polynomial @; be strictly less than ;.

Definition 3.9. Let > E;,irlyQZ 41 be an f-standard expansion, where the ¢5 are homogeneous
el

elements of G,,.. A lifting of ) Eﬁin,,QZ_H to K[z] is an {-standard expansion ) c5 QZH, where
gl v

¥
cy is a representative of ¢5 in K.
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Definition 3.10. Assume that char k, = p > 0. An /-standard expansion ) chi is said to be
J
weakly affine if ¢; = 0 whenever j > 0 and j is not of the form p® for some e € Ny.

Before plunging into the technical definition of key polynomials we say a few informal words to
motivate it. Roughly speaking, the 0-th key polynomial Qg is equal to x and the key polynomials
Q; with 7 > 0 are elements of K[z] with “unexpected” or “jumping” values. More precisely, for
[ =>"djaz? € K[z] define vo(f) = min{v(d;2’)}. We have

7 J

(3.5) v(f) = vo(f)

by the ultrametric triangle inequality. The first key polyomial ()1 measures the fact that the
inequality (3.5) may be strict; in fact, @1 is the smallest degree polynomial for which (3.5) is
strict. Once @; is defined, we define the @)-expansion of f for each f and the valuation 14
satisfying

(3.6) w(f) < wn(f) <v(f).

If the second inequality in (3.6) is strict for some f, the key polynomial Qs is the smallest degree
polynomial for which (3.6) is strict. We iterate this procedure to construct a (possibly infinite)
sequence Qq, @1, @2, . .. and the corresponding sequence vy, 1, . .. of truncations of v, satisfying
vi—1(f) <vi(f) < wv(f) for all f and all strictly positive integers i. The passage from Q;_1 to Q;
corresponds to the successor case in the definition below. It may happen that even this infinite
process does not describe the valuation v completely, that is, there exists f € K[z] such that

(3.7) vi(f) <v(f) for all i € N.

A polynomial f of smallest degree satisfying (3.7) is the first limit key polynomal @Q,. The
passage from {Q;}ien to Q. is the first instance of the limit case in the definition below. More
generally, if £ is an ordinal such that the key polynomials Q¢y;, Qs are defined, (Qps;)ien is a
pseudo-Cauchy sequence of algebraic type and (¢4, is the minimal polynomial of a pseudo-limit
of (Qe+i)ien. Now for the formal definition.

Definition 3.11. We say that the set {Q;}ica of pre-key polynomials is a set of key poly-
nomials for v if it satisfies the following conditions (throughout this definition, ¢ stands for an
element of A).

(a)
(3.8) B; €Ty whenever i # max A.

(b) The successor case. For each ¢ > 1, if ¢ has an immediate predecessor ¢ — 1, the (i — 1)-
standard expansion of @); has the form

a;—1
(3.9) Qi=Q+ 3 | D Q| Qi
7=0 Yi—1
where:
(1) if i =1, we have Q;_1 = Qo =0, ¥;—1 = Y = 0 by convention, Qo = z and the coefficients
in parentheses in (3.9) are elements of K
(2) if i > 2, Y1 = (7ir)g<sr<i_1» Where all but finitely many ~; are equal to 0
(3) each ¢ 5, Q7" is an (i — 1)-standard monomial (which is, by definition, @Q;_1-free)

(4) the quantity vi (cj,z-;,i_l) + > 4Bq + jBi—1 is constant for all the monomials
q<i—1

L Yi—1 J
(Cmm_l i—1 ) i—1
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appearing on the right-hand side of (3.9)
(5) the equation

a;—1

(3.10) QP+ > (Y iy QU ) inQl; =0
j=0 ¥i-1

is the minimal algebraic relation satisfied by in,Q;_1 over G, [in, Q;_1]*.

(¢) The limit case. If ¢ does not have an immediate predecessor then there exists iy such that
1 = ip+ and for every such iy there exists an ip-standard expansion

(3.11) Qi=) ¢iQl.
§=0
Every ig-standard expansion (3.11) satisfies
. i Y]
(3.12) v(Q;) > oér;lgna,; {y (cJ’ZOQZ-O)} )

Moreover, the polynomial @Q; is of the smallest degree among those satisfying (3.12) for all 4
with ig+ = 4.

If
(3.13) sup{ By | i’ <i} <o
(in particular, whenever ¢ is not the maximal element of A), then
(3.14) Cayiyg =1
and
(3.15) min qv (Cj,nggO)} = a;Bi, =V (coi) -

0<j<a;

(d) If for a certain degree n, the set {i € A | deg,(Q;) = n} is infinite, then the set
{v(Qi) | i €A, deg,(Q:) =n}
is cofinal in {v(f) | f € Klz], f is monic, deg,(f) =n}.
An element Q; of the set {Q;}ica is called a key polynomial.
Remark 3.12. Tt follows from Definition 3.11 that the elements ; are strictly increasing with .

Proposition 3.13. Let i be an ordinal and t a positive integer. Assume that i +t € A, so
that the key polynomials Q;y¢4+1 are defined, and that o; = +-+ = a4 = 1. Then every (i + t)-
standard expansion does not involve any Qg with ¢ < g < i+t. In particular, a Q;-free i-standard
expansion is the same thing as a Q;yi-free (i + t)-standard expansion.

Proof. (3.4) implies that for ¢ < g < i + ¢, ()4 cannot appear in an (i + t)-standard expansion
with a positive exponent. Il

We will frequently use this fact in the sequel without mentioning it explicitly.

For i € A and o € N, let G, denote the G,, -subalgebra of G,, generated by elements of
the form in, f, deg, f < .

For i € A, put &; := deg,, Q;.

For the rest of this section, we assume that we have a set of key polynomials {Q;};ca for v
as above and derive some properties of this set.
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Proposition 3.14. For each i € A we have:

(1) Ifsup{ B, | ¢ <i} < oo (in particular, whenever i # max A) then
(316) 641' == HO[]'.

J<i

(2) Take an element z € K[z]. Assume that z admits a Q;-free i-standard expansion. Then
(3.17) deg, z < &;.
Proof. We use transfinite induction on 4. For the base of the induction, consider the case i = 0.
(3.16) says that
(3.18) ag =deg, z = ap = 1;
this follows immediately from (3.2) and (3.3). By (3.18) and (3.4), every monomial appearing
in the O-standard expansion z is of degree strictly less than 1 = &g, that is, is an element of K.
This proves (3.17) in the case ¢ = 0.

Assume given an ordinal ¢ > 0. Assume that (3.16) and (3.17) are known for some ordinal iy
such that ig+ = i. If ¢+ = ip + w then %¢ is inessential, so a;,++ = 1 for all ¢ € Ny by Definition
3.1. Thus in all the cases we have
(319) O_éio = HO&j.

i<i
By assumption, (3.13) holds, hence so does (3.14) by condition (c) of Definition 3.11. Thus by

(3.9), (3.11) and (3.17) applied to ig instead of i, the term Q7* in the ig-standard expansion of
Q; has strictly greater degree than all the other terms. Hence

(320) a; = degw Q?ﬂi = ;0.
‘We obtain
O_[i = OLZ'C_YZ'O =y Haj = H(},j,
Jj<i Jj<i

which proves (3.16).
Let z be as in part (2) of the Proposition. Fix a @;-free i-standard expansion of z and let
iop denote the greatest ordinal such that @);, appears in this expansion (by definition of @;-free,

ocifl .
we have ig < i): z = ) dj,ngoa where each d;; is a @Q;,-free ig-standard expansion. By the
j=0
induction assumption, we have deg, d;; < &, for all j. Combining this with (3.20), we obtain
deg, z < o max {(G+ Ve, } < aiayy = @,
as desired. O

Corollary 3.15. Let f be an i-standard expansion of an element of K[x]. Then [ is Q;-free if
and only if deg,, f < &.

Proof. Straightforward transfinite induction on 1. O

Remark 3.16. Assume that i € A is a limit ordinal and take an ig € A such that i = ig+. Since

i,+1 = 1 by definition, we have Q;,+1 = Qi, + 2, where in,z = —in, @);, and deg, z < &,.
Hence
(321) GVK [IDVQZ] C G<071‘0'

Below (Proposition 3.31) we will show that this inclusion is, in fact, an equality.
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Remark 3.17. In §9 we will show, assuming that ¢ is a limit ordinal and that the set {v(Qi,) }izio+
is bounded in Ty, that we can choose iy and Q; so that Q; is a weakly affine monic io-standard
expansion of degree «; = p® for a certain integer e; and, moreover, that there exists a positive
element 3; € R such that

(3.22) Bi > By for all ¢ < i,
(323) Bi Z aiBi and
(3.24) P Bi+v(cpii) =aiBi for0<j<e;.

Remark 3.18. Take an element h € K[x]. Then h admits a unique @;-expansion
(3.25) h=> d;.Q.
j=0

This can be shown by induction on deg, h. Indeed, let h = ¢Q; + r be the Euclidean division
of h by Q;. Then dy; = r and for j > 0 the coefficients d;; are nothing but the coefficients of
powers of @; in the Q;-expansion of q.

Proposition 3.19. Assume that the set {8, | ¢ < i} is bounded in Ty (so that the hypothesis
of Proposition 3.14 (1) is satisfied). Every coefficient d;; in (3.25) admits a Q;-free i-standard
expansion. Writing each coefficient d;; in this way produces an i-standard expansion of h. In
particular, every element of K[x] admits an i-standard expansion.

Proof. We use transfinite induction on 4. For ¢ = 0 the result is obvious. Assume that ¢ > 0 and
that the Proposition holds for all ' < i. By definition of @Q;-expansion we have

(3.26) deg, d;; < a; forall j.

Take an ordinal ¢y such that i = ip+. By the induction assumption applied to ip the Q;,-
expansion of

(3.27) dji =Y dg QY
q

can be made into an ¢p-standard expansion by writing out a @;,-free ip-standard expansion
of each coefficient d, ;;. Moreover, by Proposition 3.14 (1) and (3.26), all the monomials ng
appearing in (3.27) satisfy j < a;. This makes (3.27) into a Q;-free i-standard expansion of d; ;,
so (3.25) can be made into an i-standard expansion of h, as desired. (]

Remark 3.20. The i-standard expansions (3.27) of the d;; need not, in general, be unique. For
example, if ¢ is a limit ordinal, d;; admits an ig-standard expansion (3.27) for each

(3.28) i9p <14 such that i = ip+,

but there are countably many choices of ig satisfying (3.28). If i € Ny, then the i-standard
expansion of h is unique. This follows from Remark 3.18 by induction on i. Part of the point of
Remarks 3.18 and 3.20 and Proposition 3.19 is that an i-standard expansion is a ();-expansion
together with an additional set of data, namely, a Q;-free i-standard expansion of the coefficients
d;;.

For each ¢ € A we define a map v; : K(x)* — T" as follows. Given a Q;-expansion

(3.29) F=3del,
=0
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put
(3.30) vi(f) = min {jB; +v(dj)}-

0<5<s;
By Remark 3.18, the elements d;; € K[z] are uniquely determined by f, so v; is well defined.
We extend v; to all of K(z) by additivity.
Remark 3.21. We have

(3.31) vi(f) <v(f)
by the ultrametric triangle law.

Remark 3.22. Tt is clear from the definition that the map v; satisfies the ultrametric triangle
law. Below, we will show that it is, in fact, a valuation.

Next, we give criteria for when the inequality (3.31) is strict and when it is an equality.

Remark 3.23. If deg,, f < deg, @; then we have s; = 0 in the i-standard expansion (3.30), so
vi(f) = v(dos) = v(f).

Remark 3.24. Consider ordinals ig < i and t € Ny such that i = ig+, ¢ +t € A and for each
ordinal ¢/ such that i < i’ <4t we have

(3.32) ay = 1.

(1) If (3.13) holds, we have v;,(Q;) = a;f;, by (4) of Definition 3.11 (b) and (3.15) (recall
that (3.13) can only fail if i = max A).
(2) By (3.9), (3.32) and induction on t,

(3.33) Qire =Q; + ZziJrq, where deg 244 < @;.
q=0
Hence every ig-standard expansion of ;4 contains the term QZO; We obtain v;, (Qi+t) < @iBig-

Below (Corollary 3.42) we will see that under a mild additional hypothesis on i the last
inequality is, in fact, an equality.

Remark 3.25. Consider ordinals 4,/ € A, i < £. Then 14(Q;) = v;(Q;) = v(Q;). Indeed, if
a; < ay our statement holds by definition of v,.
Assume that a; = @,. Then

(3.34) Qe=Qi+z
where deg, z < @; and v(z) = B; < fi. Now, Q; = Q¢ — z is an f-expansion of Q;, so

ve(Q;) = min{B;,v(2)} = v(z) = B;, as desired.

Proposition 3.26. For a pair of ordinals ig < i such that i = i9p+ we have

(335) Vi, (Ql) < Bz

Proof. Let

(3.36) Q=) ¢,
§=0

be the ip-standard expansion of @;. If i = ¢ — 1 is the immediate predecessor of ¢ then by (3.9)—
(3.10) the quantity v(Q;) = v;(Q;) is strictly greater than the common value of v (Cj,ion())
(cf. (4) of Definition 3.11), where j ranges over the elements of {0,...,a;} for which ¢;;, # 0.
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This common value is, by definition, v;,(Q;). If i does not admit an immediate predecessor, the
desired strict inequality is nothing but (3.12). O

Corollary 3.27. Ifi € A is not the mazimal element of A, then there exists f € K|x] such that
vi(f) <v(f).

Proposition 3.28. Fix an ordinal i € A and let 0 = Qj be a Q;-free i-standard monomial.
Then

(3.37) v (0) < Bi.

Proof. If (3.13) does not hold, we have 3; > I’y and the result follows immediately. Therefore
we may assume that (3.13) holds. We proceed by transfinite induction on i. If i = 0 then § =1
and Sy = v(x) > 0, so the result holds. Assume that ¢ > 0 and the Proposition holds for all the
ordinals 7' < i. Let i be the smallest ordinal such that ig+ =i and ~; = 0 for all 4’ such that
1o <14’ < i. Write § = QZ(;’O Q:OO where

(3.38) Vip <

and Qz)io is a Q;,-free ip-standard monomial. By the induction assumption, v (QZ)O) < Biy-
Combining this with (3.38), Remark 3.24 and Proposition 3.26, we obtain

v (0) < Biy +YioBio < iy < B,
as desired. |

Proposition 3.29. Take an ordinal i € A and assume that (3.13) holds. Then Q; € R, [z].

Proof. We use transfinite induction on i. For i = 0 we have Qg = = and the result is clear.
Assume that 4 > 0 and the Proposition holds for all the ordinals ¢’ < i. Take an ordinal iy such
that i = 79+ and let

Oq‘,—l
(673 ’71 j
(3.39) Qi=Q; + Z ch,i,’_yioQiOO T
j=0

Yig
be an ig-standard expansion of ();. By the induction assumption, it is enough to prove that
(340) 14 (Cj,’i,’?io) 2 0

for all the choices of j,4,%;,. Fix j,14, 3, appearing in one of the terms in (3.39). We have

(3.41) v ZCNW%QZ:O QZO > v (Qf)
Yio

by Definition 3.11 (b) (4) and (3.15) and v <Q7i0> < Bi, by Proposition 3.28 with ¢ replaced by

20

io. Combining the last inequality with (3.41), we obtain v (¢ji 5, ) = @ifi, — (j +1)Bi, =0, as

desired. O

Let 8* be a non-negative element of I'. Keep the notation of (3.29). We denote

Si(B*, f) = {j €{0,...,8:} ‘ JB* +v(d;:) = min {kB"+ V(dk,i)}} :

0<k<s;

Let Q; be a new variable.
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Notation:

(3.42) Si(f) + = Si(Bi, )

(3.43) 9i(f) : = max S;(f)
(3.44) in; f : = Z inudj,iQ{;

JES(f)

the polynomial in; f is quasi-homogeneous in G, [inl,Qi, Qi]7 where the weight assigned to Q;
is ﬂi.
Remark 3.30. If 6;,(f) = 0 then v (do ;) < v (dﬂQf) for j > 0, so v(f) = v(do) = vi(f), where
the first equality holds by the ultrametric triangle law.
Proposition 3.31. (1) For each ordinal i € A we have
(345) G<54i = GUK [lnl/QZ] .

(2) The elements in, f, deg,, f < &;, generate G<g, as a Gy, -module.

Proof. We use transfinite induction on . For i = 0 we have &y = 1, both sides of (3.45) coincide
with G, and all the statements are clear. Assume that ¢ > 0 and that the result is known for
all the ordinals strictly smaller than i. To prove that

(346) GI/K [anQZ] C G<5¢i7

we distinguish two cases. If i is a limit ordinal, (3.46) follows immediately from (3.21).
Suppose that ¢ is not a limit ordinal. We have

Gy [I0,Qi] = G [in, Qi) [In,Qi1] =2 G,y [I0,Qi—1],

where the last isomorphism is given by the induction assumption. Since a;_; is the degree of
the minimal polynomial of in,@Q;_1 over G, [in,Q;—1] (Definition 3.11 (b) (5)), every element
of Geg,_, [iIn,Q;—1] admits an (¢ — 1) standard expansion with all the exponents of @Q;_ strictly
smaller than «;—; (by Lemma 2.6, with in,Q;_1 playing the role of z). Such an element is
represented by a polynomial f € K[z] admitting a @Q;-free i-standard expansion, that is, a
polynomial such that deg, f < @; (Corollary 3.15). This proves the inclusion (3.46).

To prove the opposite inclusion, take f € K|x] with

(3.47) deg,, f < &y.

t
By Corollary 3.15 f admits a @Q;-free i-standard expansion f = ) n;, wherenq, ..., 7 are Q;-free
j=1
i-standard monomials. Let 8 = min{v(n;)} and {61,...,60s} ={n; |7 €{1,...,t},v(n;) =B}
J
If 7 is not a limit ordinal, «; is the degree of the minimal polynomial of in,Q;_; over
Guy [In,Q;—1] (Definition 3.11 (b) (5)). By (3.47) we have ) in,0; # 0 in G, (otherwise we
J

would have an algebraic relation satisfied by in,Q;_1 over G,,. [in, Q;_1] of degree strictly less

than a;), hence v(f) = v(0;) (for all j) and > in,0; = in, f (see Proposition 2.10). If i is a limit
J

ordinal, by Definition 3.11 (c) there exists an ordinal i satisfying io+ = 4 such that, letting

si ,
f =72 ¢i,Qf, be an ig-standard expansion of f (where s; < o), we have
Jj=0

(3.48) v(f)= min Jv (Cj,ioQgO)} ,

0<j<s;



KEY POLYNOMIALS FOR SIMPLE EXTENSIONS OF VALUED FIELDS 217

SO

(3.49) in, f= Y iny (@)

J€Siy (f)
by Proposition 2.10. In both cases we have proved that the left-hand side of (3.45) is contained
in the right-hand side.

To prove (2) of the Proposition, first assume that ¢ is not a limit ordinal. By the induction as-
sumption elements of the form in.g, g € Klz|, deg, g < @&;_1, generate G4, , as a G,,,.-module.
Elements in, f, deg, f < &; are precisely those that admit homogeneous i-standard expansions
where ;1 appears with exponents strictly smaller than «;. By part (1) of this Proposition such
standard expansions generate G4, as a G, -algebra, hence also as a G, ,-module by Lemma
2.6 (since « is the degree of the minimal polynomial of in, Q;_1 over G [in, Q;_1]).

It remains to consider the case when 7 is a limit ordinal. Take an ordinal iy such that i = ig+.
We have

(3.50) Guy [0, Qi] C Gea,, C Gea,,

by Remark 3.16; hence both inclusions are equalities by part (1) of this Proposition. By the
induction assumption, elements of the form in,g, ¢ € Klz], deg,g < @;_1, generate
G<a,, = G<a, as a Gy, .-module, which completes the proof of (2). O

Proposition 3.32. Take an element h of K[x] and an ordinal i € A\ {0}. Assume that
(3.51) deg, h < &;.
Then there exists an ordinal ig such that i € {ip + 1,i0+} and v(h) = v, (h).

Proof. For an ordinal i¢g < ¢ we will denote by
S
(352) h= Z cj,iongv
j=0

the ig-standard expansion of h. Let S;,(h) be as defined in (3.42). First, assume that ¢ is not a
limit ordinal; put i = ¢ — 1. By (3.51) we have s < «; in4(3.52). Since the degree of in, Q;_1
over Gy, [in,Q;—1]* is a; by (3.10) and > in,c;;—1Q7_, is a polynomial of degree strictly
Jj€Si—1(h)
less than «; in Q;_1, we see that > in,,cj,i_lin,,QLl # 0 in G,. The result now follows
j€Si—1(h)

from Proposition 2.10.

If ¢ is a limit ordinal, the results follows immediately from the fact that, by Definition 3.11,
Q; is of the smallest degree among those polynomials that satisfy (3.12). (]

Definition 3.33. Let {Q;}ica be a set of key polynomials. We say that {Q;};ca is complete
for v (or that {Q;}ica is a complete set of key polynomials for v) if for each 8 € T' the additive

group Pz N K[z] is generated by standard monomials of the form a [[ Q;7, a € K, such that
=1 7

Z vjv(Qi;) + vie(a) > B. The collection Q = {Q;}ica is said to be [y-complete if for all
j=1

B € Ty every polynomial f € K|[z] with v(f) = § belongs to the additive group generated by
standard monomials of the form a [] @7, a € K, such that Y ~;v(Q;,) + vk (a) > B.
=1 j=1

157
j=
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Note, in particular, that if Q is a complete set of key polynomials then their images in, Q; € G,

rationally generate G, over G, ; if Q is a I'g-complete set of key polynomials then their images

in,Q; € G, rationally generate G, over G,,. (see page 3 for the definition of G,,)

Remark 3.34. The set Q is a complete set of key polynomials if and only if for each polynomial
f € K[z] there exists an ordinal ¢ such that v(f) = v¢(f). Indeed, assume that such an ordinal
exists for all f. Take any 8 € T" and let f € Pg N K[z]. Put f/ = v(f) and let ¢ be such that

B =v(f) =wve(f). Write f = i d‘7¢Q%, where each dMQz ePp NKz] C Pgn K[z
7=0
Conversely, take f € K[x]. Let 8 = v(f). Write f as a finite sum
(3.53) f=>d,Q" d, €K,
v

of standard monomials with v (d,Q?) > 3 for all v such that d, # 0. Let ¢ denote the greatest
ordinal such that @), appears in one of the monomials d,Q7Y. Then (3.53) can be rewritten as

S .
f= _X:Ode%, where each d; is a Q-free f-standard expansion; in particular, deg, d; < a,. We
i=
obtain

B =w(f) 2 ve(f) = min {v (d,QF)} > min {v (d,Q")} > 5.

This also shows that if Q is a complete set of key polynomials then Q is not strictly contained
as an initial segment in any other set of key polynomials; in other words, the construction of key
polynomials cannot be continued beyond Q.

Proposition 3.35. If A has a mazimal element ¢ and

then in, Q; is transcendental over G, [in, Q;].

S

Proof. Take a non-zero polynomial F(Q;) = 3 Q! € G, [in,Q:][Q:]. By (3.54) the terms in

7=0
S .
the expression F(in,Q;) = Y ¢;in, Q7 have different orders for different j (where, by definition,
§=0

ord Q; = f3;); in particular, there exists a unique ji, € {0,...,s} that minimizes ord Ejinl,Qg.
By the ultrametric triangle inequality, we have F(in,Q;) # 0, as desired. ]

Proposition 3.36. Take an ordinal i € A. Assume that in,Q; is transcendental over
Guy [in,Q;]. Then the set {Qr}een = {Qe}e<i of key polynomials is complete for v.

Proof. Take an element h € K[x]. Let
(3.55) h=>¢;:Q
=0

be the @;-expansion of h. We want to prove that
vi(h) = v(h).
Replacing h by > cj,ng does not change the problem. Thus we may assume that all the
j€Si(h)
terms ¢; ;@] appearing in (3.55) have value v;(h). Since in, Q; is transcendental over G, [in, Q;],
we have Y in,(c¢;;Q}) # 0. The Proposition now follows from Proposition 2.10. O
J
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Proposition 3.37. Take an element h of K[x] and an ordinal i € A. Assume that at least one
of the following conditions holds:

(1)

(3.56) v(h) < Bi
and
(3.57) h € Ry, [7]
(2)
(3.58) sup{By | <i}=o0.
Then v(h) = v;(h).
Proof. Let

(3.59) h=> 0l
=0

be an i-standard expansion of h. First, assume that {8 | i <i} is unbounded in Lo; in
particular,

(3.60) B; > L.

Then the Proposition holds by Propositions 3.35 and 3.36.

Next, suppose that (3.56)—(3.57) hold and sup{f; | <i} < oo. Since (3.59) is obtained
from h by iterating Euclidean division by @; which is monic, and in view of Proposition 3.29,
we have

(3.61) v(c;) >0 forall je{0,...,s}.

By definition of standard expansion, each ¢; in (3.59) is a @Q;-free i-standard expansion. Then
vi(cj) = v(c;) for 0 < j <s. By (3.56) and (3.61),

(3.62) v (chg) =v(c;) +jBi > v(h) for j > 0.
S0
(3.63) v(co) =v(h) <v(cj) + jBi = vi(e;) +3B8;  forall j > 0.

In other words, in the sum (3.59) the v;-value (resp. the v-value) v;(co) = v(cg) of ¢g is strictly
smaller than the v;-values (resp. the v-values) v;(c;Q7) = v(c;Q?) of all the other terms. Tt is
well known and follows easily from the ultrametric triangle law that in this situation we have
vi(h) = vi(co) = v(co) = v(h), as desired. O

For b € Ny, let 0, denote the b-th Hasse derivative with respect to x.
Proposition 3.38. For allb € N and all i € A, there exists an ordinal ig < i such that
i€ {ig+1,ip+}
and

(3.64) Vip (06Qi) = v(0pQi)-
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Proof. If i is not a limit ordinal, put 7o = ¢ — 1. If ¢ is a limit ordinal, take iy such that
(3.65) 1 =1g +.

The result now follows from the fact that deg, 0,Q; < deg, @Q;, where in the case when ¢ is a
limit ordinal we must take iy sufficiently large subject to (3.65). O

Proposition 3.39. (1) The map v; is a valuation.
(2) For every ordinal ¢ < i and every f € K[x] we have vy(f) < v;i(f) < v(f).

Proof. Tt is obvious that v; satisfies the ultrametric triangle law. To prove (1) of the Proposition,
we must prove the equality

(3.66) vi(fg) = vi(f) +vi(g).

For an ordinal i’ € A let (1);s and (2) denote, respectively, (1) and (2) of the Proposition with
i replaced by i’. We proceed by transfinite induction on i. (1) is easy to prove and (2)g is
vacuously true.

Assume that (1);; and (2),+ hold for all ordinals i < 7. To prove (1); and (2);, we start with
some preliminary lemmas. For future reference we state some of the lemmas in slightly greater
generality than needed for the proof of Proposition 3.39.

Consider an ordinal ig < 7 and ¢t € Ny such that ¢ = ig+, ¢ +t € A and for each ordinal 7’
such that ¢ < i’ < i+t we have

(367) Qir = 1.

Lemma 3.40. Consider two terms of the form ng_H and d’Qg;_t, where j,j" € Ng and d and
d' are Qiyi-free (i + t)-standard expansions. Assume that

(3.68) vio (dQ1,,) < viy (d'Q1,).
(3.69) v (dQl,,) > v (dQl,),
(3.70) Vig(d) = v(d)

and

(3.71) Vip(d') = v(d')

Then j > j'. If at least one of the inequalities (53.68), (5.69) is strict then j > j’.

Remark 3.41. If i = ip+1 then assumptions (3.70) and (3.71) hold automatically by Corollary 3.15
and the definition of v;,. In the general case, Proposition 3.32 and (2), for ¢ < ¢ imply that
there exists ig such that ig+ = ¢ and (3.70) and (3.71) hold.

Proof of Lemma 3.40. We have

(3.72) Vio(Qitt) < ifiy < Bige

by Remark 3.24 and Proposition 3.26. Since v;, is a valuation by (1)
(3.69) can be rewritten as

the inequalities (3.68)—

10

(3.73) v(d) + jvio (Qite) < v(d') + j'Vig (Qise)
and
(3.74) v(d) + jBitt > v(d') + 5 Bitt

Subtract (3.73) from (3.74) and use (3.72). The result follows. O
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Corollary 3.42. Keep the notation of the last lemma. Assume that

t—1 t—1
(3.75) Vig (Z zi+q> =v (Z zi+q>
q=0 q=0
in the notation of (3.33) (note that by Proposition 3.32 such an iy always exists). We have

(3.76) Vip(Qitt) = i i,

Proof. By Proposition 3.19 we may assume that (3.33) is an ig-standard expansion of Q;4¢. The
leading term of this ip-standard expansion is Qf; We have «;8;, = v, (Q%) Now Lemma 3.40,

K2

t—1

applied with ¢ = j = 0 and j’ = 1, implies that v;, (an) < V4, (Z zi+q>. This completes the
q=0

proof.

Keep the above notation. Let f be a non-zero element of K[z]. Let
Sig

(3.77) F=dQ
=0

be an ip-standard expansion of f, where each d;;, is a Q;,-free ip-standard expansion.
Consider an (i + t)-standard expansion of f:

Sitt

(378) f - Z dj,i+th+t7

Jj=0

where the d; ;4 are Q;;+free standard expansions. Let 0 = §;,(f). Let

: J
= min v (d~ +Q: )
J7 og | Vio gyttt

and
Sig i+t = {j €{0,...,8i4t} ‘ Vi, (dj,i+tQZ+t) = H}-
Assume that (3.75) holds and that
Vig (djite) = v (djive)
for all j € S;,,i+¢ (note that by Proposition 3.32 and (2),, ¢ < 4, this holds for all sufficiently
large ordinals i such that ig+ = ).
Lemma 3.43. (1) We have
Vio(f) = n = ngjngigH{V(dj,Ht) + jeiBio }-

(2) Let jo = max Sio,i+t- Then 5 = Oéijo —+ (51-0 (djg,i+t)-

Proof. (1) The second equality in (1) of the Lemma is given by Corollary 3.42 and (1);,. Let

6 = min Sig,z'+t~

Let f= dj,i+th+t. Then v;, (f — f) > p, so to prove that v;, (f) = p it is sufficient
JESig, i+t
to prove that

(3.79) viy (f) = .
The equality (3.79) holds if and only if

(3.80) vip Qi f) = 1 — baifBi,.
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Therefore, without loss of generality, we may assume that ¢ = 0.
Now, all the terms dj,ithQfH, J € Siy.i+t, appearing in the (i + t)-standard expansion of f,
have the same v;,-values, so by Lemma 3.40 they all have different v-values with

v (dO,ith) <v (dj,i+th+t)
for j € S;, i+¢ \ {0}. By the ultrametric triangle law we have

v (f) =v(doitt) = viy (do,ive) = 1 < vig (),

hence the inequalitiy in this formula is an equality and (3.79) is proved. This proves (1) of the
Lemma.
(2) In view of (1), a term of the form aQ? with deg, a < deg, Q;, and

v (ano) = Vio(f)

appears in the @Q; -expansion of >  d;;4+Qit+,; and J is the greatest integer with this
JESig, i+t
;);ij0+6i0(djo,i+t) with

deg, a < deg, Q;, and v (aqujOH"O (djo’iJr”)) = v;,(f); @ijo + 0i(djy i4e) is the greatest power

0

property. The @Q;,-expansion of dj07i+thf"_t contains a term of the form a@

of Qi, appearing there. The term aQé?jﬁéiO(d"Wﬂ)

any of dj7¢+th+t, J € Siy.itt, § < Jjo, for reasons of degree. This completes the proof of (2). O

cannot be canceled by contributions from

Lemma 3.44. Keep the notation and assumptions of Lemma 3.43. For every j € {1,...,8;4+}
we have

(3.81) Vit (dj,i+th+t) = Vig(f) = Bivt — iy > 0.

Proof. We have

(3.82) Vit (dj,i+th+t) =v (dj,i+th+t) = v (dj,ivt) + JBite-

By the ultrametric triangle law applied to the @;,-expansion of d;; we have

(3.83) 0 < v(djitt) = Vig(djite)-

Finally, by Lemma 3.43 we have

(3.84) Vio (F) < i (540 QLy,) = vig (djie) + jiBi

Adding up (3.83) and (3.84), subtracting the result from (3.82) and using the fact that j > 1,
we obtain (3.81). O

Corollary 3.45. (1) Conclusion (2); holds.
(2) We have v;(f) = vi,(f) if and only if the Q;-expansion of f has non-zero coefficient do;
satisfying
(3.85) Vi (doi) = Vig (doi) = vio ()
Proof. (1) follows from (3.81) (with ¢ = 0) by transfinite induction on i — g.
(2) By (3.81) (with ¢t = 0), for every term d; ;Q] of the Q;-expansion of f with j > 0 we have
v (deQf) > v (dﬂQf) This proves (2). O
Note that that the equivalent conditions of (2) of the Corollary are also equivalent to saying
that the Q;-expansion of in;; f has non-zero coefficient dy ; satisfying (3.85).

Remark 3.46. The first equality in (3.85) holds automatically when 4 is not a limit ordinal.
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Take a finite collection of polynomials fi,...,fs € Klz] such that deg, f; < &; for all
je{l,...,s}. Let

(3.86) 114 =aQive+r

J=1

be the Euclidean division of H f;j by Qit¢. Assume that ¢ = ig+,

(3.87) vio(f;) = v(f;) forall j € {1,...,s}
(3.88) vio(¢) = v(q)

and

(3.89) Vio (1) = v(r)

(such an i exists by Proposition 3.32 and (2);).

Lemma 3.47. We have v (ﬁ f_j) = Vi, (ﬁ fj) =v(r) and
j=1 i=1

Vitt (qQitt) — H fi | = Biyt —aifi, > 0.

Proof. By (1);, we have

S

(3.90) vio | [T ) =2 wa ) =D v =v| I/
j=1 j=1 j=1 Jj=1

S
Now, r in (3.86) is nothing but the constant term in the (i 4 t)-standard expansion of [] f;,
j=1
whereas ¢Q;4; is the sum of all the remaining terms in this (i 4+ t)-standard expansion. Now
S
the inequality of the Lemma is a special case of Lemma 3.44. The fact that v(r) = v ( 11 fj>
=1

follows immediately from this by the ultrametric triangle law. O

We are now in the position to finish the proof of (1);. Let g = Z ¢, ,Q and f = Z d;, ,Q

be the respective i-standard expansions of g and f. By Lemma 3 47 for every j € {0 , S8}
and j' € {0,...,u;}, we have d;;cjr ; = q; jyQ; + 15, with

12 (dj,’icj’,i> =V (Tj,j’) < Vv (qg,]’Qz) .

This implies that all the terms in the i-standard expansion of fg have value at least v;(f) +v;(g)

and some terms (for example, the term involving Q {()+8lg )) have exactly this value. This
completes the proof. O

The valuation v; will be called the i-truncation of v.

Remark 3.48. By (2);, if v(f) = v;, (f) then v;(f) = v4, (f).
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Proposition 3.49. (1) We have
(3.91) gr, Klz] =2 G, [inyQi,Qi] ,
where the symbol Q; denotes an element, transcendental over G,,,. [in, Q;] with ord Q; = B;. The

element Q; is the image of in,. Q; under the isomorphism (3.91).
(2) With the identification (3.91) there is a natural degree-preserving homomorphism

¢ gry, Klz] — gr, K[z]

of Gy [in, Q;l-algebras defined by ¢ (Ql) =in,Q;.

For parts (3) and (4) of the Proposition, assume that i+ 1 € A.

(3) Ker ¢ is generated by the polynomial obtained from the left-hand side of (3.10) by first
replacing i by i + 1 and then replacing in,Q; by Q;.

(4) Im ¢ = Gy [0, Qiga] = {0} U{inu f | f € K[z], vi(f) = v(f)}
Proof. (2) The homomorphism ¢ is self-explanatory.

(1) Let G(é)o—” denote the gr, K-subalgebra of gr, K[z], generated by all the in,, f with

deg, f < @;. The homomorphism ¢ maps G(é)@ isomorphically onto G45,. Given a non-zero
element f € K[z] with i-standard expansion (3.77), in,, f can be written as

in,, f = E in,,d; ;in,, Q’
JESi(f)

with in,,d;; € G(<1211 If we had a non-trivial relation of the form Z dj;in,, Qf = 0 with
J

dji € G,
we could take it to be homogeneous and lift it to an element f = Y d;;Q’ € K[z] such that
J

v;(f) > min {1/ (dﬂQg)} contradicting the definition of v;. Thus in,, @Q; is transcendental over
J
all.. -

Conversely, given an element f € G(é)aé [in,, Q;] we can consider its i-standard expansion and
lift it to an element f € K|[x] such that in,, f = f. Thus in,, K[z] = G(<Z)& [in,,Q;] with in,.Q;
transcendental over G(é)@i [in,,Q;] and

G(ézjl [lanz] = GUK [ianiv Q’L]
in view of Proposition 3.31 and the identification G(é)c—“ = G g, given by ¢.

(3) follows from the fact that in,,@Q;41 is the minimal polynomial satisfied by in,Q; over
Gy [in,Q;] (Definition 3.11 (b) (5)).

(4) follows from the fact that ¢(f) #0 <= v;(f) = v(f) (Proposition 2.10). O

4. THE NUMERICAL CHARACTER 6;(h)

Let {Q;}ica be a set of key polynomials for v. Let i € A and h € K[z]. Let
Si
(4.1) h=7 dQ]
=0

be an i-standard expansion of h, where each d; ; is a @);-free i-standard expansion. In this section
we study the properties of the numerical character

(4.2) d;(h) = max S;(h) = degg, in;h
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(cf. (3.42)—(3.44)) that will play a crucial role in the rest of the paper. We prove that ¢;(h) does
not increase with . We also show that the equality d;(h) = 0;+1(h) imposes strong restrictions
on in;h.

Definition 4.1. The i-th Newton polygon of h with respect to v is the convex hull A;(h) of the
set | ((V(dj,i),j) + (fo+ X Q+)) in Ty x Q.

§=0
Definition 4.2. The vertex (u (d(;i(h%i) ,57;(h)) of the Newton polygon A;(h) is called the piv-
otal vertex of A;(h).

Let
(4.3) vih(n) = min { v (d;:Q1) | 6:(h) < j < s
and

Sih) = { e i) + 1) | v (414Q0) = v ()}

If the set on the right-hand side of (4.3) is empty, we adopt the convention that v;" (h) = co. We
have §;(h) > 0 whenever v;(h) < v(h) by Remark 3.30.
Take an ordinal ¢ € A. Assume that there exists a polynomial h such that

(4.4) vi(h) <v(h)

(this happens, for instance, whenever ¢ + 1 € A by Corollary 3.27). Consider the i-th Newton
polygon of h. Let S;(h) be as in (3.42).

Definition 4.3. For a polynomial f € KJz], we say that 5* determines a side of A;(f) if the
set S;(8*, f) has at least two elements.

oy . Y P, Pomy
Proposition 4.4. We have jeg;(f) in, (dNQi) =0 1n . cG,.

Proof. This follows immediately from (4.4), the fact that
> duQli=h-— Y 40
Jj€Si(h) J€{0,...;5: }\Si(h)
and Proposition 2.10. O

In the following corollary, recall that a factorization of in;h into irreducible factors exists and
is unique by Remark 2.13.

Corollary 4.5. Viewing in;h as a polynomial in the variable Q; with coefficients in G, [in, Q;],
we have in;h (in,@Q;) = 0. In particular, the element in,Q; is integral over Gy, [in,Q;]. Its
minimal polynomial over G, [in,Q;] is one of the irreducible factors of in;h.

Corollary 4.6. The element 8; determines a side of A;(h).

Proof. Suppose not. Then the i-standard expansion of h contains a unique term dj,ng of
minimal value, so v(h) = v(d;;Q?) = vi(h), contradicting (4.4). Corollary 4.6 is proved. O

Let

(4.5) in;h = in,ds ; H g'y7 :
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be the factorization of in;h into (monic) irreducible factors in Gy, [in, Q;] [Q;i], where
(4.6) d =0;(h)

and g1 ; is the minimal polynomial of in, Q; over G, [in, Q,].
The next Proposition shows that 0;(h) is non-increasing with ¢ and that the equality
0;+1(h) = 6;(h) imposes strong restrictions on in;h.

Proposition 4.7. Assume thati+1€ A and

(4.7) v(h) > v;(h).
(1) We have
(4.8) ait10;41(h) < 6.
(2) If §;11(h) = 0 then
(4.9) Qit1 = Qi + 2,
where z; is some Q;-free i-standard expansion,
(4.10) ingh = in, dy,; (Qi +in,z)°
and in;41h contains a monomial of the form inud(;,iQ?H; in particular,
(4.11) inyds; =inyds it1.
(3) If 8i11(h) = 0, then for all j > § we have
(4.12) v (dji1Qlyy) = visa(h) > vt (h) = wi(h).

Remark 4.8. This Proposition is true as stated without the hypothesis (4.7), but the proof given
below needs to be modified to include the case of equality in (4.7). In the sequel, the Proposition
will only be used under the assumption (4.7).

Proof. We start with a lemma. Consider an (i + 1)-standard expansion of h:

Si+1

(4.13) h = Z dj,i+1Qf+17

j=0
where the d; ;1 are Q;41-free (¢ + 1)-standard expansions.

In the notation immediately preceding Lemma 3.43 (with f replaced by h and (ip,? + ) by
(i,’i + 1)), let 914_1(]1) = min Si,i+1~

Definition 4.9. The vertex (v(dg,.,(n),i+1),0i+1(h)) is called the characteristic vertex of
Aiy1(h).

The polynomial in;h is divisible by the minimal polynomial ¢; ; of in, @Q; over G, [in, Q;]; in
particular, we have ¢ = degg, in;h > 0.
For j € {1,...,t}, let g;; 0 denote the coefficient of in, QY in the polynomial g; ;.

Lemma 4.10. We have

(4.14) Y1, = Oi1(h)
(in particular, d, , i+1 # 0) and

t
(4.15) inydg,,, (n),i+1 = iuds [ [ 9%50-
=2
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Proof. Write
D dein QY + > dg,i+1Q11-
q€Si it+1 q€{0,...,8}\Si,i+1
By Lemma 3.43, the terms of lowest v;-value in the @;-expansion of h are recovered from the
terms of lowest v;-value of > dg41Q7, . in other words,

qE€Siit1
(4.16) ingh =Y inidgip1inQY, .
qES; i+1
By definition of key polynomials (Definition 3.11 (b) (5)), we have
(4.17) Qi1 = g1,i-

By definition of 6;,1(h), iniQf_ff(h) is the highest power of in;Q;.1 dividing
Z inidq,i_,_linngJrl.
qES;it1
Since g,;" is, by definition, the highest power of g1 ; dividing in;h, (4.16)—(4. 17) imply (4.14).
Combining (4.5) and (4.16) and dividing both equations by ¢,;" = in;Q 011" e obtain

i+1
(4.18) Z inidq7i+1iniQ3+_10i+1 =in,ds; H gv’ ‘
qE€S; i+1

Equating the constant terms in (4.18) yields (4.15). O

We are now in the position to finish the proof of Proposition 4.7. Apply Lemma 3.40 to the
monomials dg, ., , (n), H_lQlfll(h) and ds,_ | (n) l+1QZf11(h) We have

i (h
(419) (d57+1(h) 1+1Qz++11 ) <v (d91+1(h) 7+1Qz+1 ))
by definition of é;;,1 and
i+1(h dit1(h

(4.20) v; (deL+1 z+1Q;J:L ( )) =vi(h) <v; (dai+1(h),i+1Qi++1 ( ))

by Lemma 3.43, so the hypotheses of Lemma 3.40 are satisfied (note that (3.70) and (3.71) hold
by definition of v; and @;-expansion of h). By Lemma 3.40

(4.21) 0;1(R) > 6,11(h).
Since
(422) ai+191-+1(h) = 0441710 S degél 1n1h =0

by Lemma 4.10 and (4.5), (1) of the Proposition follows.

(2) Assume that 6;11(h) = § (where the notation is as in (4.6)). Recall that § > 0 by

Remark 3.30. Then the monomials dng(h)’iHQfﬁl(h) and dai“(h),,;“ij_*f(h) coincide and

(423) Q41 = 1.
This proves (4.9). Furthermore, we have equality in (4.22). Then (4.5) rewrites as

(4.24) ingh = 1nud61911Hg%7
j=2
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Now, the left-hand side of (4.24) is a polynomial of degree § in Q;, while the right-hand side is
divisible by the non-constant polynomial gf,i. This implies that

t
(4.25) t=1, ngvfzi =1,
=2

and in;h = in,,d[;)igii. (4.10) now follows from (4.9) and (4.17).

The equality (4.11) follows from (4.15), (4.25) and the fact that 6;11(h) = d;4+1(h) = 0.

(3) Assume that d;11(h) = d. Fix an integer j > §. The @Q;11-expansion (4.13) of h is obtained
from its Q);-expansion (4.1) by making the substitution @; = Q;+1 — z; and performing repeated
Euclidean divisions by Q;11 to turn the result into a @Q;11-expansion. For j' < j, monomials
of the form d; ;Q] have degrees strictly less than ja&;+1. Hence they contribute nothing to
dj7i+1Qg+1; in other words, the coefficient d; ;4 is completely determined by Z djy/ng,.

J'=j

Fix an integer j' € {j,...,s;}. Write

3’ .
.y ./ i o
(4.26) djri Q) =djr i (Qip1 — z) =djiy (k) (—1)FQF, 27 F,
k=0

where z; is a Q;-free i-standard expansion. Again, the terms on the right-hand side of (4.26)
with k > j contribute nothing to d;;11Q7, ;. For k < j, let dj/ 1 ; denote the coefficient of Q7 ,
in the (i 4+ 1)-standard expansion of dj/,iQi?Hszk. To prove (3), it is sufficient to prove that
for all 5/ € {4,...,s;} and all k € {0,...,j} we have

(4.27) v (djr kiQlyy ) — vier(h) > v (h) — wi(h).
To prove (4.27), we start out by noting that (4.9) is an i-standard expansion of Q; 1. Hence
(4.28) vi(Qit1) = Bi = v(zi),

where the last equality holds by Definition 3.11 (4). By Lemma 3.43, v; (dj/,,Qszfl_k) equals
the minimum of the v;-values of the terms appearing in its (i + 1)-standard expansion, so
vi (djriQF 12l ™) < i (djrri@Qly,). Combining this with (4.28) and with Proposition 3.32
applied to d;/ 1 ; and the ordinal 7 + 1, we obtain
(4.29) v (dj ki) = vi (djei) = (5" = 5)Bi + v (dje i) -
By definition of d;41(h), since d;11(h) = § and in view of (4.11), we have
vit1(h) = v(dsiv1) + 6Bit1

Combining this with (4.29) and using (4.11) again, we obtain
(4.30)

v (e i@lir) = via () = v (dy ) = ¥ (daia) + (G = )i

> (' = )i+ v (dyr) = v (dsisn) + (G = 6)8i = v (dyraQ] ) = v (d50Q)) = v (h) = wi(h),
as desired. This completes the proof of the Proposition. ([

Corollary 4.11. For as long as the character §;(h) remains constant (that is, does not strictly
decrease), the quantity v;" (h) — v;(h) is non-decreasing with i.

Proof. Take the minimum over all j on the left-hand side of (4.12). O
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Remark 4.12. One way of interpreting Lemma 3.40, together with the inequalities (4.19)—(4.21)
is that the characteristic vertex (V (d91+1(h)7i+1) , 0i+1(h)) of A;+1(h) always lies above its pivotal

vertex (1/ (d5i+1(h)7i+1) ,5i+1(h)).
Corollary 4.13 (of Proposition 4.7). Assume that the set {i € A | a; > 1} is infinite. Then
{Q.:}ien is a complete set of key polynomials.

Proof. Take an element h € K|[x] and an index i € A. If v;(h) = v(h), there is nothing to prove.
Assume that v(h) > v;(h). Then §;(h) > 0 by Remark 3.30. Proposition 4.7 (1) says that

(4.31) di+1(h) < di(h)

whenever a;4+1 > 1. Since the set {i € A | ; > 1} is infinite and the strict inequality (4.31) can
occur for at most finitely many values of i, we have 6;(h) = 0 for some i € A. Then v;(h) = v(h)
by Remark 3.30. O

5. AUGMENTING SETS OF KEY POLYNOMIALS

Suppose we are given a set of key polynomials {Q;};ca that is not complete for v. In this
section, we will construct a set {Q;}ica, where Ay is a well-ordered set of order type less than
wxw,and AG Ay,

5.1. Sets of key polynomials having a maximal element. Suppose first that A has a
maximal element /.
Since {Q;}ica is not complete, there exists h € K[z] such that

(5.1) ve(h) < v(h).

Let Q¢ be a new variable. Take a polynomial h satisfying (5.1).
By Proposition 4.4, we have

(5.2) > iny (dje@f) =0

JESe(h)
in 75”’2;’;1 C G,. By Corollary 4.6 the element 3, determines a side of Ay(h). Let
Ve
t
(5.3) in, h = iny,dse [ [ 97%"
j=1

where § = d;(h), be the factorization of ingh into monic, quasi-homogeneous irreducible factors
in Gy, [in, Q] [Q¢] (such a factorization exists and is unique by Remark 2.13). By (5.2), the
element in, @, is integral over G, [in, Q. Its minimal polynomial over G, [in, Q] is one of
the irreducible factors g; ¢ of (5.3).

Let apqq denote the degree of in,Q, over G, [in,Q¢]. Renumbering the factors in (5.3), if
necessary, we may assume that g ¢ is the minimal polynomial of in, Qg over G, [in, Q¢], so that

(5.4) a1 = degg, 91,¢-
Let
o —1
(5.5) gre=Q, " + Z (Z Cz+1,jmianZZ> Q]
j=0 Ve

be an ¢-standard expansion of g; o. Let X be a new variable, and consider a lifting of the right-
hand side of (5.5) to K[X], that is, a polynomial of the form
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app1—1 _ )
X4 (Z Co41,5.7, Qzé> X7, where in,co41 5,5, = Co+1,5,5, for all the choices of £, j, and
Jj=0 e

Ye-
Define the (¢ + 1)-st key polynomial of v to be

(X@+1—1
(5.6) Qup1=Q7 " + > (Z ce+1,mQZ‘> Q-
j=0 Ve
Let AL = AU {¢+ 1}. By definition Q41 has the form (3.9). The set {Q;}ica, satisfies
Definition 3.11: it is a set of key polynomials.
In the special case when
(57) Ay = 1

we will define several consecutive key polynomials at the same time.
Assume that a1 = 1. Let T denote the set of all the polynomials of the form

Q,:Q€+w7

where deg, w < &y = deg, Q¢. To define Qy41, consider two cases:

Case 1. The set v(T) contains a maximal element. Let Q' = Q¢ + w be an element of T for

which the maximum is attained. Write w = Y zp4+ + @, where s € Ny, for each ¢t € {0,...,s}
t=0
the expression z¢4; is a homogeneous Q,-free ¢-standard expansion, such that

(5.8) Be = v(ze) <v(ze41) <+ <vlzeps) <v(Q)
and @ is a Qg-free f-standard expansion all of whose terms have value greater than or equal to
v(Q). Puu Ay =AU{{+1,...,s4+ 1} and

Qi=Qe+ze+ - +2zi1 for{4+1<i<l+s+1.

Case 2. The set v(T) does not contain a maximal element. Let (Qg_;,_t =Qv+ u?,g) be a
0

teN
sequence of elements of T" such that the sequence (V (QHt))teN is strictly increasing and cofinal
0

in v(T). We will now define, recursively in ¢, an infinite sequence

(5.9) (2644)qems

of homogeneous Q-free f-standard expansions of strictly increasing values and a sequence
(w¢)e>—1 consisting of certain partial sums of the sequence (5.9). We adopt the convention
that zp—1 = w_1 = 0. Assume that for certain integers ¢, go the finite sequences (z¢+4)q<q, and

90 -
(wi)i<i, are already defined, that wy, = Y zp1q and v(zp1q) < v (Qé-i-to) for all ¢ < qg. Write

q=0
_ g1
Wig41 —Wey = D Zotq+ wQOH, where each 2,44 is a homogeneous )¢-free /-standard expan-
q=qo+1
sion, v(2p4go+1) < -+ < V(Zp4q) <V (Qé+to+1) and wi ,; is a Q-free (-standard expansion,

each of whose terms has value greater than or equal to v (Q[+t0+1). Put

g1
Wiy+1 = Wiy + Z Z04q-
q=qo+1
This completes the recursive definition of the infinite sequences (z¢44)qen, and (w¢)¢>_1. Define
oty =1,
Qrt = Qe+ 2zg + 2pp1 + -+ Zogs—1 for t € N,
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and put Ay = AU{{ + then.
In both Cases 1 and 2, for each ¢ under consideration we have
V(Qett) = v(ze4t) < V(Qeyit1) = v(Ze4141)

Thus, by the choice of the sequences (V <Q”t>>teN s (Z04q)gen, and (wy)>_1, conditions (a)—(d)
0
of Definition 3.11 are satisfied for all the ordinals ¢ of the form i = £+ ¢, t € Np.
Therefore in all cases the set {Q;}ica, is a set of key polynomials for v.

Remark 5.1. We claim that Qg1 is an irreducible polynomial in z. Indeed, consider a factor-
ization Q41 = fg in K[z]. Passing to the natural images of Q11, f and ¢ in

GVK [iand [QZ] = GV@?

we obtain g, = ingfingg. Since g ¢ is an irreducible polynomial in Q, by definition, we have,
up to interchanging f and g,

(510) deng ingf = Q4.
Then
(5.11) deg,, f > apt1deg, Q¢ = deg, Qrt1,

where the equality holds since g1, has the form (5.5). We must have equality in (5.11) and
deg, g = 0. Thus g € K; this completes the proof of the irreducibility of Q41 in K{z].

Similarly, in the case when (5.7) holds, Q4 is irreducible for all ¢t € N for which Qg4+ is
defined. This follows from the above argument by induction on ¢.

5.2. Augmenting sets of key polynomials without maximal elements. Suppose that
the set A does not have a maximal element. Since the set {Q;};ea of key polynomials is not
complete, by Corollary 4.13 the degrees of the polynomials @Q);, i € A, are bounded in N. Hence
there exists £ such that for each i € A, i > ¢, we have i = ¢+t and ayyy = 1 for ¢ € N. Since
this set of key polynomials is not complete for v, there exists a monic polynomial A such that

(5.12) vert(h) < wv(h)

for all t € N. In this case, define Q1. to be a smallest degree monic polynomial h satisfying
(5.12).

Remark 5.2. The inequality (5.12) implies that

(5.13) deg, Q1. > deg, Qp = deg, Qpy¢ forallt € N.

by Proposition 3.32. If the inequality in (5.13) were an equality, we would have a contradiction
with the condition (d) of Definition 3.11. Thus, deg, Q¢+, > deg, Q¢ = deg, Quit, t € N.

For each t € N, the expression Qu+t = Qeyt41 — ze4t is an (€ + t + 1)-expansion of Q4.
Thus, in view of Proposition 3.29, h = Q.+ satisfies the hypotheses of Proposition 3.37 (1) with
i=/0+t+1. Weobtain vgyii1 (Qeit) = v (Qryt). To summarize, we have

(5.14) V(Qeytr1) = Veytr1(Qeper1) > Veyer1(Qere) = v (Qege) -

Let
B = Sup{V(Qg+t) | te N} .
(here we allow the possibility 8 = oo, which means that the set {v (Q’) | Q" € T} is unbounded
in Fo)
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We put Ax = AU {Qu+o}- By Remark 3.18 and Proposition 3.19, for every ¢t € Ny the
polynomial @/, admits an (¢ + t)-standard expansion (3.11):
Optw )
(5.15) Qetw = Z Cj,HtQ{Z-H'
§=0
By (5.12), the inequality (3.12) holds for i = £ + w and iy = £ + .
To complete the proof that {Q;}ica, is a set of key polynomials for v, it remains to prove
(3.14) and (3.15), assuming (3.13) (with ¢ replaced by £+ w and io replaced by ¢ +¢,t € N)..
Therefore, assume that the sequence (B¢4+)ten has an upper bound (but no maximum) in I'y.

To simplify the notation, for the purposes of the next Proposition we will denote Qg4 by f.
We have

deg, f }

1 = L > .
(5.16) detg, 1= | qeied-| = au)
By Proposition 4.7 there exists ¢y € N such that
(517) 5[+t(f) = 5@+t0 (f) for all ¢ Z to

(in fact, (5.17) holds already for ty = 1, but we have not proved that yet). Let ¢ denote the
stable value of dp4.(f) for large ¢. The inequality (5.16) implies that

(5.18) degg, f > 4.

The next Proposition says that equality holds in (5.18).
In what follows, the index ¢ will run over the set {¢+ t}ien,.

Proposition 5.3. For each
i E {E + t}tENo

we have

(5.19) deg, f = b deg, Q;
and

(5.20) <.

Proof. By (5.12) for all ¢t € Ny we have v(f) > vepi(f) = 0v(Qese). This proves (5.20). The
main point is to prove (5.19). Our strategy for doing this consists in gradually modifying f while
preserving the numerical character §;(f) and the condition

(5.21) vi(f) <wv(f) forallioftheformi=~¢+t, teN

though possibly changing deg, f in the process, until we arrive at a polynomial of degree ;.
Since ay; =1 for all 4, deg, @; is independent of 4, so all the i-standard expansions of f have
the same degree a4, in Q;. For each i, let

Qe
(5.22) F= a;.Q]

j=0
be an i-standard expansion of f.
Lemma 5.4. There exists a polynomial a* € K[x] of degree strictly less than deg, Q¢ such that
(5.23) in,a*ingase =1
mn G,.
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Proof. Let £_ denote the smallest ordinal such that ay_ = @,. By Proposition 3.32 (applied to
h = asy), there exists an ordinal ¢y < ¢_ such that {_ = {y+ and

(5.24) vey(ase) = v(as,).-

By (5.24) and Proposition 3.49 (4) we have in,ass € Guy [in, Qro+1] = Gug [0, Qo] [, Qo ]-
By Definition 3.11, in, Qy, is integral over G, [in,Qy,+1] of degree ay,+1. By Lemma 2.6 and
transfinite induction on £y, the graded algebras

(5.25) Gy [0,Qe,) C Gy [0,Qu, ] [0, Q]

are saturated. Hence the homogeneous element in,ase € G [in,Qy,] [in,Qp,] has a multi-
plicative inverse a* € G, [in, Qg [in, Q] Again by Lemma 2.6, a* admits an fy-standard
expansion whose degree in in, @)y, is strictly less than ay,11. A lifting of this ¢y-standard expan-
sion to K|[z] is the desired element a*. O

Note that by Proposition 4.7 (2) and transfinite induction on 4, for all i > ¢
(5.26) inyase = inyas,;
and -

in, f =in,as,(Q; + in,z)°.

Hence, in view of (5.23) and (5.26), we have
(5.27) in;(a* f) = (Q; + in, z;)°.
Now, Q; + in,z; is the minimal algebraic relation satisfied by in,Q; over G,, [Q;], so this
polynomial maps to 0 under the homomorphism ¢ of Proposition 3.49 (2). Therefore

(Q, + inyzi)é € Ker ¢.
Together with (5.27) and Proposition 3.49 (3)—(4) this implies that

(5.28) v(a*f) > vi(a*f) for all i.
We claim that
(5.29) di(a*f) =46 for all i

Indeed, applying Lemma 3.47 with s = 2 to the pairs of polynomials
(f1, f2) = (as4,a")

and

(f1, f2) = (a5-1,3, %),
we see that after multiplying f by a* and applying Euclidean division of a*f by @Q; to obtain
the i-standard expansion of a* f, only the remainders in the Euclidean division contribute to
in;(a*f). This means that the powers of Q; that appear in in;(a* f) with non-zero coefficients
are exactly the same as those appearing in in; f and (5.29) follows.

Thus, replacing f by a* f, we may assume that in,as; = 1 for all ¢.
Let

(5.30) ) = 5 min {5 () (1), B — 6}

we have 6(i) > 0. By Corollary 4.11 the quantity _V;L(f) — v;(f) is non-decreasing with ¢ and
hence so is 6(i). Taking into account the fact that 5 = lim S;, we have, for i sufficiently large,
1— 00

(5.31) v(asi) +08 —vi(f) = 0(B = B;) < 0(i).
By choosing ¢; > ¢ sufficiently large, we may assume that (5.31) holds for i > /¢;.
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For each ¢ > ¢y, write a5; =1+ a;r with

(5.32) v(al) >0.
Write

f=fi+ fi
where

5—1
fi=Q)+ Zaj,iQi

j=0

and
fi=alQ) + Z a;,i Q-

j=6+1
We want to compare the ¢;-standard expansion of f with its i-standard expansion for ¢ > ¢4
and, in particular, to study the dependence on ¢ of a;5; and a;r =as,; — 1.

First of all, for all j with § < j < ny, and all ¢ > ¢; we have

(5.33)

vi (a5,,Q1,) = 081 > v, (05.,Q1,) — 8t — 6(Bi — Br) > v, (f) — v, (F) = 6(B — Bu,) > (),
where:

the first inequality holds by Proposition 3.39 (2) B

the second inequality holds by the definitions of VZ (f) and of 8 and

the third inequality holds by (5.30)—(5.31).

For i > {1, write Q; = Q¢, + w;, where w; is a Q;-free i-standard expansion (in particular,
deg, w; < &; = ay,. To compute the coefficient a; 5 in the i-standard expansion of f = f,, + f,,
we must consider the expressions

5—1 5—1
. s .
(5.34) Q2 + Zaj,el Q7 = (Qi —wi)” + Zaj,el (Qi — w;)’
=0 =0
and
’n,[l ’n.,gl
. s .
af QL+ > a;nQf =af, (Qi—w)’ + Y a0 (Qi—wi)
j=6+1 j=0+1

open the parentheses and perform the appropriate Euclidean divisions by @;. We have
6—1 ]
deg,, Zaj,el (Qi —w;)! < da.
j=0

As well, every term in the Newton binomial expansion of (Q; — wi)5 except for Q7 has degree
strictly smaller than da;. Therefore no terms in (5.34) contribute anything to a;r. By (5.33), all
the contributions to az by terms of the form a; ¢, Q¢,, j > §, have v;-value strictly greater than
0(¢y).
[ . .
It remains to study the contribution to aj from a;[l Qi —w;)° = Zo (‘;)a;lwa?ﬂ. For
J:

j = 0 this contribution equals a}l. For each j € {1,...,d} this contribution is nothing but the

coefficient d; of @7 in the i-standard expansion of azlwg . We have

v(d;) 2 vi(dj) = Bi — Be — j(Bi — Ber) > 0(£1),
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where the second inequality follows from Lemma 3.47, applied with s = j 4+ 1, f; = a;l,

fao=-=fs =wi
i+t replaced by ¢ and i replaced by ¢. Putting together all of the above information, we obtain
(5.35) v; (a;[) > min {9(&), v (aL)} .

Take an ordinal £ of the form fo = ¢y +t1, t1 € N, such that 3 — f, < v (a}, ).
Since for all ¢ > ¢y we have v (a;r) > 0 and in view of the definition of §, every term in
the Q,-expansion of f; has value strictly greater than 63;. Hence v (ﬂz> >y (fg2> >y (ﬁz)

which implies that v; (f,) = v; (f) < min {V(f),u (f@)} <v (f — f@) = v (f,). Since
deg, fi, = ddeg, Q; < deg, f and f was chosen of minimal degree subject to inequality (5.21),
we must have deg, f = deg, fr, = d deg, Q. O

Corollary 5.5. We have equalities (3.14) and (3.15) (with i replaced by £ + w and iy replaced
by £+t, t € N). In particular, the set {Q;}ien, is a set of key polynomials for v.

Proof. This follows immediately from (5.19) and Proposition 4.7 (2) (specifically, the equality
(4.10)). O

Below, in Proposition 8.6, we will show that §(f) is of the form &(f) = p® for some ey € Ny.
Together with Remark 5.2 this will prove that, under the assumptions of this section, we have
char k, > 0 and ey > 0.

Proposition 5.6. If v(Qu;) € Ty for all t € Ny and the sequence (Be+t)ien, @8 cofinal in Lo,
then the set Qi of key polynomials defined above is Lo-complete. In other words, for every
element B € Ty, every polynomial h € K[z] with v(h) = B belongs to the additive subgroup of
Ps N K[z] generated by all the standard monomials in Qetw, multiplied by elements of K, of
value B or higher.

Proof. Take an element h € K[z]. Without loss of generality, we may assume that, writing
S

h =3 djz’, we have
=0

(5.36) vi(d;) >0 for all j

(otherwise, multiply h by a suitable element of K). In other words, we may assume that
h € R, [z]. Since the sequence {S¢4¢}ien, is cofinal in Ty, there exists ¢ of the form i = £+ ¢,
t € Np, such that

(5.37) Bi > v(h).

Then h satisfies the hypotheses of Proposition 3.37. Now, Proposition 3.37 says that

This means, by definition, that h can be written as a sum of standard monomials in Q11 of value
at least v(h), hence it belongs to the additive abelian group generated by all such monomials.
This completes the proof. O
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6. CONSTRUCTING A COMPLETE SET OF KEY POLYNOMIALS
In this section we will recursively construct a complete set of key polynomials.
First, consider the set {Q;}iea, with Qo = 2 and A = {0}. It is a set of key polynomials.

Next, assume that a set {Q;}iea of key polynomials is constructed and that A < w x w. If A
does not have a maximal element then there exists and ordinal ¢ such that {£+¢ |t € Ny} is a
subset of A, cofinal in A.

If the set {Q;}ica is complete for v, put A := A and stop. Otherwise, consider the set
{Qi}ien, of key polynomials constructed in the previous section. If the set {Q;}ica, of key
polynomials is complete, put A := A, and stop here. Otherwise, replace {Q;}ica by {Qi}ica N
and repeat the procedure.

Remark 6.1. If Q = {Q; }iea is a set of key polynomials, ig, i € A, i is a limit ordinal and ig+ = ¢
then

(6.1) Qi > Qg

by Remark 5.2. Therefore, if as a result of the above recursive procedure we arrive at a set of
key polynomials with A = w X w, since A contains infinitely many limit ordinals, such a set of
key polynomials must have unbounded degrees and is therefore complete by Proposition 3.14 (1)
and Corollary 4.13. This proves that the aobve recursive procedure produces a complete set of
key polynomials after at most w x w steps. In other words, A < w x w.

We have proved the following;:

Theorem 6.2. The well-ordered set Q := {Q;};ca constructed above is a complete set of key
polynomials. In other words, for every element 8 € T’ the R,-module Pg N K[z] is generated as
an additive group by all the monomials in the Q; of value B or higher, multiplied by elements of
K. In particular, we have

P . .
@ Piﬁ = GVK [lan] .
BEF /[3"1‘

In §8 we will fix an ordinal £ such that £ + w € A and will study further properties of Q...
Among other things, we will show (Propositions 8.6 and 8.10 and Remark 8.7) that:

(a) if char k, = 0 then our construction gives a complete set of key polynomials that is of
order type at most w + 1.

(b) if, in addition, rank v = 1 then the construction produces a complete set of key polynomials
that is of order type at most w.

In the next section we study the effect of differential operators on the polynomials @); in order
to give a more precise description of the form of limit key polynomials.

7. KEY POLYNOMIALS AND DIFFERENTIAL OPERATORS

This section is devoted to proving some basic results about the effect of differential operators
on key polynomials. Here and below, for a non-negative integer b, 9, will denote the b-th Hasse
(or formal) derivative, defined in the Introduction. Given an ¢-standard expansion h, we are
interested in proving lower bounds on (and, in some cases, exact formulae for) the quantities
v(0ph) and v(9ph) and in computing the elements in, dyh and ingdyh. In particular, we will give
sufficient conditions for the element dyh to be non-zero.
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Assume given a complete set Q := {Q;},;cx of key polynomials. Take an ordinal i € A. Let
b; denote the smallest positive integer which maximizes the quantity

Bi — (0, Qi)
b;

(later in this section, we will show that b; is necessarily of the form p® for some e; € Ny and, in
particular, that b; = 1 if char k, = 0).

Let h be an element of K[z]. We use the following convention for binomial coefficients: if
s < t, the binomial coefficient (f) is considered to be 0. We view the binomial coefficients as
elements of K via the natural map Z — K.

(7.1)

Notation:

Let p be as defined in the Introduction. If p > 1, for an integer a we shall denote by v (a)
the p-adic value of a, that is, the greatest power of p that divides a. If p = 1, we adopt the
convention v(P)(a) = 1 for all non-zero a and v®)(0) = cc.

Remark 7.1. Consider e, b, b’ € N such that b / p© (this holds, in particular, whenever b < p°©)
and p® | b'. Then (x + Am)b/ eK [xpe7Ampe], s0 Gyz? = 0.

Proposition 7.2. Take an element h € K|x] \ {0}.
(1) For all b € Ny we have

(7.2) vi(h) —v; (Oph) < = (Bi — v(0h, Q4)) -

b

bi

(2) Let h=Y" d; Q) be an i-standard expansion of h. Assume that
=0

{7e40. st | v(ds@]) =) } # {0}

(in particular, we have s > 0). Let dj,ng denote the term in the i-standard expansion
of h which minimizes the triple (VZ' (dﬂQf) 7V(p)(j),j) i the lexicographical ordering.
Let e = v®)(4) and b(i, h) = bip. Then equality holds in (7.2) for b= b(i,h).

Remark 7.3. For all b € N we have deg, 0,Q); < &;. By Proposition 3.32 there exists an ordinal
ig such that ip+ = ¢ and

(7.3) v(0pQ;) = Vio (Op Q).

In particular v(9y,Q;) = Vi, (b, Q;). Thus replacing v(0,Q;) by vi, (0p;Q:) in (7.2) gives rise to
an equivalent inequality. Also, v; (Oph) < v (Oph), so replacing v; (Oph) by v (Oph) in (7.2) gives
rise to a true, but an a priori weaker inequality.

Proof of Proposition 7.2. We prove Proposition 7.2 by transfinite induction. For ¢ = 0 we have
Qi =z,b;=1and b= p°. Write h = > djox’. For b= 0 and for b > s, (7.2) is trivially true.
j=0

Assume that 0 < b < s. There exists j, 0 < j < s, such that
vo(Oph) =v <<‘2> dj,owj_b> > v(djo)+ (j — b)Bo = vo(h) — bBo,

which gives (7.2).
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To prove (2), chose d; oz’ as in part (2), then vo(h) = vo(djox?) = v(dj o)+ jBo. By definition
of e and b, we have v (({))) =v (({))) = 0. Now,

(7.4) vo (Opedjoa’) = vy ((]je)dj,oxj_pe) =1 ((;)) +v(dj0) + (5 = P)Bo

= v(dj,0) + jBo — p°Bo = vo(h) — p°Bo.
Assume that ¢ > 1 and that the result is known for all the ordinals strictly smaller than 3.

Lemma 7.4. Consider a pair of ordinals i’',1" such that i’ <i"” <i. Then

51" — VUV (8[;1_, Qz’) ﬂi” -V (ab,i// Qi”)
by < b

(7.5)

Proof. Basic Case. First, assume that i/ = i’+ and that for every b € N we have
(76) V(aEQi”) = Vi’(aEQi”)'

By definition of b;, it is sufficient to prove that there exists a strictly positive integer b such
that (7.5) holds with b;~ replaced by b.
We take b :=b(i’,Q;~). We have:

Bin = v (%5Qir) > vir (Qur) = v (%Qur) = vir (Qurr) — vir (95Qir)
b
— F (/Bi’ — Vv (abi/Qi/)) :

Here the first inequality is given by Proposition 3.26, the first equality by (7.6) and the second
equality by Proposition 7.2 (2) applied to ¢’ < i, which we are allowed to use by the induction
assumption of Proposition 7.2. This completes the proof of the Basic Case.

In the general case, we argue by contradiction. Assume that (7.5) does not hold. Take the
smallest ordinal ¢/ < 4" such that there exists an ordinal ¢’ satisfying i’ < ¢/ < £" and

B —v (06, Qu) _ Ber —v (9, Qur)

(7.7) » > Do

Increasing ¢, if necessary, we may assume that

(7.8) =0+,

By Propositions 3.32 and 3.39 (2), by further increasing ¢’ we may assume, in addition, that
(7.9) v (0;Qer) = v (95Qer)  for all be N.

Together with (7.7) and (7.8) this contradicts the Basic Case. The proof of the Lemma is
complete. (I

To prove Proposition 7.2 (1), it is sufficient to prove it for each i-standard monomial appearing
in the i-standard expansion of h. Indeed, let

(710) h = Z d71‘+1 Z—l&-Jrll

Yit1EW
be an i-standard expansion of h, where W is a certain finite index set. Assume that the result is
true for each i-standard monomial Q" appearing in (7.10). This means that for each ;11 € W
we have

v (QI) 2 v (QI) - o (6~ v (30,0).
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Thus
. M1 . i1 b
vi(@h) > minv; (ds,, OQTYY) 2 v (ds,,,) +minv; (QFFF) — 5= (8 — v (9,Q:)
(7.11) o , i
= Vi(h) - E (51’ -V (8bqui))a

as desired (here the last equality holds because, by Definition 3.6, a Q;-free i-standard expansion
is a finite sum of @Q;-free i-standard monomials whose v-value equals the minimum of the v-values
of the monomials).

Let Q1! be such an i-standard monomial. Let 7,41 = (7; | j < i) and write

= Qe
We want to expand c')bQ?_fll in terms of products of the form Q7" (85, Q-%) H (0;,Q;), where

q < and jo + j1 + -+ - + j, = b. Each such product appears in the sum Wlth a Certam positive
integer coefficient that we will now compute explicitly.

To do that, we first prove some general formulae about Hasse derivatives of products and
powers of polynomials. We start with the following generalized Leibniz rule.

Lemma 7.5. For any two polynomials A(X), B(X) € K[X] and any positive integer b, we have

b
(7.12) O(A(X)B(X)) = Y (9;A(X))(0—; B(X)).

J=0

Proof. Let m = degy A(X) and n = degy B(X). By definition, Hasse derivatives are the
coeflicients in Taylor expansions:

AX+Y)= ZaA Y' and B(X +Y) =) 0;B(X)Y".

‘We obtain

AB(X +Y)=A(X +Y)B(X +Y) = min > 0;A(X)0y—;B(X) | Y.
b=0 \ j=0

Since the coefficients in the Taylor expansion are uniquely determined, this proves (7.12). O

For positive integers a; < --- < a4, let k denote the number of distinct elements in the
set {a1,...,aq4}. We define the multiplicities nq,...,ng of a1,...,a, as follows. Let n; be the
number of appearances of a; in the sequence a;, ..., aq,. Let ny the number of appearances of the
second smallest element of {a1,...,aq}, and so on until ny, which is, by definition, the number
of appearances of ag.

Notation. Take an integer n > ¢. Let Cy(a1,...,aq) = 1 n!

n—q)lnil..ong!”

Lemma 7.6. For every polynomial B(X) and all positive integers b and n we have

q
(7.13) BBX)) = > Culjr,... ) BX)" ] (9;,B(X
1<g<n t=1
gitoig=b
0<j1<-<Jq
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Proof. Let m = deg B(X). We have

(7.14)  B(X+Y)" <ZaB >:B(X)"+§ > ﬁath(X) v?,

b=1 Jitetin=bt=1
where the j; run over non-negative integers; the j; are not necessarily ordered by size.

Next, we rewrite (7.14) in the following way. In each of the products appearing in parentheses
on the right-hand side of (7.14), we separate the terms with j; = 0 from those with j; > 0.
Precisely, for each product appearing in parentheses on the right-hand side of (7.14), let

g=#{te{l,...n} | j+ #£0}.

Then we can rewrite (7.14) as

(7.15) B(X +Y)" = +Z Z > B"*‘I(X)ﬁath(X) vt

b=1 \ ¢=1j1+-+jg=b
where the third sum is taken over all the distinct ways in which b can be written as the sum of

q strictly positive integers j;. Again, the j; are not necessarily ordered by size. Now we have

q
to count how often the same product B"~9(X) [[ 9,,B(X) appears in the third sum on the
t=1

n
right-hand side. Fix n non-negative integers ji,...,j, such that Y j; = b. Renumber them

t=1
so that j; < --- < j,. How many distinct n-tuples can we obtain in (7.14) from the numbers
1, -+, Jn? If all the j; are distinct then the number is n!. But if some of the j;’s are equal, then
permuting them only among themselves does not produce new tuples. Similarly, if n — g > 2,
permuting the (n — ¢) factors in B"~%(X) among themselves does not produce new tuples. Let
the numbers nq, ..., n; be the multiplicities of the numbers j1, ..., j,, defined above. Then the

q
number of appearances of B"~4(X) [[ 9;, B(X) is
=1

n!

(n—=gq)!-ny!-...-ng!l

(716) :Cn(jla-"ajq)a

where 0 < j; < --- < j,. This proves that the coefficient of Y in (7.14) equals

q
> Culjr-rdg) B"UX) [ 05, B(X)

1<q<n t=1
j1+"'+jq:b
0<j1<-<dq
By definition of Hasse derivative, this coeffecient is nothing but 9, (B(X)™). The proof is com-
plete. O

Lemma 7.7. For every two polynomials A(X) and B(X) and all positive integers b and n, we
have

q
(7.17) BWAX)BX)") = Y Culjr-. g B(X)"(9;,bAX) [ ] (9, B(X)
0<q¢<n t=1
Jo+++jg=b
0<g1<<Jq
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Proof. By Lemma 7.5, we have
b

O(AX)BX)") = Y (95, A(X)) (95— BX)™).

jo=0
Now Lemma 7.7 follows from Lemma 7.6. O

Coming back to the proof of Proposition 7.2 (1), we have

q
(7.18) QI = > Gl d)@T (0,90 [ 05,90
0<q<vi t=1
Jo+ji+-+ig=b
0<j1<---<jq

by Lemma 7.7. By Propositions 3.32 and 3.39 (2), we have
v; (05,Q:) = v (0;,Q:) -
We have

(7.19) B =i (03,Q0) = i~ v (03,00 < 2 (B — v (,@0))

(2

by definition of b;. Further,
(7200w (QF) — v (9,Q1%) = v, (QF) — i, (02,Q7) < 22(5: — ¥(36,Q),

where ig is sufficiently large with g+ = 7, the equality holds because (); does not appear in
Q] and by Proposition 3.32, and the inequality by the induction assumption and in view of
Lemma 7.4. Note that by Lemma 7.4 the inequality in (7.20) is strict whenever jo > 0. Adding
the inequalities (7.19) for 1 < ¢ < g and (7.20), we obtain:

q
vi (QI) - ‘(in 1(0:,Q7) I (@@ )
t=1
o+ i+t
< DENE (5 (0,Q0)) = (5~ (0, Q0).
By (7.18), (7.21) and since v is non-negative on N (in particular, v(C,,(j1,...,Jq)) > 0), we

have
. Vi) _ . Vi1
vi Q1) — v (Q11)

q
5 , b
< Vi< :Y++11> . min ){yi (Qz 1 ( JoQ% tl:[l (0;,Qi )} b—(ﬂ —v(0p,Q1)),

Jos-- )]q

(7.21)

(7.22)

<

as desired. Proposition 7.2 (1) is proved.

Now let the notation be as in Proposition 7.2 (2); in particular, b stands for b(i, h). To prove
this part, we first show that replacing v;(9ph) by v (((%iQi)p d; Q" ) gives equality in (7.2).
Indeed, we have

vi(h) = v ((06,Q0)" dj Q17" ) = vilh) — (pvi(D6, Q1) + v(dja) + (5 — p*)W(Qi))
(7.23) . . bip® b

= (@)~ p(00,Q) = T~ n(0,Q0) = (B~ (3h,Q0).
Therefore by part (1) of the Proposition, v;(9yh) must be greater than or equal to

v ((00,Q0) djaQl™")
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and it is sufficient to prove that the i-standard expansion of Jyh contains a term of the form
dQ!™" with v(d) = v ((61”@,»)13 dji) and all the other terms d'Q? satisfy either j' # j — p® or
v; (d/Qz ) > v (szip)

We proceed by considering all the terms of the form Q?fll that appear in the i-standard
expansion of h.

. a
First, consider such a term appearing in d;;Q7, of minimal value. Write b = " j;, where
t=1
q = p° and j; = b; for all t. For each Q;-free standard monomial Q]", appearing in d;;, the
corresponding term in (7.18) is (;E)Qg_peQ?i (0p,Q:)" by (7.16). Put d = (pje)Q?i (0p, Q)" .
The binomial coefficient ( pje) is not divisible by p by definition of e and j, so v (( pje)) = 0. Using
Proposition 3.32 and 3.39 (2) and Lemma 3.47, we obtain

v(d) = v (05, Q)" dji).

q

Now for any other choice of jo, j1,...,jq such that ¢ = p® and >_ j; = b we would have at least
t=0

one t € {1,...,q} such that j; < b;. Therefore such terms satisfy strict inequality in (1) since

they satisfy strict inequality in (7.20) or in (7.19) and hence their value is strictly greater than
v (dep‘). We obtain

(7.24) Vi (d”QD -V <ab (dHQz» = bﬁ (Bi = v(06, Q1)) -

(3

Now assume j;ll is such that v ( :v++11) > v (djﬂ-Qg). By (7.2) we have

o (QI) — v (AQET) < 1 (5~ 1(0,Q)

and using (7.24) we find v (81, jjjf) > v (81) (dszf)) — (ng'—pe>_

Now consider terms Q?ﬂl that appear in an expression d,, ;QY*, m # j, such that

v (Qj_l,'__'il) =V; (dj,ZQz) .

It is sufficient to show that for ;' = m — ¢ = j — p® such terms satisfy the strict inequality in
(7.2), so in view of (7.24) their valuation is strictly greater than v; (ng_p )

Take one such term. We have two cases. If m > j then, by definition of j, either
v (dm Q") > v (d;.iQ))
or
v (dm Q") = v (d;Q]) and v®(m) > v(j5).
By Proposition 7.2 (1), in either case such a term satisfies strict inequality in (7.2).
If m < j and m —q = j — p® then ¢ < p®, so for any choice of jo, ji,...,j: with th:ljt =b

we must have at least one t € {1,...,¢} such that j; < b;. Therefore such terms satisfy strict
inequality in Proposition 7.1 (1) since they satisfy strict inequality in (7.20) or (7.19). O
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Remark 7.8. Let

(725) Ii,ma;v = {Bz S I\IO b

Bi — v(0,Q:) _ Pi — v(9;,Qi) }
b; :

By definition, we have b; = min I; jqs. Proposition 7.2 (1) holds equally well with b; replaced
by any b; € I; mag. Similarly, Lemma 7.4 holds if the pair (b, by) is replaced by (b Bi,/) with
Bi’ € N7 Bi" € Ii”,ma;v-

Corollary 7.9. For each ordinali < £, each Bi € I maz 15 of the form Bi = p® for some &; € Ny.

In particular, b; = p® for some e; € Ny. In the special case when char k, = 0 we have p = 1

and $0 I; maz = {bi} = {1}.

Proof. Write b; = p®u, where p f w if char k, = p > 0, and p® = 1 if char k, = 0. We want to
prove that u = 1. We argue by contradiction. Assume that « > 1. We claim that we can write

(726) (Zj) 857 = 8})’ O ab//7

where 0/, 0" are strictly positive integers such that
(7.27) V40" =b

and

()

Indeed, we can take 0" = p® and b = p®(u—1). Now, by Remark 7.12 below, p does not divide
(g,) and therefore its natural image in K is non-zero and its value is 0 (as usual, we view (g,) as
an element of K via the natural map N — K).

Take ig as in (7.3), with b replaced by b”. We have
(7.29) Bi— v (85,Qi) = (B — v (0w Q) + (viy (B0 Q:) — v, (85,Q:))

by (7.3). By (7.26), we have 8; Q; = (%) (9 Q). Hence

v b
(730) Vi (85//@1') — Vi, (851621) S a (61'0 — VUV (651‘0 Qm)) < IZ (/Bz -V (351621))
by (7.28), Proposition 7.2 (1) and Lemma 7.4. From (7.29)—(7.30) we obtain

b/ bll
i = 10w @) > (1- b) (8 = 1(3;,Q0) = 3 (8 = ¥(3,Q0)

which contradicts the fact that b; € 1; maz- Corollary 7.9 is proved. O

Next, we investigate further the case of equality in (7.2). We give a necessary condition on
h and b for the equality to hold in (7.2) and prove that this condition is sufficient under some
additional assumptions. Finally, we derive a formula for in;h in the case when this criterion for
equality in (7.2) holds. We start with the case when h is a single i-standard monomial.

Proposition 7.10. Consider an i-standard monomial h = ?_ﬁl Write
(7.31) b; = p© and
(7.32) v = p°u, where p fu if p> 1.
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(1) If equality holds in (7.2) then

(7.33) pete | b.
(2) We have the following partial converse to (1). Assume that (7.33) holds and that
(7.34) either b=p°T%  or I max = {bi}.

Then equality holds in (7.2) if and only if

(7.35) v ((b/pgei)) =0.

(3) Assume that (7.33)—(7.35) hold. Then

: Vi1 u . ¥ ’Yz‘*b% b
(736) aniabQZ-iji = (b/pe-‘,-el) 1y, (Q;Y Qz (6b7QZ)bL) )

in particular, ('“)bQ?_f_*ll £0.
Remark 7.11. If b = p*¢ holds in Proposition 7.10 (2) then pc%ei =1 and (b/pg+ei) = u, S0
(7.35) holds automatically in this case.

Proof of Proposition 7.10. We go through the proof of Proposition 7.2 and analyze the case of
equality at each step. We start with a general remark about binomial coefficients in positive and
mixed characteristic.

Remark 7.12. If char k, = 0, we have

()

for all non-negative integers j < ~; similarly, v(C,,(j1,...,Jq)) = O for every v; and every g-
tuple (j1,...,7,) as in (7.18). If char k, = p > 0, the following is a well known characterization
of the equality (7.37). Let v = ko + pk1 + -+ + p°ks and j = to + pt; + -+ + p°ts, with
koy..., ks, to,...,ts €{0,1,...,p—1}, denote the respective p-adic expansions of vy and j (where
we allow one of the (s + 1)-tuples (ko,...,ks) and (to,...,¢s) to end in zeroes). Then (7.37)
holds if and only if

(7.38) k; >t; forall je{0,...,s}.

We recall the proof for the reader’s convenience. For a positive integer n, recall that v/() (n!)
denotes the p-adic value of n!. If n = ng+pny +-- -+ p°n, is the p-adic expansion of n, we have
2 S
pr—1 p’—1
P ng + -+ b1
Let v —j =19+ pli + -+ + p°ls be the p-adic expansion of v — j.
First, suppose that (7.38) holds. Then k; = ¢; +; for all j. We have

v (nl) =ny + Ng.

(7.39) VP () =k + 1;2_—11 R ,;:'__11 k..

(7.40) vP () =t + zi_—lth R Z;:—_lltsv
2 s

(7.41) v ((y—§)) =l Bl 4 4 2L

Thus v (y!) = v®)(j1) + vP)((y — 5)!) and (7.37) holds.
Conversely, assume that (7.38) is not true. Let

(742) (j07j0+1a"'7j1_17j1)
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be a maximal subsequence of (1,...,s) consisting of consecutive integers such that k; # t; +1;
for jo S j S jl' Then kjo = tjo+lj0 —D, kj = tj+lj—p+1 for j() <j < jl and kjl = tjl +lj1 +1.
Thus the total contribution of (7.42) to v®)(y!) — v®)(j1) — vP)((y — 5)!) is

. ii—1 .

pit—1 1L ) plo —1 ' )

1 > (p]—l)—ppf1 =j—jo>1
j=jo+1

The quantity v®) (y!) — v®)(j1) — v®)((y — j)!) is obtained by summing the contributions of all
the subsequences of the form (7.42), hence it is strictly positive, as desired.

a
More generally, consider a finite set of positive integers dy,...,d, such that > dy = . For

=1
te{l,...,a}, let dy =dpo+pdes +-- -+ p°dys, with dg; € {0,1,...,p— 1}, denote the p-adic
expansions of dy (again, we allow the s-tuple (dgo,d¢1,...,des) to end in zeroes in order to be
able to compare tuples of different lengths). Then

' a
(7.43) v (77) =0 ifandonlyif Y dp;<p forallje{0,...,s}.
dllda' = 7
This is proved by induction on a, the case a = 2 having been treated above. This gives a helpful
necessary and sufficient condition for the equality v(C.,(j1,...,7¢)) = 0 which will be used in
the sequel. One consequence of the equivalent conditions stated in (7.43) is
(7.44) dej <kj forall £e€{l,...,a} and j € {0,...,s}.

Below, we will be particularly interested in the following special cases of (7.38):
(1) 1f
(7.45) vy=p‘u withp fu

then (7.37) implies that p® | j.
(2) We have the following partial converse to (1): if v is as in (7.45) and j = p° then (7.38)
holds. Indeed, we have t. =1, t; = 0 for j # e and k. > 1. In this case

(7> = (peu> :pGU(peu_1).""(peu_pe+1) =y mod m

J pe pe!

P
This is the main situation in which Proposition 7.10 will be applied in this paper.

since pee“:jj =1mod m, forall j € {1,...,p* —1}.

In the next Lemma, let jo,...,j: be as in the proof of Proposition 7.2.
Lemma 7.13. (1) The inequality in (7.19) is strict unless ji € I; maz-
(2) Let v; and b; be as in (7.31)-(7.32). Assume that jo =0, and
(7.46) Jt € Limax  for1 <t <gq.
If
(7.47) v(Cy, (15 Jq)) =0
then
(7.48) peter | b,
(3) Let the assumptions be as in (2) and assume, in addition, that b = p**t¢. Then (7.47)
holds if and only if ¢ = p° and j; = -+ = jq = b;.

Proof. (1) is immediate from definitions.
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(2) Let {p°,...,p*} C I; mas With
(749) e, <cr<cp<--<cy

denote the set of distinct natural numbers appearing among {j1,...,j,} (cf. (7.46) and
Corollary 7.9). For 1 <j </, let a;j =#{t € {1,...,q} | j+ <p“}; let ap = 0. Then

L
(7.50) b= Z(aj _ Clj—1)pc'7~
j=1

Assume that (7.47) holds. Apply Remark 7.12 (specifically, (7.44)), with a; — a;_1
playing the role of d;. By definition of e, we have p® | ~;, so the first e entries in the
p-adic expansion of ; are 0. By (7.44), the same must be true of each of a; —a;_;. In
other words,

(7.51) p°la; forl<j<UL

(7.49)—(7.51) imply (7.48), as desired.
(3) Assume, in addition, that b = p°tei.
“Only if”. From (7.49)—(7.51), we see that £ = 1 and a; = p°; the result follows
immediately.
“If”. By assumptions, we have £ = 1 = ¢ and a; = p¢. By (7.16) and Remark 7.12
(2), we have

N—— p°¢

e

Cyi(J1s---5Jg) = Cy,(biy ..., b;) = <%> =« mod m,

and the result follows.

We can now finish the proof of Proposition 7.10.
By (7.20) and Lemma 7.13 (1), the inequality in (7.21) is strict unless jo = 0, and

(752) jt € Ii,maw-

By Lemma 7.13 (3), equality (7.47) holds, so we may apply Lemma 7.13 (2). By Lemma 7.13
(2), the first inequality in (7.22) is strict unless jo = 0 and p*¢ | b. This proves (1) of the
Proposition.

(2) Assume that (7.33) holds. If b = p°*¢ by Lemma 7.13 (3) there is exactly one term on
the right-hand side of (7.18) for which equality holds in (7.21), namely, the term with ¢ = p®

and j1 = -+ = jg = b;. If I; ppax = {b;}, then by Lemma 7.13 (1) there is at most one term on
the right-hand side of (7.18) for which equality holds in (7.21); if such a term exists, it is the
term with ¢ = bi_ and j; = --- = j, = b;. Moreover, this term satisfies equality in (7.21) if and

1 . . — Vi _ u _ .
only if v(C(bi,...,b;)) =v ((b/bi)) =v ((b/pe+ei)) = 0, where the second equality follows from
b/b;

Remark 7.12. In either case, there is at most one term on the right-hand side of (7.18) for which
equality holds in (7.21), and there is exactly one such term if and only if v ((b /p’e‘+ei)> = (. This
proves (2).

(3) of the Proposition follows from (2) and (7.18). O

Let

Yi = ko +pk1 + - + ks,
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with ko, ..., ks € {0,1,...,p—1}, denote the p-adic expansion of ;. Take integers s’ € {0,...,s},
k., €{0,... ky}. Let b= (ko+pky +---+p* kg1 +p* K. )b;.

Corollary 7.14. For this b, equality holds in (7.2) for the monomial h = ?_ﬁ'll The element
in; 0 Q" is given by the formula (7.36).

Proof. Repeated application of Proposition 7.10 (2) and (3), first ko times with b replaced by 1,
then k; times with b replaced by p, and so on. ([l

S .

Let h = Y d;;Q! be an i-standard expansion. Let S; = S;(h), where the notation is as

7=0

in (3.42). Write inh = > in; (djyng). Write b; = p®, as above. Let e be the greatest
JES:

non-negative integer such that for all j € S; we have p® | j.

Proposition 7.15. (1) If equality holds in (7.2) then

(7.53) petei | b.
(2) Assume that
(7.54) b= ptei,

Then equality holds in (7.2). In particular, we have Oyh % 0.
(3) Assume that (7.54) holds. Let S? = {j € S; | p*** does not divide j }. Then

i, Oph =Y _ iny, ( ( If) d;:Q7 77 (o, Qi)”e) .

jes?t
Proof. (1), (2) and (3) of Proposition 7.15 follow, respectively, from (1), (2) and (3) of
Proposition 7.10. (|
Corollary 7.16. In the notation of Proposition 7.15, assume that (7.54) holds. We have
(7.55) h¢ Ko7
Proof. Take b as in (7.54). Now the result follows from Proposition 7.15 (2). O

Let the notation be as in Proposition 7.15.
Proposition 7.17. Take an element j € S;. Write j = pu, where
p fu if chark,=p>0.

Assume that

(7.56) ptt| g forallj €S, 5 <.

Let u=1tg+t1p+ -+ tsp° be the p-adic expansion of u. Then

(7.57) vi(Ojp,h) = vi(h) — §(Bi — v(96,Qi)),

(7.58) in,, Ojp, h = (H tq!> in,, d;; (iny, Op, Qi) + terms involving in,, Q;.
qg=1

For every j' # j we have

vi(h) = vi(@jh) _ vi(h) = vi(Djn. h)
J' N J ’

and the inequality is strict whenever j' ¢ S; or j/ < j.

(7.59)
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Proof. By (7.56) and Proposition 7.10 (1), terms of the form dj/’in/ with
jeSi, i<y

s My

satisfy strict inequality in (7.2) with b = jb;. Thus replacing h by Y d;;Q! does not affect
i'=i

any of the statements of the Proposition. Apply Proposition 7.15 repeatedly to + t1 + -+ + ts

times. By (2) of Proposition 7.15,

(7.60) v; (8jbi (%z@i)) =y (dj,ng) = J(Bi = v(0p, Q1))
and
(7.61) vi(Op,h) = vi(h) — §(Bi — v(0y,Qi)):

this proves (7.57). (7.58) follows from Proposition 7.15 (3), by induction on u. Finally, the last
statement of the Proposition follows from Proposition 7.15 (1) and (3), by induction on w. O

Remark 7.18. Here is an alternative, more explicit explanation of (7.58). Take j' € {j,...,s}
and apply (7.18) to one of the monomials appearing in djgiQ{/ (we take vy; = j' and b = jb;
in (7.18)), in order to decide which values of j' and which decompositions jo + --- + j, = b
contribute to in;0h.

If either j' > j, ¢ # j, jo # 0 or ji # b; for some t € {1,...,5} then, by definition of b;,
the corresponding term in (7.18) is either divisible by @; or has v;-value strictly greater than
v; (dﬂQf) — j(Bi — v(0,Q;)). This proves (7.58).

Let )" ¢q,iQ7 denote the i-standard expansion of d;5,h. The above considerations prove that

q

¢p,; coincides with the coefficient of Q? in the i-standard expansion of d;; (abiQi)j modulo an
element of higher v;-value. In particular, ¢y ; # 0 and

(7.62) v(co,i) = vi(co,s)-

We have

(7.63)  w(co.) = vi(Dyo,h) = vi (9pn, (d3aQ))) = vi (44Q]) — (B = v(D6, Q)
Corollary 7.19. We have

(7.64) vi(h) = min {030, ) + (8 — v(9,Q:)))

0<j<s

and the minimum in (7.64) is attained for all j € S;, satisfying (7.56).

8. INFINITE SEQUENCES OF KEY POLYNOMIALS

In this section, we take an ordinal £ such that £+t € A and oy ; = 1 for all t € N. Take an
element h € K[z]. Proposition 4.7 (1) implies that d¢4+(h) stabilizes for ¢ sufficiently large. Let
d(h) denote this stable value of d,1¢(h). For a positive integer ¢ we have

Se+t(h) =0 = v(h) = vi1(h) = dp4e41(h) = 0.

Thus saying that v(h) = veq+(h) for all ¢ sufficiently large is equivalent to saying that dg4+(h) =0
for all ¢ sufficiently large.
Assume that there exists h € K[z] such that

(8.1) v(h) > veqe(h)  forallt e N

(in other words, ¢4¢(h) > 0 for all t € N and ¢ +w € A); put h = Q4. One of the three main
results of this section says that d(h) has the form p¢ for some e € Ny (in particular, 6(h) = 1 if
char k, = 0). To prove this, we use differential operators and their properties derived in §7.
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The second main result of this section is the statement that if either char k, = 0 or p f 6(h)
then the sequences (B¢1¢),cn and (ve4¢(h)),cy are unbounded in Iy (this is precisely the situation
of Proposition 5.6 of subsection 5.2); in particular, the set Qg of key polynomials is f‘o—complete
by Proposition 5.6. Finally, in Remark 8.7 we take £ = 1 and assume that a; = 1 for all t € N
and that the sequence {f; };en is unbounded in T'y. We show that h € K [osé(h)].

Replacing ¢ by ¢ + t for a sufficiently large ¢, we may assume that dp44(h) = d(h) for all
positive integers ¢. Below the ordinal ¢ will run over the set {¢ +¢ | ¢ € No}. By definition, for
all such ¢ we have

(8.2) Qit1 = Qi + 7,

where z; is a homogeneous @,-free standard expansion of value §; (cf. Proposition 3.13). By
Proposition 3.14 (2), we have

(8.3) deg, z; < deg, Q;.
Finally,
(8.4) in,Q; = —in, z;

by (5.14). As before, let
h=2 dui
7=0

be an i-standard expansion of h for i > ¢, where each d;; is a @Q-free i-standard expansion.
Note that since ayqr = 1 for t € Ny, we have

i ‘
deg, Qi = [ ey = [] oy = deg, @
=2

j=2

and so
o degwh} B {degwh} B
(8.5) S; = {degx 0l = ldes. 00) = Sy.

Proposition 8.1. For each i of the formi=0+1,t € N, we have b;11 < b;.
Proof. Write Q;41 = Q; + z;, as above.

Lemma 8.2. For each b € N we have

Bi — v(0z:) < Bi — v(0p,Q:)
b b; :

(8.6)

If, in addition, b > b;, then

Bit1 — v(0p2;) < Biy1 — (0, Qi)

8.7 .
(8.7) 7 i

Proof. Let i’ denote the smallest ordinal such that

(8.8) vir(zi) =v(z) and vy (Ovz) = v(0p2:);

by Proposition 3.32 and (8.3), i’ < i. Let z; = i: cjﬂ-/Q{, be an i’-standard expansion of z;. By
§=0

Lemma 7.4 we have

Bi — v(0, Qs) < Bir — v(0b,, Qir)

(8.9) b, ™
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Combining (8.9) with (7.2), we obtain

(.10) vir(2i) — vir(Op2:) < Bir — (0, Qir) < Bi — V(ab,-Qi)7

b by b,
which gives the inequality (8.6). If b > b;, (8.7) follows immediately by adding the inequality
Brozhi < Bei=Bi 40 (8.6). O
Corollary 8.3. We have
(8.11) V(Op,zi) > v(0p, Qi) = (O, Qis1)-
Proof. The inequality in (8.11) is a special case of (8.6) when b = b;. The equality in (8.11)
follows immediately from the inequality by the ultrametric triangle law. (I

To prove Proposition 8.1, we argue by contradiction. Suppose that
(812) bi+1 > bz
Letting b = b; 41 in Lemma 8.2, we obtain

ﬂi+1 - V(8bi+1zi) < ﬁH»l - V(alez)

(8.13) o ; '
We have
(814) Bl 7 V(abi+1 Qz) < ﬂz — V(asz)

bit1 - b;
by definition of b;. Combining (8.14) with (8.12), we obtain
ﬁi+1 - V(abi+1Q’i) < ﬁi+1 - V(alez)

1
(8.15) bit1 b;
We can rewrite (8.13) and (8.15) as
. b;
(8.16) min{v (9, ,,Q:), v (0, 2i)} > Bit1 — bi (Bit1 — v(0p,Qy)) -

Since Oy, ,, Qi+1 = b, Qi + b, 2, (8.16) shows that

V(0,1 Qiv1) > Biv1 — blb;: (Bit1 —v(05, Q1)) ,
which contradicts the definition of b;,;. This completes the proof of Proposition 8.1. O
Corollary 8.4. Keep the above notation. Assume that biy1 = b;. Then Iy mae = {bit1}-
Proof. Take an integer
(8.17) b> b1 =0,
Then

(8.18)

Bit1—Bi _ Biy1 —Bi
< .
b b;
By definition of b;, we have

Bi —v(0Qi) _ Bi — (9, Qi)

b - b; '
Adding up (8.18) and (8.19) and using Corollary 8.3, we obtain
6i+1 - V(abQH—l) Bi"rl - V(ab11+1 Qi-‘rl)

< ;
b bit1

(8.19)
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80 b & Ii11 maz- This proves the Corollary. O

Recall that 6(h) denotes the stable value of d,1¢(h) for all sufficiently large integers t. Set
0 := 0(h). Replacing ¢ by ¢ + ¢ for a suitable integer ¢, we may assume that dp4+(h) = J for all
t € N. Write § = pu, where p fuif p > 1.

If char k, = 0, equations (5.3) and (4.10) imply that ds_1 ¢ # 0 and

ds—1,
0 dsye

)

(8.20) g10 = Q¢ +in,

If char k, = p > 0 then, according to Proposition 4.7 (2) and using the notation of (3.42), we
see that for i = ¢+ t, t € Ny,

(8.21) d —p® € Si(h)
(in particular, ds—_pe ; # 0) and
1
. in;ds_pe z‘)‘?
8.22 2=\ —— .
(8.22) i ( u in;ds ;

The equation (4.10) rewrites as
(8.23) ingh = in,ds g9 .

Take ordinals ¢ and ¢ such that ¢ < ¢; < i < ¢+ w. Next, we prove a comparison result showing
that the coefficient ds; agrees with ds ¢, modulo terms of sufficiently high value.

Proposition 8.5. Assume that

(8.24) div1(h) = d¢(h) = 6.
We have
(8.25) ds; =dse, mod P

V(ds,zl )+min{VZ; (h)=vey (h),Beq —52} ’

Proof. By definitions, we have Q; = Q¢, + 2¢, + -+ + 2;—1, where the z; are homogeneous Q);-
free i-standard expansions. For simplicity, write z := 24, + --- 4+ z,_1. We will compare the
{1-standard expansion of h with the i-standard one. To this end, we substitute Q; = Qy, + 2
into the i-standard expansion of h. We obtain

(8.26) h=> d;;iQl =Y d;i(Qi +2).
=0 =0

First note that deg, E:l d;i(Qe, + 2y < 6deg, Q;. Hence dse, is completely determined by
dsiydst1,is---sds; i 1<T:e§)<t, by (4.29) in the proof of Proposition 4.7 (3), for
0<j<s—96

the coefficient ds4;; is a sum of terms of the form dj o, with j° > j + J satisfying

v (dj ) = vey (djreey) = (' =5 = 0)Be + v (djre,)-
Hence
(8.27) ve, (ds4.Q0%7) > v (),
so for 0 < j < s; — § the terms d5+j7iQf+j in (8.26) contribute nothing to

(8.28) dse m0d P, ) 55, ) smin{uf; (0)-ve, (h). 5, e}



252 F. J. HERRERA GOVANTES, W. MAHBOUB, M. A. OLALLA ACOSTA, AND M. SPIVAKOVSKY

Therefore, the only term on the left-hand side of (8.26) that affects the element (8.28) is

ds.i(Qe, + 2)°.
‘We have

5

O\ 5—i s

dsQ} = ds; Z ( .)le 12

— \J
j_

For j < 4, the coefficient of Qil in the ¢;-standard expansion of d(;’izj contributes to dsg,. Let

us denote this coefficient by d;-. We have

and

I/g(d(s’i) = V(d(;’i).
By Lemma 3.43 (1), the quantity v,(ds;2’) is the minimum of the vy-values of the summands
appearing in the ¢;-standard expansion of ds;2’. Thus

vy (d57izj) =v (d57izj) < (d;QZl) .
Hence
v (d;Q1,) = ve (d5Q],) +3 (Bey — Be) > v (ds.i27) + 5 (Be, — Be) = v (ds.i) + 23Be, — 5Bs-
This shows that v(d}) > v(ds:) +j (Be, — Be) > v(ds.i) + (Be, — Be), so for j > 0 the term d;‘le
does not affect the element (8.28). This completes the proof. g

Proposition 8.6. The integer 0 is of the form § = p® for some e € Ny (in particular, 6 = 1
whenever char k, =0).

Proof. We give a proof by contradiction. Write
(8.29) 0 =p°, wherep Jv ifchark, =p>0.

Suppose that v > 1. By Proposition 8.1, the sequence {b;} is non-increasing with ¢ and hence
stabilizes for ¢ sufficiently large. Let by, denote the stable value of b;. Write by, = p®=. Let
b=p°te= and g = dph. By Proposition 4.7 (2), in;h has the form (4.10) for i = £+ ¢, as t runs
over Ny, in particular, S;(h) = {0, p®, 2p°,...,vp°} and is independent of . Thus p® is the same
as in Proposition 7.15. Hence h and b satisfy the hypotheses of Proposition 7.15.

By Proposition 7.15 (3) and (4.10), g # 0 and, for ¢ sufficiently large, we have

ing, g = v iny, (s (90, Q)" (Qi+20)" ")
In particular,
v(g) > v (dé,i (8b1Qi)pe) + 0804t — P Beye =v (d(;,i (5'biQi)pe) 0= D)Bees = 1ilg)

(here is where we are using v > 1). Now, h was defined as h = Q4, in other words, h is
assumed to have minimal degree among all the polynomials satisfying v(h) > v;(h). This is a
contradiction. The Proposition is proved. (]

Remark 8.7. Let the notation be as in Proposition 8.6. Assume, in addition, that the sequence
{Be++} is unbounded in I'y. Then v(h) ¢ T'y.
Assume that char k, = char K,

(8.30) {=1land oy =1 forallteN.

In particular, by = 1 for all t € N and b, = 1.
Let e, be the integer e of Proposition 8.6.
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We have p®» = §. We claim that

(8.31) heK [2°);
in particular, for all strictly positive integers b’ < § we have
(8.32) Oph = 0.

by Remark 7.1. We prove (8.31) by contradiction. Assume the contrary. Let ¢’ denote the

greatest non-negative integer such that h € K [xpﬁ }; by assumption, ¢’ < e,. Then h involves
at least one monomial =7 such that j is of the form j = up® where u is not divisible by p. We
have deg, 9,.-h < deg, h, so there exists to € N such that

(8.33) Vi (k) = v (B ) .

Take an integer t > to. Let > cj7tQ{ denote the sum of all those monomials appearing in
Pt L

the ¢-standard expansion of h whose exponent j is not divisible by p¢ **. Note that by (8.30) we

have ¢;; € K for all pairs (j,?). By Remark 7.1, the operator 9. annihilates all the monomials

whose exponents are divisible by pe/“‘l. Thus

. j s 6/
(8.34) Oprh =0 | D @ | = Y. ¢ (pe,) Q" .
pe'tt [ pe'tt L

Formulas (8.33) and (8.34) imply that the t-standard expansion of h contains a monomial of the

form cper,the and that for each j with p¢+1 } j we have

Vio (Cj7tQ{> =2 v (Cpel,tQ%)e ) :
Hence
(8.35) v (ijtQD > v <cp2/7tQi’e ) for all j with p¢ ! fjand j > e

We obtain that for all ¢ sufficiently large the ¢-standard expansion of h contains a monomial

’ /

of the form cpe/,th “ and all the other monomials not divisible by QY “" have values strictly
greater than v (cpef,the )
Then for all ¢’ > ¢ we have v (cpe/7t> =v (Cpe’,t/)- Choosing t' sufficiently large, we obtain

v <cpc/7t, Qf,e > <v (c(;,t/Qf,), which contradicts the definition of §. This completes the proof of

(8.31) and (8.32).
In fact, by a similar argument this statement can be proved not only for h, but for any
polynomial satisfying the strict inequalities (8.1).

Remark 8.8. Keep the assumption that {5s4+} is unbounded in Lo, as well as (8.30), but now
assume that char K = 0 and char k, = p > 0. By studying the coefficient of Qf_l in the
t-standard expansion of h for different ¢, one can prove that § = p¢ = 1.

Remark 8.9. It was pointed out to us by the referee that the result of Remark 8.7 was generalized
in [3], Theorem 4.11. For every valued field (K,v) and every continuous family of iterated
augmentations on K[x] such that {S¢4:} is unbounded, all the limit key polynomials of the
family belong to K [3:‘“’*].
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More precisely, Theorem 4.11 of [3] shows that m := §bs, is the smallest positive integer such
that 0,,h # 0. In particular, if K is of characteristic zero, we have 6 = 1 [3], Corollary 4.12.
This also generalizes the statement of Remark 8.8.

Proposition 8.10. Keep the notation and assumptions stated in the beginning of this sec-
tion. Assume that 6 = p® = 1 in the notation of (8.29) (this assumption holds automatically if
char k, = 0). Then the sequences

(8.36) (vi(h));
and
(8.37) (Bi);

where i runs over the set {{ +t | t € N}, are unbounded in T.

Proof. Proposition 4.7 (2) implies that v;(h) = B; + v(d1;) and that v(d; ;) is independent of 4.
Thus to show that the sequence (8.36) is unbounded in Ty it is sufficient to show that (8.37) is
unbounded in Ty.

Moreover, to prove that (8.37) is unbounded, it is sufficient to show that the set v(T') itself is
unbounded in Ty (where T = {Q; 4+ w | w € K|[z],deg, (w) < ar}).

To prove the unboundedness of v(T'), we will start with the (not necessarily complete) set of

key polynomials Q41 and will define a new set of key polynomials Q41 U { Q“_t ‘ te N} with

QZH € T and the sequence v (QHt) unbounded in f‘o.

First, let dj , € K[z] denote a polynomial such that in,dj jin,di, = 1 in G,. According
to Lemma 2.6 we may choose dj , to be of degree strictly less than deg, Q¢ = deg, Qr+. We
have v, (d’{yg) = V(dh) by Proposition 3.32; hence, v; (d’{j) = u(d*{» for all ¢ > ¢ by
Proposition 3.39 (2).

Indeed, by Lemma 3.47 applied with s = 2 the graded algebra G4, is closed under multipli-
cation. Hence ing(dy ,h) = inedy 4ineh and &;(dj ,h) =1 for all i of the form £+, € N.

Thus multiplying h by di , does not change the problem in the sense that

v (dj gh) > v (di jh)  for all i
(the new polynomial di ;h may no longer have minimal degree with respect to this property, but
we will not use the minimality of degree in the rest of the proof). Therefore we may assume that
(8.38) in,dy ; = in;dy ; = 1 for all ¢ of the form ¢ +¢, ¢ € N.
We will now construct polynomials Q@H = Q¢+w; such that deg, w; < deg, @, and the sequence

(V (QZH))t is strictly increasing and unbounded in f‘o.
We have degg, ingh =0 =1, so

(8.39) ingh = ing (Q¢ + do,r) -
In view of (8.1), we have dy ¢ # 0 and

(8.40) v(Qr) <v(Qe+doy),
hence

(8.41) in, Q¢ = —in,do .

We have Q¢ +do¢ € T. Put
wp = doyg
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and Qe+1 = Q¢ + wi. From now till the end of the proof, for every object X pertaining to the
key polynomials @Q; let us use the notation X for the analogous object pertaining to the key
polynomials Q; that we are about to construct.

Let A denote the Z-subalgebra of K[z] generated by x and the finitely many coefficients of
the polynomial @QQy. The ring A is noetherian. We have Q“_l € A. Let

Sy
(8.42) h=Y d1Q)yy
=0

be the (£ + 1)-standard expansion with respect to Qé+1. Since 6 = 1, we have v (dj,ng) > B
whenever j > 1. Hence v (JMHQ% +1> > 41 whenever j > 1. The expression (8.42) contains

the term Qz+1 (with coefficient equal to 1 modulo terms of strictly positive value).
Since the set v(T") does not have a maximal element, there exists i = £ + ¢, t € N, such that

(8.43) Vz(h) =B > BZ+1 > ﬂg+1(h).

Combining (8.43) with (8.1), we obtain v(h) > pq1(h).
We now iterate the procedure with Q¢ replaced by Qg41. Precisely, assume that wy, ..., w;
and Quq = Qe +wy € A, g € {1,...,t} are already constructed,

(8.44) v(h) > gt (h)

and Sg+t = Jl,€+t = 1. By Proposition 4.7 (2), applied to the newly constructed set

Qo1 U {Q€+q}qe{1,...,t}

of key polynomials, we have

(8.45) ingth = ine Qs + inydo rrs-

Note that (8.44) and (8.45) imply that do ¢1; # 0. We now define
Wy 1= Wy + JO,EH

and Qg1 = Q¢+ wey1. We have Qpieq1 € A. .

This completes the recursive construction. Notice that all the elements w; and Qg lie in the
noetherian ring A. Localizing A at the prime ideal A N M,,, we may further assume that A is a
local noetherian ring.

Lemma 8.11. Let p be a rank one valuation, centered in a local noetherian domain (R, M, k)
(that is, non-negative on R and strictly positive on M ). Let

® = u(R\ {0}) C L.
Then ® contains no infinite strictly increasing bounded sequences.

Proof. An infinite ascending sequence oy < ap < ... in ®, bounded above by an element 5 € ®,
would give rise to an infinite descending chain of ideals in %, where I3 denotes the p-ideal of R
of value . Thus it is sufficient to prove that % has finite length.

Let € := p(M) = min(® \ {0}). Since y is of rank one, there exists n € N such that 5 < ne.
Then M™ C Ig, so that there is a surjective map % —» %. Thus % has finite length, as

desired. O



256 F. J. HERRERA GOVANTES, W. MAHBOUB, M. A. OLALLA ACOSTA, AND M. SPIVAKOVSKY

Coming back to the proof of the Proposition, let H = {a € A | v(a) ¢ Ty} and
M={a€ A|v(a)>0}.

Applying Lemma 8.11 to the local noetherian ring ;A"’M and using the fact that the sequence §;
is strictly increasing with i, we obtain that {;} is unbounded in Ty, as desired. O

Remark 8.12. Take a polynomial g € K[z] such that v,4.(g) < v(g) for all ¢ € N, not necessarily
of the smallest degree. Let § := d(g) denote the stable value of §;1+(g) for ¢t € N sufficiently
large. Assume that p® = 1 in the notation of (8.29) (in other words, either char k, = 0 or
char k, =p>0andp [¢). Fori= ¢+t with ¢t sufficiently large we have v;(g) = v(ds;) + d5;
with v(ds;) independent of 4. Thus v;(g) is unbounded in T.

9. LIMIT KEY POLYNOMIALS IN THE CASE OF FIELDS OF POSITIVE (EQUI—) CHARACTERISTIC

In this section, we assume that char k, = char K = p > 0. We assume that we have a set
of key polynomials {Q;}ica such that A contains at least one limit ordinal. Let £ +w € A be
a limit ordinal. Assume that the sequence {V(Q4t)}ten is bounded in [o. The main result of
this section, Proposition 9.2, says that the polynomial gy, can be chosen in such a way that
there exist ig = £ +tg € A, to € N (so that igp+ = £+ w), such that the ip-standard expansion of
Qi+ is weakly affine.

Remark 9.1. If £ =0 and deg, Q; = 1 for all ¢t € N, this result was proved by I. Kaplansky. In
Kaplansky’s terminology z is a limit of a pseudo-convergent sequence {p;}; of algebraic type in
K, and Q¢4 is a monic polynomial of minimal degree, not fixing the values of {p;}; (see [15],
Lemma 10, page 311). In the special case £ = 0 and deg, @; = 1 for all ¢ € N, the polynomial
Qi+ 1s an additive polynomial plus a constant. Kaplansky later called such polynomials “p-
polynomials”.

Let the notation be as in §5.2. Write 6 = p with e € N (we know that J is a power of p by
Proposition 8.6).

For a technical reason that will become apparent later, we will assume (without loss of gen-
erality) that ¢ is not a limit ordinal.

Recall the definition of f3:

B =sup{v(Qus) | t €N}.
Proposition 9.2. The polynomial Quy, can be chosen in such a way that there exists

5 ,
i € {0+ thien, such that the i-standard expansion Quiw = Y ¢; Q) of Quiw is weakly affine
§=0
and monic of degree p°® in Q;, with

= 1
(9.1) B < Do (Qetw)
and
(9.2) v(cji) = (p° —j)B  whenever j >0 and c;; # 0.

Proof. Let f = Q. be a limit key polynomial; we have
(9.3) v(f) > vep(f) forallt eN.

The idea is to gradually modify the polynomial f until we arrive at a limit key polynomial g
satisfying the conclusion of the Proposition.
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Fori=/¢+1t,teN, let
5
(9.4) F=3a;.Q
7=0

denote an i-standard expansion of f. By Proposition 5.3, the polynomial f is of degree § deg, Q.
In particular, we have as; = 1.
Choose iy > ¢ sufficiently large so that

(9.5) Bio — -1 > 2p® (B — Biy)-

Before plunging into technical details, let us try to informally outline the strategy of the
proof. Let (v,1) be the coordinate system on the plane where the Newton polygon A;(f) lives.
Conclusion (9.2) of the Proposition says that for each monomial am-Qg, j > 0, appearing in (9.4)
the pair (v(c;i),7) lies on the “critical line” v + I3 = p® 3. Assume that for a certain i > ig
the i-standard expansion (9.4) does not satisfy the conclusion of the Proposition. This means
that at least one of the monomials ajyng, j > 0, appearing in (9.4), has one of the following
properties:

(a) the point (v(a;;), ) lies strictly above the critical line v + 13 = p® 3

(b) the point (v(a;;),j) lies strictly below the critical line

(c) the point (v(a;,;),7) lies on the critical line and j is not a power of p.

In general, momomials ajyng lying strictly above the critical line cannot be immediately
discarded, because they could give rise to monomials on or below the critical line in the (i + 1)-
standard expansion of f after the substitution @Q; = Q;+1 — 2;. However, this problem does
not occur if v (ajﬂ»Qf ) is sufficiently large, that is, if our monomial lies far enough above the
critical line (this fact, as well as the precise meaning of “sufficiently large”, is explained in the
Remark below). Such monomials are called i-superfluous. We define a monomial to be bad if it
is not 4-superfluous and satisfies one the conditions (a)-(c) above. We analyze all three types of
bad monomials and show, after three lemmas, that all of the bad monomials disappear for some
1 < ¢ + w sufficiently large.

In the rest of the proof of the Proposition we will consider ordinals 4 satisfying

€+w>i2i0.

Definition 9.3. Take an ordinal i, ip < ¢ < £ + w. A polynomial g € KJ[z] is said to be
i-superfluous if

(9.6) vi(g) = pB+ (p™ —j) (B—5i) -
Let i’ be an ordinal such that i < 4’ < £+ w. Take an integer j, 1 < j < p®. The monomial
a;j @7 is said to be i-superfluous if it is i-superfluous viewed as an element of K[z].

The set of all i-superfluous polynomials wil be denoted by SUP;.

Remark 9.4. A monomial ajﬂ-/Qg/ is i-superfluous if and only if

(9.7) viaji)+ 3B = 2p°B — pB;.
In particular,

Remark 9.5. Let ¢,7 be as above. Consider an i-superfluous monomial aj,iQ{ appearing in the
i-expansion of f. By Proposition 3.39 (2), we have vy (aMQg) =v (ajyng). Hence

(9.9) Vi (%’,z‘Qf) > 2p%° 3 — p B + jBi — i8> p° B > p* By = v (f).
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Then in; (f — aj’iQi) = iny f and
J J
Vil (f - aj,iQZ') <v (f - aj,iQi) .

Thus replacing f by f — ajyng does not affect the condition (9.3); f — aj_,iQ{ is still a limit key
polynomial with index £ 4 w.

For most of the proof of the Proposition we will work with non-superfluous monomials. At the
end of the proof we will modify the polynomial f by subtracting all the superfluous monomials
from it.

Next, we will compare the Q;-expansions of f for different i.

Definition 9.6. Take an ¢ > 7. Let
5
(9.10) F=>a;:Q
=0

be the Q;-expansion of f and let ajyng be a monomial appearing in this expansion. We say that
a; Q! is bad if it is not i-superfluous and at least one of the following three conditions holds:
(1)
(9.11) v(aji) < (p® —j)B
(2) j is not a power of p
®3)
(9.12) v(aji) > (p° — j)B-

In view of Remark 9.5, to arrive at an i-standard expansion (9.10) satisfying the conclusion
of Proposition 9.2 it is sufficient to show that it contains no bad monomials, in which case, after
subtracting all the i-superfluous monomials from f, there will be nothing more to do.

Take ¢ > i9. Assume that the Q;-expansion of f contains at least one bad monomial. Let J(i)
denote the greatest j € {1,...,p® — 1} such that the monomial a;;Q? is bad. Let j*(i) denote
the element j € {1, ..., p° — 1} which minimizes the pair (v(a;,;)+ 75, —j) in the lexicographical
ordering among all the elements of {1, ...,p® — 1} such that the monomial a;,;Q7 is bad.

To finish the proof of Proposition 9.2, we will first prove the following three Lemmas.

Lemma 9.7. Assume that the Q;y1-expansion of f contains at least one bad monomial. We

have

(9.13) Ji+1) <j(0)
and

(9.14) Ji+1) < ).
If j € {j(i),j*(0)} then

(915) inyaj7i+1 = inl,ajyi.

Lemma 9.8. If j € {j(i),7°(¢)} then (9.11) does not hold.
Lemma 9.9. If j = j(i) then (9.12) holds.

After proving the three lemmas, we will show that increasing i either eliminates the last bad
monomial or strictly decreases j(i). At that point the proof of Proposition 9.2 will be finished
by induction on j(7).

Before embarking on the proofs, we make a general remark on comparing the ();- and the
Qi+1-expansions of f that will be used in these proofs.
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Remark 9.10. We want to compare the Q;- and the @Q;11-expansions of f. To do that, write

5
(9.16) f = Z aj/7i(Qi+1 — Zi)j .
§'=0
Consider an integer j' of the form j' = p¢, ¢ € {1,...,eo — 1}. Then

o!

-/ Cl
(9.17) ajri(Qit1 — 2 = ajiQfy, —aj iz
7

In general, the right-hand side of (9.17) need not be a ;i 1-expansion, since deg, aj/,izfc
may be quite large, even as large or larger than deg, Qf:_l. However, the Q;1-expansion of

ajri(Qiy1 — 2;)P" is obtained from it by Euclidean division by Q; 1, as follows. Write
a2l = Qitag + 7 (aji2l)

with deg, r (ajgizf,) < deg, Qi+1 (here r (aj/,izgl) is the remainder of the Euclidean division of

aj/’iz{/ by Qi+1). By Lemma 3.47 and Corollary 3.42 we have

!’ ! /
P\ _ P\ _ p*
Vi—1 (aj/ﬂ'zi ) =V (aj’vizi ) =Vit1 (aj’,izi )
and

(9.18) Vit1(Qivr9) — v (aj',izfe ) > Bix1 — owBe—1.

Hence vi41(Qiy19) — (Biv1 — aefe—1) > v (ajf,ﬂf ) > p®B;. Thus Q) , —r (a“zf ) is a

Qi+1-expansion and v; 41 (aj/yizf' —r (aj/,izgl)) > p®B; + (Bit1 — @efe—1), and hence, using
(9.5), we have

’

(9.19) aj/7izf —r (aj/,izg,) € SUP; ;.

Exactly the same analysis can be carried out for every j’ € {1,...,p? "1} regardless of whether

j’ is a power of p, but the notation is simpler in the p-power case which is enough for our

purposes.

Notation. For j € {0,...,d — 1} write
Supi(f)={se{j+1,...,0}} | as;Q; is i-superfluous }
and

NS;i(f)={j+1,...,0}\ Supi(f).

Proof of Lemma 9.7. Let j = j(i). Since j is the greatest element of NSy ; satisfying one of the
conditions (1)—(3) of Definition 9.6, every j' € N.S;; is a power of p and satisfies

(9.20) v(aj ;) = (p° —j')B.

We want to analyze the monomial aj,i_HQg 41 in the Q;11-expansion of f.

Now, terms in (9.16) with j' < j or j' € Sup;; do not affect either in,a; ;41 or inya;;. We
claim that the same is true of the terms with j' € N'S; ;. Indeed, take a j' € N.S;;. As explained
in the beginning of the proof of this Lemma, j' is a power of p. Write j' = pel.
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By Remark 9.10 (specifically, (9.18)), (9.5) and the fact that aj,iQ{ is not i-superfluous, all

the monomials dQ;, ,, s > 0, appearing in the (;;-expansion of ajz,izipe satisfy
v (dQj, ) > v(aji) + jBis1.

In particular, if such a monomial is of the form ng_H, with deg, d < &;11, we have v(d) > v(a;,;).
This proves that (9.15) holds for j = j(4).

The fact that all the new monomials with strictly positive exponents arising from the Eu-
clidean division of

aj izl i >,
are (i + 1)-superfluous also shows that no bad monomials a;/ ;41 lel with j” > j appear in the
Qi+1-expansion of f. This proves (9.13).

The proof of the Lemma in the case j = j*(i) is very similar to that of j = j(i), except for
the following minor change. We can no longer assert that j’ is a power of p. On the other hand,
j' satisfies v(a; ;) + 7' B; > vi(f), which allows us to use similar arguments as in the j = j(4)
case. This completes the proof of Lemma 9.7. (|

Proof of Lemma 9.8. We argue by contradiction. Suppose that j = j(i) and that (9.11) holds
for this j. (9.11) can be rewritten as v(a;;) + jf8 < p® . Combining this with (9.15) we obtain
that (9.11) holds with ¢ replaced by i + 1 and

(9.21) v(ajit1) + 3B < 2p°B — pBita,

so the monomial aj,i+1Q§+1 is also bad and j(i + 1) = j(4) in view of (9.13). By induction
on i’ > i we see that j(i) is independent of i’, so the @Q;-expansion of f contains a monomial

a;j,i @], with
v (aj,i'QZ/) = v(aji) + jBir = vlaji) + iy < v(aji) + jp.
Then p® By = vir(fr) < v(aj;) + jB < pf for all i’ > i, where the equality holds because
p® =06 € Sy(f).
Therefore the least upper bound of {8;}i<i<¢+w is bounded above by p%o(l/(ajyi) + jB) and

hence is strictly less than 8. This contradicts the definition of 3.
The proof in the case j = j*(i) is similar to that with j = j(i) and we omit it. O

Proof of Lemma 9.9. We argue by contradiction. Assume that j = j(i) and that (9.12) does not
hold. In view of Lemma 9.8 this implies that

(9.22) v(aji) + 38 = p™p.

Then, by definition of j(i), j is not a power of p. Write j = p®u, v > 2 and p [ u, and
Qit1 = Qi + 2.

Lemma 9.8, applied to j*(¢), implies that

(9.23) viaj ) +3'B>p®B  forallj €{l,...,p°}.

Let b = p°bs. Arguing as in the proof of Lemma 9.7, we can show that j(¢) and v(a; ;) remain
unchanged as ¢ increases. Moreover, after suitably increasing ¢ and i, we may assume that
by = b; = bs (by Proposition 8.1) and deg, @ = deg, ;. Let us denote the common value of
deg, Q¢ and deg, Q; by . By Corollary 8.4 there is at most one value of i = ¢ +1¢, ¢t € N, for
which #1I; 4z > 1. Hence, increasing ¢ and ¢, we may assume, in addition, that

(9.24) Lt maz = {boo}  for all i’ > ¢.
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Finally, increasing ¢ and i again, if necessary, and using (9.24), we may assume that

(9.25) Bi = Be > 8boo (B — i)

We continue to use the notation of (9.10) for the i-expansion of f;.
For each polynomial a with

(9.26) deg, a < deg, Q;

by Proposition 3.32 (applied separately to ¢ and then to 4 replaced by ¢ and using the fact that
neither ¢ nor i are limit ordinals), we have vy(a) = v;(a) = v(a). For each &’ € N and each 7/,
< i <L+ w, we have

v(Oya) = ve(Oya) > v(a) — bli(ﬁe —v(Ob,, Q1))
(9.27) = 1l0) = 3B = 100 Qu) + o (B = )
> (@) = LBy — B Qu)) + 2 (B - Bv)

beo boo

by Proposition 7.2.
Remark 9.11. For i/ = £+, ¢ € N (the integer t’ is strictly positive here), we trivially have

(928) 14 (81700 Qz’) =V (Qz’) — (511 —V (81700 Qz’)) .
Combining this with (9.27), applied to a = zg + - -+ + zy—1 and V' = by, we obtain
(9.29) V(0o Qir) = v(Oh,, Qr)-

In particular, the quantity v (9, Q4+ ) is independent of ¢’ € N.
Remark 9.12. By (9.24), for all i’ > ¢ and all " € {1,...,b} \ {bso} we have

Bir — v(0b.. Qir) S Bir — V(O Qir)
bso b '

(9.30)

Assume that

Bir —v(0p., Qi) By —v(0yQyr) 1
b - X < @(51/ — Be)-

Combining this with (9.27), applied to @ = z; + -+ - + z—1, we obtain
(9.32) V(0 Qir) = v(0y Qe)-
In particular, the quantity v (9, Q;/) is the same for all those ¢’ that satisfy (9.31). In this way,

we have generalized Remark 9.11 from the case of the pair (beo,4’) to the case of every pair (b',7")
satisfying (9.31).

(9.31)

By Lemma 7.7, for all s,¢' € N, letting i’ = £ +t/, we have

(9.33) O (asw@Q) = > Cslir,---Jg)Q5 “ (9jpas) [] (9
0<q<s t=1
jot-+iq=b
0< 1 <<
SO
q
(9.34) hf = Z > <Cs(j1,...,]q) 1 (Djoas.0) | ] (05, Qi )
s=0 0<q<s t=1
Jot-+iq=b

0<j1<-+<Jq
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Remark 9.13. (1) Consider an integer s € {1,...,5 — 1} U Sup; ». We have
(9.35) v (ajJ-/Qg,) <v(as,y Q).

Indeed, (9.35) holds for s € {1,...,j — 1} by (9.22)-(9.23), with i replaced by 7', since 3 < 3.
It holds for s € Sup, ;s since, by (9.9) (with ¢ replaced by '), each i’-superfluous monomial has
value strictly greater than

peB>v (aj,i’Q{/) .

2) By definition of j = j(i) = j(i'), every s € NS, ;/(f) is of the form s = p® . Since s > j, we
7,
have

e >e.

By (7.12), we have Cs(j1,...,54) = 0 unless jo = 0, ¢ = s = p¢ (in particular, s < b) and
. . b

Jr=r=lg=

q
(3) By (1) and (2), for every non-zero term Cs(j1, .- -, jq)Qi ? (9joas,ir) [1 (9;,Q«) on the right-
t=1

hand side of (9.34), at least one of the following three conditions holds:
(a)y (9.35)
(b)y s = p¢, where p® < p¢ < b and

. . b b
{jOa]h-'-a]q} = (O7pe/7"'ape/)
—_—
p¢’

(¢)ir jo > 0 (this condition holds whenever s = 0)
(d);y s =up® =j and

{j07j17"'7jq} = (Ovbooaaboo)
—_——

pe

oo
Claim. There exists a strictly increasing infinite sequence (¢,)reny C N and s € () S;;,. (where
r=1

i = i + t,) such that, for all r € N, the term C} (b, .. ., boo)aj7irQpre (Ob., Qir)pe has strictly
N—— "
pe

smaller value than all the other terms in the sum on the right-hand side of (9.34).

Proof of Claim. We have C;(boo, . . ., boo) = 47 = Wl — 4, so V(Cj(boo, - .., b)) = 0. Hence,
e —— p- p- N —
pe pe
for all i’ of the form i’ = ¢+, ¢’ € N, we have

(936) 1% Cj (boo, ey boo)aj)ing,_pe (abm Qi/)pc =V (aj’i/ QZ,) — pe (,81/ -V (8boo Qll))
———

pe

(recall that v (a;,;/) and v (9. Q) are independent of i’).
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First, let us prove that all the terms on the right-hand side of (9.34) satisfying (a),s or (c)
have values strictly greater than v (a] QY > € (B —v (31, Qir)).

Consider a non-zero term C(j1, . . -, jq) Q5 * (9joas,i7) H (0;,Qq) appearing on the right-hand

side of (9.34). For all positive integers s and b, we have

(9.37) V(O QY) 2 v (@) ~ e (B~ v (31 Q)).

by Proposition 7.2 (1). Combining this with (9.27), we obtain

q
u( Q5 (9j,050) [ ] (95 ) — QB + v (9joasi) + Y _ v (0;,Qu)

t=1 t=1
q .
O3 >0 (0,0Q0) — 22 (B0~ (00 Qu)) + 22 (B0 = ) = 3 2 (B — v(Dh. @)
ee] [e'e] =1 >
= v (45,0 Q}) = P (B — V(D Qi) + 5By — Bo).

If (9.35) holds, we obtain

q
(9.39) v( * (Djoas,i) H (95, Qu >>uz- (a541Q%) = p° (B — v (95, Qi) -

If (c); is satisfied, that is, jo > 0, (9.39) holds again. This shows that in order to prove the
Claim it is sufficient to restrict attention to the terms on the right-hand side of (9.34) satisfying
().

Next, choose a strictly increasing sequence (¢, ),cy C N such that for each s € {j +1,...,d}
one of the following conditions holds for all » € N:

(1) s € Sj,, and (9.31) holds with " = i,

(2) either s € Supj;, or (9.31) does not hold with 7" = i,

We obtain a decomposition {j +1,...,0} = Jy [[ J2, where (1) holds for s € J; and (2) holds
for s € Jo. We have j € Jy; in particular, J; # (). The set J5 is non-empty since it contains all
the non-powers of p in the set {j +1,...,d}.

We will now show that for s € Jo and r > 0 the strict inequality (9.39) holds with i’ = i,.
For s € Sup;j,, this has already been shown (and does not require r to be large). Assume that
s €S, and (9.31) does not hold with i’ = ¢,. Consider a non-zero term

q
Cs(jlw“v](]) ajoas zr H athzT
t=1

appearing on the right-hand side of (9.34). This term satisfies condition (b),; (in particular, it
is the unige term with the given s). Using the notation of (b);,, we have

’

pe
v asi, (3% Qir> =v(as;,)+p°v (5% Qir>
pe pe

= v (a0 @) =27 (8 v (02,00 ))

(9.40)
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Further, by (9.22) and (9.23), applied to i, instead of i, we have

(9.41) v (aj,ingT) — v (a5, Q) < (s —§)(B— Bi,) <6(B—Bi,)-

Combining (9.25), the negation of (9.31) and (9.40)—(9.41), we obtain

/
e

P
v s (02,00 ) ) 20 (020,@0) ~ 0 (B~ vOQ0) +1° (B, — F0)

(9.42) _ )
> v (a5, QL) — p°(Bi, — V(96 Q) +9° (Bi, — Be) — b (B~ 6;,)

>v (%‘,i,Qf) —p°(Bi, —v(0b. Qi) = v (Qg:pgaj,z'r (Ob.. Qu)pe> -

This shows that to prove the Claim it is sufficient to restrict attention to the terms
g — q . . .
Cs(j1s---,Jq)Q; ? (0jyas,,) T1 (95,Qs,) appearing on the right-hand side of (9.34) such that
t=1
se Jy.

Consider one such term. It must satisfy condition (b); _, so it is completely determined by

o

p
s and we can write it as as,, (8%62“) . By (9.31), Remark 9.12 applies to 0 » Q;,, in
pe p€

’

e
other words, v (3LQ“) does not depend on r € N. Therefore, v | as;, (GLQ”) is
pe’ pe’

independent of r.

We will use the formulae (9.40) and (9.41) which are valid for all s € {0,...,d}. Let us take

the limit as r tends to oo separately of each summand on the right-hand side of (9.40). By (9.41),

we have lim v (ajying ) < lim v (as,ier‘). Applying (9.30) with ¢’ = i, for each r € N and
7—00 " 7—00 T

passing to the limit as r goes to infinity, we obtain

lim p© (B;, — v (9. Qs,)) > lim p® (ﬁir —v (8LQ1})> .
r—00 r—00 pe’

Thus
» ’ pe/
v\ as, <8LQ%> = lim v As i, <8LQL>
e r—00 pe’

(9.43) ,

= lim (1/ (as,iTQfT) —p° (ﬁir —v <8LQ%~))>

r—00 pe’
= Jim (0 (000.@1) = (5, = 100.Q0) = Jim v (@ 010, .00 )").

e/

p . .
Since v | as, (8% Qir) is independent of r and v (Qg:p aji, (Op,. Qi, N ) is a strictly
pr
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’

p . c
increasing linear function of r, we have v | as; | 9_s @Q; >v(Q 7P a;; (0,_Q; )7 ) for
) Jir S Wi, Grir \Obos Wi,
pe

28

all r € N.
This completes the proof of the Claim.

By the Claim, for all r € N we have v(9,f) = v (Q1 " aj;, (9,..Qs,)"" ) with the left-hand

side independent of r and the right-hand side — a strictly increasing linear function of r, which
gives the desired contradiction. This completes the proof of Lemma 9.9. (I

Let j = j(i). By Lemma 9.9 the inequality (9.12) holds for j.
By Lemma 9.7 (cf. (9.15)), in,a;; is independent of ¢ > 4.

Since 3 — f3; can be made arbitrarily small as i — ig+ = £ +w, by (9.12), taking i, sufficiently
large, we can ensure that

(9.44) v(aj:) + 3B = 2p°B — p°B;, .
Take the smallest i1 satisfying (9.44). By the minimality of i1, Lemma 9.7 (specifically, (9.15))

and induction on i, i < i’ < i1, we see that the monomial a; @7, remains bad for i < i’ < iy
and that

(9.45) viaji) =v(a;).

From (9.44)—(9.45) we obtain

(9.46) v(aji)+ 3B > 2p°B — pp;,.
Thus the monomial aj,ilel is i1-superfluous. Therefore

(9.47) j(i1) < @) forall i < iy.

Since the strict inequality (9.47) can occur for at most finitely many values of i1, there exists
19 < £+ w such that f containing no bad monomials. Let Q4. be equal to f minus the sum of
all the iz-superfluous monomials of f. Now, Q4 is monic of degree p®a; and satisfies (9.1). It
contains no is-superfluous or bad monomials, hence it satisfies (9.2); in particular, it is weakly
affine. The polynomial Q. satisfies (9.3) and so is a limit key polynomial by Remark 9.5. This
completes the proof of Proposition 9.2. ]

Remark 9.14. The property that the is-standard expansion of Q. is weakly affine is not
preserved when we pass from is to some other ordinal is + ¢, ¢ € N. However, the above results
show that for all i’ of the form i’ = i+t t € No, Qryw is a sum of a weakly affine expansion

in @; all of whose monomials a; @7, for j > 0 lie on the critical line v(a; ) = (p*® — j)B
and another i’-standard expansion of degree strictly less than p®ay, all of whose monomials are
’-superfluous.
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