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Abstract
Finite StateMachines with InputMultiplexing (FSMIMs) were proposed in previous work as
a technique for efficient mapping Finite State Machines (FSMs) into ROM memory. In this
paper, we present new contributions to the optimization process involved in the implementa-
tion of FSMIMs in Field Programmable Gate Array (FPGA) devices. This process consists
of two stages: (1) the simplification of the bank of input selectors of the FSMIM, and (2)
the reduction of the depth of the ROM. This has a significant impact both on the number of
used Look-Up Tables (LUTs) and on the number of the Embedded Memory Blocks (EMBs)
required by the ROM. For the first stage, we present two approaches to optimize FSMIM
implementations based on the Minimum Maximal k-Partial Matching (MMKPM) problem:
one of them applies the greedy algorithm for the MMKPM problem, and the other based on a
new multiobjetive variant of the MMKPM and its corresponding Integer Linear Programing
formulation. We also propose a modification of the second stage, in which the characteristics
of EMBs are taken into account to improve implementation results. The new optimization
process significantly reduces the number of used FPGA resources with respect to the previous
one. In addition, the proposed approaches achieve an adequate trade-off between the usage
of EMBs and LUTs with respect to conventional FSM implementations based on ROM and
to those based on LUT.
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1 Introduction

In digital design, the implementation of Finite State Machines (FSMs) has received attention
from researchers for decades [1–8]. Optimizing FSM implementations in terms of area, speed
or power consumption is essential to meet the design constraints demanded by applications.
The inclusion of Embedded Memory Blocks (EMBs) in Field Programmable Gate Array
(FPGA) devices has sparked a renewed interest in FSM implementations in the last years.
Mapping the transition and output functions of a FSM into aROMmemory (the corresponding
implementations will be referred to as conventional ROM-based FSM implementations) has
become an interesting and useful alternative to conventional synthesis methods based on
Look-Up Tables (LUTs). The advantages reported in the literature can be summarized as
follows. First, exploiting unused EMBs to implement FSMs frees LUTs, which can be used
for other purposes [9]. Second, speed improvements can be obtained if the function mapped
on the ROM requires a considerable number of logic levels when mapped on LUTs [10, 11].
Third, a significant reduction in power consumption can be obtained by mapping FSMs to
EMBs and disabling them during idle states [12].

In recent years, different techniques to reduce the number of required EMBs by using a
small number of LUTs have been proposed [4, 9, 11, 13–15]. The EMB-based FSM imple-
mentations generated by these techniques make a more efficient use of the available FPGA
resources, allowing an adequate trade-off between EMB and LUT usage. Most of these tech-
niques use functional decomposition methods to decompose the transition function of the
FSM into two subfunctions: one subfunction is implemented using a combinational element
(called address modifier) whereas the other is implemented using a smaller memory compo-
nent [4, 9, 15]. Other techniques apply structural decomposition methods to divide the logic
block that represents the FSM into two or more subblocks [11, 16]. Then, a subblock with
fewer inputs than the original logic block is implemented using EMBs; the remaining are
implemented using combinational elements.

In the context of EMB-based FSM implementations, FSM with Input Multiplexing
(FSMIM) is a technique proposed in [13] to reduce the depth of the memory in which
the FSM transitions are mapped. This technique included an optimization process and an
architecture called FSMIM with transition-based input selection (FSMIM-T), which uses a
multiplexer bank as address modifier. FSMIMs take advantages of the fact that state transi-
tions usually involve many don’t care inputs. The experiments reported in [10, 14] show area
and speed improvements with respect to conventional approaches in Xilinx FPGAs. That
work was extended in [14] by including a new architecture, called FSMIM with state-based
input selection (FSMIM-S), which allows further reductions in the number of EMBs at the
expense of reducing the speed and increasing the number of LUTs. Both architectures are
based on a combinational circuit, called Input Selector Bank (ISB), which selects a differ-
ent subset of FSM inputs for each state, allowing to reduce the depth of the memory. The
optimization process described in [14] consisted of two stages. In the first stage, the ISB is
simplified, allowing to reduce the number of LUTs and eventually the delay imposed by it.
In the second stage, the depth of the memory is reduced beyond what the ISB would attain
by itself. The FSMIM model has been recently used in research work by other authors [17,
18].

In [19], we defined the Minimum Maximal k-Partial-Matching (MMKPM) problem,
which allows to model the problem involved in the simplification of the ISB. We probed
that MMPKM problem is NP. We also proposed a greedy algorithm and an Integer Linear
Programming (ILP) formulation for this problem. A performance study for these approaches
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using random bipartite graphs were presented; however, they were not applied to the gener-
ation of FSMIM implementations, and therefore no implementation detail was considered.

By contrast, in the development of this work, we have applied the MMKPM problem to
the optimization of FSMIM implementations in FPGAs for the first time. This has allowed us
to study the effect of the MMKPM on the whole implementation process (e.g., the influence
of the optimization in the number of LUTs used by the ISB implementation or in the quality
of the results of the subsequent stage). On the basis of the analysis of these preliminary
results, we have proposed a new multiobjective variant of the MMKPM problem and its
corresponding ILP formulation in order to obtain better implementation results.

The main contributions of this paper can be summarized as follows:

• A new multiobjective variant of the MMKPM problem and its corresponding ILP for-
mulation are proposed.

• The greedy algorithm proposed in [19] and the new ILP formulation are applied for the
first time to the generation of FSMIM implementations in FPGAs.

• We propose a modification of the second stage, in which, unlike the previous approach,
the characteristics of EMBs are taken into account to improve the implementation results.

• We present a comprehensive experimental study in which the new techniques and those
proposed in [14] are compared.

• Experimental results obtained by the new techniques are compared with conventional
FSM implementations based on ROM and with those based on LUT.

• For the first time, we have used an Intel FPGA as target device (previous works used
Xilinx FPGAs [10, 13, 14]). This allows us to validate the FSMIM technique in a device
with a different architecture.

The rest of the paper is organized as follows. Section 2 presents a background of the
conventional ROM-based implementations, the FSMIM architectures and the optimization
process involved in the generation of FSMIM implementations. In Sect. 3, the new optimiza-
tion process is presented. In Sect. 4, experimental results are discussed. Finally, concluding
remarks and future work are presented in Sect. 5.

2 Background

2.1 Conventional ROM-based implementation

Mealy and Moore machines can be mapped into memory using the architecture shown in
Fig. 1a (a specific architecture can be used for Moore machines, but here we consider the
most general architecture) [11]. As the EMBs available in current FPGAs are synchronous,
we assume Mealy machines with synchronous outputs. The input signals and present state
encoding bits form the address of the ROM, which stores the FSM outputs and the next state
of each FSM transition. The next state is fed back to the address signal as the present state
[20]. The number of bits of the ROM is

2m |S|(n + p) ≤ 2m+p(n + p) (1)

where S is the set of states, m is the number of inputs, n is the number of outputs, and
p = �log2|S|� is the number of state encoding bits. The exponential increase of the ROM
size [see (1)] is a critical problem not only for area consumption but also for speed, which
is degraded for the following two reasons: (1) the significant routing overhead when many
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(a) (b) (c)

Fig. 1 ROM-based FSM architectures: a Conventional, b FSMIM-T and c FSMIM-S

EMBs are required, and (2) the use of LUTs to join EMBs when the memory depth exceeds
the maximum depth of the EMBs [20].

2.2 Finite state machine with input multiplexing

Themain purpose of the FSMIMapproach is to reduce the number of used EMBswith respect
to conventional ROM-based FSM implementations by using a small number of LUTs. For
that, the technique tries to reduce the depth of the ROM memory by decreasing both m and
|S| in (1). In addition to decreasing the memory requirement, the reduction of the depth can
also decrease delay imposed by the memory [20]. However, the speed is not considered as an
objective of the proposed technique but only a potential benefit. For each state, the ROM can
be addressed using only the subset of FSM inputs that are relevant to determine the transitions
of the state (called effective inputs). This allows to reduce the ROM depth if the maximum
number of effective inputs per state (denoted by m′) is less than the number of inputs (m).
For this purpose, the ISB selects the effective inputs of each state from FSM inputs (so, an
ISB has m inputs and m′ outputs). For those states that have less than m′ effective inputs,
only part of the inputs selected by the ISB are effective; the remaining are don’t care inputs
(called Don’t Care Selected Inputs [DCSIs]). The ROM depth can be further reduced by
using DCSIs to form groups of states that can be encoded with the same code. Thus, instead
of using the code of the present state to address the ROM, the code of the group the present
state belongs to (i.e., the code of the present group) is used. If all states are grouped into N
groups (with N < |S|), the depth can be reduced to 2m′

N words. This allows to reduce the
ROMdepth even in FSMswith some states sensitive to all inputs (i.e., withm′ = m). FSMIM
architectures are shown in Fig. 1b and c. The ROMaddress is composed ofm′ effective inputs
and the p′ encoding bits of the present group, where p′ = �log2 N�.

The aim of the FSMIM-T architecture (see Fig. 1b) is to reduce thememory requirement at
the same time that the ISB keeps as simple as possible. This allows efficient implementations
in terms of LUTs without degrading the speed. In this case, the ISB is implemented as a bank
of multiplexers, which is greatly benefited from embedded multiplexers available in current
FPGAs [21, 22]. Another advantage of the bank of multiplexers is that it can be optimized in
a high-level way because the complexity of a multiplexer is only determined by its number
of inputs (i.e., it is not necessary to use the synthesis tool to evaluate its complexity as in
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the case of general logic functions). The multiplexer bank is composed of m′ multiplexers
called input selectors. For each state, each input selector selects one different effective input
of the state from a different subset of FSM inputs. Therefore, each input selector is controlled
by a different set of control bits (called selection bits), which are stored in the ROM. This
allows to simplify the multiplexers at the expense of increasing the ROM width with respect
to the conventional ROM-based implementation. For each FSM transition, the ROM stores
the FSM outputs, the encoding bits of the next group, and the selection bits. The number of
bits of the ROM of a FSMIM-T is

2m′
N (n + p′ + r) (2)

where r is the number of selection bits.
The aim of the FSMIM-S architecture (see Fig. 1c) is to implement FSMIMs using the

minimum number of EMBs [14]. Each word of the ROM stores the next state and FSM
outputs, as in the conventional ROM-based architecture. Therefore, the number of bits of the
ROM of a FSMIM-S is

2m′
N (n + p) (3)

In this way, the depth of the ROM can be reduced without increasing its width (as occur in the
FSMIM-T architecture). However, the number of used LUTs with respect to the FSMIM-T
architecture increases for two reasons. First, input selectors are not multiplexers controlled by
selection bits but logic functions that select the FSM inputs from the present state encoding
bits; so, the ISB implementation is more complex than the corresponding one in the FSMIM-
T architecture, which uses the minimum possible number of selection bits. Second, a new
combinational component, called group encoder (GE), is required to map the present state
(coded by p bits) to the present group (coded by p′ bits). FSMIM-S implementations are
usually slower than FSMIM-T implementations due to the use of the GE and a more complex
ISB [14].

As a conclusion, the FSMIM-T architecture is suitable for designs in which it is critical
to reduce the number of LUTs whereas FSMIM-S is more appropriate when the number of
EMBs is limited. When the speed must be taken into account, FSMIM-T implementations
offer advantages over the FSMIM-S ones.

2.3 Generation of FSMIMs from FSMs

The optimization process presented in [14] is used to transform a FSM into a FSMIM whose
implementation is efficient in terms of EMB and LUT usage, which can also have a positive
impact on speed. This process is independent of the used FSMIM architecture. The opti-
mization problems involved in the process can be described in terms of the Input Selection
Matrix (ISM) [14], in which rows contain the effective inputs of each state, and columns
contain the FSM inputs connected to each input selector. Let S = {s1, s2, . . . , sq} and
X = {x1, x2, . . . , xm} be the set of states and the set of FSM inputs, respectively. Let us
define an ISM as a matrix A = (ai j ) ∈ Mq×m where ai j ∈ X ∪ {0, 1,−} represents the
input (a FSM input, a constant value or a don’t care) selected for the state si by the j-th input
selector. For clarity, the ISM includes an additional column for the state corresponding to
each row. Fig. 2-a shows two examples of ISM obtained from a same FSM.

The optimization process consists of the two following stages: (1) Input Selectors Sim-
plification (ISS), which simplifies the ISB, and (2) State Grouping (SG), which reduces the
ROM depth by merging states. First, the ISS stage is applied to the ISM created from the
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(a) (b)

(c)

Fig. 2 Example of FSMIM generation: a Input Selector Simplification, b 2nd input selector for the FSMIM-T
architecture (R1

2 and R0
2 are the selection bits), and c State Grouping

given FSM. Then, the SG stage is applied to the resultant ISM, generating the ISM that
determines the final FSMIM implementation.

2.3.1 Input selectors simplification

The complexity of the ISB is measured as the sum of the number of inputs of each input
selector, that is, the sum of the number of different inputs in each ISM column (we will refer
to this measure as selection cost). The main goal of the ISS stage is to reduce the selection
cost by minimizing the number of inputs of each input selector. In general, input selectors
with a smaller number of inputs require a smaller number of LUTs. Since the ISB is usually
in the critical path (this is always true for FSMIM-T implementations), the speed of FSMIM
implementations can increase if the ISS stage reduces the delay of the ISB.

The complexity of a multiplexor only depends on the number of inputs. Therefore, in
the FSMIM-T architecture, there exists a direct relation between the selection cost and the
complexity of the ISB. So, the minimization the selection cost has a strong influence on the
reduction of the number of LUTs required by the ISB.However, in the FSMIM-S architecture,
the complexity of the logic function defined by the ISB depends not only on the number of
inputs but also on the complexity of such logic function. Therefore, the minimization the
selection cost has less influence on the reduction of the number of used LUTs.

Given an ISM, the ISS stage permutes the elements of each row to reduce the number
of different inputs in each column (i.e., the number of inputs of each input selector of the
ISB). We refer to each feasible solution of the ISS stage as a permutation of the ISM. For
example, AI SS is a permutation of A (see Fig. 2a) that reduces the number of inputs of the
input selectors from 5 to 3, from 3 to 2, and from 2 to 1.

In [14], we proposed an algorithm to simplify the ISB. This algorithm iteratively solves
instances of a variant of the classicalKnapsackproblem (whichwill be referred to asKnapsack
with Conflicts [KC] problem). The KC problem extends the classical Knapsack problem by
introducing disjunctive constraints for pairs of items which are not allowed to be packed
together into the knapsack [23, 24]. The algorithm to simplify the ISB, which will be referred
to as KC-based ISS algorithm, processes the columns of the ISM iteratively. With the goal
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of reducing the number of different elements in each column, a different instance of the KC
problem is solved to determine what element of each row (either a FSM input or a DCSI)
is located in the column. The remaining elements will form the KC instance corresponding
to the next column. Therefore, the algorithm processes as many instances of KC as ISM
columns, allowing to reduce the selection cost. The classical dynamic-programming-based
method for the Knapsack problem [25] has been modified to solve each instance of KC.
Obviously, independently of the optimality of the method used to solve each instance of KC,
the algorithm does not guarantee an optimal solution in terms of the selection cost because
the selection of elements is done in a column without considering how it affects to the rest
of columns.

2.3.2 State grouping

The main goal of the SG stage is to reduce the ROM depth by forming groups of states
that can be encoded with the same code (we will refer to them simply as groups). A set of
states can form a group if exists an assignment of constant values to the DCSIs that allows to
allocate their transitions in different ROM words. For example, the states s2 and s3 of AI SS

(see Fig. 2a) can be identified by the symbol g23 in matrix ASG
1 (see Fig. 2c) because the

2nd input selector allows to address the transitions of either s2 (if 0 is selected) or s3 (if 1 is
selected). Let us say that these states are merged into the group g23. So, in FSM transitions,
the next states s2 and s3 are replaced by g23, with (x1, 0,−) as input selection for s2, and
(x2, 1,−) for s3. Fig. 2b shows the multiplexer corresponding to the 2nd input selector for
the FSMIM-T architecture.

Given an ISM, the algorithm presented in [14] (we will refer to it as old SG algorithm)
processes all ISM columns iteratively in a certain order. Initially, each single state forms a
different group. For each column, the DCSIs are set to 0 or 1 to merge pairs of the groups
obtained after processing the previous columns. Fig. 2c shows an example of theSGprocedure
applied to AI SS (see Fig. 2a). First, s2 and s3 are merged into g23 by setting the DCSIs of
the second column (see ASG

1 ). Then, g23 and s1 are merged into g123 by setting, in the
third column, the DCSI of s1 to 0 and all DCSIs of g23 to 1 (see ASG

2 ). Note that this is
possible because g23 and s1 have a DCSI in the same column for all their rows. Finally,
s4 and s5 are merged into g45 (see ASG

3 ). SG reduces the number of groups from 6 to 3
(G = {g0, g123, g45}); so, the number of encoding bits is reduced from 3 to 2. As the example
shows, a low dispersion of the amount of DCSIs in the ISM columns (i.e., a lot of DCSIs
in few columns) favours the effectiveness of the algorithm (we will refer to this concept as
DCSI dispersion). For example, when SG is applied to A (see Fig. 2a), which has higher
DCSI dispersion than AI SS , only the pairs of states (s2, s3) and (s4, s5) can be merged.

3 Proposed optimization process to generate FSMIMs from FSMs

In this paper, we present two new approaches for the ISS stage, which are based on the
MMKPM problem [19]. In one of these approaches, the greedy algorithm presented in [19]
has been applied for the first time to generate FSMIMs; in the other one, a newmultiobjective
variant of theMMKPMproblem and the corresponding ILP formulation have been proposed.
Unlike the greedy algorithm, the ILP formulation is able to obtain optimal solutions. In
addition, we present a modification of the SG stage to achieve further improvements.
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3.1 Proposed input selectors simplification

In order to improve the results obtained by the ISS stage, we proposed in [19] the MMKPM
problem, along with an ILP formulation and a greedy algorithm. This problem, which is NP-
complete, allows to model the optimization problem involved in the ISS stage. The objective
of the KC-based ISS algorithm and the MMPKM problem is to minimize the complexity of
the ISB byminimizing the selection cost. Unlike the solutions of theKC-based ISS algorithm,
the optimal solutions of the MMKPM problem do correspond to minimum selection cost.
Anyway, both can be not optimum in terms of the number of selection bits. In FSMIM-T
implementations, this affects both the ISB (which is controlled by the selection bits) and
the ROM (which stores the selection bits). In Fig. 2-a, the selection cost and the number of
selection bits for A are 5+ 3+ 2 = 10 and �log2 5� + �log2 3� + �log2 2� = 6, respectively.
If the input x2 of the 4th row is moved from column 3 to 2, the selection cost remains at 10,
but the number of selection bits decreases from 6 to 5. This paper presents a multiobjective
variant of theMMKPMproblem, which, in addition tominimizing the selection cost, allow to
further reduce the ROM size by minimizing both the number of selection bits (which reduces
the ROM width of the FSMIM-T architecture) and the DCSI dispersion (which improves
the results of the SG stage for both FSIMIM architectures [see Sect. 2.3.2]). This variant is
called MMKPM with minimum selection cost, number of selection bits and DCSI dispersion
(MMKPM-SSD).

For simplicity, we restrict the description of the MMKPM-SSD problem to the context of
the ISM ( [19] presents a general definition of theMMKPMproblem). Let A = (ai j ) ∈ Mq×k

be an ISM where ai j ∈ X ∪ {−} (A does not contain any constant because ISS is applied
before SG). Given A, a bipartite graph G = (R∪ X , E) is constructed, where R = {1, . . . , q}
represents the rows of A. We refer to the vertices of R and X as rows and inputs, respectively.
The edges of E ⊆ R×X link the rows of A with their inputs. The degree of a vertex s ∈ R∪X
is denoted by degG(s), and the set of edges in E that are incident to s, by E(s). G cannot
represent permutations of A because it does not contain information about columns. Let us
define a partial-matching in G as a set of edges without common rows. Each column of A
can be represented by a different partial-matching, which selects at most one input from each
row (the absence of selected inputs in a row represents a DCSI). Let us define a maximal
k-partial-matching in G as a collection P = {P1, . . . , Pk} of k partial-matchings that define
a partition of E . A maximal k-partial-matching determines a permutation of A in which the
inputs of the i-th column are given by Pi . The selection cost can be calculated from P as∑k

i=1|X(Pi )|, where X(Pi ) denotes the set of inputs that are incident to any edge of Pi .
The objective of the MMKPM problem is to find a maximal k-partial-matching P =

{P1, . . . , Pk} in G such that
∑k

i=1|X(Pi )| is minimum (i.e., a permutation of A with a
minimum selection cost). The MMKPM-SSD problem adds two new objectives of lower
priority: the minimization of the number of selection bits and the minimization of the DCSI
dispersion. The number of selection bits can be calculated from P as

∑k
i=1�log2|X(Pi )|�.

Regarding the DCSI dispersion, let us define the weighted cardinality of P as
∑k

i=1 i |Pi |.
Given P , if a DCSI of Pi is swapped with an input of Pj of the same row (we say that
the DCSI is moved from Pi to Pj ), then |Pi | increases by one and |Pj | decreases by one,
and so the weighted cardinality decreases by j − i when i < j . Hence, minimizing the
weighted cardinality of P minimizes the DCSI dispersion in the resultant permutation of A
because DCSIs are moved to partial-matchings with higher indices. For example, in Fig. 2a,
the weighted cardinality of the maximal k-partial-matchings associated to A and AI SS are
1 · 5 + 2 · 4 + 3 · 2 = 19 and 1 · 6 + 2 · 4 + 3 · 1 = 17, respectively.
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Given an ISM A = (ai j ) ∈ Mq×k and the corresponding bipartite graph G = (R∪ X , E),
theMMKPM-SSD problem can be formulated as the problem of finding a maximal k-partial-
matching P = {P1, . . . , Pk} in G such that the tuple

(
k∑

i=1

|X(Pi )|,
k∑

i=1

�log2|X(Pi )|�,
k∑

i=1

i |Pi |
)

(4)

is minimum in lexicographical order. The following is the proposed 0/1 ILP formulation for
theMMKPM-SSD problem, which is an extension of that presented in [19]. Let the variables
yx,i , ze,i ∈ {0, 1} be defined as

yx,i =
{
1 if x ∈ X(Pi )

0 otherwise
∀x ∈ X , i = 1, . . . , k, (5)

ze,i =
{
1 if e ∈ Pi

0 otherwise
∀e ∈ E, i = 1, . . . , k, (6)

and let d j,i ∈ {0, 1} be defined as the bit of weight 2 j corresponding to the binary rep-
resentation of the value 2�log2|X(Pi )|� − 1, which is a string of 1s whose length is equal to
�log2|X(Pi )|�. These variables allow to express (4) as the tuple

⎛

⎝
k∑

i=1

∑

x∈X

yx,i ,

k∑

i=1

D−1∑

j=0

d j,i ,

k∑

i=1

i
∑

e∈E

ze,i

⎞

⎠ , (7)

where

D ≥ max{�log2|X(Pi )|� : i = 1, . . . , k}. (8)

Then, the ILP formulation is given by

min. Q Dk
k∑

i=1

∑

x∈X

yx,i + Q
k∑

i=1

D−1∑

j=0

d j,i +
k∑

i=1

i
∑

e∈E

ze,i , (9)

where Q = 1

2
(k2 + k) |R|, (10)

D = ⌈
log2 min{|R|, |X |}⌉ , (11)

subject to
∑

e∈E(r)

ze,i ≤ 1 ∀r ∈ R, i = 1, . . . , k, (12)

k∑

i=1

ze,i ≤ 1 ∀e ∈ E, (13)

k∑

i=1

∑

e∈E(x)

ze,i = degG(r) ∀r ∈ R, (14)

ze,i ≤ yx,i ∀e ≡ (r , x) ∈ E, i = 1, . . . , k, (15)

yx,i ≤
∑

e∈E(x)

ze,i ∀x ∈ X , i = 1, . . . , k, (16)
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2 j d j,i ≤
∑

x∈X

yx,i − 1 j = 0, . . . , D − 1, i = 1, . . . , k, (17)

∑

x∈X

yx,i − 1 ≤
D−1∑

j=0

2 j d j,i i = 1, . . . , k, (18)

d j,i ≥ d j+1,i j = 0, . . . , D − 2, i = 1, . . . , k. (19)

In (9), Q and D [see (10) and (11)] are used to sort lexicographically the solutions. Q
is an upper bound of the maximum weighted cardinality because |R| ≥ |Pi | = ∑

e∈E ze,i .
D satisfies (8) because |X(Pi )| ≤ min{|R|, |X |} (by definition of a partial-matching), and
therefore k D is an upper bound of the number of selection bits.

Constraint (12) ensures that each Pi has atmost one edge incident to each row, i.e., that Pi is
a partial-matching. Constraint (13) ensures that one edge cannot belong to different partial-
matchings, i.e., that the k partial-matchings are disjoint. In addition, each edge belongs
to a partial-matching due to (14); therefore, the feasible solutions are maximal k-partial-
matchings. Constraints (15) and (16) ensure the coherence of ze,i and yx,i . Constraint (15)
guarantees that an edge e ≡ (r , x) belongs to Pi only if the input x ∈ X(Pi ) (i.e., ze,i is
equal to 1 only if yx,i = 1), and (16) imposes that an input x belongs to X(Pi ) only if there
exists at least one edge e ≡ (r , x) ∈ Pi . Regarding the number of selection bits, (17) ensures
that d j,i = 0 for all j such that 2 j > |X(Pi )| − 1; (18), that dk,i = 1 for the greatest k
such that 2k ≤ |X(Pi )| − 1; and (19), that d j,i = 1 for all j < k. As a result, given i , the
number of d j,i variables whose value is 1 is equal to the number of bits required for the
binary representation of |X(Pi )| − 1 (i.e., �log2|X(Pi )|�).

The ILP formulation of the MMKPM-SSD problem differs from that of the MMKPM
problem in the objective [see (9)] and in the new constraints (17), (18), and (19).

3.2 Proposed state grouping

With the goal of reducing as much as possible the depth of the ROM of FSMIM implementa-
tions, the old SG algorithm processes the ISM until no more groups can be merged (i.e., until
the depth of the ROM cannot be further reduced). However, the depth of the implemented
ROM is usually greater than that obtained by the algorithm because of the discrete size of
EMBs. For example, the FSMIM of Fig. 2a has |S| = 6 states, m′ = 3 effective inputs
and p′ = 3 state encoding bits. The FSMIM-T corresponding to the ISM AI SS requires
r = �log2 3� + �log2 2� + �log2 1� = 3 selection bits. Supposing that the number of outputs
(n) is 8, the FSMIM-T requires a ROM of 2m′ · |S| = 48 words of n + p′ + r = 14 bits,
that is, a ROM of 672 bits [this value can be obtained with (2)]. If we suppose EMBs of 512
bits with 32 words of 16 bits, then the FSMIM-T implementation requires two EMBs (this is
only a toy example to illustrate the concept mentioned above, since EMBs are greater in real
devices). After the old SG algorithm reduces the number of groups from 6 to 3 (see ASG

3 in
Fig. 2c), the depth of the required ROM is reduced from 48 to 2m′ ·3 = 24 words whereas the
size of each word increase from 14 to 16 bits due to r = �log2 3� + �log2 4� + �log2 3� = 6
and p′ = �log2 3� = 2. So, the FSMIM-T can be implemented in a unique EMB. However,
the FSMIM-T corresponding to the ISM ASG

2 (Fig. 2-c), which has 4 groups instead of 3,
can also be implemented in one EMB due to it requires a ROM of 2m′ · 4 = 32 words of 16
bits (since r = �log2 3� + �log2 4� + �log2 3� = 6 and p′ = �log2 4� = 2). Therefore, in
this example, the old SG algorithm merges more states than necessary because 4 groups are
enough to minimize the number of required EMBs.
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In the cases inwhich reaching theminimumnumber of groups is not necessary tominimize
the number of required EMBs, the ISM obtained by the algorithm is more complex than
necessary due to the constant values assigned to DCSIs, which has a negative impact on
speed and area. In both FSMIM architectures, the number of required LUTs can increase
because, in FSMIM-T, the number of selection bits grows, and, in FSMIM-S, the selection
function corresponding to the ISB has fewer don’t care outputs. This increase in the number of
LUTs can cause a decrease of themaximumoperating frequency. Regarding EMBs, thewidth
of the ROM of the FSMIM-T architecture grows with the number of selection bits, which
can increase the number of required EMBs. However, this effect does not occur in FSMIM-S
implementations, inwhich theROMwidth remains constant due to it only depends on the state
encoding bits and the number of outputs. To sum up,mergingmore groups than necessary can
increase the number of LUTs required by both FSMIM architectures as well as the number
of EMBs required by FSMIM-T implementations (but not by FSMIM-S implementations).
Therefore, from the point of view of the implementation results, the optimal number of groups
is not the minimum value found by the old SG algorithm but the maximum number of groups
that minimizes the number of EMBs required by the implementation.

This paper proposes an algorithm to find the optimal number of groups (called EMB-
granularity-based SG algorithm), which is a modification of the old SG algorithm. After
each pair of groups are merged, the obtained ISM is used to estimate the number of EMBs
required by the corresponding FSMIM implementation, and it is considered as the candidate
solution only if the number of EMBs decreases. After all columns have been processed,
the last ISM chosen as candidate solution determines the best solution (i.e., the one with
the optimal number of groups). To estimate the number of EMBs, the algorithm takes into
account the available configurations for the depth and width of the EMBs of the target device
[21, 22].

Compared with the old SG algorithm, the EMB-granularity-based SG algorithm allows
to reduce the ISB complexity of both architectures and the ROM size of the FSMIM-T
architecture; however, it cannot further reduce the ROM size of the FSMIM-S architecture.

4 Experimental results

Two different optimization strategies have been implemented, which differ in the technique
applied in the ISS stage. One of them (called ILP strategy) applies the proposed ILP for-
mulation to solve the MMKPM-SSD problem and the other (called greedy strategy) applies
the greedy algorithm presented in [19] to solve the MMKPM problem. In the SG stage, both
strategies apply the EMB-granularity-based SG algorithm. The main purpose of this section
is to compare both strategies with the optimization process published in [14] (hereinafter
called OLD-FSMIM), which applies the KC-based ISS algorithm in the ISS stage and the
old SG algorithm in the SG stage. In addition, the FSMIM implementations obtained with the
presented strategies are compared with conventional FSM implementations based on ROM
(CONV-ROM) and with those based on LUT (CONV-LUT).

All designs have been synthesized and implemented in a Intel Max 10 device
(10M50DAF484C6GES) using Quartus Prime software version 18.0. Therefore, the pre-
sented results include routing overhead. The maximum clock frequency and the resource
utilization (EMBs and LUTs) of the implemented FSMs have been obtained using speed and
area optimization, respectively. As the main goal of EMB-based FSM implementations is to
save LUTs by using EMBs, their efficiency can be measured by calculating the number of
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saved LUTs with respect to CONV-LUT per each used EMB (this measure will be called
saved LUTs per EMB [SLPE]).

The target device includes 182 EMBs of 9 Kbits, which can be split into two independent
EMBs of 4.5 Kbits (residual 4.5 Kbits EMBs are computed as 0.5 EMBs). The experimental
study uses the IWLS93 standard benchmark set [26] (composed by 43 FSMs) and a bechmark
set generated by BenGen tool [27] (composed by 150 FSMs) (these FSMs will be referred to
as medium-sized test cases because the majority have that size). We have discarded the cases
in which CONV-ROM only requires half EMB (i.e., the minimum amount of memory that
can be instantiated) and the cases in which the FSMIM technique cannot be applied (i.e., in
which the number of effective inputs is equal to the number of inputs and, after the ISS stage,
there is no ISM column with two or more DCSIs). The final number of used FSMs was 57.
In addition, in order to evaluate the proposed technique with larger FSMs, we have generated
72 synthetic test cases (which will be referred to as large-sized test cases). The first and third
quartiles for the ROM size in bits of the CONV-ROM implementations for medium-sized
and large-sized test cases are, in this order, 1.7 × 104, 3.1 × 105, 3.0 × 106 and 2.7 × 107.
Thus, the sweep range is wide and the samples are quite homogeneously distributed.

As MMKPM-SSD is an NP-complete problem, the computation time spent by the cor-
responding ILP formulation to find an optimal solution is expected to be high when the
size of the problem instance grows. In 54% of the total cases (including both medium-sized
and large-sized test cases), Gurobi reaches the time limit, and so the solution found is not
optimal. However, as Sects. 4.1 and 4.2 show, even in these cases, the optimization pro-
cess obtains better results using the ILP formulation than using the greedy algorithm for the
MMKPM problem or the KC-based ISS algorithm. For the cases in which the time limit is
reached and the solution found is not optimal, the average gap (which indicates how long is
the obtained solution from the optimal solution) is 22%. Therefore, the optimization results
could be improved by increasing the time limit. Regarding the other approaches to solve
the ISS stage, the execution time for the greedy algorithm and the KC-based ISS algorithm
are 0.03 s and 134s, respectively. The average speed-up obtained by the greedy algorithm is
2,282. In addition to the fact that the greedy algorithm is the fastest, the optimization process
obtains better results using it than using the KC-based ISS algorithm (see Sects. 4.1 and 4.2).

4.1 Comparison between the proposed strategies and OLD-FSMIM using
medium-sized test cases

The results obtained using the medium-sized test cases are summarized in Table 1, which
shows theEMBreduction (EMBred.), theLUT reduction (LUT red.), SLPE increment (SLPE
inc.) and speed increment (Speed inc.) obtained by the proposed optimization strategies with
respect to OLD-FSIMIM. The table shows the following statistical measures: mean (Mean),
standard deviation (Std), minimum value (Min), quartiles (Q1, Q2 and Q3), maximum value
(Max), and the percentage of cases in which the proposed technique obtains better results
(hit rate [HR]) and worse results (miss rate [MR]) than OLD-FSMIM. One test case has been
excluded from the statistical data because the FSMIM-T implementation generated by OLD-
FSMIM requires more than 182 EMBs; however, the implementation was possible using the
proposed strategies.

Regarding the EMB usage, as explained in Sect 3.2, the EMB-granularity-based SG algo-
rithm cannot further reduce the ROM size of the FSMIM-S architecture compared with the
old SG algorithm. In addition, in the FSMIM optimization process, the influence of the ISS
stage on the ROM size of the FSMIM-S architecture is not very significant because the ISS
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Table 1 Percentage improvement with respect to OLD-FSMIM using medium-sized test cases

Arch. Strat. Mean Std Min Q1 Q2 Q3 Max HR MR

EMB red. FSMIM-S ILP 0 0 0 0 0 0 0 0 0

Greedy 0 0 0 0 0 0 0 0 0

FSMIM-T ILP 8 14 0 0 0 15 50 30 0

Greedy 7 12 0 0 0 11 50 29 0

LUT red. FSMIM-S ILP 24 23 −17 6 24 40 70 81 14

Greedy 22 24 −31 2 23 38 70 75 19

FSMIM-T ILP 24 22 −17 0 20 43 67 71 2

Greedy 22 20 0 0 18 40 60 70 0

SLPE inc. FSMIM-S ILP 9 12 −9 1 3 15 39 81 14

Greedy 8 12 −9 1 3 12 39 75 19

FSMIM-T ILP 15 25 0 0 3 20 107 71 2

Greedy 11 20 0 0 1 16 107 70 0

Speed inc. FSMIM-S ILP 2 8 −12 −4 2 7 25 56 44

Greedy 3 8 −14 −3 3 7 25 61 39

FSMIM-T ILP 4 6 −10 0 5 7 21 70 21

Greedy 4 5 −5 0 3 7 20 70 21

stage cannot reduce the ROM width of this architecture (as occur in the FSMIM-T one): this
stage can only improve the results of the subsequent SG stage by concentrating the DCSIs in
the minimum number of ISM columns. Therefore, the effect of the proposed strategies in the
EMB reduction of the FSMIM-S architecture is less likely to be observed in medium-sized
FSMs. This is confirmed by the results (the average reduction is 0% for both strategies).
However, for FSMIM-T implementations, the ILP strategy reduces the number of EMBs in
44% of the cases in which OLD-FSMIM uses more than 0.5 EMBs (i.e., in which a further
reduction is possible); for these cases, which represents the 30% of the whole sample, the
average reduction is 27%. The greedy strategy obtains similar results.

Regarding the LUT usage, the average reduction obtained for all architectures and strate-
gies range from 22 to 24% with hit rates from 70 to 85%. The miss rates in FSMIM-T
implementations are null or negligible; however, they reach 19% in FSMIM-S ones. The
reason is that, unlike the multiplexer bank of the FSMIM-T architecture, the complexity of
the ISB of the FSMIM-S one depends not only on the number of inputs but also on the
complexity of the logic functions. Therefore, the minimum number of LUTs is not always
reached with the minimum selection cost.

Regarding speed, the difference between the hit rate (70%) and the miss rate (21%) for
FSMIM-T implementations points out that, in general, in addition to reducing the FPGA
resources, the proposed strategies increase the speed (despite the poor average increment);
however, this improvement is not so clear in the case of the FSMIM-S architecture because
of the reasons mentioned above.

On average, the results of ILP strategies do not show significant improvementswith respect
to that of greedy strategies. In general, the reason could be that MMKPM problems related
to medium-sized test cases are no greater enough. As it is difficult to directly compare both
strategies using the results of Table 1, we have calculated the improvements in EMB and
LUT usage of the ILP strategy with respect to the greedy one. In FSMIM-T implementations,
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the hit rate is 12% in EMB reduction and 21% in LUT reduction, with an average reduction
for the success cases of 17% and 20%, respectively. In both comparisons, the miss rate is null
or negligible. In FSMIM-S implementations, despite of the less influence of the ISS stage
on the complexity of the ISB, the hit rate in LUT reduction is 22% whereas the miss rate is
only 14%.

4.2 Comparison between the proposed strategies and OLD-FSMIM using large-sized
test cases

The results obtained using the large-sized test cases are summarized in Table 2. These results
show that the effectiveness of the proposed strategies growswith the size of the FSM.Both the
area and speed results for FSMIM-T implementations are significantly improved when the
strategies are applied to larger FSMs (compare HR and Mean of Tables 1 and 2). Regarding
FSMIM-S implementations, the number of EMBs is reduced with respect to OLD-FSMIM
(the hit rate achieved by the ILP strategy is 43% with an average reduction of 23% for
these cases). Therefore, the proposed strategies obtain the best results considering the main
goal of the FSMIM-S architecture (i.e., the implementation of FSMIMs with a minimum
number of EMBs, being secondary the reduction of the number of LUTs as explained in
Sect. 2.2). However, in general, the improvement in the EMB reduction obtained by the
SG stage negatively affects the ISB complexity and degrades the results of the ISS stage.
In FSMIM-S implementations, this degradation along with the less influence of the ISS
stage on the complexity of the ISB reduces the improvement in LUT usage, which explains
the diminishment of the average LUT reduction in large-sized FSMs. Despite this, in both
architectures, the net effect is that the efficiency of the proposed strategies in the use of
resources increases significantly with the size of the FSM, as the SLPE results indicate
(compare the SLPE of Tables 1 and 2). As a conclusion, these results show that, compared
to OLD-FSMIM, the effectiveness of the proposed strategies grows with the size of the FSM
for both FSMIM architectures.

Regarding the comparison between greedy and ILP strategies, despite of the fact that the
greedy one achieves significant improvements over OLD-FSMIM, the ILP strategy further
improves these results (in a significant way for FSMIM-T). To highlight the differences
between the proposed strategies, the improvements of the ILP strategy with respect to the
greedy one are summarized in Table 3. The hit rate in EMB reduction is 76% in FSMIM-T
implementations, and 32% in FSMIM-S ones (they are about 10x larger than the miss rates);
in both cases, the average reduction for the success cases is close to 15%. These improvements
are due to the lower DCSI dispersion obtained by the ILP formulation in the ISS stage, which
allows the SG stage to further reduce the number of groups.

The LUT reductions obtained by the ILP strategy with respect to the greedy one are also
significant for FSMIM-T (with an average reduction of 14% and a hit rate of 72%); however,
it is negligible for FSMIM-S (although the hit rate is 60%). Despite this, in both cases, the
SLPE results show that the ILP strategy is clearly more efficient than the greedy one in the
use of resources. The hit rate in SLPE increment is 75% in FSMIM-T implementations; on
average, ILP strategy saves 15% more LUTs per used EMB than the greedy strategy, and
this value increases to 21% for the success cases. Although the average values are lower for
FSMIM-S implementations, in the 75% of the cases, the ILP strategy saves on average 11%
more LUTs per used EMB.

Finally, although the improvements in speed are small, the hit rates are at least 68% while
the miss rates are at most 32%. These results show that the ILP strategy can improve the
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Table 2 Percentage improvement with respect to OLD-FSMIM using large-sized test cases

Arch. Strat. Mean Std Min Q1 Q2 Q3 Max HR MR

EMB red. FSMIM-S ILP 9 22 − 100 0 0 10 50 43 1

Greedy 4 20 − 100 0 0 3 50 26 10

FSMIM-T ILP 30 15 − 28 22 30 38 66 97 1

Greedy 21 16 − 39 13 17 27 58 96 1

LUT red. FSMIM-S ILP 10 20 − 82 0 11 24 47 74 26

Greedy 7 25 − 102 1 10 22 51 75 25

FSMIM-T ILP 44 27 − 33 28 48 65 86 90 7

Greedy 36 24 − 36 23 33 55 83 90 4

SLPE red. FSMIM-S ILP 23 40 − 10 2 7 16 185 91 9

Greedy 15 32 − 13 1 4 9 131 84 16

FSMIM-T ILP 53 37 0 28 44 63 195 98 2

Greedy 36 34 0 16 23 40 140 98 0

Speed inc. FSMIM-S ILP 5 17 − 26 − 2 3 10 57 60 40

Greedy − 1 15 − 32 − 11 0 8 41 53 47

FSMIM-T ILP 12 7 − 6 8 12 17 35 96 4

Greedy 8 5 − 5 4 7 11 21 94 6

Table 3 Percentage improvement of ILP with respect to Greedy using large-sized test cases

Arch. Mean Std Min Q1 Q2 Q3 Max Hit Miss

EMB red. FSMIM-S 4 16 −83 0 0 4 50 32 3

FSMIM-T 11 16 −82 4 11 18 55 76 6

LUT red. FSMIM-S 1 23 −89 −5 3 11 60 60 39

FSMIM-T 14 19 −29 0 15 23 71 72 18

SLPE inc. FSMIM-S 7 20 −29 0 1 5 100 72 26

FSMIM-T 15 21 −45 4 12 19 123 75 18

Speed inc. FSMIM-S 7 15 −21 −1 2 14 57 68 32

FSMIM-T 4 6 −8 0 3 6 20 75 25

resources utilization without degrading or even increasing the speed respect to the greedy
one.

As a conclusion, the greedy strategy, which is faster and does not require any solver, offers
a good balance between the quality of results and the computation time; so, it is a suitable
candidate if the requirements are not very demanding. However, if the design requirements
are not met, the ILP strategy should be used.

4.3 Comparison between the proposed strategies and the conventional FSM
implementations

The FSMIM implementations generated by the proposed strategies are compared with the
conventional FSM implementations (CONV-ROM and CONV-LUT). This study uses the
same benchmark set (the medium-sized test cases) and the same measures as in [14]. How-
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ever, the logic structure of the target device (an Intel FPGA) is different from those used in
previous work about FSMIM (Xilinx FPGAs). We have not used the large-sized test cases
because they have been generates exclusively to evaluate the EMB-based FSM implemen-
tations, whose results mainly depend on structural properties of the FSM (number of states,
transitions, inputs, effective inputs, and outputs). Therefore, we understand that these bench-
marks provides less confidence to evaluate CONV-LUT, whose results significantly depend
on the complexity of the transition and output functions. The FSMs of CONV-LUT and the
ROMs of CONV-ROMhave been described according to VHDL templates provided by Intel.
All FSMIM approaches achieve an average EMB reduction with respect to CONV-ROM of
at least 70%, with a hit rate of 100% (see Table 4). Regarding the number of used LUTs with
respect to CONV-LUT (see Table 5), for all FSMIM approaches, the average reduction is
at least 85% (with minimum reductions of at least 48%). Although FSMIM approaches use
more LUTs than CONV-ROM, they attain greater SLPE values in all test cases, with an aver-
age increment of at least 941% (see Table 4). Such high values show that FSMIM approaches
are more efficient that CONV-ROM in the use of EMBs, with FSMIM-S approaches being
the most efficient, since they significantly reduce the number of LUTs by using a limited
number of EMBs. Regarding speed, although the aim of the EMB-based techniques is to save
LUTs, FSMIM-T approaches are faster than CONV-LUT in 35% of cases, with significant
improvements in 25% of cases (see Q3 in Table 5). On average, CONV-ROM obtains slightly
better results than FSMIM-T approaches but at the expense of a significant increase in the
number of EMBs. Therefore, FSMIM-T approaches achieve the best balance between speed
and resource usage. With a hit rate of at most 33%, FSMIM-S approaches obtain the worst
results (this is the price to pay for being the technique that uses the least number of EMBs
and saves the greatest number of LUTs per EMB [see Table 5]).

The critical path of CONV-ROM implementations includes one EMB and, eventually, the
LUTs required to join EMBs [20]. However, the critical path of FSMIM implementations also
includes the LUTs used to implement the ISB or the GE. So, due to the delay imposed by the
ISB/GE, FSMIM implementations cannot compete in terms of speed with the CONV-ROM
implementations that use a small number of EMBs. However, the number of LUTs required
to join EMBs and the routing overhead increase with the number of EMBs, producing a
significant increase of the critical path delay. When the number of EMBs of CONV-ROM
implementations is big enough, the reduction of the critical path delay due to the reduction in
the number of EMBs achieved byFSMIMapproaches can compensate the penalty imposed by
the ISB/GE. This effect can be observed in Fig. 3, which shows the relationship between the
speed increment of FSMIM implementations with respect to CONV-ROM implementations
and theROMsizeofCONV-ROM. It includes the results obtained inFSMIM-SandFSMIM-T
implementations using the ILP strategy for all test cases whose CONV-ROM implementation
fits in the target device. The speed increment grows with the ROM size, specially in the
right-hand side of the figure (for these cases, FSMIM approaches are the best EMB-based
alternative for both speed and EMB usage). As could be expected, this trend is more clear
in the case of the FSMIM-T architecture. We must highlight that 11 of the 57 medium-sized
test cases and 64 of 72 large-sized test cases have been excluded because the implementation
generated by CONV-ROM does not fit in the target device due to it requires more than
182 EMBs; however, these FSMs were successfully implemented by applying the FSMIM
approaches.
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Table 4 Percentage improvements with respect to CONV-ROM using medium-sized test cases

Approach Mean Std Min Q1 Q2 Q3 Max HR MR

EMB red. FSMIM-S-ILP 74 20 31 62 79 93 99 100 0

FSMIM-S-Greedy 74 20 31 62 79 93 99 100 0

FSMIM-T-ILP 70 23 10 57 76 88 99 100 0

FSMIM-T-Greedy 70 24 10 57 76 88 99 100 0

SLPE inc. FSMIM-S-ILP 1343 3445 26 92 318 1215 20724 100 0

FSMIM-S-Greedy 1338 3453 26 92 320 1215 20724 100 0

FSMIM-T-ILP 966 2079 13 114 298 654 11326 100 0

FSMIM-T-Greedy 941 2072 13 114 298 645 11326 100 0

Table 5 Percentage improvements with respect to CONV-LUT using medium-sized test cases

Approach Mean Std Min Q1 Q2 Q3 Max HR MR

LUT red. FSMIM-S-ILP 86 11 48 84 88 92 98 100 0

FSMIM-S-Greedy 85 11 48 82 88 92 98 100 0

FSMIM-T-ILP 94 8 67 94 97 99 100 100 0

FSMIM-T-Greedy 94 8 67 93 97 99 100 100 0

CONV-ROM 97 4 77 96 99 100 100 100 0

Speed inc. FSMIM-S-ILP − 14 54 − 67 − 54 − 36 4 111 30 70

FSMIM-S-Greedy − 14 52 − 67 − 54 − 34 5 120 33 67

FSMIM-T-ILP 4 70 − 63 − 49 − 21 29 180 35 65

FSMIM-T-Greedy 4 70 − 63 − 49 − 21 26 179 35 65

CONV-ROM 7 74 − 58 − 44 − 18 27 210 37 63

Fig. 3 Percentage speed increment with respect to CONV-ROM versus the ROM depth of CONV-ROM, and
the corresponding LOWESS (LOcally WEighted Scatterplot Smoothing) curve
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5 Conclusion and future work

In this paper, new techniques for optimizing FSMIM implementations have been proposed.
As in previous work, the optimization process is divided into the ISS and SG stages. From
these optimization techniques, two strategies that differ in the ISS stage have been established.
In one of them, the greedy algorithm for the MMKPM problem (proposed in [19]) has been
applied for the first time to the generation of FSMIM implementations. The other strategy
is based on the MMKPM-SSD problem and the corresponding ILP formulation, which have
been proposed in this paper to improve the optimization results. Finally, the EMB-granularity-
based SG algorithmhas been proposed to improve the results of the SG stage, which is applied
in both strategies.

The proposed strategies have been compared to OLD-FSMIM [14] using both medium
and large-sized FSM benchmark sets. Regarding the FSMIM-T architecture, these strategies
significantly improve the area results. The ILP strategy reduces the number of EMBs in 44%
of medium-sized test cases in which OLD-FSMIM uses more than 0.5 EMBs, and in 97%
of large-sized test cases; in both benchmark sets, the average reduction for the success cases
is at least 27% (there is only one case in which the number of EMBs increases). In addition,
the average LUT reductions are 24% and 44%, with hit rates of 71% and 90%, respectively
(and with insignificant miss rates of at most 7%). The ILP strategy save 25% and 53% more
LUTs per each used EMB, with hit rates of 71% and 98% in medium-sized and large-sized
test cases, respectively. The average speed increment is not significant for medium-sized
test cases, although the hit rate is 70%; however, the improvement is more significant for
large-sized test cases, with an average speed increment of 12% and a hit rate of 96%.

Regarding the FSMIM-S architecture, the proposed improvements in the optimization
process have an indirect influence on the ROM size of this architecture. Due to this and to
the smaller ROM size requirements of FSMIM-S implementations, the proposed strategies
cannot improve the EMB usage for the medium-sized test cases. However, the ILP strategy
reduces the number of EMBs in 43% of the large-sized test cases with an average EMB
reduction of 23% for these cases (the miss rate is only 1%). The relationship between the
selection cost and the complexity of the ISB of the FSMIM-S architecture is indirect, which
reduces the effectiveness of the ISS stage on LUT usage and speed. Nevertheless, the ILP
strategy save 9% and 23% more LUTs per each used EMB in medium-sized and large-sized
test cases, respectively; in both sets, the hit rates are greater than or equal to 81%. Finally,
although the average speed increments are not significant (at most 5%), the hit rates are
greater than the miss rates.

Compared with the conventional techniques, the FSMIM approaches are an interesting
design alternative. All FSMIM approaches achieve an average reduction of the number of
EMBs with respect to CONV-ROM of at least 70% with a hit rate of 100%. Comparing the
LUT usage with respect to CONV-LUT, all FSMIM approaches obtain reductions greater
than 47%, with average reductions of at least 85%. The significant number of LUTs saved
per EMB shows that the FSMIM approaches are more efficient that CONV-ROM in the
use of EMBs, with the FSMIM-S approaches being the most efficient. Regarding speed,
although the aim of the EMB-based techniques is to save resources, FSMIM-T approaches
are faster than CONV-LUT in 35% of cases. On average, CONV-ROM obtains slightly
better results than FSMIM-T approaches but at the expense of a significant increase in the
number of EMBs. Therefore, FSMIM-T approaches achieve the best balance between speed
and resource usage. Moreover, we have proved that there exist a clear trend between the
speed increment obtained by FSMIM approaches and the size of the FSM; thus, for large-
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sized FSMs, FSMIM approaches are the best EMB-based alternative for both speed and
EMB usage. The good implementation results obtained by the proposed strategies prove the
feasibility of the FSMIM technique in devices with an architecture different to that of Xilinx
FPGAs (which have been used in previous work [10, 13, 14]).

The average improvements obtained by the ILP strategy with respect to the greedy one for
medium-sized test cases are not significant; however, as the miss rates are null or negligible
for the FSMIM-T, the ILP strategy offers the possibility of improving the results with the
confidence that theywill never worse. For this architecture, in a 12%of cases, the ILP strategy
uses, on average, 17% less EMBs than the greedy one; the hit rate for LUT reduction is 21%
with with an average reduction for the success cases of 20%. For large-sized test cases, the
improvements of the ILP strategy over the greedy one are much more significant, reaching an
adequate balance between EMB and LUT usage. For instance, the hit rate in SLPE increment
is 75% in FSMIM-T implementations; on average, the ILP strategy saves 15% more LUTs
per used EMB than the greedy strategy, and this value increases to 21% for the success cases.
Although the average values are lower for FSMIM-S implementations, in the 75% of the
cases, the ILP strategy saves on average 11% more LUTs per used EMB.

As a conclusion, we propose some practical recommendations for researchers and design-
ers in order to take advantage of the proposed architectures and strategies. The techniques
studied could be sorted in ascending order of EMB usage and descending order of LUT
usage as follows: CONV-LUT, FSMIM-S, FSMIM-T, and CONV-ROM. In addition, the ILP
strategy requires fewer resources (both EMB and LUT) than the greedy one when both are
applied to the same FSMIM architecture. The possibility of exploiting all kinds of resources
available in FPGAs allows to fit the design into a smaller (and cheaper) device. FSMIM
approaches allow to find an adequate trade-off between LUT and EMB usage. In fact, they
obtain huge reductions in the LUT utilization by using a reasonable number of EMBs. The
FSMIM-S architecture is the best design option when the number of unused EMBs is limited
and the speed is not critical; otherwise, the FSMIM-T architecture is a better option. Regard-
ing the strategies, the greedy one, which is faster and does not require any solver, offers a
good balance between the quality of results and the computation time; so, it is a suitable
candidate if the design requirements are not very demanding. However, if these requirements
are not met, the ILP strategy should be used.

As future work, we plan to extend this work in order to improve the presented results. For
each kind of FPGA device, the number of LUTs of a multiplexor can be estimated from the
number of inputs.Wewant to modify the objective function of theMMKPM-SSD problem to
quantify the number of LUTs required by the multiplexors of the FSMIM-T implementation.
This will allow the ISS stage to find optimal solutions in terms of LUT usage, which will
improve the area results. Regarding speed, the input selector with more inputs determines the
critical path delay of the ISB; therefore, reducing themaximumnumber of inputs could reduce
the delay. In this direction, we plan to propose another variant of theMMKPM-SSD for speed
optimization that minimizes the maximum number of inputs of the input selectors instead
of the selection cost. With aim of improving the implementation results for the FSMIM-S
architecture, we plan to analyze the influence of the encoding of states and groups on the
number of LUTs required by the ISB and the GE. Finally, we will develop a new version of
the free FSMIM-Gen tool [28] that includes the proposed optimization process. FSMIM-Gen
starts from the specification of the FSM in KISS format [26] and generates a synthesizable
VHDL, which can be synthesized and implemented within the design flow of Electronic
Design Automation (EDA) tools.
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