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Abstract. We consider the optimal arrangement of two diffusion materials in a bounded open
set @ C RY in order to maximize the energy. The diffusion problem is modeled by the p-Laplacian
operator. It is well known that this type of problem has no solution in general and then that it is nec-
essary to work with a relaxed formulation. In the present paper, we obtain such relaxed formulation
using the homogenization theory; i.e., we replace both materials by microscopic mixtures of them.
Then we get some uniqueness results and a system of optimality conditions. As a consequence, we
prove some regularity properties for the optimal solutions of the relaxed problem. Namely, we show
that the flux is in the Sobolev space H'(Q)Y and that the optimal proportion of the materials is
derivable in the orthogonal direction to the flux. This will imply that the unrelaxed problem has no
solution in general. Our results extend those obtained by the first author for the Laplace operator.
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1. Introduction. The present paper is devoted to studying an optimal design
problem for a diffusion process in a two-phase material modeled by the p-Laplacian
operator. Namely, we are interested in the control problem

max/ (aX, 4+ B(1—A,))|VulPdz,
@ Jo

(1) —div((aX, + B (1 - X,))|VulP2Vu) = f inQ,
ue WyP(Q), wc Qmeasurable, |w| < &,

with  a bounded open set in RN, N > 2, p € (1,00), a, 8,6 > 0, a < 3, X, the

characteristic function of the set w, and f € W~1%'(Q2), with p’ the Holder conjugate

of p (n' = ;25).

In (1.1), the equation is understood to hold in the sense of distributions, combined
with u € Wol’p(Q), denoting by u® and u” the values of u in w and 2\ w, respectively,
and assuming w smooth enough, this means that the interphase conditions on dw are
given by

u® =P, a|VuP2Vu® v = BVl [P72VuP - v on dwnQ
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in the sense of the traces in W1/?'?(dw) and W—1/7"?'(9w), respectively. Here v
denotes a unitary normal vector on Jw.

Physically, the constants « and [ represent two diffusion materials that we are
mixing in order to maximize the corresponding functional, which in (1.1) represent
the potential energy. The control variable is the set w, where we place the material
«. If we do not impose any restriction on the amount of this material, it is simple to
check that the solution of (1.1) is the trivial one given by w = €. Thus, the interesting
problem corresponds to k < |Q[; i.e., the material « is better than 8 but is also more
expensive, and therefore we do not want to use a large amount of it in the mixture.
The case corresponding to p = 2 has been studied in several papers (see, e.g., [5], [15],
[26]) where some classical applications are the optimal mixture of two materials in the
cross section of a beam in order to minimize the torsion and the optimal arrangement
of two viscous fluids in a pipe. For p € (1,2)U(2, 00), the p-Laplacian operator models
the torsional creep in the cross section of a beam [16], and therefore problem (1.1)
corresponds to finding the material which minimizes the torsion for the mixture of
two homogeneous materials in nonlinear elasticity. It is well known that a control
problem in the coefficients like (1.1) has no solution in general [24], [25]. In fact, some
counterexamples to the existence of a solution for (1.1) with p = 2 can be found in
[5] and [26]. Thus, it is necessary to work with a relaxed formulation. One way to
obtain this formulation is to use the homogenization theory [2], [26], [30]. The idea is
to replace the material aX,, + 8(1 — X,,) in (1.1) by microscopic mixtures of a, 5 with
a certain proportion 8 = 6(z) € [0,1], z € Q. The new materials depend not only on
the proportion of each original material but also on their microscopic distribution. In
the case p = 2, this relaxed formulation has been obtained in [26]. Here we show that
a relaxed formulation for (1.1) is given by

max{l/ (6o + 1 e)/m)l_pwum}
0 pJa 7
(1.2) —div((aaﬁ +(1- a)ﬁﬁ)l’pwuv’*vu) =f inQ,

we WyP(Q), 6eL>®(Q;00,1)), / 0(z)dz < K,
Q
which is equivalent to the calculus of variations problem

- mgin{;/ﬂ<9a&+(19)5&)1_pvu|z’dx<f,u>},
1.3

we WEP(Q), 0eL®(0,1)), / 0() dz < ,
Q

where here and in what follows (f,u) denotes the duality product of f and u as
elements of W12 (Q) and W, (), respectively. Our main results extend those
obtained in [5] (see also [26]) for p = 2 relative to the uniqueness and regularity of
a solution for (1.2). Namely, we prove that although it is not clear that (1.3) has a
unique solution (u, ), the flux

J:( 91 Jrlj)l_p\VuV’*ZVu

ap—1 /Bpfl

is unique. Moreover, assuming Q € C*! and f € L9(Q) N WHY(Q), with ¢ > N, we
have that o belongs to H!(Q)™ N L°°(£2). This is related to some regularity results
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for the p-Laplacian operator obtained in [20]. We also prove that every solution (u, 6)
of (1.3) satisfies

(1.4) ueWh>(Q), 900; —0;00; € L*(Q), 1<4,j <N,

where o; denotes the ith component of the vector function o; i.e., 6 is derivable in
the orthogonal subspace to o. The existence of first derivatives for ¢ and 6 will imply
that we cannot hope in general for an existence result for the unrelaxed problem (1.1).
Namely, the existence of a solution for (1.1) is equivalent to the existence of a solution
for (1.3), where 6 only takes the values zero and one, but then the derivatives of 6 in
(1.4) vanish. Assuming §2 simply connected with connected boundary, we show that
this implies o = |Vw|P~2Vw, with w the unique solution of

—div (|Vw|P~2Vw) = f in Q,
w e Wy P().

Similarly to the result obtained in [5], [26], we prove that this is only possible if Q
is a ball. We finish this introduction remembering that the results obtained in the
present paper are also related to those given in [4], where, for p = 2, it is considered
the minimization in (1.1) instead of the maximization. Problem (1.1) is also related
to the minimization of the first eigenvalue for the p-Laplacian operator (see [5], [6],
[9], [10], [22] for p = 2) problem, which we hope to study in a later work.

2. Position of the problem: Relaxation and equivalent formulations.
For a bounded open set  C RY, three positive constants «, 3, with 0 < a < S,
k < |Q|, and a distribution f € W5 (), p > 1, we are interested in the control
problem

max/ (osz + ﬁXQ\w) |V, [Pdz,
Q

w

(2.1) w C Q measurable, |w| < &,

—div (e, + BXo\w) | Vue P72 Vu,,) = f in Q, u, € WyP(Q).

Here a and  represent the diffusion coefficients of two materials, where the diffusion
process is modeled by the p-Laplacian operator. The problem consists in maximizing
the potential energy.

Using u,, as test function in the state equation, we have

/Q (an + ﬁé\fg\w) |Vug,|Pdx = (f,uy).

By the above equality and since p’ = p%? we have

/ (osz + ﬁXQ\w) |Vu,|Pdx
Q
1
=-—p ];/ (X, + BXo\w) [V [Pdx —/ (X, + BXo\w) |Vuw|pdx)
Q Q
1
= (5 [ (e 5 520,) IFulde ~ (fo)).
pJa
which, combined with u,,, the unique solution of the minimization problem

min {5 [ (02 + o) ulrde ~ (£}
Q

uEWOl’p(Q) p
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gives the equivalent formulation for problem (2.1):

. 1
(2.2) IB}E{p /Q(Oé?f + BXo\,) [VulPde — (f,u }

we WyP(Q), wC Qmeasurable, |w| <

It is known that the maximum in (2.1) or the minimun in (2.2) are not achieved,
i.e., that (2.1) (or (2.2)) has no solution in general. Namely, for p =2 and f =1, it
has been proved in [5] and [26] that if © is smooth, with connected smooth boundary,
and (2.1) has a solution, then € is a ball. Some other classical counterexamples to
the existence of solution for problems related to (2.1) can be found in [24] and [25].
Due to this difficulty, it is then necessary to find a relaxed formulation for (2.1). This
is done by the following theorem.

THEOREM 2.1. A relaxzed formulation of problem (2.2) is given by

win {3 [ (a1 e)ﬁﬁ)l_”\wwdaﬂ i, u>} 7

(2.3)
we WyP(Q), 6eL®( / Odz <
in the following sense:
1. Problem (2.3) has a solution.
2. The infimum for problem (2.2) agrees with the minimum for (2.3).
3. Every minimizing sequence (uyn,wy) for (2.2) has a subsequence still denoted
by (un,wn) such that

(2.4) Uy —u in WyP(Q), X, =6 in L=(Q),

with (u, ) solution of (2.3).
4. For every pair (u,0) € WyP(Q) x L=(Q;[0,1]), there exist u, € W, (Q),
wp, C Q measurable, with |wy,| < Kk such that (2.4) holds and such that
(2.5)
1—
li_>m (X, + BXa\w, )| Vun |Pde = / <9aﬁ +(1- 9)5ﬁ> p|Vu|pdac.
Remark 2.1. As we will see in the proof of Theorem 2.1, the relaxed materials in
(2.3) are obtained as a simple lamination in a parallel direction to Vu. In this context,
a laminated material corresponds to a particular distribution of two materials, which
depends exclusively on one direction, say, £ € RY, which is represented by a function
¢ € L>(9;0,1]) with a generic form as

p() =g(§-x) Vrel,

where g is a real-valued function. (see sections 2.3.5 and 2.2.1 in [2] for more details
on laminated materials).

Proof of Theorem 2.1. Using that the function J : RN x (0,00) — R defined by

(2.6) J(,t) = |§\ —= V()€ RN x (0, 00)

is convex and the sequential compactness of the bounded sets in W, (Q) x L (1)
with respect to the weak-x topology, it is immediate to show that (2.3) has at least
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a solution and that every minimizing sequence (u,,6,) for (2.3) has a subsequence
which converges in W, *(€2) x L>®(Q) weak-* to a minimum. Since problem (2.2)
consists in minimizing the same functional as the one in (2.3) but on the smaller set

{(u,Xw) e WiP(Q) x L=(Q;[0,1)) : wC Q, /chw dr < 5}7

it is clear that the infimum in (2.2) is bigger or equal than the minimum in (2.3).
Thus, taking into account that the convergence of the minimizing sequences stated
above will imply statement (3), we deduce that it is enough to prove statement (4) to
complete the proof of Theorem 2.1. For this purpose, we introduce the functions (the
index f means periodicity) H € L>((0,1) xR)NC?([0,1]; L;(0,1)), G € WH>((0,1) x
R) N C°([0,1]); and W,"'(0,1)) by

(2.7) H(q,r) = Z X ktq) (1), Glg,m) =qr — /OT H(g,s)ds Yq,r €]0,1] xR.

k=—o00

Now, for a pair (u,0) € C}(Q) x C°(Q), with

/0dx<n
Q

and ¢ > 0, we consider a family of cubes @Q;, 1 < i < ng, of side d such that
— s
2cJ@i, 1Qin@l=0, ifi#j
i=1
and a partition of the unity in Q by functions ; € C2°(RY), with
ns
sup(¢;) C Qi + B(0,6), thi(x) 20, 1 <i<nsand Y ¢i(z) =1Ve e,
i=1

Then we take

1

1 & if& #0,
w=5x [ 0dn &=y [ Vuds ci:{
Qi Qi

€ lffl:O7

with e € RV \ {0} fixed, and we introduce, for every € > 0, the sets ws . C  and the
functions us . € W (), with compact support by

3

i) s §irx = i—p
o G(qi, 2) (875 — a5
Xwa,a:ZH(Qi’Cz )XQM U6,e:“+fz¢i (L )( 1 )
i=1 i=1 j i
Using the result (see, e.g., [1])

1
(2.8) @(m, L) - / O(z,8)ds in L=(Q),
€ 0
for every ® € CO(Q; L}(0,1)) N L>*(Q2 x R) and every £ € RN \ {0}, we have that ws
satisfies

ns
(2.9) Kooy = 05 = ZQiXQi in L*(2) when e — 0,

i=1
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where, thanks to 6 uniformly continuous, we also have
(2.10) 0s — 6 in L>(£;]0,1]) when § — 0.

In particular, since the integral of € is strictly smaller than s, we deduce that for
every 0 > 0 small enough, there exists €5 > 0 such that

(2.11) lwsel <Kk V0 <e<es.

Since q(g — 1) < G(g,7) < 0 for every g € [0,1] and every r € R, we also have the
existence of C' > 0 such that

and taking into account that u has compact support and that G(gq,0) = 0, we deduce
that, for 6 small enough, us. has compact support and thus belongs to WO1 P(Q).
Moreover thanks to (2.8) (observe that there is no problem if & = 0 because then
G(gi, S= ) =0 for every x € RY),

E;) + i (qi — H(Qu 5;))&)

A Vu in L®(Q) whene —0 V6§ > 0.
Therefore,
(213)  wse 2w in WHS(Q)N W P(Q) whene —0 V>0 small enough.

On the other hand, using the above expression of Vus . and denoting H;(s) = H (g;, ),
we can use (2.8), combined with H(q,s) =1if s € (0,q), H(q,s) =0if s € (¢,1), a
& =01is ( # &, to deduce

lim [ (aXy,. + B(1— Xy, .))|Vus . |Pda

e—0

Q
—:Zl/i/:(aﬂxs)m(l—
Z/ o @D —aTT)

a1 g+ BT (1 — q)
+Z 617%

— Hi( ))(5”—0“”) ’
)|V +§ ; i dsd
’ 7w alpq+ﬁlp(1—qz) G| Ao
p

dx

&i

J 1 p
i lfp — l-r
Vu + ? (/6 1 ) gl
atrg; + 77 (1 - q)

Thanks to the uniform continuity of  and Vu, we can also take the limit when §
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tends to zero in the right-hand side of the above equality to get

I
py (32 [, o
+ Bl—q )| Vu + &
Z l aTrg, +5ﬁ(1 —q) '

(2.14) _ )(6ﬁ —aT7)
/ ( Q’H a7 + BT (1 - )

p

)(ﬁﬁ —a) [

a™r g + 77 (1 - g;)
qi(ﬁﬁ—aﬂ)

Vu+

&i

p
dx)

p

?(’Bﬂ _1am) ‘p |VulPdx
a7+ BT (1-0)

1 1 1-p
:/ (075 + (1= 0)57) " |VulPda.
Q

+ 81 —9)’1+

Let us now use that for ¢ < 1, Vus . is bounded in L ()N, independently of § and
g, and xu;. € {0,1}. Thus, there exists C' > 1 such that

[ Xy M) <1, |0jusellpe@ <C, 1<j<N Ve, d>0, 0<e<l
Here, we recall that the closed ball B¢ of center 0 and radius C in L®°(£2), endowed
with the weak-* topology, is metrizable. Taking d a suitable distance and using (2.9),
(2.11), and (2.13), we can choose for every § > 0, (§) > 0 such that

(X

Ws,e(8)?

0s5) <6, |wse@) <K, d(Ojusesy,Oju) <6, 1<j<N,

/Q (O‘Xwa «w T 6(1 - st,sw))) Vs e[ de
ns )(ﬁﬁ — aﬁ) P
_ ; &i
(2.15) Z/aq atrg + fTF P(l—%)
_ 1—q
;/ﬂﬁ( 4)

qi (51 P—als ”)
Then, taking into account (2.10) and (2.14), we get

V+

< 0.

p

dz

Vu+ &i
aT7 g + BT (1 q)

X,

Ws,e(8)

X 0in L>(Q), |wsew)| <k, Usees) Xy in whee @) n Wol’p(Q),

. 1 1 \1-p
lim | (0, )+ X)) Vs o() P = / (Gal—P+(1—9)ﬂ1-P) V|’ da.

This proves assertion (4) for u, 6 smooth and fQ 0 dx < k. The general result follows
by density. ]

Remark 2.2. We can express problem (2.3) in a simpler way defining

(2.16) ¢i= <§)ﬁ_ 1>0, fi= %

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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which provides

. [1 |VulP x
we s et =

we WyP(Q), 6eL>®([0,1)), Odz < k.
Q

(2.17)

For simplicity, in the following, we will redefine f as f .

3. Uniqueness results and optimality conditions for the relaxed prob-
lem. Since in problem (2.17) the cost functional is not strictly convex, the uniqueness
of the solution is not clear. However, let us prove in Proposition 3.1 that the flux

Va2 .

(3.1) 0= ——FV1,
(1+ch)rt

with (ﬂ,é) a solution of (2.17), is uniquely defined. The result follows from a dual
formulation of (2.17) as a min-max problem. In the case p = 2, a similar result has
been obtained in [26].

PROPOSITION 3.1. For every solution (i, 0) € Wy (Q) x L*®(€;[0,1]) of (2.17),
the flux & defined by (3.1) is the unique solution of

(3.2) min max /(1 +cO)|ofP da.
—divo=f 0 L>°(;]0,1]) Q
(IGLP/(Q)N Jo 0 dz<r

The function 0 solves the problem

(3.3) max min /(1 + )| da,
0e L (;[0,1]) —dive=f Q
[0 0 da<r ceL? ()N

and the minimum value in (3.2) agrees with the mazimum in (3.3).

Proof. For 6 € L>°(£;[0,1]), we define o9 € L? ()" as the unique solution of

min / (1+c)|of” dz.
—dive=f Q
oceL? ()N

The uniqueness of oy is ensured by the strict convexity of the problem. Then, taking
into account that oy satisfies

o’ / (1+ 09)|09|p/_209 -ndr=0 Vne Lp/(Q), with divy =0,
Q

we deduce the existence of ug € W, ?(Q) such that (1 + ¢f)|og|? 209 = Vug in Q.
Using also that —diveoy = f in €0, we get that ug is the unique solution of

p—2
—div (mvue) =f inQ, wueW"(Q),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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or, equivalently, of the minimization problem

. 1 |Vu|P }
min - _ VU (hy b
ueW, ™ (Q) {p /Q (1+ch)r-1 (fsu)

which, combined with

1 ug|P 1 /
p/Q(lLVcZ;pldx—U,ue) [+ eonpas,
proves that (@, 6) is a solution of (2.17) if and only if § is a solution of the max-min
problem (3.3) and (6, 6), with & defined by (3.1), is a saddle point. From the von
Neumann min-max theorem [31, Theorem 2.G and Proposition 1 in Chapter 2], we
get that the minimum in (3.2) agrees with the maximum in (3.3) and that & is a
solution of (3.2). Taking into account that the functional

oe L’ ()N max /(1 +cO)|of” dx
0eL>(Q;[0,1]) JQ
Jo 0dz<k

is strictly convex, as a maximum of a family of strictly convex functions, we deduce
the uniqueness of &. ]

The following theorem provides a system of optimality conditions for the convex
problem (2.3). It proves in particular that @ is the solution of a nonlinear calculus of
variations problem, which does not contain the proportion 6. We refer the reader to
section 4 in [15] for a related result in the case p = 2.

THEOREM 3.1. A pair (i, 0) € Wy P() x L>®(;[0,1]) is a solution of (2.17) if
and only if there exists i = 0 such that 4 is a solution of

(3.4) min (/Q F(|Vu|)dx—(f,u)>,

u€W, P ()

with F € C*([0,00)) N VVZQOCOO(O7 00); the convex function defined by

sP—1 if 0<s<j,
/\p_l . A < < A
(3.5) F(0) =0, F'(s) = K if i<s <1+,
sP~1 . R
and fi, 0 are related as follows:
o If i =0, then
(3.6) =1 a.e. in {Ival > 0}, /édmgn.
Q
o If >0, then
(3.7)
0 if 0< |V < f,
~ 1 U ~
0= <|VAU|—1> if < |Va < (14 )i, /ed.%':;‘i.
c\ f Q
1 if (14+0)p< |V,
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Proof. Applying the Kuhn—Tucker theorem to the convex problem (2.3), we get
that (&, ) is a solution if and only if there exists fi > 0 such that (4, 6) solves

(3.8) min {/Q (11)(1—1—21;';’—1 + Cpﬁ@)dz —{f, u)}

uEW, P ()
OEL™> (2[0,1])

and

(3.9) /Qédxgm, ﬂ(/ﬂédz—m) =0.

Differentiating in (3.8), we have that (i, ) is a solution of (3.8) if and only if

[Vap=>vi-vo , 1p
(3.10) o (11 cé)Pfl dz = (f,v) Yve WyP(Q),
Ap ‘ :ﬂ'p ) ) - oo .
(3.11) /Q(” Q+edr (0 —0)dz >0 Ve L®(Q;[0,1]).

Condition (3.10) is equivalent to @ solution of the minimum problem

1 P
(3.12) min 7/ %dm —(f,u) ¢,
uewy?(@Q) | P Ja (1+ ch)p—1

while (3.11) is equivalent to 8 satisfying (3.6) or (3.7) depending on whether /i = 0 or

i > 0. Replacing this value of 6 in (3.8), we have the equivalence between (3.12) and
(3.4). 0

Remark 3.1. Using (3.6) or (3.7) and expression (3.1) of &, we have that 0 satisfies
. 1 if |6 > 4,
(3.13) O(z) =
0 if 8] < j

Moreover, Theorem 3.1 implies ji = 0 if and only if the unique solution @ of
1 VulP
min {/ |7u|1d:cf (f,u>}
uEWOI‘p(Q) P Ja (1 + C)p_

[{z e Q: |Va| >0} <k,

satisfies

where in this case @ = u.

4. Regularity for the relaxed problem. In the present section, we study the
regularity of the solutions of problem (2.17). As a consequence, we show that the
unrelaxed problem (2.2) has no solution in general. We begin by stating the main
results. The corresponding proofs are given later.

THEOREM 4.1. Let Q C RN be a CY' bounded open set and (ii,0) € W, () x
L>(Q;[0,1]) be a solution of (2.17). Then, for & defined by (3.1) and fi given by
Theorem 3.1, we have the following:
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LIff e Wbi(Q), p < q < oo, then Vi, € LIP=D(Q)N | and there exists
C > 0, which only depends on p,q, N, and © such that

1
(4.1) IVl @y < C (L1 ooy + £)-

2. If f € LY(Q) with ¢ > N, then there exists C > 0, which only depends on
p,q, N, and Q such that

)

1

3. If f € WhYQ) N L2AH)(Q), with r > 0 or f € WH2UH)(Q) with r €
(—=1/2,0), then the function |&|"6 is in HY(Q)N, and there exists C > 0,
which only depends on p,q, N, i, and Q such that
(4.3)

2(1+r .
c <1 + Hf”Wl-,l(Q) + Hf||L(z<T+2>(Q)> ZfT 20,

€ (141l asn @) foter<o

|(AT|TJHH1(Q)N <

Moreover,
(4.4) & s parallel to v on 0f),

with v the unitary outside normal to 0S).
4. For 1<i,j < N and f € WH1(Q) N L?(Q),

(4.5) 0;06; — 0;06; = (1 + c0)(9;6; — 0;6;)Xyj51=py € L*(Q),

Moreover, zfé only takes a finite number of values a.e. in 2, then

(4.6) 9,06, — 0,06, =0, 1<i,j<N, curl(|g]”26)=0 inQ,
where, for a distribution from Q into RY, the curl operator is defined as
curl(®) == 5 (V@ —VOT).

Remark 4.1. As in [5] we can also obtain some local regularity results for @, 0
and &, but, for the sake of simplicity, we have preferred to only state and prove the
global regularity result.

Remark 4.2. If we assume that f belongs to W11() N L?(Q), that the unrelaxed
problem (2.2) has a solution (i, ), and that Q is simply connected, then (4.6) proves
the existence of w € WP(Q) such that 6 = [Vw|P~2Vw a.e. in Q. By (4.4), we must
also have @ constant in each connected component of 9. Assuming then that 9
has only a connected component and taking into account that w is defined up to an

additive constant, we get

—div ([Vw|P™?Vw) = f in Q,
(4.7 6 = |Vw[P~2Vw, w solution of

w=0 on 0f.

We will show that this implies that the unrelaxed problem has no solution in general.

THEOREM 4.2. Let Q C RY be a connected open set of class C*' with connected
boundary and f = 1. If there exists a solution of (1.1), then Q is a ball.
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Remark 4.3. In the case p = 2, Theorem 4.2 has been proved in [26] assuming
that (1.1) has a smooth solution and in [5] in the general case.

The proof of Theorem 4.1 will follow from the following lemma.

LEMMA 4.3. Let Q C RY be a C? bounded open set and G : [0,00) — [0,00) be a
C! function such that there exist A\, u > 0 and p > 1 satisfying

(4.8) G(s) = P72 Vs> p

(4.9) 0< G(s) +G'(s)s, G(s) <AsP2 Vs> 0.
Let u € C?(Q) be such that there exists f € CV1(Q) satisfying
(4.10) —div (G(\Vu\)Vu) =finQ, u=0 ond
Then the following estimates hold:

1. For every q € (p', ), there exists C' > 0 depending only on p, ¢, and 0, such
that

(4.11) IVl Lot @y < (||f||w 14(9)*“)

2. For every q > N, there exists C > 0 depending only on p, q, and 2 such that

(412) 19ull e < (171 Fny +1).
3. For every v > —1, there exists C > 0 depending only on p, N, \,~y, and Q)
such that
(4.13)
V
/|v K é |)|v2uvu|2+G(|vu|)|v2u|2) dx
ify=zp-2,
Pty
S O™ + Cpt ™| fllwrage) + OIS
Lr=1(Q)
(4.14)
G (|Vu
/|V | |v |)]Vquu|2+G(\Vu\)|V2u|2) dz
Vul if =1 <y <p-2.
<C Pty L O N
W O s o

Proof. In order to prove (4.11), we write (4.10) as
—div(|VulP~2Vu) = f - div(|Vu\p_2Vu - G(|vu\)vu) in Q,

where the last term in the right-hand side is bounded in W~=1°°(Q) by CuP~*. Then
the result follows from Theorem 2.3 in [21]. For the rest of the proof, let us differentiate
(4.10) with respect to x;. This gives

(4.15) - div(LV@iu) = 0;f inQ,
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with
G’ (|Vu|)
|Vl

Observe that L is nonnegative thanks to (4.9). In order to estimate 9;u from (4.15),
we also need to add some boundary conditions. For this purpose, fixed Z € 052, we use
that there exist § > 0 and functions 71, ..., 7" € CY(B(z,))" such that for every
x € B(z,0),
(4.17)

{ {r'(2),...,7V(z)} is an orthonormal basis of R",

(4.16) L= Vu® Vu+ G(|Vul)1.

7N (z) agrees with the unitary outside normal vector to 2 on 90N B(z, d).

Using that
N

Vu = Z (Vu-7")7" ae. in B(z,6)
i=1
and (4.10), we get

N
(4.18) —Zdlv (IVu)r")Vu - 7° —ZV(VU-T’) -T'G(|Vu|) = f in Q,

i=1
where, thanks to u vanishing on 02, we have
Vu=Vu-v™)7N Vu-r'=0, V(Vu-7)-7"=0 ondQ, 1 <i<N —1.
Thus, developing (4.18), we get
—LV2urN N = f 4 G(|Vu) (div NIy (VTN)t)TN Vu on 90N B(z,6).

By the arbitrariness of , we then deduce the existence of a vector function h €
L>(0Q)", which only depends on €2, such that Vu satisfies the boundary conditions

{ Vu = |Vu|sy, s€{0,1} a.e. on 99,

(4.19)
—LV?*uv v = f+ G(|Vu|)h - Vu on 09,

with v the unitary outside normal on 9).
Let us now prove (4.11). We reason similarly to [12]. For

(4.20) w = |Vul|?

and k > pP, we multiply (4.15) by (w% — k)+8iu € H'(Q) and integrate by parts.
Adding in 7 and taking into account (4.19), we get

13/ . W' LVuw. dew—i—Z/ TLVOu- Voude
{wh>n

= —/ s|Vul(f + G(|Vu|)h - Vu) (w% - k:)+ds(1‘) +/ A\ Vu(w% - k)+da:
o

= —/ s|Vu|G(|Vul)h - Vu(w2 —k; /fAu w? —k:) dx
o0

=

— ]3/ wp2;2fVu~deav7
2 Jwt 21y
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which, thanks to k > p, (4.8) and (4.16), proves
/ , wp_2|Vw|2dx+/ (wg - k)+w%2’V2u‘2d$
{(w? >k} Q
<C w? (w% — k)+ds(x)
o0

—I-C/ |f|’V2u|(w§ —k)+dx—|—C' ) w%|f|\Vw\dx,
Q

{w? >k}

and then, using Young’s inequality

/ , wp*2|Vw|2dx+/ (wgfk)+wp7_2|v2u|2dx
{w? >k} Q
(4.21)

<C w? (w% - kj)+ds(x) + C/ i |f|2w dx.
Te) {w? >k}

In the first term on the right-hand side, we use that, thanks to the compact embedding
of WH1(Q) into L'(9Q), for every € > 0, there exists C. > 0 such that

/ |v|ds(z) < C’E/ \v|dx+5/ |Voldz Vo e whi(Q).
o0 Q Q

Therefore, there exists a constant C' depending on p and € such that

/ w%(w% - k)+ds(m) < C’/ w? (wg - k)+dx—|—6/ . wP™ | Vwl|dz.
a0 Q {w? >k}

Replacing this inequality in (4.21), taking € small enough, and using Young’s
inequality, we get

/ ) wp_Q\Vw\2d;v<C/ ) wpdx—i—C/ . | f|?w de,
{w2 >k} {w2 >k} {w2 >k}

which, by Sobolev’s inequality and f in L4(2), provides
(4.22)

q—2

, NG . K
(/ |[(w? — k)" da:) <C |, wlde+C|fl3uq / . wid ,
Q {w?2 >k} {w?2 >k}

with
2N

T N-2
Now, we use that ¢ > N allows us to take r > 1 large enough to have

2*rqg—2 1 2% P
(==Y s, f@ffyﬁ.
2( q r) 2 r

2*

ifN>2 2°€(2,00) if N=2.

For such r, we use Holder’s inequality in (4.22) to get

(s o7 <o s o
Q Q

#Clf e ([ wrte) [t 20| 7,
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which, by (4.11) with ¢ = 2r/(p — 1) and

IFl, < OllfllLae),

-1(Q)

implies

(/Q“wg—kﬁf*dw)f (171t 1) |

Taking h > k and defining ¢ by

(NS}

we have then proved

L Oy + 1)
p(h)> < = k)2

<)O(k)rnin (1*77%27%) for h > k P> ,Ufpy

where C only depends on p, N, and Q. Lemma 4.1 in [29] then proves (4.12). Let us

now prove (4.13). Defining w by (4.20), we take (w + £)2 d;u, with € > 0, v > —1, as
test function in (4.10). Using (4.19), we get
(4.23)

N
1/(w+5)%2LVw~dex+2/(w+€)%LV8¢u~Vaiudx
4 Q

:_/d s|Vul|(f + G(|Vul)h - Vu)(w+5)2ds /Vf Vu(w + €)% dz.

In this inequality, we observe that the integrand in the left-hand side is nonnegative
due to

N
2wy " LVOu - Voiu — LVw - Vw
i=1

(4.24) N

= 2|Vu|? Z LVO;u - Vou — 2L(V*uVu) - (V2uVu) > 0 a.e. in Q
i=1

and v > —1. This allows us to use the Fatou lemma on the left-hand side and the
dominated convergence theorem on the right-hand side when ¢ tends to zero to deduce

N
%/ waszVw -Vwdzr + Z/ w%LV&u -Voudx
(4.25) @

< —/ s|Vul(f + G(|Vu|)h - Vu)w%ds(m) +/ Vf-Vuw?de.
o0 Q
Let us first consider the case v > p — 2. Defining T € W1°°(0, 00) by
0 if 0 < s < p?,
s
12

T(s) = — 1 if p? < s <28,

1 if s> 2,u2,
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we decompose the last term in (4.25) as
/ V- -Vuw?de = / Vf-(1—=T(w))Vuw?dz —|—/ Vf-T(w)Vuw? de.
Q Q Q

Integrating by parts the last term, replacing in (4.25), and using Young’s inequality,
h € L>*(08), and (4.8), we deduce
(4.26)

N
/w”T‘QLVw-dea;+Z/ w%LV{?in@iudxgu””/ |f] ds(x)
Q —Je 9]

+C w"s ds(:c)—&—u“'”/ \Vf\dx—i—C/ \f|2w%§+2dx+0u1+7/ |f] da.
re) Q Q Q

For the second term on the right-hand side, we use the continuous embedding of
W) into L*(09Q) and Young’s inequality to get

Pty

[ oot as@) <ot [ =) | dsta)
o o0

(4.27) <CpPt + C/ w" T dz + C/ w3 | V| da
Q {w>p2}
1 Pty pty—
<Cup+ﬂ’+0(1+*)/ w™ dz + C6 w3 4|Vw|2dnc,
0/ Ja {w>p?}

with § > 0 arbitrary. Taking ¢ small enough, replacing in (4.26), and using Holder’s
inequality, we have

N
/ w> LVw - Vwdx + Z/ w? LV;u - Vdjudr < u“‘”/ |f|ds(x)
Q = Ja re)

+ C’upﬂJrC/

w¥dx+u“”/ |Vf\dx+c/ \fli*f?dx+0u””/ |f| da.
Q @ ¢ ?

Using (4.11) with ¢ = ?’%’I and the continuous embedding of L?(Q) into W=14(Q),

combined with (4.24) and

G (|Vu))

Yl |V2uVu|2+G(|Vu|)‘D2u|2 a.e. in Q,

N
(4.28) > LV - Vou =

=1

we conclude (4.13).
We now assume —1 < v < p — 2. In this case, we estimate the right-hand side in
(4.25) as follows: For the first term, using (4.27), we have for § < 1
(4.29)
’/ sVl (f + G(Vul)h - V) w? ds(x)
a0

Pty

7 )ds(z)

<O (flw™ +w
o

<C/ |f\%ds(x)+0/ wMTvds(x)
o0 09

C P+ pty—
<C |f\%ds(x)+0up+7+ 7/ w%dx—&—Cé/ w3 4\Vw\2d;v.
o0 J Q {w>p?}
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For the second term on the right-hand side of (4.25), we just use Holder’s inequality
to get

Pty

(4.30) gc/ \Vf\%?dz+c/w7dx.
Q Q

/ Vf- Vuw?dx
Q

Using (4.29) with ¢ small enough and (4.30) in (4.25) and then using (4.11) with

q= Tfl, we conclude (4.14). O

Remark 4.4. Since the constant in the previous theorem only depends on the
norm in L of the first derivative of the functions {7¢} , defined in (4.17), we can
relax the conditions u € C%(Q) and € of class C? to u € CH1(Q) and Q of class C!
by a density argument.

Remark 4.5. As a simple case, Lemma 4.3 can be applied to the p-Laplacian
operator, G(s) = |s|P~2. Indeed, since here ;i = 0, it is simple to check that the proof
above does not use the assumption f € W11(Q) in (4.13). Thus, it shows that for
FeW LW (QNLFT(Q)ify>p—20r f € W L2 (QNWH T (Q)if -1 < v < p—2,
there exists a solution u of (4.10) such that

pty—2

|Vu| 2 |V?u| belongs to L*(Q);

ie., |Vu|pJrTW belongs to H*(£2). In particular, it proves that u belongs to H?(f) if
p < 3 and f belongs to WwhiT (€2). This is a known result which can be found in [11].
It also proves that for f € L20+7)(Q) if r > 0 or f € WH20H7(Q) if —1/2 < r < 0,
the flux o = |Vu[P~2Vu satisfies that |o|" Do belongs to L2(Q2)N*N or, equivalently,
that |o|"o belongs to H!(Q2)Y. The case r = 0 has been proved in [20].

Proof of Theorem 4.1. Let us assume the right-hand side f in (2.17) smooth
enough, which by 4 solution of (3.4) implies that @ € C%(Q2) for some o > 0 (see,
e.g., [12]) and satisfies

aa an(EE0G) e wewdr,

For € > 0 small and F defined by (3.5), we take F. : [0,00) — [0,00) of class
C?([0,00)) such that for some k > 0, it satisfies

F(0)=0, Fl(s)>—"
g = b} I S > 1
(4.32) 2(L+c)p!

F&‘(S) = F(S)7 Vs> (1 + C)ﬂv gg}% ||FE - F||L°°(O,oo) =0.

e<F/(s)<e+ks?™? Vs>0,

The existence of this approximation is ensured by Theorem 2.1 and Remark 3.1 in
[13]. Then we define u. as the unique solution of

1
(4.33) min {/ F.(|Vul|)dx + 7/ lu — al2dx f/ fuda:},
uwewlP(@)nLz@) LJo 2 Jq Q

and therefore

F!(|Vu.
(4.34) — div <8|(|vvuz||)v“€> YU —d=f inQ.
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Since

/FE(\qu|)da;+1/ |u5—ﬁ|2d1’—/fusdozg/Fg(WﬁDdz—/fﬁdx,
Q 2 Ja Q Q Q

we have that u. is bounded in Wol’p(Q) N L%(), and thus, up to a subsequence, it
converges weakly in W, *(€2) N L2(2) to a certain function u. Taking into account
the uniform convergence of F. to F and F convex, we can pass to the limit in the
above inequality to deduce

1
/F(|Vu0|)da:+f/ |u0—12\2da:—/fu0dx
Q 2 Jo Q
1
< liminf (/ FE(|VuE|)dx+f/ ue—ﬁ|2dx—/fugdx)
=0 \Jg 2 Ja Q

g/ﬂF(WﬁDd:ﬂf/Qfﬁdo:,

which, combined with @ solution of (3.4), shows uy = 4 and

(4.35) gl_r%/QF(WuE\)dx = gl_%/QFEUVuEDdx = /QF(|Vu|)dx.
On the other hand, the assumptions of F. imply that

_ F(Vuel)
0. =: Vol Ue

is bounded in LPI(Q)N7 and then by (4.34), for a subsequence, there exists og €
LP ()N such that

(4.36) 0. — oo in L (Q)N, —diveg = fin Q.

Taking V € LP(Q)" and using the convexity of F., we have

FVue) o0 (v v\ da 9 s
/Q T Ve (V= Vue)d </Q(Fe(\VD F.(|Vu.|))dz,

which can also be written as

/(| u5|) ‘Zl(‘ a') ~ ~
_en -~ el . — AN e VA v v/ — U, d

FVi) o o / FL(Vuel) X
Vi V(i —u:)d —“——Vu. - (V-Va)d
Jr/Q Vil - V(i —ue)de + v ue - ( @) dz
< [ RV - BVl
Q
From (4.31), (4.35), and (4.36), we can pass to the limit in this inequality to deduce

/ oo (V = Vi) do < / (F(IV]) = F([Vd])dz YV € ().
Q Q
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Taking V = Va +tW, with W € LP(Q), t > 0, and dividing by ¢ and passing to the
limit when ¢ tends to zero, we get

.
/00~Wdz</MVﬂ~Wdaz YW e LP(Q)V,
Q o Vi

which shows

PP,
o9 = F(Vzr) a.e. in Q.
We have thus proved
. FL(|Vu.)) Vil .
ue — 4 in WyP(Q), WVUE - WVu in LP (Q)V.

Assuming € 02*0‘,7we can apply, for example, Theorem 15.12 in [14] to deduce
that u. belongs to C*<(Q). On the other hand, we have that G. € C'([0,0)), defined
by

G.(s) = Ff) if s>0, G.(0)=0,

satisfies
GL(|Vue 2 2
0%0) 192090 + 6 (9 97
_ F{(|Vue|) (|VU ‘2 _ ‘V2UEVUE|2> + F(|Vu |)‘V2U5VUE|2
|V c |Vu.|? ¢ c |Vue|2
while
F!(|Vuel|)? |V2u.Vu,|? |V2u, Vu,|?
D - 2 _ ZeMVYTEl) . 2 IV HeVvV®el F// . 2 € € )
[Derl Vuc]? (172 Vuc]? )+ F(Vu) Vue]?

Then the assumptions of F. imply the existence of a constant C' > 0, which only
depends on the constant k in (4.32) such that

¢ (va)

Do.|? < P2
1Do.|? < C(e + |V | )( e

V2u.Vu|® +G€(|Vu€)|V2u5|2> .

Using Lemma 4.3 and
1 1
[Vue| € 2771 (1 + ¢)|oe| 7T,

we conclude (4.1), (4.2), and (4.3) for f and Q smooth. The general case follows by
an approximation argument. Let us now show (4.5). First, we recall that since we
are assuming f € W1(Q) N L2(Q2), we have o in H'(Q)". Using that (3.1) implies

Vi = (1+ch)|6” 26 ae. in Q

and taking 4,5 € {1,...,N} and ® € C°(0,00) such that ® = 1 in a neighborhood
of i, we get in the distributional sense

0;0,[@(|51)] - diad;@(|51)] = 0,(9;1 2 (|61)) - 0; (9sa (|51

= o ((1+ ch)lo” 2@ (1513 ) - 0; (1 + Dol ~2a(la))o: )
(4.37) o, o

= 0,061 2@ (51)a; — cd;0 6" 2@ (5]

+ (L ) (a:(@(lalo 25;) - 0; (2(16]) 6 ~26)),
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which, using that the support of ® is compact and that o belongs to H'(2)"V, shows
(4.38) 617 ~20(|5)) (9,0 65 — 0;08,) € LA(Q).
Now we recall that
=0 in{|6]<pi}, 0=1 in{|5]> i}
This implies that for every ¥ € C°((0,00) \ {z}), we have
61722 (61) (21065 — 0;08:) = 61" > ®(161)(0: 5; — 0,0 6:) (1~ W(|61)).
By (4.38), we can take ¥ = U5 with
0<Ws <1, Ws(p) =0, Us(s) > 1Vs#f

to deduce that
61722 (61) (80 6; — 0;0.6:)
vanishes a.e. in {|5| # i} and then that
617 2 ®(161)(0:0 65 — 0,0 6:) = A7 2@ () (0,065 — 0,0 61) X117y
On the other hand, recalling that V|5| = 0 a.e. in {|6]| = i}, we can return to (4.37)

to conclude (4.5). Assertion (4.6) now follows from Proposition 2.1 in [3], which shows
that

6156*] — 8]9A(A71 € Lz(Q)
implies

8,06, —9;06, =0 ae. in{f=c} Yeel0,1]. O

Proof of Theorem 4.2. Let & be a measurable subset of {2 and @ € W&’p(ﬂ) be
such that (g, ) is a solution of (2.17) with f = f. By Remark 4.2, we have

(OLXL;) + ﬂXQ\U:,) Vi = Vuw,
with w the unique solution of

—div (|Vw[P?Vw) = 11in Q,
(4.39)

w e Wy P(9Q).
Thanks to Theorem 1.1 in [19] and the first corollary in [12], we know that w is in
C1#(Q) for some 3 € (0,1) and (see [23]) that it is analytic in {|Vw| > 0}. Using

Theorem 1.1 in [20] (or Theorem 4.1), we also have that 6 = |Vw[P~2Vw isin H*(Q)V.
Thus, —divé = 0 a.e. in {6 = 0}, which, combined with w solution of (4.39), implies
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that Vw # 0 a.e. in Q. Analogously, let us prove that for every A > 0, the set
{|Vw| = A} has zero measure. For this purpose, we observe that a.e. in {|Vw| = A},
we have

0= A|Vw|? = pAP2(|V?w|? + (AVw) - V),
but a.e. in {|Vw| = A}, we also have
0 = Vdiv(|[Vw|P2Vw) = Nl 72VAw = \P"2AVuw.
Therefore, V2w = 0 a.e. in {|Vw| = A}, which, combined with
NP2 Aw = —div(|[Vw[P?Vw) = 1 a.e. in {|Vw| = \},

implies that the set {|Vw| = A} has zero measure. Now, we recall that, thanks to
(3.13), the constant /i in Theorem 3.1 satisfies

{xeQ: Vu|>a}coc{reQ: |Vw|l > i},

while Theorem 3.1 implies |&| = k. So, using that |{|Vw| = i}| = 0, we get (up to a
set of null measure)

(4.40) w={rxeQ: |[Vuw|< i}

and |&] < |Q|. Then, taking a connected component O of the open set {x € Q :
|[Vw| > fi}, we can repeat the argument in [6] to deduce that O € 2 is an analytic
manifold with connected boundary such that

w
w, B are constant on 90.
v

—div (|Vw[P?Vw) =1 in O,
(4.41)

From Serrin’s theorem [27], this proves that O is an open ball and that w is a radial
function in O with respect to its center. Taking into account the analyticity of w in
{|Vw| # 0}, the unique continuation principle shows that € is a ball. O

5. Conclusion. In the present paper, we have studied the optimal design of a
two-phase material modeled by the p-Laplacian operator posed in a bounded open
set O C RY. The goal is to maximize the potential energy (problem (1.1)) when
we only dispose of a limited amount of the best material. Since the problem has
no solution in general, we have obtained a relaxed formulation (problems (1.2) and
(1.3)) where instead of taking in every point of  one of both materials, we use a
microscopic mixture where the proportion 6 of the best material takes values in the
whole interval [0,1]. This new formulation is obtained using homogenization theory.
Reasoning by duality, we have also obtained a new formulation of the minimization
problem as a min-max problem (problems (3.2) and (3.3)). As a consequence, we show
that although the relaxed problem has no uniqueness in general, the flux ¢ is unique.
The optimal conditions for the relaxed problem show that the state function @ is the
solution of a nonlinear calculus of variations problem (3.4). Since the second derivative
of the function F' in this problem is not uniformly elliptic, the corresponding Euler—
Lagrange equation does not provide in general the existence of second derivatives for
. However, it allows us to show that if the data are smooth enough, then, for every
r > —1/2, the function |6|"4 is in the Sobolev space H'(Q)N N L>(Q)N. Moreover,
the optimal proportion 6 is derivable in the orthogonal directions to Via. As an
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application of these results, we show that the original problem has a solution in a
smooth open set 2 with a connected boundary if and only if 2 is a ball. The results
obtained in the present paper extend those obtained by other authors in the case of
the Laplacian operator (see, e.g., [5], [8], [15], [26]).
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