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a b s t r a c t

We study nonlinear excitations propagating in a hexagonal layer which is a model for the cation
layer of silicates. We consider their properties in the frequency–momentum or ω − k representation,
extending the theory on pterobreathers in their moving frame for the first time to two dimensions.
It can also be easily extended to three dimensions. Exact traveling waves in the ω − k representation
are within resonant planes, each plane corresponding in the moving frame to a single frequency.
These frequencies are integer multiples of a frequency called the fundamental frequency. A breather
is within a resonant plane called the breather plane and has a single frequency in the moving frame.
The intersection of the resonant planes with the phonon surfaces produce co-traveling wings with a
small set of frequencies. The traveling waves obtained by perturbing the system consist of a breather
and a soliton traveling together and are quasi-exact. These traveling waves can be used as seeds to
obtain exact traveling waves, also formed by a breather and a soliton. The wings do exist but they are
usually very small.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The study of nonlinear excitations as breathers in a hexagonal
attice is motivated by the experimental evidence of the exis-
ence of nonlinear excitations, also known as intrinsic localized
odes (ILM), that transport energy and momentum in a quasi-
ne-dimensional form along the chains of the cation layer of
uscovite mica and other layered silicates [1–4]. These lattice
xcitations were called quodons making reference to the quasi-
ne-dimensional propagation and the particle-like behavior iden-
ified in the fossil dark tracks in muscovite [5,6]. It is worth noting
hat muscovite has been demonstrated able to record the passage
f swift particles as positrons, protons and antimuons [7,8]. The
eader is referred to three complete reviews [9–11].

There have been several attempts to model these nonlinear
xcitations in one dimension as kinks or crowdions [12–15] and
reathers [16]. These models use a substrate potential and inter-
ction potential that have been deduced from physical properties
nd empirical potentials, and therefore are able to provide phys-
cal values of the magnitudes involved as, for example, energies,
27 eV for crowdions and ≃0.3 eV for breathers. The latter article

16] also develops the theory of exact breather solutions, which
re generally coupled to an extended plane wave called wing

∗ Corresponding author.
E-mail address: archilla@us.es (J.F.R. Archilla).
ttps://doi.org/10.1016/j.physd.2022.133497
167-2789/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
and are therefore called pterobreathers, ‘‘ptero’’ meaning ‘‘wing’’
in Greek. However, for some specific velocities the wings disap-
pear and the exact pterobreathers become exact breathers. Their
stability can be determined by a variant of the Floquet method.
The same article also characterized exact pterobreathers and
breathers by their unique frequency in the moving frame. These
models have the obvious limitation of being one-dimensional but
this limitation also allows for easier mathematical and numerical
insight into the physical and mathematical properties.

Other model, inspired by the same phenomena, was pro-
posed [17,18] using a more generic model in a two dimensional
(2D) hexagonal lattice also with a substrate potential. They ob-
tained that kinks or crowdions can propagate in a quasi-
dimensional form [19] and also breathers [17,18], depending on
the specifics of the potential. Breathers are also scattered by other
breathers and can migrate to other close-packed chains [20].

In this paper we extend the theory developed in [16] to two
dimensions and apply it to the model in Ref. [18] in order to
describe moving breathers in the moving frame in a hexago-
nal lattice with a substrate potential, to obtain their frequency–
momentum representation, their frequencies in the moving frame
and the existence or absence of wings. This is fundamental to be
able to interpret possible signatures of localized nonlinear waves
in physical spectra of real crystals [21].

The paper is written illustrating the theory together with par-
ticular analytical and numerical results. The mathematical model
is briefly described in Section 2. The on-site potential used to
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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escribe the direct hexagonal lattice and the phonon bands to
escribe the reciprocal and momentum lattices are presented in
ection 3. The phonon frequencies and polarization are obtained
n Section 4. The theory of exact traveling waves in 1D and 2D is
eveloped in Section 5. In Section 6 quasi-exact solutions are used
o obtain important characteristic parameter values for the exact
ropagating modes. The procedure to obtain exact traveling wave
olutions is explained in Section 7 and the corresponding exact
olutions are presented in Section 8. The paper is concluded with
he Conclusions and an Appendix containing some details of the
eciprocal basis.

. Model

We consider a system of N particles with mass m = 1
with their position described by coordinates (x, y) in a Cartesian
system of reference and (ux, uy) with respect to their equilibrium
positions. Their kinetic energy is given by K =

1
2 (ẋ

2
+ ẏ2) =

1
2 (u̇

2
x + u̇2

y), the dot indicating the derivative with respect to time.
The particles are in their equilibrium position in a 2D hexag-

onal lattice corresponding to the minima of the on-site potential
given in the dimensionless form by:

U(x, y) =
2
3

(
1 −

1
3

(
cos

(
2π

2
√
3
y
)

+ cos
(
2π (x −

1
√
3
y)
)

+ cos
(
2π (x +

1
√
3
y)
)))

,

(1)

where the unit distance has been chosen a = 1 and 0 ≤ U(x, y) ≤

1.
The interaction between particles is given by the Lennard-

Jones potential:

VLJ (r) = ϵ

((
1
r

)12

− 2
(
1
r

)6
)

, (2)

being ϵ a measure of the relative strength of the interaction
potential with respect to the on-site potential.

Without loss of generality we consider ϵ = 0.05. For short
and long-range interactions we consider smooth cut-off of the
Lennard-Jones potential in Eq. (2) with a cut-off radius rc de-
scribed in detail in [18]. In this paper we consider rc = 3a.
Derived Hamiltonian equations of dynamics are integrated in
time with the second order time reversible symplectic Verlet
method. In the following, all numerical examples are performed
with time step τ = 0.04 and periodic boundary conditions. The
dimensions of the lattice are N1 = 64 and N2 = 32, i.e., N = N1N2,
unless stated otherwise.

To produce quasi-exact discrete breather solutions, see Sec-
tion 6, we excite three neighboring particle velocities with the
pattern:

v0 = γ (−1; 2; −1)T , (3)

where γ > 0. As noted in [20] larger values of γ produce faster
moving quasi-exact breathers with larger particle displacements
in the direction of propagation. See also Table 1.

3. The 2D hexagonal lattice

For understanding the frequency–momentum representation
it is convenient to review the properties of the hexagonal lat-
tice. In this section we perform that revision while at the same
time we present important properties of the system, such as its
potential energy and linear spectrum.
2

Table 1
Parameters of exact soliton–breathers. γ : modulus of initial kick, s: step, mb =

ωMF /ωF , TF : fundamental time, Vb: breather velocity, fF = ωF /2π : fundamental
frequency, fL(0), fL(π ): laboratory frequencies (ωL/2π ) at wavenumbers 0 and π ,
and absolute and relative errors of {u(n + s, t + TF ) − u(n, t)}.
γ s mb TF Vb fF fL(0) fL(π ) Abs. error Rel. error

0.7 1 1 1.12 0.8929 0.8929 0.8929 1.3393 8.7441e−14 1.2730e−15
0.65 1 2 1.96 0.5102 0.5102 1.0204 1.2755 1.1302e−13 1.7266e−15
0.6 1 2 2.00 0.5000 0.5000 1.0000 1.2500 9.9292e−14 1.6558e−15
0.55 1 3 2.96 0.3378 0.3378 1.0135 1.1824 1.7740e−13 2.1779e−15
0.5 1 3 3.04 0.3289 0.3289 0.9868 1.1513 1.3878e−13 2.1391e−15
0.45 1 3 3.12 0.3205 0.3205 0.9615 1.1218 1.2790e−13 2.0743e−15
0.42 1 4 4.16 0.2404 0.2404 0.9615 1.0817 1.3585e−13 2.4348e−15
0.4 1 5 5.12 0.1953 0.1953 0.9766 1.0742 1.3310e−13 2.8352e−15

Fig. 1. Contour plot of the on-site potential U(x, y) of Eq. (1) in 4 primitive direct
cells and the contours of one of them. The bottom and left sides correspond to
the vectors of the direct primitive basis. Blue colors are lower energies, being
the minima at the equilibrium particle positions. The red–yellow colors are
higher energies as specified by the color bar and correspond to potential barrier
between sites. The associated face-centered rectangular lattice can be visualized
above abscissas 1 and 2. Note that the breather direction along a close-packed
line as the horizontal axis has no perpendicular close-packed plane. See Fig. 2
for a view of U in a single primitive cell.

3.1. The direct 2D hexagonal lattice

For a 2D hexagonal lattice of unit distance a = 1, the direct
vectors that generate the lattice are (see the Appendix and
Ref. [22]):

a1 = e1; a2 =
1
2
e1 +

√
3
2

e2 , (4)

with e1 = [1, 0] and e2 = [0, 1], the Cartesian unit vectors.
Any lattice point can be obtained as a point of the Bravais direct
lattice:

R = n1a1 + n2a2, (5)

with n1, n2 integers.
Many physical properties are described by a function with the

eriodicity of the direct Bravais lattice, for example, the on-site
otential in Eq. (1) as can be seen in Fig. 1. The minima of the
otential correspond to the equilibrium position of the particles
nd form the hexagonal Bravais lattice. In addition, the form of
he potential within a primitive cell can be seen in Fig. 2.

The hexagonal lattice can also be seen as a face centered
ectangular lattice with sides 1 and

√
3, which also corresponds

to two primitive simple rectangular Bravais lattices displaced half
a diagonal vector equal to a2. Convenient labels in this descrip-
tion are integers l and m such that the lattice points have the
coordinates:

x(l,m) =
1
l; y(l,m) =

√
3
m . (6)
2 2
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Fig. 2. Surface U(x, y) of Eq. (1) in a single primitive direct cell. Note the
difference in the paths between nearest neighbors at the corner of the primitive
cell or along the short diagonal, which are equal, and along the large diagonal.

In this description l+m is even. When l and m are both odd, they
escribe the lattice points of a rectangular lattice, and when they
re both even, they describe the displaced simple rectangular
attice. This description is used often to write the dynamical
quations since the visualization is easier [18,23]. It also provides
convenient matrix form with indexes l,m, which corresponds to
he lattice with a shift of alternate rows 0.5 to the left. However,
t is not a Bravais lattice and therefore it is not convenient for
he description in the momentum or reciprocal space. Both sets
f indexes are related by x(l,m) =

1
2 l = n1 +

1
2n2 and y(l,m) =

√
3
2 m =

√
3
2 n2, that is: l = 2n1 + n2 and m = n2, taking into

account Born–von Karman periodic conditions.

3.2. The reciprocal hexagonal lattice

The corresponding reciprocal lattice basis of the direct Bravais
lattice in Eq. (5) is given by:

b1 = 2π [1, −
1

√
3
]; b2 = 2π [0,

2
√
3
] , (7)

with the properties that |b1| = |b2| = 2π 2
√
3
, and ai · bj = 2πδij.

The (angular) reciprocal space of Eq. (5) is the Bravais lattice
expanded by {b1, b2}, that is, G = m1b1 + m2b3, with m1 and m2
ntegers, with the property that G ·R = 2π (m1n1 +m2n2) = 2πn,
ith n an integer. We can also consider the reciprocal vector
= G/2π , which has the same meaning as G but in linear (m−1)

instead of angular (rad m−1) units, similarly to the frequency
f = ω/2π and the angular frequency ω. The appropriate basis for
Q are the vectors b̃1 = b1/2π = [1, −1/

√
3] and b̃2 = b2/2π =

0, 2/
√
3] with ai · b̃j = δij. In this basis, Q = m1b̃1 + m2b̃2 with

he same values m1 and m2 of G. G and ω are sometimes called
he physics definition and Q and f the crystallographic definition
f the reciprocal vectors and frequency, respectively [24]. Then:
iG·R

= ei2πQ·R
= 1 . (8)

Therefore, any property with the periodicity of the direct Bra-
ais lattice can be described as a sum of exponentials exp(iG · r).
or example, the on-site potential in Eq. (1) is given by:

(x, y) =
2
(
1−

1
(cos(b2 ·r)+cos(b1 ·r)+cos([b1+b2]·r))

)
, (9)
3 3 l

3

eing the simplest form of a potential in the hexagonal lattice
onsistent with the symmetries of the lattice. The reciprocal
ector b1 + b2 = 2π [1, 1/

√
3] is symmetric to b1 with respect

to the horizontal lattice and it is necessary for the hexagonal
symmetry of the potential.

3.3. The supercell lattice and the wavevector or momentum space

However, as phonons, breathers or kink solutions do not have
the symmetry of the lattice (although the whole set of them
has it) and we have Born–von Karman periodic conditions, we
have to consider the Bravais direct lattice expanded by N1a1 and
2a2, where N1 and N2 are the dimensions of the lattice. It is
alled the supercell lattice as its primitive cell is usually the
omputational lattice. The corresponding reciprocal space is the
omentum or wavevector space and it is expanded by the basis
ectors {b1/N1, b2/N2}, or in other form they correspond to:

= q1b1 + q2b2 with q1 = 0,
1
N1

, . . . ,
N1 − 1
N1

,

q2 = 0,
1
N2

, . . . ,
N2 − 1
N2

. (10)

Any wavevector k is equivalent to k + G, with G a vector in the
reciprocal lattice. The primitive cell of the wavevector space is
visualized by the phonon modes obtained in Section 4 as can be
seen in Fig. 3. By translations of vectors G, it is often constructed
the first Brillouin zone, that is, a zone in momentum space which
is closer to a given point than to any other and it is also visualized
in the same figure. Important points and paths are often used to
visualize the phonon bands as also depicted in the same figure.
We can also define the crystallographic wavevectors q = k/(2π )
to get rid of the factor 2π , then q = q1b̃1 + q2b̃2 = qxe1 + qye2.
ote that qx = kx/2π and qy = ky/2π , but q1 and q2 are the same
n both representations. As they have the reciprocal basis vectors
s unit of length they are the reduced wavevectors [25].
Any wavevector k represents a set of planes1 perpendicular to
separated by a distance 2π/|k| = 1/|q| or a plane wave with
lane wavefronts separated by the same distance. Therefore, it
s better seen as defining a plane than as a direction. As k + G
epresents the same set of planes, it is enough to consider a
rimitive reciprocal lattice with non equivalent vectors k, either
ithin the primitive reciprocal lattice, the Brillouin zone or any
ther construction through translations by vectors G.

.4. Phonons and the 1st Brillouin zone

In this subsection we will work in the q wavevector space for
onvenience to avoid a factor of 2π everywhere. Primitive vectors
f the reciprocal lattice expanded by b̃1 and b̃2 represent planes of
toms separated by a distance 1/|b̃i| =

√
3/2, and perpendicular

to them, i.e., at −60◦ with the x-axis and horizontal, respectively.
Corresponding plane waves propagate in the directions of b̃i.
Plane waves that propagate parallel to the x-axis do so in the
direction of the smallest reciprocal wavevector 2e1 = 2[1, 0] =

2b̃1 + b̃2 defining vertical planes separated by a distance 1/2.
Therefore, they have wavevectors with q2 = 2q1. The 1st Brillouin
zone is a regular hexagon centered at Γ = (0, 0) with sides
2/3, aphotem 1/

√
3, maximal radius 2/3, with two horizontal

sides parallel to the horizontal axis cutting the vertical axis at
1/

√
3 and two vertices at the x-axis at ±2/3. Important critical

oints are vertices M = (±2/3, 0) and middle points of the two
orizontal sides K = (0, ±1/

√
3) and their equivalents through

several ±60◦ rotations.

1 We keep the word planes for 3D although in 2D they degenerate to straight
ines.
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Fig. 3. Contour plot of the upper and lower phonon bands ω1(kx, ky) (left) and ω2(kx, ky) (right) in 4 primitive reciprocal cells and the contour of one of them. The
left and bottom sides correspond to the vectors of the reciprocal basis. Also marked are the horizontal axis, the Brillouin zone and the symmetry points Γ , M, K,
showing the equivalence of two paths Γ -K-M. At points K the two phonon bands touch each other as can be seen in the ω − k plot along Γ -M-Γ shown in Fig. 4.
Fig. 4. Frequency as a function of the wavenumber along the path Γ -K-M-Γ within and at the border of the Brillouin zone as shown in Fig. 3. Momenta within
he Γ -K-M correspond to waves that propagate along the x direction with wavefronts perpendicular to it as the breathers found in this work. Momenta within
-M correspond to planar waves that propagate parallel to b1 or b2 and perpendicular to direct planes parallel to a1 or a2 . Polarization: Γ -K upper curves have
olarization uy = 0 and lower ones ux = 0, K-M and Γ -M upper curves have ux = 0 and lower ones uy = 0.
o
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It is convenient to plot the wavevectors in the direction [1, 0]
ith components along that direction. However, (1, 0) is outside
he 1st Brillouin zone because planes that bisect b̃1 and b̃2 cut
t vertex K = (2/3, 0). The wavevector [1, 0] is equivalent to
he middle-side point M = (0, 1/

√
3), because [1, 0] − b̃1 =

0, 1/
√
3], but the meaning of the wavevectors are not so clear.

By a 2 × 60◦ rotations M is also equivalent to b̃1/2.
Plots can be done in the Cartesian coordinates both in the

irect and reciprocal space because e1 = [1, 0] and e2 = [0, 1]
form its own reciprocal basis. We write them as r = xe1 + ye2
r in the direct lattice coordinates r = r1a1 + r2a2. Similarly,
avevectors can be written as k = kxe1 + kye2 = q1b̃1 + q2b̃2.
iven the values of b̃1 and b̃2 above, it is easy to obtain kx = 2πq1
nd ky = 2π (q2 −

1
2q1)

2
√
3
.

. Frequency and polarization of linear modes

In Ref. [18] the equations that determine the eigenvectors and
igenvalues were deduced. Here we reproduce the deduction
ut also obtain the polarization of the phonons. The phonon
ispersion relation is plotted along special paths in Fig. 4 and
he phonon surfaces are displayed in a primitive reciprocal cell
 w

4

in Fig. 5. The polarization is described in Fig. 4 and displayed in
Fig. 6.

Linear modes or phonons are given by solutions (to the lin-
earized equations) of the form:

w = Aei(k·R−ωt). (11)

The variables are as follows: w = [ux, uy]
T is the vector

f displacements in the x and y directions of a particle of the
attice and A = [a, b]T is its polarization vector. Without loss of
enerality we can choose a and b such that

√
a2 + b2 = 1 and

≥ 0. In principle a and b could be complex, but in fact, in our
ystem, they can always be chosen real. k is a wavevector and
= n1a1 + n2a2 is the equilibrium position corresponding to a

iven particle. The angular frequency ω can be chosen positive
ithout loss of generality because the propagation direction of
he wave is given by k.

In terms of these indexes the equation above becomes:

= Aei2π(q1n1+q2n2−ωt)
= Aei

(
kx l

2 +ky
√
3m
2 −ωt

)
, (12)
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Fig. 6. Plot of the polarization parameter a with positive sign if sign(a) = sign(b) and negative otherwise. (Left): Same sign polarization surface. (Right): Opposite
sign polarization surface. Note: a = ±1 indicates that uy = 0 and a = 0 indicates that ux = 0.
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leading to the following equation [18]:

0 =
(
ω2

− κ − 3β
)
A

+ 2β cos (kx)
(
1 0
0 0

)
A + β cos

( 1
2kx
)
cos

(√
3
2 ky

)(1 0
0 3

)
A

− β sin
( 1
2kx
)
sin
(√

3
2 ky

)( 0
√
3

√
3 0

)
A,

here κ = 16π2/9 = 17.5460 is the minimal squared frequency,
erived from the linearization of the on-site potential in Eq. (1),
nd β = V ′′

LJ (1) = 72ϵ = 3.6.
We obtain the homogeneous system of linear equations:

ω2
− A)a − Db = 0 ,

Da + (ω2
− B)b = 0 , (13)

here

= κ + β

(
3 − 2 cos (kx) − cos

( 1
2kx
)
cos

(√
3
2 ky

))
,

= κ + β

(
3 − cos

( 1
2kx
)
cos

(√
3
2 ky

))
,

=
√
3β sin

( 1
2kx
)
sin
(√

3
2 ky

)
. (14)

Note that A ≥ κ and B ≥ κ and therefore positive, while the sign
of D depends on kx and ky.

The necessary condition for the existence of nonzero solutions
of the system in Eq. (13) is the characteristic equation: (ω2

−A)×
(ω2

− B) − D2
= 0 or (ω2)2 − (A + B)ω2

+ (AB − D2) = 0, that is:

ω2
1,2 =

1
2

(
A + B ±

√
(B − A)2 + 4D2

)
. (15)

As ω > 0, there are two phonon bands corresponding to the two
signs of ±. Let us suppose initially that D ̸= 0, which also implies
that a ̸= 0. For the frequencies ω , the two equations in Eq. (13)
1,2 a

5

are equivalent and only one is needed, for example, the first one.
Let us denote α = b/a, then

α1,2 =
ω2

1,2 − A
D

=
1
2D

(
(B − A) ±

√
(B − A)2 + 4D2

)
(D ̸= 0) .

(16)

The normalized polarization vector becomes a1,2 = 1/
√
1 + α2

1,2

nd b1,2 = α1,2/

√
1 + α2

1,2.
It turns out that D = 0 is an interesting case. In this case, there

are two possibilities, either sin(kx/2) = 0 or sin(
√
3/2ky) = 0.

In the first one sin(kx/2) = 0, which implies that kx = 0 as
kx = 2πm is equivalent, then:

If kx = 0, then q1 = 0 and
√
3
2 ky = 2πq2 ,

a = 0; b = 1; ω2
1 = B = κ + β

(
3 − cos

(√
3
2 ky

))
,

a = 1; b = 0; ω2
2 = A = κ + β

(
1 − cos

(√
3
2 ky

))
. (17)

hese functions reproduce the curves in Fig. 4-right and also
dentify that the upper curve corresponds to a = 0, that is,
there is no vibration in the ux coordinate, while the lower curve
orresponds to b = 0, that is, there is no vibration in the uy
oordinate.
For the second possibility, sin

(√
3
2 ky

)
= 0, then

√
3
2 ky = mπ

with m ∈ {0, 1} and:

ky =
2

√
3
{0, π}, q2 =

1
2q1 +

1
2 {0, 1} and kx = 2πq1 ,

a = 1; b = 0; ω2
1 = A = κ + β

(
3 − 2 cos (kx)

−(±) cos
( 1
2kx
))

,

= 0; b = 1; ω2
= B = κ + β

(
3 − (±)3 cos

( 1k )) , (18)
2 2 x
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Fig. 7. (Left) Profile of the ILM in Fig. 8 at two times separated by the fundamental time TF = s/Vb , with step s = 1 showing that the ILM is quasi-exact. See text.
(Right) Soliton corresponding to the lower line of the same figure. Data: γ = 0.5.
where the + or − in ± corresponds to m = 0 and m = π ,
respectively.

The curves corresponding to (±) = +1 correspond to the
curves in Fig. 4-left. The upper one has polarization a = 1 for
q1 < 2/3 at point K and a = 0 for q1 > 2/3. The lower curves
have the opposite polarization. The curves with (±) = −1 can
also be observed in the phonons that are in the phonon band
depicted in Fig. 9-right. The phonon surfaces can be seen in Fig. 5.

The breathers described in this work derive from the first
maximum at point K in the 1st Brillouin zone and, therefore, the
central mode of the components of a breather propagating in the
kx direction is a mode with polarization b = uy = 0, that is, it
as no perturbation in the y direction. This is a very favorable
ircumstance because, in this way, it tends not to perturb the
djacent chains. Note also that for D ̸= 0, D and therefore α

changes sign with the sign of ky, therefore, the sum of plane
waves with equal amplitude, the same kx and opposite ky and b
ill cancel out leading to polarization uy = 0 for the breather,
hat is, with vibration only in the x directions. This is what
appens with the breathers observed in our system.

. Basic theory

In this section we review the theory of moving nonlinear exci-
ations developed in Ref. [16] and extend it to two dimensions. It
s presented in a heuristic way together with results for traveling
aves in our system. The ideas developed here use the fact that
periodic function in the supercell described in Section 3 can
e expressed as a sum of plane waves with wavevectors in the
orresponding momentum space. The amplitudes of these plane
aves are obtained by the Fourier Transform (FT). We will specify
ften the variables that are considered, as, for example, XYTFT
ndicates the Fourier transform on the two spatial variables and
ime.

.1. Exact traveling waves in one dimension

The concepts explained below are illustrated in Figs. 7 and 8,
here the traveling wave along the central close-packed chain

s represented in the real and frequency–momentum spaces, re-
pectively.

raveling wave
It is represented by u(n, t) = f (n − Vbt, ωMF t), being 2π
periodic in the second argument. If it is partially localized
in the first argument, it becomes a traveling localized wave.
The frequency ωMF is the frequency in the moving frame,

where it becomes the only frequency of a stationary profile.

6

Fig. 8. XTFT of a long lived ILM (shown in Fig. 7) propagating along a close-
packed chain corresponding to the primitive vector a1 of the hexagonal lattice.
The ILM is composed of a breather along the breather line and a soliton along
the soliton line. The breather line is defined by two frequencies corresponding
to kx = 0 and kx = π , ωMF and ωπ (or rest frequency), respectively. The breather
velocity is Vb = (ωMF − ωπ )/π . The breather line is given by ωL = ωMF + Vbkx
and the soliton line by ωL = Vbkx . Breather frequencies in the moving frame
are just one ωL − Vbkx = ωMF , which, therefore is the breather frequency in the
moving frame. There are no intensities at the intersections of the breather line
and the dispersion relation, indicating the absence of wings or their small size.
Also shown the resonant lines ωL = mωF + Vbkx for m integer, m = 3 for the
breather line. Data: γ = 0.5.

Solitons, kinks and breathers

If ωMF = 0 and if f (±∞, 0) = 0, then u represents a
soliton. If ωMF = 0 and f (·, 0) is only zero at +∞ or −∞

and a constant value at the other infinity, u represents a
kink. If ωMF ̸= 0 and f is localized in the first argument,
u represents a breather. The profiles of a breather and a
soliton are represented in Fig. 7.

Exact traveling wave

If there is a minimal time TF and integer s such that u(n +

s, t + TF ) = u(n, t), then u is an exact traveling wave. A
quasi-exact traveling wave can be seen in Fig. 7
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Fig. 9. (Left) Projection of the XYTFT of a long lived ILM propagating along a close-packed chain of the hexagonal lattice corresponding to the x-axis. (Blue-Dashed
line): dispersion relation along that direction ky = 0. (Red and blue lines). It can be seen that there are multiple intensities outside the breather/soliton lines and
the dispersion relation. (Right) Same plot but with the projection of the whole phonon bands, suggesting that the intensities are phonons in other directions, as
confirmed in Fig. 10. See text. Data: γ = 0.5.
t
t

R

5

s
c
i
t

Fundamental time TF and step s The parameters TF and s are
denominated fundamental time and step, respectively.
They are related by the velocity of propagation Vb = s/TF .

Fundamental frequency

It is defined as ωF = 2π/TF . The condition of an exact
traveling wave applied to u(n, t), that is, u(n+ s, t + TF ) =

u(n, t), implies that ωMF = mωF , where m is an integer.
More generally, an exact traveling wave is given by a sum
of functions u with moving-frame frequencies that are
integer multiple of ωF .

Resonant plane waves and resonant lines

For a given step s and TF and therefore velocity Vb = s/TF ,
resonant plane waves are plane waves u = exp(i[kn−ωLt])
that are exact with the same step s and TF . Therefore, they
can be cast in the form u = exp(ik(n − Vbt)) exp(−imωF ).
The moving frame frequencies mωF are related to the lab-
oratory frequencies ωL by:

ωL = mωF + Vbk . (19)

In the ω − k representation the above equation represents
straight lines called resonant lines that cut the vertical axis
k = 0 at the moving frame frequencies ωMF at integer
multiples of ωF . They can be seen in Fig. 8.

Breather line

An exact traveling solution is a sum of resonant plane
waves. Therefore, in its XT Fourier transform (XTFT) most
of the intensities lie on a resonant line, called the breather
line or on a few of them. If there is only one, then the
breather line cuts the axis k = 0 at the moving frame
frequency ωMF = mbωF and we recover a single frequency
of a breather as in the common stationary case. See Fig. 8.

Wings

Often, there are intensities of the XTFT of an exact traveling
wave at the crossing points of a resonant line and the
phonon dispersion relation. This means that the travel-
ing waves travel together with one or several resonant
phonons. They are called wings, and should not be confused
with tails, that are the diminishing amplitudes from the
core of a traveling wave, because the wing amplitudes tend
to be constant far from the core of the traveling wave. See
Fig. 8.
 p

7

Fig. 10. Isosurface of the XYTFT of an exact soliton–breather with m = 2,
ogether with the resonant planes and the phonon surfaces. See text. Note that
he coordinates are the reduced wavenumbers such that k = q1b1 + q2b2 .

est or π frequency

Breathers in hard potentials typically derive from a max-
imum of ω at k = π . The breather mode at k = π does
not translate and, therefore, its frequency is called the rest
frequency or π-frequency. Often, moving breathers are ob-
tained by perturbing a stationary breather with wavenum-
bers centered at π and they are a nonlinear perturbation
of the π phonon. Its value is ωπ = (mb + s/2)ωF , and
therefore, if s is odd, it is a semi-integer multiple of ωF .
For breathers derived from a ω(k) minimum at k = 0, the
rest frequency coincides with the frequency in the moving
frame.

.2. Exact traveling waves in two dimensions

Most of the theory in two dimensions is similar to one dimen-
ion, with some obvious changes. The variable u may have two
omponents (ux, uy) and depends on two indexes in the plane,
.e., u = u(n1, n2, t), with n1 and n2 indexes in a sublattice of
he Bravais lattice. These concepts are illustrated in Fig. 9 as a

rojection on the ω−kx plane and in three dimensions in Fig. 10.
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Fig. 11. Mixed coordinates ny and XTFT of an exact soliton–breather showing
he extreme localization in the ny direction. See text. Reduced wavenumber
1 = kx/2π .

xact traveling waves in 2D
If we suppose that the direction of a propagation is along
n1, then a traveling wave is represented by u = f (n1 −

Vbt, n2, ωMF t), being f localized in the first two variables
and 2π periodic in the third variable. It is exact if u(n1 +

s, n2, ω(t + TF )) = u(n1, n2, t) for some step s and funda-
mental time TF .

esonant planes and breather plane
Resonant lines become resonant planes in the ω − k space.
The breather line becomes the breather plane which is
parallel to the n2 direction. The intensities of the XYTFT are
within the breather plane(s). If the traveling wave is very
much localized along a given direction, the plane may be
formed from parallel lines perpendicular to it in k-space.
They can be seen in Fig. 10. If the Fourier transform is done
only on the n1 variables, then the breather lines reappear
as can be seen in Fig. 11.

D wings
Wings may appear at the intersections of the resonant
planes and the phonon surfaces. They are therefore more
complex than in 1D, since they tend to involve more
wavevectors, but the frequencies in the moving frame are
still a discrete small set corresponding to the few resonant
planes that cut the phonon surfaces. See Fig. 10.

.3. Traveling localized waves in three dimensions and in physical
rystals

There is no special difficulty to extend the theory to three
imensions, although the visualization and understanding be-
omes problematic as the frequency–momentum space has four
imensions. Resonant planes becomes hyperplanes and so on.
isualization in 3D will be projections of the 4D ω − k space.
Then, we can think at how quasi-exact traveling localized

aves might appear in actual spectra of physical crystals. Most
ikely, they will be not so much localized as in simulations,
herefore they will be some platelet within a plane which is close
o tangent to some slope around a maximum or minimum of
he phonon bands. There will be not a single traveling wave but
8

he whole spectrum of them according to their probability of
ormation. With different velocities and directions they will form
thick truncated cone half filling a valley or a mountain-top in

he phonon hypersurfaces. Similar structures have been observed
n spectra of materials as SePb at high temperature [21] (See Fig. 2
n that reference), which seems promising.

. Quasi-exact soliton–breather in the central row. Finding TF

We explore different simulations for good traveling solutions
hat can be the seed to obtain exact traveling solution as ex-
lained in the next section. In general, the procedure is to find
long-lived one, add dissipation at the borders of the simulation
ell parallel to the close-packed line where the initial perturba-
ion has been provided and thereafter let it propagate some time
ithout dissipation. In our study we initiate traveling solutions
ith the velocity pattern in Eq. (3) and different values of γ . Such
xcitation produces only small amount of phonon background.
If we observe the particles in the central line, we can label

hem with just an index n ∈ {0 : N1 − 1}, i.e., un(tl), with
l = l/Nt , and l ∈ {0 : Nt − 1}. From the breather line in the
TFT we obtain the breather velocity Vb = ∆ω/∆k. An exact

solution has the property that Vb = s/TF , with s, the step, and
TF , the fundamental time. Then TF = s/Vb is a multiple of the
elocity period 1/Vb = 1/fb. We consider times Ts = s/Vb with

s = 1, 2, .. which are candidates to be TF . We find a time t0
for which the breather amplitude is at maximum and compare
the functions un(t0) and un+s(t0 + ts), being ts = round(Ts/τ )τ ,
here round(x) gives the closest integer to x as ts is the closest

integration time to Ts. Usual steps are s = 1 or s = 2 [16]
and we check the overlapping of the functions. Of course, it is
possible to automatize the process, but in practice it is not worth
it. Fig. 12 shows a good example. Velocity was observed to be
Vb = 0.3147, therefore, candidates for fundamental time are
T1 = 1/Vb = 3.1776 and T2 = 2/Vb = 6.1369, with integration
step τ = 0.04, t1 = round(T1/τ ) = 76τ = 2.9600 = 3.1600 and
t2 = round(T2/τ ) = 152τ = 2.9600 = 6.3600. Mathematically,
s = 2 results in a good agreement, but s = 1 is good enough and
if s = 2 and TF = T2, then at midtime TF the coordinates would be
inverted, which does not happen. Therefore, s = 1 and TF is close
to T1. The other adjustment for TF is that the breather line for
k = 0 is the breather frequency in the moving frame is multiple
of the fundamental frequency ωMF = mbωF = mb 2π/TF . In this
way a small adjustment of TF is possible. Note that the agreement
is not perfect, first, due to the fact that the breather is not exact
and, second, due the finite time sampling interval τ .

7. Exact traveling solutions and the Newton method

Breathers obtained by providing some recoil velocity are in-
teresting as this is a likely mechanism from β decay, as in 40K, or
after the impact of incoming radiation. As they have long lives,
they are quite good solutions, however, they are only an ap-
proximation to an exact solution. Exact solutions are interesting
as they are amenable to mathematical and numerical methods
and their lives are theoretically infinite. The generic solutions
are breathers accompanied by an extended wing, that is, ptero-
breathers [16]. In the following, for completeness, we recall some
concepts and the method used to obtain exact pterobreathers.

An exact traveling solution is a solution that repeats itself
after some time TF , the fundamental time, displaced a lattice step
s = [s1, s2], where s1 and s2 are integers. Let n = [n1, n2], where
n1 and n2 are integers that represent a lattice site n1a1 + n2a2,
and Un = {un(t), vn(t)} represents the positions and velocities of
the particles of the system at site n.
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Fig. 12. Finding the step s and fundamental time TF . Observation of a 2D breather profiles in its propagation line, un(t) (lines) and its translation a step s and a
ime Ts = s/Vb , that is, un+s(t + Ts) (circles). At the left for s = 2 and at the right for s = 1. Although the agreement is better for s = 2, it is clear that s = 1 is good
nough and it is not inverted as would happen if s = 2. Therefore the closest exact breather has step s = 1 and fundamental time TF ≃ T1 . See text. Data: γ = 0.5.
Let us define the maps L̂[m], with m = [m1,m2], and T̂ [T ] as
he operators of translation in the lattice and time, respectively:

ˆ[m] : {Un(t)} → {Un+m(t)}; T̂ [T ] : {Un(t)} → {Un(t + T )} . (20)

he action of the operator T̂ is obtained by integrating the equa-
ions of dynamics of the system.

The composite translation map in the lattice and time Ŝ[m, T ]

ecomes:
ˆ[m, T ] : {Un(t)} → {Un+m(t + T )} . (21)

herefore an exact traveling solution with fundamental time TF
nd step s is given by the equation:

ˆ[s, TF ]{Un(0)} = {Un(0)} ; or {Un+s(TF )} = {Un(0)} . (22)

he election of t = 0 is irrelevant as the Hamiltonian and
ynamical equations are time invariant. Let as define the function
:

(U) = {Un+s(TF )} − {Un(0)} . (23)

he exact solution is obtained by the Newton method. Let as sup-
ose that U0 is an approximate solution, a seed, that is, f(U0) ̸= 0
ut small. The approximate U0 can be identified by its initial posi-
ions and velocities or by other means as the Fourier coefficients,
ut this does not affect what follows.
If U = U0

+ δU is an exact solution close to U0, i.e., f(U) =

(U + δU) = 0:

(U) = f(U0) + ∇f(U0)δU = 0, and δU = −[∇f(U0)]−1f(U0) ,
(24)

here ∇f is the Jacobian of f calculated at the approximate
olution U0.
The new initial variables become U = U0

+ δU and they will
e closer to an exact traveling solution and becomes a new seed.
epetition of the operation above until the desired accuracy is
chieved leads to an exact solution.
Note that it is fundamental to have a good seed and an accu-

ate guess of the step and fundamental time. We are interested,
n principle, in traveling wave solutions along close-packed lines,
hich are most likely to occur in a mathematical and physical
ystem. As all close-packed lines are equivalent, the simplest one
s a line parallel to a1 and the step becomes s = [s1, 0]. For
implicity, we will refer often to the step just as the scalar s ≡ s1.
ypical values of s are very low integer numbers 1,2, . . .
9

Fig. 13. Displacements ux of an exact soliton–breather at three different times
separated by 20TF . The localization and exactness can be appreciated.

8. Exact soliton–breathers

With the velocity pattern in Eq. (3) we find different quasi-
exact traveling waves composed of a breather and a soliton. The
soliton is always present and can be reconstructed by filter-
ing out the frequencies above the soliton line and performing
the inverse Fourier transform. Fig. 7 shows both profiles of the
soliton–breather and the soliton. The soliton has a ‘‘S’’-shape,
a compression followed by a decompression. This is coherent
with the physical mechanism for producing propagating lattice
excitations, i.e., the impact of a swift particle or the recoil from a
decay event as the β-decay of 40K. However, similar methods did
not produce a soliton–breather but a pure breather in the related
model by Archilla et al. [16]. The soliton–breather has a length of
5–6 particles.

Many solutions have a long life, specially, if the initial phonons
are absorbed by the borders by computational means. These trav-
eling waves are quasi-exact, meaning that the properties of exact
traveling breathers hold very well, although not exactly. Using
them as a seed and through the Newton method described above,
it is possible to obtain exact traveling waves also composed of a
breather and soliton and with small amplitude wings. In Fig. 13
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Fig. 14. Displacements uy of an exact soliton–breather. Note the smaller value
f the amplitude with respect to ux shown in Fig. 13.

he plot of the particle coordinates ux is presented for three times
eparated by 20TF . Both the localization and the exactness can be
ppreciated. Fig. 14 demonstrates the uy coordinates. They have
imilar spectral properties as ux but their amplitudes are much
maller.
In Table 1 some examples of parameters of exact soliton–

reathers are shown. Particular exact traveling wave solutions
ere obtained on the lattice with dimensions N1 = 32 and
2 = 16. Unfortunately, we have been able to find only steps
= 1 and we presently do not know if this is a characteristic
f the system or it shows the need for very different generation
ethods to produce different seeds.

. Conclusions

We have expanded the theory of exact traveling waves devel-
ped for one dimension in a previous publication to two dimen-
ions in a hexagonal lattice, applying it to a model for silicate lay-
rs in which some of the authors have previously found breathers
ith very long life. The theory is based in the representation in
he frequency–momentum space and has allowed the determina-
ion of the structure of the propagating waves in the model. They
re formed by a breather and a soliton traveling together, that is,
soliton–breather or solbreather. We have described the system

n terms of the direct and reciprocal hexagonal lattice, finding
he structure of the 1st Brillouin zone including the polarization
f the phonon surfaces. The theory describes traveling waves in
he ω − k representation and shows that exact traveling waves
ie within parallel planes in that space, each one corresponding
o a specific frequency in the moving frame. These frequencies
re integer multiples of a minimal one, called the fundamental
requency. One of these planes is the breather plane where the
reather lies. The others produce the wings at their intersection
ith the phonon surfaces. The soliton corresponds to a resonant
lane with zero frequency. We have developed a method for
btaining the fundamental time of the traveling waves and used
t to obtain exact traveling waves. A variety of them have been
ound, all of them with small wings and step s = 1. We are
xploring methods to obtain other steps or to find out if they are
ot possible in our system. The main conclusion is that the theory
f exact traveling waves and their spectral representation are
owerful means to observe the structure of traveling waves and
btain exact ones. From the physical point of view exact solutions
re more likely to appear in physical processes than approximate
olutions and their properties can be studied more easily.
 n
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Appendix. Construction of the reciprocal lattice

For a hexagonal lattice of unit distance a, the direct vectors
that generate the lattice are [22]:

a1 = ae1; a2 =
a
2
e1 +

√
3
2

a e2; a3 = ce3. (A.1)

We will not require a3 but it is convenient to leave it initially. Any
lattice point can be obtained as the Bravais direct lattice:

R = n1a1 + n2a2 + n3a3 , (A.2)

ith n1, n2, n3 integers. The unit cell has a volume v = a1 · (a2 ×

3) = (
√
3/2)a2c.

Many physical properties are described by a function of the
direct Bravais lattice, for example the on-site potential as can be
seen in Fig. 1

The corresponding reciprocal lattice basis can be defined by:

b1 = 2π
a2 × a3

a1 · (a2 × a3)
; b2 = 2π

a3 × a1
a1 · (a2 × a3)

;

3 = 2π
a1 × a2

a1 · (a2 × a3)
. (A.3)

he resulting basis is:

1 =
2π
a

[1, −
1

√
3
, 0]; b2 =

2π
a

[0,
2

√
3
, 0];

b3 = 2π
2

√
3c

[0, 0, 1], (A.4)

with the properties that |b1| = |b2| = 2π (2/
√
3a), |b3| =

2π (2/
√
3c) and ai · bj = 2πδij.

As the third coordinate and dimension is not relevant in our
problem, we suppress it, and take a = 1 as the unit of a distance
in the direct space and 1/a in the reciprocal space to simplify the
notation.

The resulting bases are:

a1 = [1, 0]; a2 = [
1
2
,

√
3
2

]; (A.5)

b1 = 2π [1, −
1

√
3
] = 2π

2
√
3
[

√
3
2

, −

√
1
2

];

b2 = 2π [0,
2

√
3
] = 2π

2
√
3
[0, 1].

They have the property that ai · bj = 2πδij, and therefore
if G = m1b1 + m2b3, with m1,m2 integers, is a vector in the
reciprocal lattice then G · R = 2π (m1n1 + m2n2) = 2πn, with
an integer.
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