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Abstract: A new class of densities for modelling non-negative data, which is based on the skew-
symmetric family of distributions proposed by Azzalini is introduced.We focus on the model ge-
nerated by the skew-normal distribution, called Extended Half Skew-Normal distribution. Its
relevant properties are studied. These are pdf, cdf, moments, mgf, and stochastic representation.
The parameters are estimated by moment and maximum likelihood methods. A simulation study
to assess the performance of the maximum likelihood estimators in finite samples was carried out.
Two real applications are included, in which the EHSN provides a better fit than other proposals in
the literature.

Keywords: lifetime distributions; skew-symmetric distributions; maximum likelihood

MSC: 62E10; 62E15; 62F10

1. Introduction

In the last few years, a considerable amount of research activity has been carried out
in the field of skew-symmetric distributions theory and applications. Skew-symmetric
distributions are of interest since they can be applied to datasets with an asymmetric
structure without the need of applying arbitrary transformations to original data in order
to reach symmetry. Quite often these transformations cause a loss of interpretability
with respect to the original data. Nowadays, the focus of a number of statisticians is
the development of non-symmetric parametric extensions of symmetric distributions.
That is, to consider distributions with support in R, to which parameters are incorporated
to deal with skewness and kurtosis. In this sense, we can cite the pioneering paper by
Azzalini [1] in which the skew-normal model was introduced. Other univariate parametric
extensions of this model can be seen in the works by Azzalini [2], Azzalini and Capitano [3],
Gupta et al. [4], Arellano-Valle et al. [5], DiCiccio and Monti [6], Gómez et al. [7], Adcock
and Azzalini [8], and Gómez-Déniz et al. [9], among others. In all these papers, results and
applications of great interest can be found.

The model studied in this paper is based on the univariate skew-normal distribution
introduced by Azzalini [1]. There, a general method to build skew distributions on the basis
of symmetric distributions was proposed. This key result is pointed out in next lemma, and
will be one of the starting points to develop our proposal.

Lemma 1. Let f be a symmetric at zero probability density function (pdf) and G an absolutely
continuous cumulative distribution function (cdf), such that G′(x) = G′(−x). Then

h(x; λ) = 2 f (x)G(λx), x ∈ R, λ ∈ R, (1)
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is the pdf of a random variable (rv) X. In (1), λ is a shape parameter related to the skewness of
the distribution.

In literature, it is said that hλ = h(x; λ) introduced in (1) is the skew version of f with
skewing function G.

Gómez et al. [7] showed that cases of great interest are obtained if the N(0, 1) cdf,
Φ, is considered as skewing function. Specifically they proposed the following family of
skew densities

g(x; λ) = 2 f0(x)Φ(λx), λ, x ∈ R, (2)

where f0 is any symmetric around zero pdf and λ is a skewness parameter. Recall that, if
f0 = φ and G = Φ then gλ reduces to the pdf of the skew normal SN(λ) introduced by
Azzalini [1]. As merit of (2), it can be cited that the models obtained are more flexible as for
its skewness parameter than the distributions proposed by other authors, such as those
proposed in Nadarajah and Kotz [10].

Flexible models can be of interest in real applications where is quite common to find
non-negative data, which need for their modelling distributions with positive support.
In this sense, we consider the model introduced in Elal-Olivero et al. [11], whose pdf is

fY(y; α) = 2
(

α + y2

α + k

)
f0(y), y ≥ 0, α ≥ 0, (3)

where f0 is the pdf of a symmetric around zero rv Y with E[Y2] = k < ∞. If f0(·) = φ, the
pdf of the N(0, 1) distribution, then k = 1 and (3) is called the Extended Half-Normal (EHN)
density, which was studied in [11]. Other choices of f0 are possible, for instance, taken as
f0(·) the Power Exponential pdf, [12], the Extended Half-Power Exponential model was
recently proposed in [13].

The aim of this paper is to obtain a new model of distributions, based on (2), which
will be flexible enough to modelling non-negative datasets.

The outline of this paper is the following one. In Section 2, the new general family
of distributions is introduced along with basic properties. In Section 3, the particular
case based on the skew-normal pdf is considered. This model is called the Extended Half
Skew-Normal (EHSN) distribution. Its cdf, moments and stochastic representation are
studied in detail. Section 4 is devoted to inference in the EHSN model. The method of
moments and maximum likelihood (ML) are discussed. In Section 5, a simulation study is
carried out to assess the consistence of ML estimators in the EHSN model. Finally, two real
applications are given in Section 6, which illustrate the usefulness of our proposal.

2. A New General Family of Distributions

In this section, based on (1), a new class of distributions for modelling non-negative
data is introduced. Some basic properties of this family are also given.

Lemma 2. Let gλ = g(x; λ) introduced in (2), and h a non-negative scalar function such that∫ ∞

0
h(x)gλ(x)dx < ∞.

Then,
f (x) = cgλ(x)h(x), x > 0 ,

is a pdf in R+ with c−1 =
∫ ∞

0
h(x)gλ(x)dx < ∞.
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Note that, varying f0 or h in Lemma 2, a diversity of distributions with non-negative
support can be obtained. In Proposition 1, we apply the idea given in (3) with k = 1 to the
skew density gλ defined in (2).

Proposition 1. Let gλ(·) defined in (2) and c−1
α,λ =

∫ ∞

0

(
α + x2

α + 1

)
gλ(x)dx. Provided that c−1

α,λ <

∞, and by applying Lemma 2, the following family of densities is obtained

fX(x; α, λ) = cα,λ

(
α + x2

α + 1

)
gλ(x), x ≥ 0, (4)

where α > 0 and λ ∈ R.

Proof. Straightforward by using Lemma 2.

Remark 1. Particular cases of interest of (4) are:

P1. Taking limit when λ→ ∞, then gλ tends to the half (or folded at zero) density of f0, 2 f0(x)
with x ≥ 0, and therefore fX(·) tends to the pdf introduced in (3).

P2. If α → ∞, then fX tends to the density gλ truncated to (0,+∞), which can be denoted as
fX(x; α, λ)→ cgλ(x), x ≥ 0.

In a general setting, it is of interest to introduce a scale parameter δ > 0. Then, the pdf
of our family will be δ−1 fX(x/δ), that is

fX(x; α, λ, δ) =
cα,λ

δ

(
α + (x/δ)2

α + 1

)
gλ

( x
δ

)
, (5)

with cα,λ given in Proposition 1.
The notation X ∼ fX(x; α, λ, δ) will be used to refer to the density defined in (5).

3. The Extended Half Skew-Normal

In this section, we focus on the particular case in which gλ(·) given in (2), is the pdf
of the skew normal model, that is , f0 = φ. The model, which results of applying (4),
will be called the Extended Half Skew-Normal (EHSN). Results in this new model will be
obtained by applying next lemmas, whose proofs can be seen in Nadarajah and Kotz [10]
and Huang et al. [14], respectively.

Lemma 3 ((Nadarajah and Kotz [10])). Let Ftr be the cdf of a t-Student’s distribution with r > 0
degrees of freedom. Then, for every positive integer r, Ftr is given by

Ftr (t) =


1
2
+

1
π

arctan
(

t√
r

)
+

1
2
√

π

(r−1)/2

∑
i=1

Γ(i)ri−1/2

Γ(i + 1/2)
t

(r + t2)i , if r is odd

1
2
+

1
2
√

π

r/2

∑
i=1

Γ(i− 1/2)ri−1

Γ(i)
t

(r + t2)i−1/2 , if r is even

(6)

where t ∈ R and
0

∑
i=1

is defined as 0.

Lemma 4 (Huang et al. [14]). For s ≥ −1 and λ ∈ R, the following result holds

∫ ∞

0
vsφ(v)Φ(λv)dv =

2s/2−1Γ((s + 1)/2)√
π

Fts+1

(
λ
√

s + 1
)

. (7)
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Lemma 5. Let X have pdf fX(x; α, λ, δ) as introduced in (5). Then, the normalizing constant, cα,λ,
in (5) is

cα,λ =
2π

π + 2 arctan(λ) + 2λ
(1+λ2)(α+1)

. (8)

Proof. Note that, making the change of variable v = x
δ ,

c−1
α,λ =

∫ ∞

0

2
δ3

(
αδ2 + x2

α + 1

)
φ
( x

δ

)
Φ
(

λ
x
δ

)
d =

∫ ∞

0
2
(

α + v2

α + 1

)
φ(v)Φ(λv)dv .

By applying the results given in Lemma 3 and Lemma 4 [10]∫ ∞

0
φ(v)Φ(λv)dv =

Γ(1/2)
2
√

π
Ft1(λ) =

1
4
+

1
2π

arctan(λ) , (9)∫ ∞

0
v2φ(v)Φ(λv)dv =

Γ(3/2)√
π

Ft3

(
λ
√

3
)

=
1
4
+

1
2π

[
λ

1 + λ2 + arctan(λ)
]

. (10)

From (8)–(10) is obtained.

Proposition 2. Let X ∼ EHSN(α, δ, λ). Then, the pdf of X is given by

fX(x; α, δ, λ) =
cα,λ

δ3

(
αδ2 + x2

α + 1

)
2φ
( x

δ

)
Φ
(

λ
x
δ

)
, x ≥ 0, (11)

with α > 0 shape parameter, δ > 0 scale parameter, λ ≥ 0 skewness parameter and cα,λ given
in (8).

Proof. It follows from Lemma 5.

Remark 2. In the model introduced in Proposition 2, we restrict the skewness parameter to λ ≥ 0
since negative values of λ skew the distribution to negative values of x, and the resulting pdf’s are
not of interest for the purpose of modelling non-negative data.

Corollary 1. The following models are particular cases of the EHSN distribution:

1. If λ→ 0 or λ→ +∞ then EHSN(α, δ, λ) reduces to the Extended Half-Normal distribution,
EHN(α, δ), introduced in [11].

2. If λ = 0, α = 0, and δ = 1, then EHSN(α = 0, δ = 1, λ = 0) reduces to the Right Half
Bimodal Normal model proposed in [15], RHBN(2).

3. If λ = 0 and α → ∞ then EHPE(α → ∞, δ, λ = 0) reduces to the Half-Normal distribu-
tion, HN(δ).

Figure 1 summarizes the relationships among the EHSN and the particular cases
previously cited.

In Figure 2, plots for the pdf of EHSN model are given. Without loss of generality,
the scale parameter δ = 1 is taken. Four values of λ are fixed (λ = 0.1, 1, 2, 5), and several
values of α are considered.

Next, it is proven that the cdf of the EHSN model can be expressed in terms of the cdf
of a skew-normal, cdf and pdf of a Generalized Gamma, and pdf of a N(0, 1) distribution.
Details about the Generalized Gamma introduced by Stacy [16] are given in Appendix A.
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EHSN(α, δ, λ)

α=0, δ=1, λ=0

!!

λ=0

||

λ=0, α→∞

��

EHN(α, δ)
α=0, δ=1 //

α→∞

""

RHBN(2)

HN(δ)

Figure 1. Particular cases for the EHSN distribution.

(a) (b)

(c) (d)

Figure 2. (a) Pdf of EHSN (α, δ = 1, λ = 0.1) for different values of α. (b) Pdf of EHSN (α, δ = 1, λ = 1)
for different values of α. (c) Pdf of EHSN (α, δ = 1, λ = 2) model for different values of α. (d) Pdf of
EHSN (α, δ = 1, λ = 5) model for different values of α.

Proposition 3. Let X ∼ EHSN(α, δ, λ), λ > 0. Then, the cdf X, FX , can be obtained as:

FX(x) =
cα,λ

(α + 1)

{
α

[
Φ
( x

δ

)
− 2O

( x
δ

, λ
)
− 1

2
+

1
π

arctan(λ)
]
+

1
2

FGG

( x
δ

)
+
∫ x/δ

0
fGG(t)

∫ λt

0
φ(u)dudt

}
, (12)

where φ(·) and Φ(·) denote the pdf and cdf of a N(0, 1), FGG and fGG denotes the cdf and pdf of a
Generalized Gamma distribution, GG(

√
2, 3, 2), and O(·, λ) is the Owen [17] function.

Proof. Given X ∼ EHSN(α, δ, λ), let us consider Z = X
δ ∼ EHSN(α, 1, λ). We have

FX(x) = FZ

( x
δ

)
. (13)



Mathematics 2022, 10, 3740 6 of 19

Next, we are going to obtain the cdf of Z for z > 0

FZ(z) =
∫ z

0
fZ(t)dt

= cα,λ
α

(α + 1)

∫ z

0
2φ(t)Φ(λt)dt + cα,λ

1
(α + 1)

∫ z

0
2t2φ(t)Φ(λt)dt .

Note that 2φ(t)Φ(λt) for t ∈ R is the pdf of a skew-normal distribution, SN(λ), as it
can be seen in [1]. Therefore, we can write∫ z

0
2φ(t)Φ(λt)dt = Φ

( x
δ

)
− 2O

( x
δ

, λ
)
− 1

2
+

1
π

arctan(λ) , (14)

On the other hand, let us next consider∫ z

0
2t2φ(t)Φ(λt)dt .

Note that 2t2φ(t) for t > 0 is the pdf of the Generalized Gamma distribution intro-
duced by Stacy [16], GG(a =

√
2, d = 3, p = 2). By proceeding similarly to [18], we

have that ∫ z

0
2t2φ(t)Φ(λt)dt =

∫ z

0
2t2φ(t)

∫ λt

−∞
φ(u)dudt ,

can be obtained in terms of the joint distribution of a random vector (T, U) with T ∼
GG(
√

2, 3, 2), fGG(t) = 2t2φ(t) with t > 0, and U ∼ N(0, 1) independent.
Specifically, for λ > 0∫ z

0
2t2φ(t)

∫ λt

−∞
φ(u)dudt = FGG(z)Φ(0) +

∫ z

0
2t2φ(t)

∫ λt

0
φ(u)dudt .

Taking into account that Φ(0) = 1/2, fGG(t) = 2t2φ(t) with t > 0, and (12) and (13)
follows.

Since the EHSN distribution can be used to model lifetime data is of interest to study its
survival and hazard rate function, see [19,20]. These functions are next obtained. Some plots
are given in Figure 3.

(a) (b)

Figure 3. (a) Plots of the survival function for the EHSN(α, 1, 0.1). (b) Plots of the hazard rate function
for the EHSN(α, 1, 0.1).

Corollary 2. Let X ∼ EHSN(α, δ, λ) with λ > 0. Then

1. The survival function, SX , is SX(t) = 1− FX(t), t > 0, and FX was given in (12).

2. The hazard rate function, hX , is hX(t) =
fX(t)
SX(t)

, t > 0, and fX given in (11).
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Plots of the survival and hazard rate function of X ∼ EHSN(α, δ, λ) are given in
Figure 3 for fixed λ = 0.1, δ = 1, and α ∈ {0.5, 1, 1.5, 2, 5}.

Remark 3. Similar plots were obtained for the values of parameters considered in Figure 2. The plot
obtained in Figure 3 for the hazard rate function suggests that for λ and δ fixed, the EHSN model
is stochastically ordered with respect to α.

3.1. Moments

From now on, the notation Y ∼ fY(y) will be used to denote that Y has pdf fY.
In this section, first the moments of EHSN model are obtained. Second it is proven that
the moment generating function (mgf) of EHSN model can be obtained from the mgf of
Y ∼ c1φ(y)Φ(λy), y ≥ 0.

Proposition 4. Let X ∼ EHSN(α, δ, λ). Then, the moment of order n can be obtained as

E[Xn] =
2cα,λ

α + 1

{
α2n/2−1Γ((n + 1)/2)√

π
Ftn+1(λ

√
n + 1) +

2n/2Γ((n + 3)/2)√
π

Ftn+3(λ
√

n + 3)

}
,

where Ftr (·) was given in (6).

Proof. From (6) and (7), the proposed result follows.

Next, the moment generating function (mgf) is obtained.

Proposition 5. Let X ∼ EHSN(α, δ, λ). Then the mgf of X, MX , can be obtained as

MX(t) = MZ(δt) with Z ∼ EHSN(α, 1, λ)

and where the mgf of Z is given by

MZ(t) =
cα,λ

(α + 1)
(1 + α + t2) MY(t)

+
cα,λ

(α + 1)

[
t√
2π

+ t
√

2√
π

λ√
1 + λ2

MHN(t) +
λ

π(1 + λ2)
MGG(t)

]
,

where MY(t) is the mgf of Y ∼ c12φ(y)Φ(λy), y > 0; MHN(t) is the mgf of a half normal
distribution, HN

(
1

1+λ2

)
; and MGG is the mgf of a Generalized Gamma, GG

( √
2√

1+λ2 , 2, 2
)

.

Proof.
MZ(t) = E[exp(tZ)] =

∫ ∞

0
etz fz(z)dz,

with fz the pdf of Z ∼ EHSN(α, 1, λ).
Note that ∫ ∞

0
etz2φ(z)Φ(λz)dz = MY(t) (15)

with Y ∼ c12φ(y)Φ(λy), y > 0. That is, the mgf of a skew normal distribution, SN(λ),
truncated at zero.

Let us consider now ∫ ∞

0
etz2z2φ(z)Φ(λz)dz = I. (16)

This integral is solved by applying integration by parts twice, taking in both cases
dv = zφ(z), (v = −φ(z)). First, we have

I = My(t) + 2t
∫ ∞

0
etzzφ(z)Φ(λz)dz + 2λ

∫ ∞

0
etzzφ(z)φ(λz)dz.
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Second, we obtain

2t
∫ ∞

0
etzzφ(z)Φ(λz)dz =

t√
2π

+ t2My(t) + λt
∫ ∞

0
etz2φ(z)φ(λz)dz

=
t√
2π

+ t2My(t) + λt
√

2√
π

1√
1 + λ2

MHN(t),

where MHN(t) is the mgf of a half normal distribution, HN
(

1
1+λ2

)
.

Finally, we consider

2λ
∫ ∞

0
etzzφ(z)φ(λz)dz =

λ

π

∫ ∞

0
etz z exp

{
− z2(1 + λ2)

2

}
dz

=
λ

π(1 + λ2)
MGG(t)

where MGG is the mgf of a Generalized Gamma, GG
(

a =
√

2√
1+λ2 , d = 2, p = 2

)
.

As a direct consequence of Proposition 4, the first four moments of EHSN(α, δ, λ)
model are given, µk = E[Xk], with k = 1, . . . , 4.

Corollary 3. Let X ∼ EHSN(α, λ, δ). Then,

1. µ1 =
2cα,λδ√

2π(α + 1)

{
αFt2

(
λ
√

2
)
+ 2Ft4

(
λ
√

4
)}

.

2. µ2 =
cα,λδ2

α + 1

{
αFt3

(
λ
√

3
)
+ 3Ft5

(
λ
√

5
)}

.

3. µ3 =
2
√

2cα,λδ3
√

π(α + 1)

{
αFt4

(
λ
√

4
)
+ 4Ft6

(
λ
√

6
)}

.

4. µ4 =
cα,λδ4

α + 1

{
3αFt5

(
λ
√

5
)
+ 15Ft7

(
λ
√

7
)}

.

Expressions of variance, skewness and kurtosis can be obtained from Corollary 3.

Corollary 4. Let X ∼ EHSN(α, λ, δ). Then,

1. The variance of X, Var[X] = E[X2]− (E[X])2, is

Var[X] =
cα,λδ2

α + 1

{
αFt3(λ

√
3) + 3Ft5(λ

√
5)− 4cα,λ

2π(α + 1)

[
αFt2(λ

√
2 + 2Ft4(λ

√
4))
]2
}

.

2. The skewness,
√

β1, and kurtosis, β2, coefficients can be obtained by using

√
β1 =

µ3 − 3µ1µ2 + 2µ3
1

(µ2 − µ2
1)

3
2

, and β2 =
µ4 − 4µ1µ3 + 6µ2µ2

1 − 3µ4
1

(µ2 − µ2
1)

2
.

Without loss of generality, the scale parameter can be taken as one, δ = 1. Plots for√
β1 and β2, as functions of α and λ are given in Figure 4.
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(a) (b)

(c) (d)

Figure 4. (a)
√

β1 as function of λ (α = δ = 1); (b) β2 as function of λ (α = δ = 1); (c)
√

β1 as
function of α and λ (δ = 1); (d) β2 as function of α and λ (δ = 1).

3.2. Stochastic Representation

In this section, the stochastic representation of the EHSN model is given. This result
will be used to generate random values of this model.

Next propositions allow us to obtain the stochastic representation of the EHSN model.

Proposition 6. Let Y and U be independent rv’s, with Y2 ∼ χ2
3 and P(U = −1) = P(U = 1) =

1
2 . Then, the rv W = U|Y| is distributed as W ∼ w2φ(w) with w ∈ R.

Proof. It can be seen in Elal-Olivero et al. [11].

Proposition 7. Let Z and W be independent rv’s, with Z ∼ N(0, 1) and W ∼ w2φ(w), w ∈ R.

Let us define H =
√

α
α+1 Z +

√
1

α+1 W. Then H ∼ α + h2

α + 1
φ(h), with h ∈ R and α > 0.

Proof. Let us denote a =
√

α
α+1 and b =

√
1

α+1 . We have that the cdf of H, FH , is

FH(h) = P(aZ + bW ≤ h) = P
(

Z ≤ h− bW
a

)
=
∫ ∞

−∞
FZ

(
h− bw

a

)
fW(w)dw .



Mathematics 2022, 10, 3740 10 of 19

Taking derivative with respect to h, the pdf of H, fH , is obtained

fH(h) =
1
a

∫ ∞

−∞
fZ

(
h− bw

a

)
fw(w)dw =

1
a

φ(h)
∫ ∞

−∞
w2φ

(
w− hb

a

)
dw

=

(
α + h2

α + 1

)
φ(h), h ∈ R.

Proposition 8. Let L = |H|, where H was defined in Proposition 7. Then, L ∼ 2
(

α + l2

α + 1

)
φ(l)

with l > 0, that is, L ∼ EHN(α).

Proof. For l > 0, we have that

FL(l) = F|H|(l) = P(|H| < l) = P(H < l)− P(H < −l) = FH(l)− FH(−l).

Taking derivative with respect to l, and sice fH is symmetrical about zero, we have that

fL(l) = fH(l) + fH(−l) = 2 fH(l) = 2
(

α + l2

α + 1

)
φ(l), l > 0.

Proposition 9. Let L and Z be independent rv’s, such that L ∼ 2
(

α + l2

α + 1

)
φ(l), with l > 0 and

Z ∼ N(0, 1). Then

T ≡ L|Z < λL ∼ EHSN(α, λ), λ ∈ R .

Proof. The cdf of T, FT , is

FT(t) = P(L < t|Z < λL) =
P(L ≤ t, Z < λL)

P(Z < λL)
, t > 0 .

The numerator is

P(L ≤ t, Z < λL) =
∫ t

0
P(Z < λL|L = l) fL(l)dl = 2

∫ t

0

(
α + l2

α + 1

)
φ(l)Φ(λl)dl .

The denominator is

P(Z < λL) =
∫ ∞

0
P(Z < λL|L = l) fL(l)dl = 2

∫ ∞

0

(
α + l2

α + 1

)
φ(l)Φ(λl)dl .

From (8), P(Z < λL) = c−1
α,λ, and therefore

FT(t) = 2cα,λ

∫ t

0

(
α + l2

α + 1

)
φ(l)Φ(λl)dl .

Taking derivative with respect to t, the pdf of T is

fT(t) = 2cα,λ

(
α + t2

α + 1

)
φ(t)Φ(λt), t > 0.

Proposition 10. Let X = δT with δ > 0 and T defined in Proposition 9. Then X ∼ EHSN(α, δ, λ).
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Proof. Immediate since the pdf of X is fX(x) = 1
δ fT
( x

δ

)
.

4. Inference

In this section, inference for the parameters in the EHSN distribution is carried out
from a classical point of view. Let X ∼ EHSN(α, δ, λ) and consider independent copies of
X, that is X1, X2, . . . , Xn a random sample from X. The method of moments and maximum
likelihood estimators are next discussed.

4.1. Method of Moment Estimators

The moments estimators result from the solution of the equations E(X j) = X j, for
j = 1, 2, 3, where X j = n−1 ∑n

i=1 xj
i denotes the j-th sample moment. Solving E(X) = X, we

have that

δ =
X
√

2π(α + 1)

2cα,λ

{
αFt2

(
λ
√

2
)
+ 2Ft4

(
λ
√

4
)} . (17)

Taking (17), and by substituting it into E(X j), j = 2, 3 given in Corollary 1, we get

X2 =
X2

π(α + 1)
{

αFt3

(
λ
√

3
)
+ 3Ft5

(
λ
√

5
)}

2cα,λ

{
αFt2

(
λ
√

2
)
+ 2Ft4

(
λ
√

4
)}2 , (18)

X3 =
X3

π(α + 1)2
{

αFt4

(
λ
√

4
)
+ 4Ft6

(
λ
√

6
)}

c2
α,λ

{
αFt2

(
λ
√

2
)
+ 2Ft4

(
λ
√

4
)}3 . (19)

These equations must be solved by using mathematical software, such as the function
nleqslv available in R software [21], to obtain the moment estimators α̂MM and λ̂MM.
Finally, δ̂MM is obtained from (17).

4.2. Maximum Likelihood

Given X1, X2, . . . , Xn a random sample of size n from EHSN(α, δ, λ), then from (11),
the log-likelihood function is given by

`(θ) ∝ n log(cα,λ)− 3n log(δ)− n log(α + 1) +
n

∑
i=1

log(αδ2 + x2
i )−

1
2δ2

n

∑
i=1

x2
i +

n

∑
i=1

log
(

Φ
(

λ
xi
δ

))
, (20)

where ∝ means proportional to, and θ = (α, δ, λ). Taking partial derivatives with respect to
α, δ, and λ, the elements of the score vector are obtained, S(θ) =

(
∂`
∂α , ∂`

∂δ , ∂`
∂λ

)
, that is

∂`

∂α
= − n

α + 1
+

nλcα,λ

π(α + 1)2(1 + λ2)
+

n

∑
i=1

δ2

αδ2 + x2
i

,

∂`

∂δ
= −3n

δ
+

1
δ3

n

∑
i=1

x2
i +

n

∑
i=1

2αδ

αδ2 + x2
i
− λ

n

∑
i=1

xi
δ2 ξ
(

λ
xi
δ

)
,

∂`

∂λ
= − cα,λ

π(1 + λ2)

(
1 +

1− λ2

(1 + α)(1 + λ2)

)
+

n

∑
i=1

xi
δ

ξ
(

λ
xi
δ

)
,

where ξ(·) = φ(·)/Φ(·). The MLEs of θ̂ are obtained as solution of S(θ) = 0. Nu-
merical methods must be used to solve this system. For instance, we use the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm to obtain the estimators of (log α, log δ, λ)
and by invariance, we obtained the estimators of α and δ (See details in [22]).
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4.3. Observed Fisher Information Matrix

The asymptotic variance of MLEs, θ̂ = (α̂, δ̂, λ̂), can be estimated from the Fisher in-
formation matrix, given by I(θ) = −E

[
∂2`(θ)/∂θ∂θ>

]
with `(θ) given in (20). Recall that,

under regularity conditions,

I(θ)−1/2
(

θ̂− θ
) D→ N3(03, I3), as n→ +∞, (21)

where D stands convergence in distribution and N3(03, I3) denotes the standard trivariate
normal distribution. Moreover, I(θ) can be obtained from the matrix −∂2`(θ)/∂θ∂θ>,
whose elements are given by Iαα = −∂2`(θ)/∂α2, Iαδ = −∂2`(θ)/∂α∂δ, and so on. Explic-
itly, we have

Iαα =
n

∑
i=1

δ4

(αδ2 + x2
i )

2
− n

(α + 1)2

[
1 +

λcα,λ

π(α + 1)(1 + λ2)

(
λcα,λ

π(α + 1)(1 + λ2)
− 2
)]

,

Iαδ =
n

∑
i=1

2δ

αδ2 + x2
i

[
αδ2

(αδ2 + x2
i )
− 1

]
,

Iαλ =
ncα,λ

π(α + 1)2(1 + λ2)

[
λcα,λ

π(1 + λ2)
kα,λ +

2λ2

1 + λ2 − 1
]

,

Iδδ =
3
δ2

[
n

∑
i=1

x2
i

δ2 − n

]
+

n

∑
i=1

2α

αδ2 + x2
i

[
2αδ2

αδ2 + x2
i
− 1

]
+ λ

n

∑
i=1

xi
δ3 ξ
(

λ
xi
δ

)[
λ

xi
δ

(
λ

xi
δ
+ ξ
(

λ
xi
δ

))
− 2
]
,

Iδλ =
n

∑
i=1

xi
δ2 ξ
(

λ
xi
δ

)[
1− λ

xi
δ

(
λ

xi
δ
+ ξ
(

λ
xi
δ

))]
,

Iλλ =
−cα,λ

π(1 + λ2)2

[
kα,λ

[ cα,λ

π
kα,λ + 2λ

]
+

4λ

(1 + α)(1 + λ2)

]
+

n

∑
i=1

x2
i

δ2 ξ
(

λ
xi
δ

)[
λ

xi
δ
+ ξ
(

λ
xi
δ

)]
.

where kα,λ =
(

1 + 1−λ2

(1+α)(1+λ2)

)
.

In practice, it is not possible to obtain a closed form to the expected value of previous
expressions. So, the covariance matrix of MLEs, I(θ)−1, can be estimated by I(θ̂)−1, where
I(θ̂) denotes the observed information matrix, which is obtained by evaluating the previous
derivatives at the MLE θ̂, i.e.

I(θ̂) = −∂2`(θ)/∂θ∂θ>|θ=θ̂. (22)

The asymptotic variances of α̂, δ̂, and λ̂ are estimated by the diagonal elements of
I(θ̂)−1, and their standard errors by the square root of asymptotic variances. Details about
the theoretical results used in this subsection can be seen in [23].

5. Simulation Study

In this section, a simulation study is carried out to asses the performance of ML estima-
tors. First an algorithm to generate samples from EHSN(α, λ, δ) is given. The simulation
algorithm is based on the stochastic representation introduced in Section 3.2.

Algorithm

(i) Simulate independently: R ∼ U(0, 1), Y ∼ χ2
3 and Z, J ∼ N(0, 1).

(ii) If R < 1
2 , then U = −1. Otherwise U = 1.

(iii) Compute W = U
√

Y.

(iv) Compute L =
∣∣∣√ α

α+1 Z + 1√
α+1

W
∣∣∣.

(v) Compute L = |H|.
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(vi) If J < λL, then T = L. Otherwise, repeat steps (i) to (v) until you get a new random
value of T.

(vii) Take X = δT.

As values of parameters in our simulation, we consider for α ∈ {0.25, 0.5, 1}; λ ∈
{0.5, 1, 2} and δ ∈ {1, 10}. As for the sample size, we consider n ∈ {100, 300, 500, 1000}.
For each sample size, and every combination of α, λ, δ, we carry out 1000 replicates and the
corresponding ML estimates are computed.

Results are given in Table 1. As summaries we provide the estimated bias (bias), the
mean of the estimated standard errors (SE), and the root of the estimated mean squared
error (RMSE).

Table 1. Estimated bias, SE and RMSE for ML estimators in finite samples from the EHSN model.

True Value n = 100 n = 300 n = 500 n = 1000

λ α δ Estimator Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE

0.5 0.25 1 λ̂ 0.0887 4.1077 2.2876 0.0791 1.5435 1.5804 0.0763 0.8677 0.9295 0.0602 0.5491 0.6101
α̂ −0.0871 0.1766 0.1558 −0.0580 0.1117 0.1078 −0.0529 0.0906 0.0972 −0.0429 0.0702 0.0788
δ̂ −0.0001 2.9992 1.6374 −0.0061 0.6085 0.7113 −0.0073 0.2588 0.4069 −0.0091 0.0551 0.0886

10 λ̂ 0.0919 3.6774 2.0329 0.0881 1.3901 1.4581 0.0860 0.8025 0.8319 0.0753 0.5241 0.5291
α̂ −0.0875 0.1778 0.1570 −0.0594 0.1155 0.1060 −0.0524 0.0915 0.0965 −0.0419 0.0688 0.0793
δ̂ −0.0801 24.3377 12.8305 −0.0670 4.3303 5.0911 −0.0660 1.8821 2.6233 −0.0598 0.4906 0.6173

0.5 1 λ̂ 0.0774 3.9451 2.3954 0.0620 1.7896 1.9473 0.0557 1.2244 1.5575 0.0522 0.7375 0.9020
α̂ −0.1644 0.3192 0.2752 −0.1319 0.2071 0.2080 −0.1114 0.1689 0.1746 −0.1098 0.1404 0.2068
δ̂ −0.0238 2.3073 1.2299 −0.0230 0.6922 0.6892 −0.0229 0.3236 0.4405 −0.0236 0.2054 0.2725

10 λ̂ 0.0889 3.4827 2.2626 0.0703 1.6500 1.7088 0.0609 1.1596 1.4419 0.0576 0.6941 0.7828
α̂ −0.1657 0.3167 0.2721 −0.1314 0.2104 0.2031 −0.1122 0.1723 0.1786 −0.1070 0.1450 0.2083
δ̂ −0.2277 18.0318 9.9169 −0.2199 5.0375 4.5636 −0.2028 2.9008 3.5120 −0.1916 1.6328 1.9676

1 1 λ̂ 0.1357 4.1670 2.3474 0.1082 2.4756 1.9255 0.0942 1.3401 1.5183 0.0502 1.1993 1.2587
α̂ −0.3808 2.0775 10.3702 −0.3514 0.4394 0.5198 −0.2628 0.3321 0.3857 −0.3156 0.2642 0.4956
δ̂ −0.0504 2.3090 0.9321 −0.0362 1.3206 0.8033 −0.0446 0.3932 0.4115 −0.0329 0.5853 0.4356

10 λ̂ 0.1466 3.3898 2.1449 0.1280 2.3190 1.7919 0.1115 1.2832 1.4155 0.1089 1.1240 1.1980
α̂ −0.3788 2.0948 7.7521 −0.3559 0.4638 0.5231 −0.2558 0.3326 0.3834 −0.3078 0.2647 0.4881
δ̂ −0.5089 15.6118 7.6009 −0.3776 11.4282 6.3186 −0.4477 3.5177 3.3111 −0.3209 5.0068 3.5292

1 0.25 1 λ̂ 0.2221 2.8231 2.1465 0.1679 1.7509 1.9720 0.1490 1.3535 1.7698 0.1119 0.9427 1.4323
α̂ −0.0774 0.1594 0.1417 −0.0688 0.0903 0.0983 −0.0611 0.0718 0.0849 −0.0548 0.0523 0.0696
δ̂ −0.0105 0.0758 0.1084 −0.0089 0.0361 0.0324 −0.0084 0.0288 0.0264 −0.0063 0.0216 0.0211

10 λ̂ 0.2056 2.8324 2.0857 0.1573 1.6851 1.8236 0.1186 1.3109 1.6966 0.0883 0.8754 1.3112
α̂ −0.0810 0.1605 0.1445 −0.0663 0.0911 0.0973 −0.0602 0.0718 0.0829 −0.0551 0.0527 0.0692
δ̂ −0.1147 0.9808 1.2949 −0.0940 0.3846 0.5770 −0.0700 0.2878 0.2646 −0.0708 0.2177 0.2161

0.5 1 λ̂ 0.1548 2.5072 2.0512 0.1337 1.6216 1.8140 0.1289 1.3093 1.5864 0.1132 0.8936 1.2625
α̂ −0.1769 0.4831 1.9959 −0.1482 0.1635 0.1823 −0.1362 0.1294 0.1634 −0.1207 0.0933 0.1414
δ̂ −0.0217 0.1388 0.1371 −0.0158 0.0418 0.0393 −0.0146 0.0325 0.0323 −0.0123 0.0237 0.0255

10 λ̂ 0.1530 2.5203 2.0469 0.1223 1.6141 1.7941 0.1119 1.3024 1.5971 0.1051 0.8922 1.2264
α̂ −0.1673 0.4137 3.3884 −0.1459 0.1637 0.1808 −0.1364 0.1293 0.1631 −0.1200 0.0932 0.1406
δ̂ −0.2053 1.2641 1.0703 −0.1623 0.4137 0.3855 −0.1484 0.3204 0.3188 −0.1157 0.2341 0.2521

1 1 λ̂ 0.3995 2.8717 2.0561 0.3470 1.6243 1.7523 0.3251 1.3054 1.6552 0.2763 0.8542 1.1454
α̂ −0.4039 1.8900 1.7652 −0.3382 0.3390 0.4111 −0.3009 0.2579 0.3659 −0.2563 0.1729 0.3070
δ̂ −0.0319 0.7001 0.4396 −0.0222 0.1432 0.1427 −0.0201 0.0806 0.1150 −0.0169 0.0348 0.0432

10 λ̂ 0.3930 2.7774 2.1070 0.3625 1.6437 1.7545 0.2641 1.2570 1.5088 0.2525 0.8522 1.0931
α̂ −0.3956 1.5302 1.4103 −0.3315 0.3347 0.4063 −0.2939 0.2572 0.3579 −0.2582 0.1758 0.3062
δ̂ −0.2763 5.6178 3.6497 −0.2195 1.1898 1.2777 −0.1972 0.7523 1.0015 −0.1619 0.3545 0.4032
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Table 1. Cont.

True Value n = 100 n = 300 n = 500 n = 1000

λ α δ Estimator Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE

2 0.25 1 λ̂ 0.1412 3.8490 2.3980 0.1226 2.5533 2.1963 0.1112 2.1624 2.1480 0.0968 1.5911 1.8478
α̂ −0.0698 0.1649 0.1486 −0.0639 0.0946 0.0984 −0.0601 0.0747 0.0855 −0.0546 0.0550 0.0724
δ̂ −0.0201 0.0660 0.0649 −0.0148 0.0325 0.0349 −0.0122 0.0257 0.0283 −0.0085 0.0180 0.0206

10 λ̂ 0.2016 3.7258 2.3354 0.1603 2.6031 2.2358 0.1375 2.0671 2.0419 0.1181 1.5362 1.7291
α̂ −0.0694 0.2949 10.3606 −0.0627 0.0941 0.0998 −0.0569 0.0752 0.0852 −0.0550 0.0553 0.0720
δ̂ −0.1857 0.5683 0.5554 −0.1456 0.3300 0.3430 −0.1145 0.2570 0.2810 −0.0900 0.1804 0.2075

0.5 1 λ̂ 0.1408 3.3738 2.4686 0.1244 2.2736 2.0844 0.1169 1.7768 1.7268 0.1078 1.2928 1.3723
α̂ −0.1466 1.1916 5.8004 −0.1248 0.1735 0.1786 −0.1130 0.1335 0.1509 −0.1044 0.0957 0.1301
δ̂ −0.0230 0.1689 0.1737 −0.0167 0.0403 0.0480 −0.0152 0.0295 0.0313 −0.0119 0.0202 0.0237

10 λ̂ 0.1595 3.3467 2.2779 0.1472 2.2529 2.1634 0.1353 1.8322 1.8594 0.1222 1.3190 1.3916
α̂ −0.1456 0.6574 6.9030 −0.1191 0.1703 0.1741 −0.1150 0.1322 0.1544 −0.1060 0.0967 0.1305
δ̂ −0.2085 1.2238 1.4289 −0.1672 0.3870 0.3939 −0.1490 0.3094 0.3834 −0.1166 0.2001 0.2341

1 1 λ̂ 0.2782 3.5365 2.5655 0.2777 2.0052 1.9471 0.2553 1.6272 1.6502 0.2483 1.1661 1.1607
α̂ −0.3187 2.1219 9.7211 −0.2470 0.3562 0.3716 −0.2172 0.2736 0.3068 −0.1987 0.1907 0.2553
δ̂ −0.0248 0.6483 0.4276 −0.0209 0.0957 0.1128 −0.0166 0.0634 0.1016 −0.0147 0.0258 0.0292

10 λ̂ 0.2533 3.3656 2.5756 0.2224 1.9569 1.8486 0.2087 1.5768 1.5812 0.1844 1.1453 1.1161
α̂ −0.3061 1.9547 4.2552 −0.2403 0.3623 0.3601 −0.2167 0.2723 0.3012 −0.2022 0.1897 0.2534
δ̂ −0.2574 4.2033 3.1281 −0.1998 0.8585 0.9176 −0.1704 0.4187 0.4742 −0.1452 0.2487 0.2929

For the ML estimators of λ, α and δ, note that when the sample size increases then the
bias, SE and RMSE decrease. Additionally, note that, when the sample size increases then,
the SE and RMSE are closer, which suggests that the standard errors of the MLE estimators
are well estimated. However, we highlight that such convergence is slower for the ML
of λ, suggesting that a big sample size is necessary in order to guarantee good statistical
properties of this estimator.

6. Applications

In this section, two real applications are given. The aim is to compare the EHSN model
to other models of interest. Specifically, the EHSN model is compared to its precedent,
the Extended Half-Normal distribution (EHN) proposed in [11] and the log-skew-normal
(LSN) introduced in [24] with location parameter α, scale parameter δ, and shape parameter
λ, which includes as particular case the traditional log-normal (LN) distribution for λ = 0.

6.1. Application 1

We consider the dataset that corresponds to daily average wind speeds for 1961–1978
at 12 synoptic meteorological stations in the Republic of Ireland at the station number 7
(DUB) (see http://lib.stat.cmu.edu/datasets/wind.data, last accessed on 12 July 2022).

In Table 2, the descriptive summaries are provided: sample mean, sample variance,
sample skewness (

√
b1), and sample kurtosis coefficient (b2). We highlight that we obtained

a low value for the sample kurtosis coefficient, b2 = 4.0531, which suggests that a distribu-
tion with flexible values for this coefficient, such as the EHSN can be used to model this
dataset.

Table 2. Descriptive summaries for wind speeds dataset.

n x s2 √
b1 b2

6574 6.3063 12.999 0.9031 4.0531

For this application, there is one observation as “zero”. The EHN and EHSN do not
have problem to accommodate this observation. However, the LSN (and LN) distribution
cannot accommodate it. For this reason, we only consider as competitors the EHN and
EHSN in this problem. The moments estimators for the EHSN model in this dataset
are α̂MM = 1.093, δ̂MM = 5.059 and λ̂MM = 2.521, which were used to initialize the

http://lib.stat.cmu.edu/datasets/wind.data
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maximization procedure to obtain the corresponding MLE’s. In Table 3, EHN and EHSN
models are compared. Akaike Information Criterion (AIC) [25] and Bayesian Information
Criterion (BIC) [26] are used. Additionally, in Figure 5, the empirical cdf is plotted along
with the cdf estimated for the EHSN model, whereas qqplots comparing both models are
given in Figure 6. In Figure 7, the histogram and models fitted by maximum likelihood
are given.

We highlight that following AIC and BIC criteria, the fitted EHSN model provides a
better fit to this dataset. QQ-plots in Figure 6 and histogram with fitted densities in Figure 7
also support this statement.

Figure 5. Empirical and fitted EHSN cdf for Speed of Wind in dataset 1.

(a) (b)

Figure 6. qqplots for Speed of Wind dataset: (a) EHN model, (b) EHSN model.

Table 3. Estimated parameters in the EHN and EHSN models.

Estimates of Parameters EHN EHSN

α 0.413 (0.029) 0.754 (0.065)
δ 4.674 (0.037) 4.851 (0.046)
λ 3.058 (0.293)

Log-likelihood −17,404.03 −17,321.46
AIC 34,812.60 34,648.93
BIC 34,826.18 34,669.30
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Figure 7. Fitted EHSN and EHN model by maximum likelihood for speed of wind dataset.

6.2. Application 2

This dataset corresponds to heights (100 × feet) of 219 volcanoes studied in [27].
In Table 4, the descriptive summaries are provided. These are: the sample mean (x),
the sample variance (s2), the sample skewness coefficient (

√
b1), and the sample kurtosis

coefficient (b2).
In this application, the EHSN model is compared to LSN and EHN. Moments estimates

in the EHSN model are obtained by applying results in Section 4.1, these are α̂MM = 1.579,
δ̂MM = 59.668, and λ̂MM = 2.788. These estimates are used as initial values to obtain
MLEs by using numerical methods. ML estimates for the LSN, EHN, and EHSN models,
along with their standard errors are provided in Table 5. For purposes of comparison,
log-likelihood, AIC and BIC are also included in this table. These summaries support the
fact that the EHSN model provides a better fit to this dataset. As plots, the histogram, along
with the estimated pdfs, are given in Figure 8. The QQ-plots comparing EHN and EHSN
models are given in Figure 9. In Figure 10, the empirical cdf is plotted along with the cdf
estimated for the EHSN model. All these plots support our conclusions.

Table 4. Descriptive summaries for volcano heights (in 100 × feet).

n x s2 √
b1 b2

219 70.247 1850.548 0.8344 3.4439

Table 5. Estimates of parameters in EHN and EHSN models for volcanoes dataset.

Estimates of Parameters LSN EHN EHSN

α 4.015 (1.051) 0.783 (0.286) 1.579 (0.923)
δ 0.770 (0.037) 56.514 (2.894) 59.668 (4.187)
λ 0.007 (1.709) 2.788 (1.616)

Log-likelihood −1133.636 −1117.914 −1115.100
AIC 2273.272 2241.828 2236.200
BIC 2283.440 2251.996 2246.367
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Figure 8. Histogram for volcano heights dataset and estimated models. EHSN (solid line), EHN
(dashed line), LSN (dotted line).

(a) (b)

Figure 9. qqplots for volcano heights dataset: (a) EHN model, (b) EHSN model.

Figure 10. Empirical and fitted EHSN cdf for volcano heights in dataset 2.

7. Final Discussion and Conclusions

This study presents a new model with positive support based on the skew-normal
distribution, which has been called the extended half skew-normal distribution. This dis-
tribution is useful as a more general model compared to the EHN model proposed by
Elal-Olivero [11], pursuing to increase kurtosis and improve the modeling of positive
datasets with high kurtosis. Relevant properties of the model are given. Closed expressions
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are given for the pdf, cdf, mgf, and moments. Additionally, a stochastic representation is
proposed, which will be the basis to generate random values in this model. Estimation of
parameters is carried out via maximum likelihood methods by using numerical techniques.
The simulation study illustrates the good performance of estimators. Two applications with
real datasets were also carried out, verifying that the new model performs better than the
competing models.

One of the referees points out that the pdf’s introduced throughout this paper, see, for
instance, the general family defined in (4) or the pdf for the EHN introduced in (3), can
be considered as weighted distributions, [28]. For the pdf introduced in (4), this would be
to write

fX(x) =
w(x; α)

Egλ I[x≥0][w(X; α)]
gλ(x) I[x ≥ 0] ,

with weight function w(x; α) = α + x2. This idea may be studied in future works along
with its implications.
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Appendix A

In this Appendix details are given about the models under consideration in Section 3.
These models are:

• Skew-Normal, X ∼ SN(λ), introduced in [1], whose pdf is

f (x; λ) = 2φ(x)Φ(λx), x ∈ R, λ ∈ R. (A1)

The cdf is
F(x; λ) = Φ(x)− 2 O(x, λ), x ∈ R, λ ∈ R, (A2)

where O(·, λ) denotes the Owen function [17].
• Generalized Gamma, GG(a, d, p), introduced in [16], whose pdf is

f (x; a, d, p) =
1

Γ
(

d
p

) p
ad xd−1e−(x/a)p

, x > 0, a, d, p > 0 . (A3)

The cdf is

F(x; a, d, p) =
Γz

(
d
p

)
Γ
(

d
p

) (A4)

where z = (x/a)p and Γz

(
d
p

)
=
∫ z

0
v(d/p)−1e−vdv, see [29].

htt p://lib.stat.cmu.edu/datasets/wind.data
htt p://lib.stat.cmu.edu/datasets/wind.data
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