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1 Introduction
This paper surveys results on approximation numbers of composition operator on the Hardy space, and gives

new results, on their entropy numbers, in one or several dimensions. In various papers (see [3, 19–22]), pretty

sharp estimates are obtained for them, either for classes of examples like the lens maps or the cusp maps, or

in the general case. In particular, a few properties are investigated, relatedwith the so-called “spectral radius

type formula”, obtained, in dimensionone througha result ofWidom in [21], and, partially in dimensionN ≥ 2

[22, 23], through a result of Nivoche [26] and Zakharyuta [33]. One of our main results (quoted in dimension

one) was the implication (using Green capacity considerations):

‖φ‖
∞

= 1 ⇒ lim

n→∞

[an(Cφ)]

1/n
= 1 , (1.1)

where an(Cφ) is the n-th approximation number of Cφ. Note that it is straightforward that if ‖φ‖
∞

= r < 1,

then limn→∞
[an(Cφ)]

1/n
≤ r < 1.

Another way of measuring the compactness of operators is using the entropy numbers instead of the

approximation numbers. Those numbers stand a little apart in the jungle of “s-numbers”, even though they

seem to be the most natural for the study of compactness, since their membership in c
0
characterizes com-

pactness, even in the general framework of arbitrary Banach spaces.

Given a compact operator T : H
1
→ H

2
betweenHilbert spaces, the relation between its entropy numbers

en(T) and its approximation (if one prefers singular) numbers an(T) is theoretically known, through a general

result on diagonal operators on `2

, recalled in Theorem 2.2 to follow, and through the Schmidt decomposition

of T. This comparison can be thought useless, since in principle we do not know better the numbers an(T)

than the numbers en(T). But in our case, with T = Cφ, namely T(f ) = f ◦ φ where φ is an analytic self-map

of the polydisk DN , the situation is slightly di�erent. Answering a question of J. Wengenroth [30] about the
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behavior of the entropy numbers of composition operators, we give in this paper estimates for these numbers,

analog to that on the approximation numbers. In particular, we have:

‖φ‖
∞

= 1 ⇒ lim

n→∞

[en(Cφ)]

1/

√
n

= 1 . (1.2)

The proofs are not di�cult, but as indicated for example by the comparison between (1.1) and (1.2), the

statements feature a very di�erent behavior of those entropy numbers, which deserves attention. This di�er-

ence is actually more transparent in the polydisk DN , and the main interest of this paper is to point out how

the dependence of the entropy numbers with respect to the dimension N di�ers from that of the approxima-

tion numbers.

The paper is organized as follows. Section 1 is this introduction. In Section 2we recall the necessary back-

ground. In Section 3, we survey results on approximation numbers and give the corresponding new results on

entropy numbers. We �rst begin with general facts, and then give speci�c results, with a particular interest

to the examples of the lens maps and the cusp map. For any non-constant analytic map φ : D→ D, we have:

lim

n→∞

[an(Cφ)]

1/n
= exp

(
− 1/Cap [φ(D)]

)
, (1.3)

where Cap [φ(D)] is the Green capacity of φ(D), fromwhich it follows that limn→∞
[an(Cφ)]

1/n
= 1 if and only

if ‖φ‖
∞

= 1 (Theorem 3.1). We moreover prove that:

lim

n→∞

[en(Cφ)]

1/

√
n

= exp

(
−

√
log 2/Cap [φ(D)]

)
, (1.4)

from which it follows that limn→∞
[en(Cφ)]

1/

√
n

= 1 if and only if ‖φ‖
∞

= 1 (Theorem 3.2).

For the lens map λθ with parameter θ, we have (the constants depending only on θ):

α e

−C n1/2

≤ an(Cλθ ) ≤ β e

−c n1/2

, (1.5)

whereas:

α′ e

−C′ n1/3

≤ en(Cλθ ) ≤ β′ e

−c′ n1/3

. (1.6)

For the cusp map χ, we have, for absolute constants:

α e

−Cn/ log n
≤ an(Cχ) ≤ β e

−cn/ log n
, (1.7)

and

α′ e

−C′
√
n/ log n

≤ en(Cχ) ≤ β′ e

−c′
√
n/ log n

. (1.8)

Section 4 is concerned by the multivariate case, again �rst in the general case, then on speci�c cases. We

are in particular interested by the multi-lens map Λθ, de�ned by:

Λθ(z
1
, . . . , zN) =

(
λθ(z

1
), λθ(z

2
), . . . , λθ(zN)

)
,

and the multi-cusp map Ξ de�ned by:

Ξ (z
1
, . . . , zN) =

(
χ(z

1
), χ(z

2
), . . . , χ(zN)

)
.

We prove that:

a exp (−C n1/(2N)

) ≤ an(CΛθ ) ≤ b exp(−c n1/(2N)

) (1.9)

a′ exp (−C′ n1/(2N+1)

) ≤ en(CΛθ ) ≤ b′ exp (−c′ n1/(2N+1)

) (1.10)

and

a exp[−C n1/N
/ log n] ≤ an(CΞ) ≤ b exp[−c n1/N

/ log n] (1.11)

a′ exp

[
− C′ n1/(N+1)

(log n)

−N/(N+1)

]
≤ en(CΞ)

≤ b′ exp

[
− c′ n1/(N+1)

(log n)

−N/(N+1)

]
.

(1.12)

Section 5 is more speci�cally devoted to the multidimensional case, in connection with the notion of

Monge-Ampère (or Bedford-Taylor) pluricapacity, which recently turned out to play an important role in con-

nection with composition operators [23].
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Figure 1: Lens map domain Figure 2: Cusp map domain

2 Background and notation
Wedenote byD the open unit disk and byT = ∂D the unit circle;m is the normalized Lebesguemeasure onT:
dm(t) = dt/2π, andH2

is the usual Hardy space onD. By Littlewood’s subordination principle, every analytic

self-map φ : D → D (also called Schur function) de�nes a bounded operator Cφ : H2 → H2

by Cφ(f ) = f ◦ φ,
called the composition operator of symbol φ.

2.1 Two types of Schur functions

Lens maps

For 0 < θ < 1, the lens map λθ with parameter θ is obtained by sending conformally the unit disk D onto the

right half-plane Π = {z ∈ C ; Re z > 0}; then making u 7→ uθ, and coming back to D (see [29, page 27]).

Namely:

λθ(z) =

(1 + z)

θ
− (1 − z)

θ

(1 + z)
θ

+ (1 − z)
θ · (2.1)

It is a conformal map from D onto the domain represented on Figure 1.

Cusp map

The cusp map is a conformal mapping χ sending the unit disk D onto the domain represented on Figure 2.

This map was �rst introduced in [14].

To obtain it, we �rst map D onto the half-disk D+

= {z ∈ D ; Re z > 0}. To do that, map D onto itself by

z 7→ iz; then map D onto the upper half-planeH = {z ∈ C ; Im z > 0} by

T(u) = i 1 + u
1 − u ·

Take the square root to map H in the �rst quadrant Q
1

= {z ∈ H ; Re z > 0}, and go back to the half-disk

{z ∈ D ; Im z < 0} by T−1

: T−1

(s) =

1+is
is−1

; �nally, make a rotation by i to go onto D+

. We get

χ
0

(z) =

( z − i
iz − 1

)
1/2

− i

−i
( z − i
iz − 1

)
1/2

+ 1

· (2.2)

One has χ
0

(1) = 0, χ
0

(−1) = 1, χ
0

(i) = −i and χ
0

(−i) = i. The half-circle {z ∈ T ; Re z ≥ 0} is mapped onto the

segment [−i, i] and the segment [−1, 1] onto the segment [0, 1].

Set now, successively,

χ
1

(z) = log χ
0

(z), χ
2

(z) = −

2

π χ1
(z) + 1, χ

3
(z) =

1

χ
2

(z)

, (2.3)
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and �nally:

χ(z) = 1 − χ
3

(z) . (2.4)

Hence:

1 − χ(z) =

1

1 +

2

π log

(
1/|χ

0
(z)|
)
− i 2

π arg χ
0

(z)

· (2.5)

Note that χ
2
maps D onto the half-strip {z ∈ C ; Re z > 1 and |Im z| < 1}. One has φ(1) = 1, φ(−1) = 0,

φ(i) = (1 + i)/2 and φ(−i) = (1 − i)/2.

The domain φ(D) is edged by three circular arcs of radii 1/2 and of respective centers 1/2, 1 + i/2 and

1 − i/2. The real interval ] − 1, 1[ is mapped onto the real interval ] 0, 1[ and the half-circle {eiθ ; |θ| ≤ π/2} is
sent onto the two circular arcs tangent at 1 to the real axis.

2.2 Approximation and entropy numbers

Given an operator T : X → Y between Banach spaces, recall (see [6]) that we can attach to this operator �ve

non-increasing sequences (an), (bn), (cn), (dn), (en) of non-negative numbers (depending on T), respectively
the sequences of approximation, Bernstein, Gelfand, Kolmogorov, and entropy numbers of T. We only de�ne

here the �rst one and the last one. The approximation numbers are de�ned as:

an(T) = inf{‖T − R‖ ; rank (R) < n} , n ≥ 1 . (2.6)

The entropy numbers are de�ned for n ≥ 1 as:

en(T) = inf{ε > 0 ; N
(
T(BX), εBY

)
≤ 2

n−1} , n ≥ 1 , (2.7)

where BX and BY are the respective closed unit balls of X and Y, and where, for A, B ⊆ Y, N(A, B) denotes

the smallest number of translates of B needed to cover A (see [6, Chapter 1], or [28, Chapter 5]).

All those sequences (an), (bn), (cn), (dn), (en), say (un), share the ideal property:

un(ATB) ≤ ‖A‖ un(T) ‖B‖ . (2.8)

For Hilbert spaces, it turns out that

an = bn = cn = dn = sn , (2.9)

where (sn) designates the sequence of singular numbers; but entropy numbers stay a little apart.

For Banach spaces X and Y and T : X → Y, we have, in general, for α > 0:

sup

1≤k≤n
kαek(T) ≤ Cα sup

1≤k≤n
kαak(T)

([5, Theorem 1], see also [28, Theorem 5.2]), and, if X and Y* are of type 2:

an(T) ≤ K en(T) , for all n ≥ 1

([12, Corollary 1.6]), where K = κ [T
2

(X)T
2

(Y*)]2

; in particular, if T acts between Hilbert spaces:

an(T) ≤ 4 en(T) , for all n ≥ 1

(see [28, Theorem 5.3]).
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Recall (see [1, De�nition 6.2.10, p. 137], [17, Dé�nition III.3, p. 162], or [18, De�nition IV.3, p. 180]) that a

Banach space X has type 2 if there is a constant C such that for every �nite sequence x
1
, x

2
, . . . , xn in X we

have: (
1

2
n

∑
ε

1
,...,εn=±1

∥∥∥∥ n∑
k=1

εkxk
∥∥∥∥2
)

1/2

≤ C
( n∑
k=1

‖xk‖2

)
1/2

,

the smallest such constant C is denoted T
2

(X). Every Hilbert space has type 2, thanks to the parallelogram

identity.

Those inequalities indicate that entropy numbers are always bigger than singular numbers, up to a con-

stant, and that, as far as the scale of powers nα is implied, they are dominated by approximation numbers

in a weak sense. But it turns out that, individually, they can be much bigger than the latter for composition

operators, as we shall see.

We will rely on the following estimate ([6, Proposition 1.3.2, p. 17]), in which `2

denotes the space of

square-summable sequences x = (xk)k≥1 of complex numbers. This estimate is given for the sequence (εn) ,

but en = ε
2
n−1 , by de�nition.

Theorem 2.1. (see [6, p. 17]) There exist absolute constants 0 < a < b such that, for any diagonal compact
operator ∆ : `2 → `2 with positive and non-increasing eigenvalues (σk)k≥1, namely ∆

(
(xk)k

)
= (σkxk)k, we have,

for all n ≥ 1:

a sup

k≥1

[
2

−n/2k
( k∏
j=1

σj
)

1/k]
≤ en(∆) ≤ b sup

k≥1

[
2

−n/2k
( k∏
j=1

σj
)

1/k]
. (2.10)

A useful corollary of Theorem 2.1 is the following.

Theorem 2.2. Let T : H
1
→ H

2
be a compact operator between the complex Hilbert spaces H

1
and H

2
, and let

(an)n≥1 be its sequence of approximation numbers. Then, for all n ≥ 1:

α sup

k≥1

[
2

−n/2k
( k∏
j=1

aj
)

1/k]
≤ en(T) ≤ β sup

k≥1

[
2

−n/2k
( k∏
j=1

aj
)

1/k]
, (2.11)

where α and β are positive numerical constants.

Proof. Let Tx =

∑
∞

n=1

sn(x | un) vn the Schmidt decomposition of T, where (un)n and (vn)n are orthonormal

sequences of H
1
and H

2
, respectively, and (sn)n is the sequence of singular numbers of T. Let ∆ : `

2
→ `

2
the

diagonal operator with diagonal values sn, n ≥ 1. Then T = V
1
∆ U

1
and ∆ = V

2
TU

2
, with U

1
x =

(
(x | un)

)
n,

V
1

(
(tn)n

)
=

∑
n tnvn, U2

(
(tn)n

)
=

∑
n tnun and V2

x =

(
(x | vn)

)
n. We have ‖U

1
‖, ‖V

1
‖, ‖U

2
‖, ‖V

2
‖ ≤ 1; hence

the result follows from Theorem 2.1 and the ideal property (2.8).

This theorem might be thought useless, because we do not know better the numbers an than the numbers

en! In our situation, this is not the case, since we made a more or less systematic study of the approximation

numbers an for composition operators in [3, 19–21] for example.

3 The 1-dimensional case

3.1 General results

In [21], we coined the parameter

β
1

(T) = lim

n→∞

[
an(T)

]
1/n

(3.1)

and its versions β+

1
(T), β−

1
(T) with an upper limit and a lower limit respectively. The following result, proved

in [21, Theorem 3.1] for ‖φ‖
∞
< 1 and in [21, Theorem 3.14] for ‖φ‖

∞
= 1, shows in particular that no lower or
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upper limit is needed for β = β
1
, and provides a simpler proof of the second item in Theorem 3.1 below than

in our initial proof of [19, Theorem 3.4].

For the de�nition of the Green capacity Cap (A) of a Borel subset A of D, 0 ≤ Cap (A) ≤ ∞, we refer to [21,

Section 2.3].

Theorem 3.1. Let Ω = φ(D), with φ : D→ D a non-constant analytic map. Then:
1) One always has β−

1
(Cφ) = β+

1
(Cφ) =: β

1
(Cφ) and

β
1

(Cφ) = exp[−1/Cap (Ω)] > 0 . (3.2)

2) In particular, one has the equivalence

β
1

(Cφ) = 1 ⇔ ‖φ‖
∞

= 1 . (3.3)

The �rst item says in particular that we always have:

an(Cφ) & rn (3.4)

for some positive constant r < 1 [19, Theorem 3.1]. This was actually �rst pointed out by Parfenov [27].

The second item says that the behavior an(Cφ) ≈ rn is only obtained when ‖φ‖
∞
< 1 ([19, Theorem 3.4]

or [21, Theorem 3.14]).

For entropy numbers, another parameter emerges:

γ
1

(T) = lim

n→∞

[
en(T)

]
1/

√
n

(3.5)

and its γ+

1
(T) and γ−

1
(T) versions.

Theorem 3.2. Let φ : D→ D be a non-constant symbol and Ω = φ(D). Then
1) γ−

1
(Cφ) = γ+

1
(Cφ) =: γ

1
(Cφ) and

γ
1

(Cφ) = exp

[
−

√
log 2/Cap (Ω)

]
> 0 . (3.6)

2) In particular, one has the equivalence

γ
1

(Cφ) = 1 ⇔ ‖φ‖
∞

= 1 . (3.7)

Proof. Set ρ = 1/Cap (Ω) for simplicity of notations. Let ε > 0, and Cε a positive constant which depends only

on ε and can vary from a formula to another. Theorem 3.1 implies ak ≤ Cε e

εk
e

−kρ
, whence

(a
1
· · · ak)

1/k
≤ Cε e

εk/2

e

−ρk/2

.

Theorem 2.2 gives

en(Cφ) ≤ Cε sup

k≥1
[ e

εk/2

e

−(n/k)(log 2/2)+(ρk/2)

] .

This supremum is essentially attained for k =

⌈√
(n log 2)/ρ

⌉
where d . e stands for the integer part, and gives

en(Cφ) ≤ Cε e

ε
2

√
n log 2/ρ

e

−

√
n ρ log 2

.

This implies γ+

1
(Cφ) ≤ e

ε
2

√
log 2/ρ

e

−

√
ρ log 2

, and �nally

γ+

1
(Cφ) ≤ e

−

√
ρ log 2

.

The lower bound γ−
1

(Cφ) ≥ e

−

√
ρ log 2

is proved similarly.

This clearly ends the proof, since we know that Cap (Ω) = ∞ if and only if ‖φ‖
∞

= 1 (see [21, Theo-

rem 3.13]).
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3.2 Estimates for approximation numbers

Estimates of approximation numbers of composition operators can be obtained by using the boundary be-

havior of the symbol and Blaschke products for the upper estimates, and the radial behavior of this symbol,

reproducing kernels, and interpolating sequences, for the lower estimates.

In order to treat simultaneously the two cases of the lensmaps and of the cuspmap, wewill put ourselves

in a more general situation.

We say that a continuous function ω : [0, 1] → R
+
is a modulus of continuity if it is increasing, sub-

additive, i.e. ω(s + t) ≤ ω(s) + ω(t), and vanishes at 0.

Upper estimates
Let φ be a symbol in the disk algebra, i.e. φ : D→ D is continuous onD and analytic inD, and such that

φ(∂D) ∩ ∂D = {ξ
1
, . . . , ξp}. We say that this symbol is boundary regular if, writing ξj = e

itj
, we have:

1) for some positive constant C, we have |φ(e

it
) − φ(e

itj
)| ≤ C

(
1 − |φ(e

it
)|
)
, for t in a neighborhood of tj

and for j = 1, . . . , p;
2) for some modulus of continuity ω and for some positive constant c, we have c ω(|t − tj|) ≤ |φ(e

it
) −

φ(e

itj
)|, for t in a neighborhood of tj and for j = 1, . . . , p.

The following result is proved in [20, Theorem 2.3].

Theorem 3.3. Let φ be a symbol in the disk algebra whose image touches ∂D at the points ξ
1
, . . . , ξp, and

nowhere else, and such that φ is boundary regular. Then, there are constants κ, K, L > 0, depending only on φ,
such that, for every q ≥ 1:

aq(Cφ) ≤ K
√
ω−1

(κ 2
−Nq

)

κ 2
−Nq

, (3.8)

where Nq is the largest integer such that p NdN < q, with dN the integer part of σ log

κ 2

−N

ω−1

(κ 2
−N

)

+ 1.

This theorem allows to give an upper estimate for all approximation numbers an(Cφ), n ≥ 1 when we can

interpolate between the integers NdN and (N + 1) dN+1
, but this is not the case in general. Nevertheless, this

is the case in the examples below.

Theorem 3.4.
1) For the lens map λθ with parameter θ, we have, for some positive constants α and β, depending on θ:

an(Cλθ ) ≤ α e

−β
√
n
. (3.9)

2) For the cusp map χ, we have, for some positive constants α and β:

an(Cχ) ≤ α e

−βn/ log n
. (3.10)

Proof. 1) The map λθ satis�es the conditions of Theorem 3.3 with ω(h) = hθ, with p = 2. We have ω−1

(h) =

h1/θ
. Hence dN ≈ N, Nq ≈

√q, and we then get from (3.8) that aq(Cλθ ) ≤ α 2

−δN
for q & N2

, with δ > 0, which

gives (3.9).

2) The map χ satis�es the conditions of Theorem 3.3 with p = 1 and ω(h) = 1/(log 1/h). Then, ω−1

(h) =

e

−1/h
and dN ≈ 2

N
, so that Nq ≈ log q and 2

Nq
≈ q/ log q, and (3.10) follows.

The proof of Theorem 3.3 is based on the following Lemma 3.5, with a suitable choice of the Blaschke product

of length pNd (d a positive integer to be speci�ed):

B(z) =

p∏
j=1

N∏
k=1

[ z − pj,k
1 − pj,k z

]d
,

where pj,k = (1 − 2

−k
)ξj, for j = 1, . . . , p and k = 1, 2, . . .. We do not give the details here and refer to [20,

Proof of Theorem 2.3].
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Lemma 3.5 ([15, Lemma 2.4]). For every Blaschke product Bwith less thanN zeros (each of thembeing counted
with its multiplicity), one has:

[
aN(Cφ)

]
2

. sup

0<h<1,|ξ |=1

1

h

∫
S(ξ ,h)

|B(z)|2 dmφ(z) , (3.11)

where S(ξ , h) = {z ∈ D ; |z− ξ | ≤ h} andmφ is the pull-back measure by φ of the normalized Lebesguemeasure
m on T.

The proof of Lemma 3.5 comes from the estimate of the Carleson norm in the Carleson’s theorem and from

the fact that the subspace BH2

is of codimension ≤ N − 1, leading to a majorization of the Gelfand number

cN(Cφ), and then using (2.9). For the convenience of the reader, we reproduce the proof.

Proof of Lemma 3.5. The subspace BH2

is of codimension ≤ N −1. Therefore, aN = cN(Cφ) ≤

∥∥Cφ
|BH2

∥∥
, where

cN is the n-th Gelfand number and where we used the equality aN = cN occurring in the Hilbertian case, as

recalled in the introduction. Now, since ‖Bf‖H2 = ‖f‖H2 for any f ∈ H2

, we have:∥∥Cφ
|BH2

∥∥2

= sup

‖f‖H2
≤1

∫
T

|B ◦ φ|2 |f ◦ φ|2 dm

= sup

‖f‖H2
≤1

∫
D

|B|2|f |2 dmφ = ‖Rµ‖2

,

where µ = |B|2mφ and where Rµ : H2 → L2

(µ) is the restriction map. Of course, µ is a Carleson measure

for H2

since µ ≤ mφ. Now, Carleson’s embedding theorem says us that ‖Rµ‖2

≤ κ2

sup
0<h<1,ξ∈T

µ[S(ξ ,h)]

h (see

[9], Remark after the proof of Theorem 9.3, at the top of page 163; actually, in that book, Carleson’s windows

W(ξ , h) are used instead of pseudo-Carleson’s windows S(ξ , h), but that does not matter, since W(ξ , h) ⊆
S(ξ , 2h): if r ≥ 1 − h and |t − t

0
| ≤ h, then |reit − e

it
0 | ≤ |reit − e

it| + |eit − e

it
0 | ≤ 2h).

Lower estimates
We consider symbols φ taking real values in the real axis (i.e. its Taylor series has real coe�cients) and

such that limr→1
− φ(r) = 1, with a given speed.

We say that φ is radially regular if it takes real values on ]−1, 1[ and there exists a modulus of continuity

ω : [0, 1] → [0, 2] such that 1 − φ(r) ≤ ω(1 − r) for 0 ≤ r < 1. Then we have the following result ([20,

Theorem 3.2]).

Theorem 3.6. Let φ be a radially regular symbol. Then, for the approximation numbers an(Cφ) of the compo-
sition operator Cφ of symbol φ, one has the following lower bound.

an(Cφ) ≥ c sup

0<σ<1

√
ω−1

(a σn)

a σn exp

[
−

20

1 − σ

]
, (3.12)

where a = 1 − φ(0) > 0 and c is another constant depending only on φ.

For our examples, we get:

Theorem 3.7.
1) For the lens map λθ of parameter θ, we have, for some positive constants c and C, depending on θ:

an(Cλθ ) ≥ c exp

(
− C
√
n
)
. (3.13)

2) For the cusp map χ, we have, for some positive constants c and C:

an(Cφ) ≥ c exp(−C n/ log n). (3.14)
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Proof. 1) The lens map λθ satis�es the conditions of Theorem 3.6 with ω−1

(h) ≈ h1/θ
. We get the result by

adjusting σ = 1 − 1/

√
n.

2) The cusp map χ satis�es the conditions of Theorem 3.6 with ω−1

(h) ≈ e

−C′/h
, and by taking σ =

exp(− log n/2n), we get the result.

The tools for proving Theorem 3.6 are the following.

Recall (see [13, pages 194–195], or [25, pages 302–303]) that if (zj) is a Blaschke sequence, its Carleson

constant δ is de�ned as

δ = inf

j≥1
(1 − |zj|2) |B′(zj)| ,

where B is the Blaschke product whose zeros are the points zj. Recall also (see [7], [13, pages 194–195], or [25,

pages 302–303]) that an interpolation sequence (zn) with (best) interpolation constant C is a sequence (zn)

(necessarily Blaschke, i.e.

∑
∞

n=1

(1 − |zn|) < ∞) in the unit disk such that, for any bounded sequence (wn) of

scalars, there exists a bounded analytic function f (i.e. f ∈ H∞) such that:

f (zn) = wn , ∀ n ≥ 1, and ‖f‖
∞
≤ C supn≥1 |wn| .

Now (see [11, Chapter VII, Theorem 1.1]), every H∞-interpolation sequence (zj) is a Blaschke sequence and its

Carleson constant δ is connected to its interpolation constant C by the inequalities

1/δ ≤ C ≤ κ/δ2

(3.15)

where κ is an absolute constant (actually C ≤ κ
1

(1/δ)(1+log 1/δ)). Now, if (zj) is aH∞-interpolation sequence

with constant C, the sequence of the normalized reproducing kernels fj = Kzj /‖Kzj‖, viz fj(z) =

1−|zj|2

1−zjz , satis-

�es

C−1

(∑
j
|λj|2

)
1/2

≤

∥∥∥∥∑
j
λj fj
∥∥∥∥
H2

≤ C
(∑

j
|λj|2

)
1/2

(3.16)

(see [19, Lemma 2.2]).

We then use the following lemma [20, Lemma 3.3], with uj ∈ [0, 1) de�ned inductively by u
0

= 0 and the

relation:

1 − φ(uj+1
) = σ[1 − φ(uj)] with 1 > uj+1

> uj ,

using the intermediate value theorem, where 0 < σ < 1 is a �xed positive number. Note that, when setting

vj = φ(uj), we have −1 < vj < 1,

1 − vj+1

1 − vj
= σ, (3.17)

and

1 − vn = a σn , (3.18)

with a = 1 − φ(0).

Lemma 3.8. Let φ : D → D be an analytic self-map. Let u = (u
1
, . . . , un) be a �nite sequence in D and set

vj = φ(uj), v = (v
1
, . . . , vn). Denote by δv the Carleson constant of the �nite sequence v and set

µ2

n = inf

1≤j≤n

1 − |uj|2

1 − |φ(uj)|2
·

Then, for some constant c′ > 0, we have the lower bound:

an(Cφ) ≥ c′ δ4

v µn . (3.19)

For the details of the proof, we refer to [20, Proof of Theorem 3.2, pages 556-557].
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3.3 Entropy numbers

In this section, we give the behavior of the entropy numbers of the lens maps and the cusp map, seeing that

they signi�cantly di�er from that of the approximation numbers.

Theorem 3.9. Let λθ be the lens map with parameter θ. Then, with positive constants a, b, a′, b′ depending
only on θ:

a′ e

−b′n1/3

≤ en(Cλθ ) ≤ a e

−bn1/3

. (3.20)

Proof. We use Theorem 3.9. It follows, using Theorem 2.2, writing ak = ak(Cλθ ), that (a
1
· · · ak)

1/k
≤ a e

−b
√
k

and that, for some positive constant C:

en(Cλθ ) ≤ C exp

[
−

(
(n/2k) log 2 + bk1/2

)]
.

Taking k = dn2/3e gives the claimed upper bound, with a di�erent value of b.
The lower bound is proved similarly, using Theorem 3.13 and the left inequality in Theorem 2.2.

Theorem 3.10. Let χ be the cusp map. Then, with positive constants a, b, a′, b′:

a′ e

−b′
√
n/ log n

≤ en(Cχ) ≤ a e

−b
√
n/ log n

. (3.21)

Proof. The proof follows the same lines as in Theorem 3.9. Using Theorem 3.10, we get, with another b:
k∏
j=1

[aj(Cχ)] ≤ e

−b k2

/ log k
,

and Theorem 2.2, with the choice k = d
√
n log n e, gives the upper bound, with a di�erent value of b.

The lower bound is obtained similarly, using now Theorem 3.14 and Theorem 2.2.

4 The multidimensional case

4.1 General results

Let φ : DN → DN be an analytic map. We will say that φ is non-degenerate if φ(DN) has non-empty interior,

equivalently if detφ ′
(z) = ̸ 0 for at least one point z ∈ DN .

Let now φ : DN → DN be a non-degenerate analytic map inducing a bounded composition operator

Cφ : H2

(DN) → H2

(DN) (this is not always the case as soon as N > 1, even if φ is injective and hence non-

degenerate, see for example [8, p. 246], when the polydisk is replaced by the ball; but similar examples exist

for the polydisk). Assume moreover that Cφ is a compact operator.

Theorem 4.1. Let Cφ : H2

(DN) → H2

(DN) be a compact composition operator, with φ non-degenerate. We
have:

1) en(Cφ) ≥ c exp

(
− C n

1

N+1

)
, for some constants C > c > 0, depending on φ;

2) if ‖φ‖
∞
< 1, then en(Cφ) ≤ C exp

(
− c n

1

N+1

)
, with C > c > 0 depending on φ.

Proof. 1) It is proved in [3, Theorem 3.1] that, for a non-degenerate map φ, it holds:

ak(Cφ) ≥ a′ e

−b′k1/N
.

As in the previous section, it follows from Theorem 2.2, that (a
1
· · · ak)

1/k
≥ e

−b′′k1/N
, and then, taking k =

dnN/(N+1)e, that:
en(Cφ) ≥ c e

−Cn1/(N+1)

.



176 | Daniel Li et al.

2) Similarly, for ‖φ‖
∞
< 1, it is proved in [3, Theorem 5.2] that

ak(Cφ) ≤ C e

−ck1/N
,

and we get the result from Theorem 2.2.

Those estimates motivate the introduction of the parameter

γN(Cφ) = lim

n→∞

[
en(Cφ)

] 1

n1/(N+1)

. (4.1)

We de�ne similarly γ±N(Cφ), and will say more on it in next section.

4.2 Speci�c results

When Φ : DN → DN is a non degenerate analytic map inducing a compact composition operator

CΦ : H2

(DN) → H2

(DN), a version of Theorem 3.6 is proved in [3, Theorem 4.2]. For upper bounds, a result

was obtained in [3, Theorem 5.5] when Φ = φ
1
⊗ · · ·⊗ φN , where φ

1
, . . . , φN : D→ D are symbols inducing

compact composition operators on H2

(D). We do not give here the precise statements and refer to the paper

[3]. However, we recall the result that can be obtained from that for the multi-lens maps and the multi-cusp

map ([3, Theorem 6.1 and Theorem 6.2]). First, we de�ne the multi-lens map Λθ and the multi-cusp map.

Let λθ be lens maps with parameter θ. The multi-lens map Λθ with parameter θ the multi-cusp map on

the polydisk DN are de�ned respectively as:

Λθ(z
1
, . . . , zN) =

(
λθ(z

1
), λθ(z

2
), . . . , λθ(zN)

)
, (4.2)

and:

Ξ (z
1
, . . . , zN) =

(
χ(z

1
), χ(z

2
), . . . , χ(zN)

)
. (4.3)

for (z
1
, . . . , zN) ∈ DN .

Theorem 4.2.
1) For positive constants a, b, a′, b′ depending only on θ and N, one has

a′ e

−b′n1/(2N)

≤ an(CΛθ ) ≤ a e

−b n1/(2N)

. (4.4)

2) For positive constants a, b, a′, b′ depending only on N, one has

a′ e

−b′ n1/N
/ log n

≤ an(CΞ) ≤ a e

−b n1/N
/ log n

, (4.5)

With the same proof as in Theorem 3.9 and Theorem 3.10, we obtain estimates for the entropy numbers.

Theorem 4.3.
1) Let Λθ be the multi-lens map with parameter θ. Then:

a′ exp (−b′n1/(2N+1)

) ≤ en(CΛθ ) ≤ a exp (−b n1/(2N+1)

) . (4.6)

2) Let Ξ : DN → DN be the multi-cusp map. Then:

a′ exp

[
− b′ n1/(N+1)

(log n)

−N/(N+1)

]
≤ en(CΞ) ≤ a exp

[
− b n1/(N+1)

(log n)

−N/(N+1)

]
.

(4.7)
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5 Links with pluricapacity and Zakharyuta’s results
Here, in dimension N ≥ 2, the situation is satisfactory for upper bounds (see [22]); for lower bounds, see [23].

The notion involved is now that of pluricapacity, or Monge-Ampère capacity, coined by Bedford and Taylor

in [4]. More precisely, if A is a Borel subset of DN , we refer to [22] or [23] for the de�nition of its pluricapacity

CapN (A), belonging to [0, +∞], and set:

τN(A) =

1

(2π)
N CapN (A) (5.1)

ΓN(A) = exp

[
−

( N!

τN(A)

)
1/N
]

(5.2)

β+

N(T) = lim sup

n→∞

[
an(T)

]
1/n1/N

. (5.3)

We temporarily assume that ‖φ‖
∞

< 1 so that K = φ(DN) is a compact subset of DN . We proved in [22,

Theorem 6.4], relying on positive results of Nivoche ([26]) and Zaharyuta ([33, Proposition 6.1])¹ on the so-

called Kolmogorov conjecture, that:

Theorem 5.1. It holds:
β+

N(Cφ) ≤ ΓN(K) . (5.4)

We have the following result, which extends the previous result in dimension 1.

Theorem 5.2. The following upper bound holds:

γ+

N(Cφ) ≤ exp

(
− βNρN/(N+1)

)
, (5.5)

where

ρ =

(
N!

τN(K)

)
1/N

= 2π
(

N!

CapN (K)

)
1/N

, (5.6)

and

βN = (log 2)

1/(N+1)

(
2N
N + 1

)N/(N+1)

· (5.7)

Proof. Abbreviate an(Cφ) and en(Cφ) to an and en, and set α = N/(N + 1). Let ε > 0. Theorem 5.1 implies:

ak ≤ Cε e

εk1/N
e

−ρk1/N
,

so:

(a
1
· · · ak)

1/k
≤ Cε e

εk1/N
e

−ραk1/N
.

Apply once more Theorem 2.2 to obtain:

en ≤ Cε sup

k≥1
e

εk1/N
exp

[
−

(
n

2k log 2 + ρ α k1/N
)]

.

The supremum is essentially attained for k the integral part of (log 2/2ρα)

αnα and then, in view of (5.7) and

α/N = 1 − α, as n goes to in�nity:

n
k log 2 + ρ α k1/N ∼ (log 2)

1−α
(2ρ α)

α n1−α
.

1 A more general result has recently been proved by Bandtlow and Nivoche in [2].
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Finally, with cα = (log 2/2ρ α)

1−α
, we have:

en ≤ Cε e

ε cαn1−α
exp (−βNραn1−α

)

= Cε e

ε cαn1/(N+1)

exp

(
− βNρN/(N+1)n1/(N+1)

)
.

This clearly ends the proof of Theorem 5.2.

Remark.Wehave so far no sharp lower bound for entropy numbers, at leastwhen ‖φ‖
∞

= 1, sincewe already

fail to have one in general for approximation numbers (see however [23]). In dimension 1, we used the fact

that every connected Borel subset E of D such that
¯E ⊆ D, the Green capacity of E is equal to that of

¯E ([21,

Theorem 2.3]).

Besides, let J : H∞(DN) → C(K) be the canonical embedding, when K ⊆ DN is a “condenser”, namely a

compact subset of DN such that any bounded analytic function on DN which vanishes on K vanishes identi-

cally, which is moreover “regular”. The positive solution to the Kolmogorov conjecture can be expressed in

terms of the Kolmogorov numbers dn(J) of J or equivalently, in terms of the entropy numbers en(J) of J ([32,
Theorem 5], generalizing Erokhin’s result in dimension 1 appearing in his posthumous paper [10] and meth-

ods due to Mityagin [24] and Levin and Tikhomirov [16]; see also [33, Lemma 2.2]). The result is that, taking

K = φ(DN), one has, with sharp constants cK, c′K depending on the pluricapacity of K in DN :

dn(J) ≈ e

−cK n1/N
and en(J) ≈ e

−c′K n
1/(N+1)

. (5.8)

This jump from the exponent 1/N to the exponent 1/(N + 1) is re�ected in our Theorem 5.2, through the new

parameter γ+

N .
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