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We show by phase space analysis that there are exactly 17 possible qualitative
behaviors for a rotational surface in R3 that satisfies an arbitrary elliptic Wein-
garten equation W (κ1, κ2) = 0, and study the singularities of such examples. As
global applications of this classification, we prove a sharp halfspace theorem for
general elliptic Weingarten equations of finite order, and a classification of peaked
elliptic Weingarten ovaloids with at most 2 singularities. In the case that W is not
elliptic, we give a negative answer to a question by Yau regarding the uniqueness
of rotational ellipsoids.
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1. Introduction

An immersed oriented surface Σ in R3 is called a Weingarten surface if its principal curvatures κ1, κ2

satisfy a smooth relation
W (κ1, κ2) = 0, (1.1)

for some W ∈ C1(R2). The relation (1.1) defines a fully nonlinear PDE when we view Σ as a local graph, and
we say that the Weingarten equation (1.1) is elliptic if this equation is elliptic. This condition is equivalent
to

∂W

∂k1

∂W

∂k2
> 0 on W −1(0).
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There are several ways of writing (1.1) in the elliptic case, which will be discussed in detail in Section 2. The
most studied elliptic Weingarten surfaces are, of course, constant mean curvature (CMC) surfaces in R3, and
minimal surfaces in particular. Another important example are the surfaces of positive constant Gaussian
curvature (CGC).

Elliptic Weingarten surfaces in R3 represent the natural fully nonlinear extension of CMC surface theory,
whose underlying PDE is merely quasilinear. In this sense, it has been an active research field to explore
which global results of CMC surface theory extend to the general case of elliptic Weingarten surfaces. Some
contributions to this topic can be found in [1,2,4,9–12,15,16,21,23–25,27,32,34,35,38].

However, there are considerable differences between the geometry of elliptic Weingarten surfaces and
CMC surfaces. A fundamental one is that elliptic Weingarten surfaces often present singularities, which can
be of very different types. As an example, a parallel surface of a regular elliptic Weingarten surface is also
an elliptic Weingarten surface (for a different equation), but in the process some singularities on the surface
can be formed. Also, elliptic Weingarten surfaces sometimes admit isolated embedded conical singularities
see e.g. [13,14]), a behavior not possible for CMC surfaces in R3. In this sense, it is a challenging problem
o understand the behavior of singularities of elliptic Weingarten surfaces.

A main difficulty for the study of such singularities is the lack of examples, which is due to the fully
onlinear nature of the theory, and the unavailability of the usual CMC methods. With this motivation, our
bjective in this paper is to understand all possible singularities of rotational elliptic Weingarten surfaces,
nd to extract some general global applications from their study.

Our study can be seen as a natural continuation of results by R. Sa Earp and E. Toubiana [34,35].
n these works, they gave a classification of all complete rotational elliptic Weingarten surfaces, using a
ethod different from the one that will be used here. These complete examples have been key tools in the
evelopment of the global theory of elliptic Weingarten surfaces, see e.g. [11,32,34]. Sa Earp and Toubiana
lso provided some examples of rotational elliptic Weingarten surfaces that are not complete, due to the
xistence of singularities; see Theorems 3 and 4 in [35] and Theorem 3 in [34]. The discussion in the
resent paper classifies both regular and singular examples, thus completing the work by Sa Earp and
oubiana to a full classification. Previous existence or classification theorems for some particular theories
f elliptic Weingarten surfaces (e.g., aκ1 + bκ2 = c with ab > 0), with or without singularities, appear

in [25,27,29,31,32].
We next describe our results and the organization of the paper.
In Section 2 we rewrite the elliptic Weingarten equation in a way that easens the classification result.

Specifically, we will view it as a relation κ2 = g(κ1), with g′ < 0, between the principal curvatures κ1 ≥ κ2
of the surface. Here, the condition g′ < 0 comes from ellipticity. We will denote by Wg the class of all elliptic
Weingarten surfaces associated with a particular choice of such a function g.

In Section 3 we develop a phase space analysis for the general study of rotational surfaces of an arbitrary
elliptic Weingarten class Wg. This theoretical tool, inspired in part by [5], also seems adequate for treating
the case of non-elliptic Weingarten surfaces. For some works about rotational non-elliptic Weingarten
surfaces, see e.g. [6,7,26–29].

In Section 4 we will determine which elliptic Weingarten classes Wg admit rotational examples with
singularities, and we will describe the geometry of such singularities whenever they occur (Theorem 4.4).
We will show that if the Weingarten equation is uniformly elliptic, any rotational example within the class
Wg is complete and regular (Corollary 4.8).

In Section 5 we will describe the moduli space of all rotational elliptic Weingarten surfaces, in terms
of natural geometric parameters. We show that there are exactly 17 possible qualitative behaviors for
such surfaces, 10 of them with singularities. Our classification also indicates, for each particular elliptic
Weingarten class Wg, which specific examples appear. See Theorems 5.1, 5.4, 5.3 and 6.2. See also Figs. 5.2,
5.8, 5.5 and Section 5.4 as a summary and visualization of the classification theorem.
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In Section 6 we use the classification in Section 5 to study the validity of the halfspace theorem for elliptic
Weingarten surfaces. The famous Hoffman–Meeks halfspace theorem [22] shows that any properly immersed
minimal surface contained in a halfspace of R3 must be a plane. Sa Earp and Toubiana gave counterexamples
to this property in the more general situation of elliptic Weingarten surfaces with g(0) = 0. They also gave
ufficient conditions on g under which an elliptic Weingarten class Wg satisfies the halfspace theorem. Using
otational surfaces with singularities as comparison objects, we will sharpen these results. We will show that
he conditions g(0) = 0 and g′(0) = −1 are necessary for the validity of the halfspace property for the elliptic
eingarten class Wg (Corollary 6.4), and that if g has finite order at 0, these conditions are also sufficient

Theorem 6.5 and Corollary 6.7).
In Section 7 we study isolated singularities. We prove that any elliptic Weingarten graph defined on a

unctured disk is bounded around the puncture (Theorem 7.1), and that any elliptic Weingarten peaked
valoid with at most 2 isolated singularities is a round sphere or a rotational football (Theorem 7.3).

Finally, in Section 8 we solve a problem by Yau. Motivated by an example of Chern [8], Yau asked in [40]
f any compact surface in R3 whose principal curvatures satisfy, in some order, the (hyperbolic) Weingarten
quation κ1 = cκ3

2 for some c > 0, must be a rotational ellipsoid. We will construct a C2 example that
ives a negative answer to this question. The bifurcation phenomenon that allows the construction of this
xample is not possible in the elliptic case. The existence of this example was obtained by an adaptation of
he phase space analysis of Section 3. However, we have written Section 8 in an alternative way, so that it
an be read independently from the rest of the paper.

The authors are grateful to José A. Gálvez for many valuable discussions during the preparation of this
aper.

. The elliptic Weingarten equation

There are several essentially equivalent ways of describing an elliptic Weingarten equation (1.1). This is
iscussed in detail in the works [12,17]. In this Section we explain how we will parametrize the Weingarten
quation in a suitable way for our purposes.

Let Σ be an oriented surface in R3 whose principal curvatures κ1 ≥ κ2 satisfy a Weingarten relation (1.1),
ith W ∈ C1(R2). We will assume that (1.1) is elliptic, i.e.,

∂W

∂k1

∂W

∂k2
> 0 on W −1(0). (2.1)

Each connected component of W −1(0) gives rise to a different elliptic theory, see [12]. By (2.1), any such
component of W −1(0) can be rewritten as a proper curve in R2 given by a graph

κ2 = g(κ1), g′ < 0, (2.2)

where g is C1 in some interval of R. Clearly, by the monotonicity of g and the properness of the graph in
(2.2), there exists a unique value α ∈ R (which we call the umbilical constant of the equation) such that
g(α) = α.

Recall that we are assuming κ1 ≥ κ2. Hence, Eq. (2.2) is only meaningful to us when restricted to that
set. In this way, since g is decreasing, we will assume that g is defined in some interval Ig ⊂ R contained
in [α, ∞), with α ∈ Ig. So, g is a monotonic bijection from Ig to Jg := g(Ig) ⊂ (−∞, α]. Thus, by the
monotonicity and properness of g, there are two possibilities for the intervals Ig and Jg; below, we denote
g(∞) = lim g(x) as x → ∞.

(1) Ig = [α, ∞). In this case, Jg = (b, α], where b = g(∞) ∈ (−∞, α) ∪ {−∞}.

(2) Ig = [α, b), b ∈ R. In this case limx→b− g(x) = −∞ and Jg = (−∞, α].

3
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The value of α has a geometrical meaning. If α = 0, planes are solutions to (2.2), while if α ̸= 0, spheres
ith both principal curvatures equal to α are solutions to (2.2). So, the geometric properties of these two
lasses of surfaces are different.

A change in the orientation of Σ produces a surface satisfying a different elliptic Weingarten equa-
ion (2.2), according to the following correspondence:

(κ1, κ2, g(x), Ig, Jg, α) ↦→ (−κ2, −κ1, −g−1(−x), −Jg, −Ig, −α). (2.3)

n particular, up to a change of orientation on the surface Σ , we can assume that the Weingarten
quation (2.2) on Σ satisfies

Ig = [α, ∞). (2.4)

n this respect, let us note that when Ig = [α, ∞) and Jg = (−∞, α], condition (2.4) is preserved by a
hange of orientation. However, for Ig = [α, b) or Jg = (b, α], with b ∈ R, the choice (2.4) actually fixes an
rientation on the surface.

We illustrate this formulation of elliptic Weingarten equations with some examples. The CGC equation
1κ2 = α2 > 0 corresponds to the choice g(x) = α2/x, defined on Ig = [α, ∞). For the CMC equation
1 + κ2 = 2α ∈ R, we have g(x) = 2α − x, defined on Ig = [α, ∞). The non-symmetric linear elliptic
eingarten equation aκ1 + bκ2 = 0 with a, b > 0 corresponds to g(x) = − a

b x, defined on Ig = [0, ∞).
As a more sophisticated example, consider as in [12] the elliptic Weingarten equation 2H = K, which can

be rewritten as W (κ1, κ2) := κ1 + κ2 − κ1κ2 = 0. The set W −1(0) has two connected components, that give
ise to two different geometric theories, see [12]. We choose the component that passes through the origin
thus, α = 0), which describes surfaces parallel to minimal surfaces. This component is given by κ2 = g(κ1),
ith g(x) = x

x−1 , defined at first in (−∞, 1). However, the domain of g when we only consider the graph
2 = g(κ1) restricted to the half-plane κ1 ≥ κ2 is, in this case, Ig = [0, 1), since g(0) = 0. Thus, Ig is not

of the form (2.4). In this situation, by a change of orientation for the equation as described in (2.3), the
function g(x) transforms into −g−1(−x), that is, into g(x) = −x/(x + 1). For this new g, the restriction of
the graph κ2 = g(κ1) to the half-plane κ1 ≥ κ2 is defined this time in Ig = [0, ∞), so now (2.4) holds. It is
with this form of the equation that we will work.

In summary, we can redefine the notion of elliptic Weingarten surface in an equivalent way, as follows:

Definition 2.1. An elliptic Weingarten surface is an oriented surface Σ in R3 whose principal curvatures
κ1 ≥ κ2 satisfy at every point the relation (2.2) for some g ∈ C1(Ig), where Ig = [α, ∞) and g(α) = α for
some α ∈ R. We also denote b := g(∞) ∈ [−∞, α).

We let Wg denote the class of all (oriented) elliptic Weingarten surfaces associated to a given function g

in these conditions.

Even though it will not be used in this paper, we remark that a different way of writing the elliptic
Weingarten equation is H = F (H2 − K), where H, K are the mean and Gauss curvatures, F (t) is defined
in [0, ∞) and satisfies the ellipticity condition 4t(F ′(t))2 < 1 for every t > 0. For example, this is the
formulation used by Sa Earp and Toubiana in [34,35]. The relation with (2.2) is discussed in [12,17].

We note that the maximum principle in its usual geometric version holds within any elliptic Weingarten
class Wg. See e.g. Theorem C in [2].

3. Rotational elliptic Weingarten surfaces: phase space analysis

Let Σ be a rotationally invariant surface in Wg, see Definition 2.1, given as the rotation of a curve
γ(s) = (x(s), 0, z(s)) around the z-axis, where s is the arc-length parameter of γ(s) and x(s) ≥ 0. Let
4
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N denote the unit normal of Σ with respect to which Σ ∈ Wg. By changing the orientation of the curve γ if
ecessary, we may assume that N is given along γ(s) as N(γ(s)) = Jγ′(s), where J denotes the π/2-rotation

in the y = 0 plane. From here, the principal curvatures of Σ are

µ = µ(s) = x′(s)z′′(s) − x′′(s)z′(s), λ = λ(s) = z′(s)
x(s) . (3.1)

Since we are denoting κ1 ≥ κ2, we need to account for the two possibilities that, at each point p ∈ Σ , either
(κ1, κ2) = (µ, λ) or (κ1, κ2) = (λ, µ). We see that, at each point p ∈ Σ , either λ(p) ≥ α, µ(p) ≤ λ(p) and
µ = g(λ), or λ(p) ≤ α, λ(p) ≤ µ(p) and µ = g−1(λ).

Thus, Σ satisfies the equation
µ = f(λ), (3.2)

where f : If → If , with If := Ig ∪ Jg, is given by

f |Ig = g f |Jg = g−1. (3.3)

Note that If is an interval containing α in its interior, and f is strictly decreasing and continuous, with
f ◦ f = Id. The function f is C1 in If \ {α} and, at α, f has finite left and right derivatives. From (2.4),

If = (b, ∞), (3.4)

where b := g(∞) ∈ [−∞, α).
Using (3.1) and x′(s)2 + z′(s)2 = 1, we obtain from (3.2)

z′′(s) = f(λ(s)) x′(s), x′′(s) = −x(s) λ(s) f(λ(s)), (3.5)

and
λ′ = x′

x
(f(λ) − λ). (3.6)

In particular, (x(s), λ(s)) is a solution to the following nonlinear autonomous system on any open interval
where x′(s) ̸= 0 and x(s) > 0: {

x′ = ε
√

1 − λ2x2,

λ′ = ε
√

1 − λ2x2 f(λ)−λ
x .

(3.7)

ere ε = sign(x′) = ±1. This process can be reversed, so that any solution to (3.7) with x(s) > 0 determines
rotational surface Σ of the Weingarten class Wg. Thus, the orbits of (3.7) will be identified with the profile

urves of rotational surfaces in Wg, on open sets where x′(s) ̸= 0 and x(s) > 0.
The phase space of (3.7) is the region (see Fig. 3.1)

R := {(x, λ) : x > 0, λ > b, λ2x2 ≤ 1}. (3.8)

e will denote by Γ the two boundary hyperbolas of R:

Γ := {(x, λ) : x > 0, λ > b, λ2x2 = 1}. (3.9)

bserve that (x(s0), λ(s0)) lies in Γ if and only if the generating curve (x(s), z(s)) of Σ has at s0 a point
ith vertical tangent vector.
Note that the systems (3.7) for ε = 1 and ε = −1 are equivalent, since they have the same orbits. Indeed,

f (x(s), λ(s)) is a solution for ε = 1, then (x(−s), λ(−s)) is a solution for ε = −1.

5
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Fig. 3.1. The set R, its hyperbolic boundary Γ , and the orbits corresponding to spheres and cylinders, in the case α > 0, b < 0.

emark 3.1. The above property shows the following symmetry result for rotational elliptic Weingarten
urfaces. Assume that the generating curve (x(s), z(s)) of Σ has a point s0 with vertical tangent vector (and
herefore x2λ2 = 1). Then, its associated orbit (x(s), λ(s)) hits Γ at s = s0, and then bounces back, following

the same trajectory in the opposite sense, but with the sign of ε reversed. By this argument, we see that
(x(s), z(s)) extends smoothly across s0, with the sign of x′(s) changing at s0, and that Σ is symmetric with
respect to the horizontal plane passing through (x(s0), 0, z(s0)).

In this way, the property that an orbit hits the boundary set Γ does not produce any geometric
complications (e.g. singularities) on Σ , and such an orbit can be considered to be regular up to Γ .

There are two special orbits of this phase diagram that control the behavior of the rest of orbits of (3.7).
See Fig. 3.1.

• Let α ∈ R be the umbilical constant of Wg, defined in Section 2 by the condition g(α) = α. Then, the
segment (or half-line) R ∩ {λ = α} defines an orbit of (3.7). If α = 0, it corresponds to a plane. If α ̸= 0,
it corresponds to a sphere oriented so that its principal curvatures are given by α. Orbits in R that lie
above R ∩ {λ = α} correspond to surfaces for which κ1 = λ > κ2 = µ, whereas orbits below it give rise
to surfaces with κ1 = µ > κ2 = λ.

• Assume that there exists a cylinder Σ in Wg. The necessary and sufficient condition for this is that α ̸= 0
and b < 0, i.e., that 0 ∈ If , see (3.4). The associated orbit of this cylinder is the point (1/|ρ|, ρ) ∈ Γ ,
where ρ := f(0) ∈ R. Since |α| < |ρ| by monotonicity of f , the point in R corresponding to the cylinder
is always in the connected component of R \ {λ = α} not containing the x-axis.

Let (x(s), λ(s)) be the orbit for (3.7) associated to some rotational surface Σ ∈ Wg different from the
sphere or plane of Wg and, if it exists, from the cylinder of Wg. Then, (x(s), λ(s)) is contained in the region
R and, by solving (3.6), we see that it can be reparametrized as a graph (x(λ), λ), where

x(λ) = x0 exp
∫ λ

λ0

dt

f(t) − t
, (3.10)

for some (x0 = x(λ0), λ0) ∈ R, λ0 ̸= α; here, one should recall that λ′(s) = 0 only happens at Γ , as discussed
above. Conversely, given the function x(λ) as in (3.10), the restriction of the graph (x(λ), λ) to R describes
an orbit of (3.7), and thus it gives rise to a rotational surface of the class Wg.

Lemma 3.2 below describes the geometry of the curves (x(λ), λ). See also Fig. 3.2.

Lemma 3.2. For any (x0, λ0) ∈ R, λ0 ̸= α, the graph (x(λ), λ) of the function x(λ) given by (3.10) is

contained in x > 0 and does not meet the line λ = α. Specifically, if λ0 > α (resp. λ0 < α) then x(λ) is a

6
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Fig. 3.2. Examples of possible behaviors of the orbits (x(λ), λ). (Left: α > 0, right: α = 0).

decreasing (resp. increasing) function defined in (α, ∞) (resp. (b, α)) with x(α) = ∞. Moreover:

(i) Whenever (x(λ), λ) intersects Γ , the intersection is transverse, except if (x0, λ0) = (1/|ρ|, ρ).
(ii) The restriction of the graph (x(λ), λ) to R is a connected regular curve, except for (x0, λ0) = (1/|ρ|, ρ),

where it consists uniquely of the point {(1/|ρ|, ρ)}. In particular, the graph (x(λ), λ) intersects Γ at two
points, at most.

roof. The monotonicity of x(λ) follows from the fact that f is decreasing and f(α) = α. Besides, since f

as finite left and right derivatives at α,
f(λ) − λ

λ − α

is bounded between two negative constant around λ = α. Thus, the function λ ↦→
∫ λ

λ0
dt/(f(t) − t) diverges

to ∞ as λ approaches α, what proves x(α) = ∞.
For (i), let (x0, λ0) ∈ Γ , and view the component of Γ that contains this point as the graph x = ε′/λ,

where ε′ ∈ {0, 1} is the sign of λ0. A direct computation from (3.10) with initial point (x0, λ0) shows that
x′(λ0) ̸= −ε′/λ2

0 unless λ0 = ρ (recall that ρ = f(0) and f ◦ f = Id). This proves (i).
For (ii), note that if (x0, λ0) ̸= (1/|ρ|, ρ), there exists λ1 close to λ0 such that |λ1 x(λ1)| < 1. Also, as

x(α) = ∞, for λ close enough to α we have |λ x(λ)| > 1; thus, (x(λ), λ) intersects Γ . If the restriction to R
of (x(λ), λ) had more than one connected component, there would be at least two different points at which
the derivative of the function λ x(λ) vanishes. But

d

dλ
(λ x(λ)) = x(λ) f(λ)

f(λ) − λ
, (3.11)

which vanishes only at λ = ρ. So, the restriction of (x(λ), λ) to R is a connected curve. As a consequence
of the above expression, we also deduce that |λ x(λ)| attains a minimum at λ = ρ, proving that for
(x0, λ0) = (1/|ρ|, ρ) the graph of x(λ) stays outside R except for that point. □

Remark 3.3. As a consequence of Lemma 3.2, any point (x0, λ0) ∈ Γ , with λ0 ̸= ρ if b < 0, is the endpoint
of exactly one orbit of (3.7) in R, and this orbit intersects Γ transversely.

4. Singularities of rotational elliptic Weingarten surfaces

4.1. Types of singularities

Let Σ be a rotational surface in Wg given as the rotation of an arc-length parametrized curve γ(s) =
(x(s), 0, z(s)) around the z-axis. We will assume that γ(s) is defined in some interval J ⊂ R, but that Σ
7
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cannot be extended to a regular surface as s → a, where a ∈ R is one of the endpoints of J . That is, the
urface Σ becomes singular as s → a.

Due to our previous study of the phase plane of (3.7), the orbit associated to Σ must approach the
oundary of R as s → a. More specifically, as we know that γ(s) can be smoothly extended if (x(s), λ(s)) →

p0 ∈ Γ as s → a (see Remark 3.1), there are only two possible ways in which a singularity can happen:
either x(s) → 0 as s → a, or b ̸= −∞ and λ(s) → b as s → a. The first case corresponds to an isolated
singularity created as the surface touches its rotational axis. In the second one, the surface is singular along
a circle, since x(b) > 0 in (3.10). In both situations, the surface is a graph near the singularity.

4.2. The function G(λ)

We next define a function that will control the existence of singularities of elliptic Weingarten surfaces.
In the proof of Lemma 3.2, we showed that the behavior of λ x(λ) plays an important role in the study of
the phase space of (3.7). In this spirit, we consider the function G : (b, ∞) \ {α} → R given by

G(λ) = λ exp F(λ), (4.1)

here F(λ) is any primitive of 1/(f(λ)−λ). Note that G(λ) is defined up to a positive multiplicative constant
n each of the two connected components of (b, ∞) \ {α}.

emark 4.1. If x(λ) is given by (3.10) for some (x0, λ0), with λ0 ̸= α, the function λ x(λ) and the
estriction of G(λ) to the interval of (b, ∞)\{α} that contains λ0 differ by a multiplicative positive constant:

λ x(λ)
λ0 x(λ0) = G(λ)

G(λ0) (4.2)

In particular, they have the same monotonicity. The same holds for |λ x(λ)| and |G(λ)|.

By a direct computation,
G′(λ) = f(λ)

f(λ) − λ
exp F(λ). (4.3)

This equation allows to study the monotonicity regions of G, as described in the following lemma. See also
Fig. 4.1.

Lemma 4.2. The function G : (b, ∞) \ {α} → R defined in (4.1) satisfies:

(1) If b ≥ 0, then G(λ) is increasing for λ ∈ (b, α) and decreasing in (α, ∞).
(2) If b < 0 and α ̸= 0, then G(λ) is decreasing for λ between α and ρ = f(0), and increasing otherwise.

Also, G(α) = ±∞, where ± = sign(α).
(3) If α = 0, G is increasing on If , and G(0) = 0.

In particular, G(b) = limλ→b G(λ) and G(∞) = limλ→∞ G(λ) exist (although they could be infinite). If
b ̸= −∞, G(b) is finite.

Proof. All the monotonicity properties in the statement, as well as the existence of the limits of G at λ = ∞
and λ = b, follow directly from (4.3) and a case by case study, using that f is decreasing, and f(α) = α. It
remains to analyze G around α.

If α ̸= 0, the behavior of G at α follows from (4.2) and the fact that x(α) = ∞ (Lemma 3.2). If α = 0, it
is easy to check that G(λ) < 0 and G′(λ) > 0 for λ < 0, whereas G(λ) > 0 and G′(λ) > 0 for λ > 0, what
8
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e
d

Fig. 4.1. Monotonicity of G(λ) when b < 0. Left: when α > 0. Right: when α < 0.

nsures that the lateral limits of G(λ) at λ = 0 exist and are finite. Moreover, as f(λ) has finite, negative
erivatives at λ = 0 for λ → 0+ and λ → 0−, we have

c1λ ≤ f(λ) ≤ c2λ

near the origin, for suitable constants c1, c2 < 0, from where we obtain from (4.1)

A1λb1 ≤ G(λ) ≤ A2λb2 ,

where Ai, bi > 0, i = 1, 2. In particular, G(0+) = 0 = G(0−).
Finally, if b ̸= −∞, the function 1/(f(λ) − λ) extends continuously to λ = b (with value 0), and so G(b)

is finite. □

4.3. A characterization of existence of singularities

By our discussion in Section 3, we know that the non-horizontal orbits of (3.7) are the restriction to R
of graphs (x(λ), λ) given by (3.10), and that the horizontal orbit {λ = α} ∩ R corresponds to the totally
umbilic example in the class Wg, which does not have singularities. This justifies the following definition.

Definition 4.3. Let Rsing be the set of points (x0, λ0) ∈ R such that the orbit of (3.7) that passes
through (x0, λ0) corresponds to an elliptic Weingarten surface that has some singularity. For any such
(x0, λ0) ∈ Rsing, we necessarily have λ0 ̸= α, and so we can decompose

Rsing = R+
sing ∪ R−

sing, R+
sing := Rsing ∩ {λ > α}, R−

sing := Rsing ∩ {λ < α}.

By this definition, a class Wg of elliptic Weingarten surfaces has rotational examples with singularities if
and only if Rsing is non-empty. We next characterize this condition. In the theorem below, b is defined as
usual by b := g(∞) ∈ [−∞, α), and G : (b, ∞) \ {α} → R is the function introduced in (4.1). Also, define
R+ := R ∪ {λ > α} and R− := R ∪ {λ < α}.

Theorem 4.4. Let Wg be a class of elliptic Weingarten surfaces. Then:

(1) The set R+
sing is non-empty if and only if |G(∞)| < ∞, and in that case,

R+
sing =

{
(x0, λ0) ∈ R+ : |λ0x0| ≤ |G(λ0)|

|G(∞)|

}
.

(2) The set R−
sing is non-empty if and only if |G(b)| < ∞, and in that case,

R−
sing =

{
(x0, λ0) ∈ R− : |λ0x0| ≤ |G(λ0)|

}
.

|G(b)|
9
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Proof. As we already discussed at the start of Section 4, any orbit generates an elliptic Weingarten surface
with singularities if and only if it approaches x = 0 or λ = b in R. Thus, since b < α, it follows from item
(ii) in Lemma 3.2 that the orbits (x(λ), λ) in R+

sing are exactly those for which λ > α and |λx(λ)| < 1 for
ll λ > λ0, where (x0, λ0) ∈ R+ is a point of the orbit. In a similar way, the orbits in R−

sing are those that
atisfy |λx(λ)| < 1 for all λ ∈ (b, λ0), where (x0, λ0) ∈ R−. To see this one should note that, by (3.10),

x(λ) → 0 happens only if λ → ±∞.
In addition, it follows from Remark 4.1 that, for an orbit (x(λ), λ) passing through (x0, λ0), the condition

|λx(λ)| < 1 holds for some λ if and only if

|G(λ)| <
|G(λ0)|
|λ0x0|

.

We now take limits in this expression as λ → ∞ or λ → b. By the discussion above and the monotonicity
properties of G at λ = ∞ and λ = b described in Lemma 4.2, we deduce that if (x0, λ0) ∈ R+

sing (resp.
x0, λ0) ∈ R−

sing), then G(∞) (resp. G(b)) has a finite value, and

|λ0x0| ≤ |G(λ0)|
|G(∞)|

(
resp. |λ0x0| ≤ |G(λ0)|

|G(b)|

)
. (4.4)

We next prove the converse inclusion for the first assertion of Theorem 4.4; the same proof works for the
econd assertion, substituting ∞ by b. Thus, assume that |G(∞)| < ∞, and let (x(λ), λ) be an orbit that
ontains a point (x0, λ0) ∈ R+ that satisfies the first inequality in (4.4). By Lemma 4.2, for λ close to ∞ we
ave |G(λ)| < |G(∞)|. This, together with (4.2) and (4.4), give that

|λx(λ)| = |λ0x0| |G(λ)|
|G(λ0)| ≤ |G(λ)|

|G(∞)| < 1,

hat is, (x0, λ0) ∈ R+
sing. This completes the proof of Theorem 4.4. □

orollary 4.5. Let Wg be a class of elliptic Weingarten surfaces. Then, a necessary and sufficient condition
for the existence of rotational examples of Wg with singularities is that at least one of the following two
conditions hold:

(1) |G(∞)| < ∞.
(2) |G(b)| < ∞.

If b ̸= −∞, the second condition always holds, by Lemma 4.2.

4.4. Isolated singularities

The following lemma describes the local behavior of a radial elliptic Weingarten graph around an isolated
singularity.

Lemma 4.6 (Isolated Singularities). Let Σ be a radial elliptic Weingarten graph z = u(r), r :=
√

x2 + y2,
defined in a punctured disk around the origin. Assume that Σ is not totally umbilic. Then, Σ has at the origin
a non-removable isolated singularity of conelike type, that is:

(1) The principal curvature λ(r) → ±∞ as r → 0.
(2) u′(r) is monotonic for small values of r, and thus has a limit, maybe infinite, as r → 0.

(3) u(r) is monotonic for small values of r, and has a finite limit as r → 0.

10



I. Fernández and P. Mira Nonlinear Analysis 232 (2023) 113244

t
Σ

T
d

e
g

L
|
d
o
f

T
w

o
a

w

a

P
o

T

Proof. Let Wg be the elliptic Weingarten class in which Σ lies. Let (x(λ), λ), with x(λ) as in (3.10), be
he trajectory in R of the orbit (x(s), λ(s)) of (3.7) associated to Σ , as already discussed; note that, since

is not totally umbilic, the orbit is certainly of this form. By (3.10), x(λ) → 0 happens only if λ → ±∞.
his proves the first assertion. Observe that λ → −∞ is only possible if b = −∞, since otherwise (x(λ), λ)
oes not stay in R as λ → −∞.

The second assertion is a direct consequence of the general fact that u′(r) is monotonic on any rotational
lliptic Weingarten graph z = u(r) in R3; see e.g. Lemma 4.4 in [17], where this result is proved in a more
eneral context.

To prove the third assertion, we only need to rule out the case that u(r) → ±∞. In that case, |u′(r)| → ∞.
et us parametrize the profile curve (r, 0, u(r)) by arc-length as (x(s), 0, z(s)), with s → ∞ as r → 0. By

u′(r)| → ∞ as r → 0, we have x′(s) → 0 as s → ∞. Also, by (3.1) and the second equation in (3.5), we
educe that x′′(s) = −z′(s)f(λ(s)). From this equation, using the monotonicity of f and |λ(s)| → ∞, we
btain from z′(s) → ±1 that x′′(s) has a limit at s → ∞. Since x′(s) → 0, this limit must be 0. Thus,
(λ(s)) → 0 as s → ∞. Since |λ(s)| → ∞ as s → ∞, this is only possible if λ(s) → ∞ and f(∞) = b = 0.
his implies that both principal curvatures of Σ must have the same sign around the isolated singularity,
hat is an obvious contradiction with the fact that u(r) → ±∞ as r → 0. □

Let N denote the unit normal of the graph Σ of Lemma 4.6, and write e3 = (0, 0, 1). By the monotonicity
f u′(r) proved in Lemma 4.6, there exists a limit angle ν0 ∈ [−1, 1] at the isolated singularity of Σ , defined
s

ν0 := lim
r→0+

⟨N, e3⟩ = lim
r→0+

ε√
1 + u′(r)2

, (4.5)

where ε = 1 if N points upwards, and ε = −1 otherwise. If we use the parametrization of Σ in terms of the
profile curve γ(s) = (x(s), 0, z(s)) as in the beginning of Section 3, and assume x(s) → 0 as s → a, then we
see that ε = sign(x′(s)) in (4.5), and that, by (3.1),

ν0 = lim
s→a

ε
√

1 − λ(s)2x(s)2. (4.6)

We next describe this limit angle ν0 in the phase space R, and show that it can be used to parametrize
the space of rotational elliptic Weingarten surfaces with an isolated singularity.

Proposition 4.7. Let Σ be a rotational surface of the elliptic Weingarten class Wg, and assume that Σ

has an isolated singularity. Let (x(λ), λ) be the orbit in the phase space R associated to Σ , and take any point
(x0, λ0) of that orbit.

Then, if (x0, λ0) ∈ R+
sing (resp. if (x0, λ0) ∈ R−

sing, and so in particular b = −∞), the limit angle ν0 of Σ
at the singularity, defined by (4.5), satisfies ν0 ̸= ±1 and is given by

ν0 = ε

|G(λ0)|
√

G(λ0)2 − (λ0 x0 G(±∞))2, (4.7)

here the sign of ±∞ corresponds to the one in R±
sing.

Moreover, in the above conditions, two different orbits in R+
sing (resp. in R−

sing) always have different limit
ngles at the isolated singularity.

roof. We prove the result for (x0, λ0) ∈ R+
sing; the case (x0, λ0) ∈ R−

sing is similar. By the monotonicity
f |λx(λ)| as λ → ∞, we deduce from (4.2) and (4.6) that√

1 − ν2
0 = lim

λ→∞
|λx(λ)| = |λ0 x0 G(∞)|

|G(λ0)| ∈ (0, 1]. (4.8)

his yields (4.7).

11
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To prove the last assertion, consider two orbits (x1(λ), λ), (x2(λ), λ) contained in R+
sing in the above

onditions. Assume that the limit angles at the isolated singularity of both orbits coincide. By (4.8), we
btain for every λ0 > α that ⏐⏐⏐⏐λ0x1(λ0)G(∞)

G(λ0)

⏐⏐⏐⏐ =
⏐⏐⏐⏐λ0x2(λ0)G(∞)

G(λ0)

⏐⏐⏐⏐ .

Hence, x1(λ0) = x2(λ0), for all λ0 > α. This completes the proof. □

A Weingarten class Wg given by (2.2) is said to be uniformly elliptic if there exist constants Λ1,Λ2 < 0
such that

Λ1 < g′(t) < Λ2, ∀t ∈ Ig. (4.9)

n particular, b = g(∞) = −∞. See e.g. [12]. Theorem 4.4 can be used to prove that rotational, uniformly
lliptic Weingarten surfaces do not present singularities:

orollary 4.8. Let Σ be a rotational uniformly elliptic Weingarten surface. Then, Σ cannot have
ingularities, and is a piece of one of the complete examples described by Sa Earp and Toubiana in [34,35].

roof. According to Theorem 4.4, it is enough to prove that |G(∞)| = |G(−∞)| = ∞. First, recall from
(3.3) that g(t) = f(t) for all t > α. Thus, since g satisfies (4.9) and f(α) = α, we have for all t > α

M1(t − α) ≤ f(t) − t ≤ M2(t − α) < 0,

where Mi := Λi − 1 < −1, i = 1, 2. From there,

C2λ(λ − α)1/M2 ≤ G(λ) ≤ C1λ(λ − α)1/M1

for some C1, C2 > 0 and for all λ > max{α, 0}. Thus, |G(∞)| = ∞.
An analogous computation using that f(t) = g−1(t) for all t ∈ (b, α) shows that |G(b)| = |G(−∞)| = ∞,

what finishes the proof. □

5. Rotational elliptic Weingarten surfaces: classification

In this section we give the classification of all rotational elliptic Weingarten surfaces, using the theoretical
frame of Sections 2 and 3 and the study of singularities of Section 4.

Along this section, we let Wg denote some class of elliptic Weingarten surfaces (Definition 2.1). Associated
to the function g that defines Wg, we recall the definition of the function f in (3.3). For classification
purposes, we will divide elliptic Weingarten classes Wg into three natural subclasses, that present quite
different geometric behaviors, and proceed to classify rotational surfaces within each subclass separately.

5.1. Weingarten surfaces of CGC type (b ≥ 0)

If b ≥ 0 for an elliptic Weingarten class Wg, any surface in Wg has positive curvature, and in particular
there are no cylinders (or planes) in Wg. The constant positive curvature equation K = c > 0 is a particular
example of this subclass of elliptic Weingarten equations.

In this b ≥ 0 situation, any orbit (x(λ), λ) of (3.7) in R satisfies that |λx(λ)| = λx(λ) is strictly decreasing
in (α, ∞) (see Lemma 4.2 and Remark 4.1). Then, for every λ > λ0 > α we have
|λx(λ)| < |λ0x(λ0)| ≤ 1.

12
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Fig. 5.1. Phase space when b ≥ 0. The orbit γ1 correspond to a surface of football type, and γ2 describes a bracelet with singular
urves at a distance x0 > 0 of the rotational axis.

Fig. 5.2. (American) footballs and bracelets.

his shows that R+
sing = R ∩ {λ > α}, see Definition 4.3. A similar argument replacing ∞ by b ≥ 0 gives

−
sing = R ∩ {λ < α}. In this way, any rotational surface in Wg that is not totally umbilic has singularities

isolated if λ > α and singular curves if λ < α). Moreover, since x(α) = ∞ (Lemma 3.2) and b ≥ 0, the
rbit meets Γ at a unique point, see Fig. 5.1.

Thus, the corresponding rotational surfaces in Wg for λ > α are convex topological spheres with two
ingularities and a horizontal plane of symmetry (see Remark 3.1). We will call these surfaces (American)
ootballs. On the other hand, rotational surfaces with λ < α are convex annuli with a horizontal plane of
ymmetry, bounded by two singular curves. We will call these surfaces bracelets. See Fig. 5.2.

As seen in Proposition 4.7, the class of footballs can be parametrized in terms of the limit angle ν0 at
heir two singularities (by symmetry, if the limit angle at one singularity is ν0 > 0, at the other one is −ν0,
n any given football). In this case, taking into account (4.7) and choosing as initial condition the point
x0, λ0) at which the orbit meets Γ , it is easy to see that ν0 can take any value in (0, 1). We denote by
ν the football of the class Wg with limit angles {ν, −ν} at its two singularities. Similarly, we will let Bx0

enote the bracelet of the class Wg whose singular curves are at a distance x0 from the rotation axis. It is
lear by the phase portrait in Fig. 5.1 that such an example exists and is unique, for each x0 ∈ (0, 1/b).

This leads to the following classification result:

heorem 5.1. Let Wg be a class of elliptic Weingarten surfaces with b ≥ 0. Then any rotational surface
n Wg is an open piece of:

(1) A sphere of principal curvatures α,
(2) a bracelet Bx0 for some x0 ∈ (0, 1/b), or
(3) a football F for some ν ∈ (0, 1).
ν

13
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Fig. 5.3. Special catenoids with bounded and unbounded height (see Theorem 6.2).

5.2. Weingarten surfaces of minimal type (α = 0)

If α = 0 holds for an elliptic Weingarten class Wg, then every plane of R3 is an element of Wg, and
in particular there are no compact surfaces (without boundary) in Wg. The simplest case of such elliptic
Weingarten class is given by minimal surfaces (H = 0).

Fix an elliptic Weingarten class Wg with α = 0. Take any (x0, λ0) ∈ Γ , and let (x(λ), λ) be the orbit of
(3.7) that contains (x0, λ0). By (3.11), the function λ ↦→ λx(λ) is strictly increasing. Thus, the orbit (x(λ), λ)
never touches again Γ . In this way, x(λ) is defined for every λ between 0 and λ0 ∈ R, and x(λ) → ∞ as
λ → 0.

These orbits describe the special catenoids of the Weingarten class Wg, classified in [34]. They are
complete embedded surfaces, given as the rotation around the z-axis of a convex planar curve (x(z), 0, z),
with z ∈ (−z1, z1), where z1 ∈ R+∪{∞}. The function x(z) is positive and even, with x(z) → ∞ as z → ±z1,
and it attains its minimum at τ = x(0), which is called the necksize of the special catenoid. Depending on our
choice of g, the value of z1 can be infinite or finite, i.e. the special catenoid can have either finite or infinite
height; see Theorem 6.2 and Fig. 5.3. The principal curvature λ never vanishes on a special catenoid, and
one can observe that if λ > 0, its unit normal N is the interior one, while if λ < 0, it is the exterior one. For
each τ > 0, we denote by C+

τ (resp. C−
τ ) the special catenoid with necksize τ and an interior (resp. exterior)

unit normal. For the case in which Wg is the minimal surface class, i.e., when g(x) = −x, then C+
τ and C−

τ

are the same surface (the usual minimal catenoid of necksize τ) with opposite orientations. However, in the
case of a general elliptic Weingarten class Wg with α = 0, the special catenoids C+

τ and C−
τ have different

geometric behaviors.

Remark 5.2. Let us make a brief comment about the orientation of the examples. In [34], the rotational
surfaces are assumed to satisfy an elliptic Weingarten equation H = F (H2 − K) for the orientation
given by the exterior unit normal. Thus, when we write our elliptic Weingarten equation κ2 = g(κ1) as
H = F (H2 − K), the example constructed by Sa Earp and Toubiana in [34] corresponds to C−

τ with our
notation. The other example C+

τ that appears in our classification corresponds to the Sa Earp-Toubiana one
for the choice H = −F (H2 − K), after a change of orientation.

Let G be defined by (4.1). If |G(Λ)| = ∞ for both Λ = ∞ and Λ = b, it follows from Theorem 4.4 that
any rotational surface of the elliptic Weingarten class Wg is a plane or a special catenoid. However, when
|G(Λ)| < ∞ for either Λ = ∞ or Λ = b, we have again from Theorem 4.4 that Wg contains rotational surfaces
with singularities. As a consequence of the previous discussion, the corresponding orbits of these singular
examples do not meet Γ . See Fig. 5.4. We next describe in detail the resulting surfaces.

To start, if we assume |G(∞)| < ∞ and consider a fixed value λ0 > 0, it follows by Theorem 4.4 that
the orbits with singularities in R ∩ {λ > 0}, i.e., those lying in R+

sing, are given by initial conditions (x0, λ0)
with 0 < |λ0x0| ≤ |G(λ0)|/|G(∞)| < 1. The elliptic Weingarten surfaces associated to these orbits are entire

rotational graphs with an isolated singularity. Their profile curves are convex planar curves, and their unit

14
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Fig. 5.4. Orbits corresponding to complete and singular rotational examples in Wg when α = 0 and b ̸= −∞.

Fig. 5.5. Pinched and singular special catenoids.

normals point upwards. They can be seen as one half of a special catenoid after shrinking its neck to a point.
See Fig. 5.5. We call such examples pinched special catenoids. Their limit angle ν at the singularity is
given by (4.7), and it can be checked that it can any value in (−1, 1).

A similar discussion can be made if we assume |G(b)| < ∞, starting with λ0 ∈ (b, 0) and considering orbits
in R−

sing, just by replacing ∞ with b. This time, we have two possible situations. If b = −∞, we obtain again
pinched special catenoids, with a similar geometric structure to the previous ones, but this time their
unit normals point downwards. They can also be parametrized in terms of their limit angle at the singularity.

If b ̸= −∞, we obtain a rotational elliptic Weingarten graph over the exterior of a circle of a certain radius
d. This surface is singular along its boundary circle, since its second fundamental form blows up there. Again,
its profile curve is convex, and its unit normal points downwards. We call such surfaces singular special
catenoids. See Fig. 5.5. There is exactly one singular special catenoid for each value d ∈ (0, −1/b].

These pinched and singular special catenoids can have bounded or unbounded height, just as special
atenoids do. See Theorem 6.2.

The theorem below summarizes the obtained result. In the statement, G is the function defined in (4.1).

heorem 5.3. Let Wg be an elliptic Weingarten class, with α = 0. Then, any rotational surface in Wg is
n open piece of one of the following surfaces:

• A plane.
• A special catenoid C+

τ or C−
τ .

• A pinched special catenoid. They exist if and only if either |G(∞)| < ∞, or b = −∞ and |G(b)| < ∞.
• A singular special catenoid. They exist if and only if b ̸= −∞ and |G(b)| < ∞.

5.3. Weingarten surfaces of CMC type (α ̸= 0 and b < 0)

If the constants α, b of an elliptic Weingarten class Wg satisfy α ̸= 0 and b < 0, then the round spheres
of principal curvatures α and the round cylinders of principal curvatures {0, f(0)} are elements of Wg.

or instance, the constant mean curvature equation H = α ̸= 0 is an example of this subclass of elliptic
eingarten equations.
15
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(
a

Fig. 5.6. Orbits corresponding to rotational examples in Wg when b < 0 and α > 0. The nodoid-type surfaces with singularities are
pinched special nodoids if b = −∞ and singular special nodoids if b > −∞.

Fig. 5.7. Complete rotational examples in the non-minimal case. Left: special unduloid, right: special nodoid.

So, let Wg denote such an elliptic Weingarten class. Recall from Section 3 that, in the phase space R of
3.7), the point (1/|ρ|, ρ) with ρ := f(0) corresponds to the round cylinder of Wg. By the condition α ̸= 0
nd Lemma 3.2, it is easy to see that any orbit (x(λ), λ) of (3.7) intersects the boundary curve Γ of R. Thus,

we will see orbits of (3.7) starting at some point (x0, λ0) ∈ Γ .
Also, observe that by the behavior of the function G(λ) in Lemma 4.2, and by Remark 4.1, any orbit

satisfies |λx(λ)| → ∞ if λ → α; see also Fig. 4.1.
We will discuss first of all the case α > 0.
By (3.11), we have (λx(λ))′ > 0 if λ > ρ. Since |λx(λ)| → ∞ if λ → α, we deduce that the orbit that

starts at (τ, λτ ) ∈ Γ with λτ > ρ meets again Γ ∩ {λ > α} at a unique point (τ ′, λτ ′), with λτ ′ ∈ (α, ρ). See
Fig. 5.6.

These orbits generate the special unduloids Oτ described by Sa Earp and Toubiana in [35]; see Fig. 5.7.
They are complete, embedded surfaces, with a periodic profile curve whose minimum (resp. maximum)
distance to the axis of rotation is achieved at x = τ (resp. x = τ ′). There is exactly one special unduloid Oτ

for each τ ∈ (0, 1/ρ), and they converge to the cylinder of Wg as τ → 1/ρ. The unit normal N of Oτ is the
interior one.

Let now λ1 be the infimum of all the values λτ ′ of the orbits of special unduloids. Clearly, λ1 ≥ α, and if
λ1 = α, the region R+ := R ∩ {λ > α} is foliated by these orbits. In particular, by Theorem 4.4, we have
|G(∞)| = ∞.
16
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Fig. 5.8. From left to right: pinched special unduloid OP
ν , singular special unduloids OS

d , pinched special nodoid N P
ν and singular

pecial nodoid N S
d .

On the other hand, if λ1 > α, we have that for every λ0 ∈ (α, λ1], the orbit that starts at (1/λ0, λ0) ∈ Γ

tays in R+ for every λ > λ0, see Fig. 5.6; so it lies in R+
sing, and by Theorem 4.4 we have |G(∞)| < ∞. As

matter of fact, one can check that G(∞) = G(λ1), but we will not use this property.
The orbits obtained in this way describe rotational surfaces with singularities in Wg that we will call

inched special unduloids. Any such surface has two isolated singularities, and a horizontal plane of
ymmetry (since the orbit meets Γ ). See Fig. 5.8. Topologically, they can be seen as embedded surfaces
omeomorphic to S2, with two isolated singularities. The curvature of the surface around these two
ingularities is negative. These surfaces can be seen as limit unduloids as the necksize tends to zero. By
ymmetry, the limit angles at their singularities are given by {ν, −ν} for some ν ∈ (0, 1). By Proposition 4.7,
here exists at most one pinched special unduloid for each limit angle ν, and one can check that there actually
xists a (unique) pinched special unduloid for any ν ∈ [0, 1). We denote such surface by OP

ν .
One should note that all the orbits considered up to this point foliate R ∩ {λ > α}.
We consider next orbits lying in R ∩ {λ < α}. Take (τ, λτ ) ∈ Γ , with λτ ∈ (b, 0). The same arguments

sed above show now that the orbit that starts at (τ, λτ ) intersects Γ ∩ {λ > 0} at a unique point (τ ′, λτ ′),
ith λτ ′ ∈ (0, α). See Fig. 5.6. This orbit corresponds to one of the special nodoids Nτ described in [35].
hey are given by a non-embedded periodic profile curve whose minimum (resp. maximum) distance to the
xis of rotation is achieved at x = τ (resp. x = τ ′). See Fig. 5.7. There is one special nodoid Nτ for each
∈ (−1/b, ∞).
Consider now λ2 as the supremum of the values λτ ′ of the orbits of the special nodoids. Then, λ2 ∈ (0, α],

nd if λ2 = α these orbits foliate R ∩ {λ < α}. In that case we must have b = −∞ and, by Theorem 4.4,
G(−∞)| = ∞.

Suppose next that λ2 < α. Then, for any λ0 ∈ [λ2, α), the orbit that starts at (1/λ0, λ0) must lie in R−
sing,

nd in particular, by Theorem 4.4, we have |G(b)| = ∞. See Fig. 5.6. There are two options.
If b = −∞, such orbits are defined for every λ < λ0, and x(λ) → 0 as λ → −∞. Thus, the resulting

urfaces have isolated singularities. We will call these surfaces pinched special nodoids. They have two
solated singularities, and they can be seen topologically as embedded 2-spheres that are symmetric with
espect to a horizontal plane; see Fig. 5.8. By symmetry, the limit angles at their singularities are given by
ν, −ν} for some ν ∈ (0, 1). Using Proposition 4.7 and Lemma 4.2, it can be checked that for each ν ∈ [0, 1)
here exists a unique singular special unduloid with limit angles {ν, −ν}. We denote such surface by N P

ν .
On the other hand, if b ∈ R, such orbits intersect the segment {λ = b} at a unique point, of the form (d, b)

ith d ∈ (0, 1/|b|]. See Fig. 5.6. The Weingarten surfaces described by these orbits are embedded surfaces
iffeomorphic to an annulus, whose boundary is composed by two singular curves at the same distance d > 0
rom the rotation axis. Again, these surfaces are symmetric with respect to a horizontal plane. We call them
ingular special nodoids. See Fig. 5.8. It is easy to see that for each d ∈ (0, 1/|b|] there exists a unique
ingular special nodoid whose singular curves are at a distance d from the rotation axis. We denote such
urface by N S

d .
Once here, we have considered all possible initial points in Γ for orbits of (3.7). Since we know that any
uch orbit intersects Γ , we have found all possible rotational surfaces in Wg, when α > 0.
17
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Fig. 5.9. Orbits corresponding to rotational examples in Wg when b < 0 and α < 0. The unduloid-type surfaces with singularities
re pinched special unduloids if b = −∞ and singular special unduloids if b ̸= −∞.

We finally discuss the case α < 0.
First of all, we should note that if b = −∞, then for α < 0 we obtain the same type of examples that for

α > 0, but with their opposite orientation: see the comment regarding orientation after Eq. (2.4).
Suppose then that b ∈ R, b < α < 0. Then, any orbit that starts at (τ, λτ ) ∈ Γ ∩ {λ > 0} intersects

Γ ∩ {λ < 0} at a unique point (τ ′, λτ ′), with λτ ′ ∈ (α, 0); see Fig. 5.9. This orbit describes again a special
nodoid Nτ with necksize τ ∈ (0, ∞), see Fig. 5.7.

Let λ1 ∈ [α, 0) be the infimum of the values λτ ′ . If λ1 > α, then for any λ0 ∈ (α, λ1], the orbit that starts
t (−1/λ0, λ0) stays in R as λ → ∞, and so it defines a pinched special nodoid N P

ν similar to the ones
reviously described. See Figs. 5.9 and 5.8

The orbits that begin at points of the form (−1/λ0, λ0) ∈ Γ with λ0 ∈ (b, ρ) describe (complete) special
nduloids Oτ (Fig. 5.9). Their necksizes are given by τ = −1/λ0 and take all values τ ∈ (−1/b, −1/ρ). In
his α < 0 situation, the special unduloid Oτ is oriented with respect to its exterior unit normal. See Fig. 5.7.

Finally, at any point of the form (d, b), with d ∈ (0, 1/|b|], there arrives a unique orbit, that must start as
ome point of the form (−1/λ0, λ0), with λ0 < α. See Fig. 5.9. In this way, we exhaust all possible orbits of
he phase space R. These last orbits describe singular special unduloids, denoted by OS

d . These surfaces
gain have a horizontal plane of symmetry, are diffeomorphic to an annulus, and are bounded by two singular
urves at the same distance d > 0 from the rotation axis. Again, the surface has negative curvature near its
ingular set. See Fig. 5.8.

The previous cases actually describe all the possible behaviors in the phase space of R. We summarize
he obtained classification the theorem below. In the statement, G is the function defined in (4.1).

heorem 5.4. Let Wg be a class of elliptic Weingarten surfaces, with α ̸= 0 and b < 0. Then, any rotational
urface in Wg is an open piece of one of the following surfaces:

• A sphere of principal curvatures α.
• A cylinder of principal curvatures {0, f(0)}.
• A special unduloid Oτ .
• A special nodoid Nτ .
• A pinched special unduloid OP

ν (they exist if and only if G(∞) = ∞ and α > 0, or b = −∞, G(−∞) = −∞

and α < 0).

18
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• A pinched special nodoid N P
ν (they exist if and only if G(∞) = ∞ and α < 0, or b = −∞, G(∞) = −∞

and α > 0).
• A singular special unduloid OS

d (they exist if and only if b ̸= −∞ and α < 0).
• A singular special nodoid N S

d (they exist if and only if b ̸= −∞ and α > 0).

emark 5.5. For later use, let us remark that the special unduloids Oτ can be parametrized in terms of
he necksize τ , where τ ∈ (0, 1/ρ) if α > 0, and τ ∈ (−1/b, −1/ρ) if α < 0. Similarly, the special nodoids Nτ

re also classified by τ , where this time τ ∈ (−1/b, ∞) if α > 0, and τ ∈ (0, ∞) if α < 0.

.4. Summary of the classification

As we stated in the introduction, there are exactly 17 possible qualitative behaviors for a rotational elliptic
eingarten surface.
For the case of surfaces without singularities, we have 7 types: planes, spheres, cylinders, special unduloids,

pecial nodoids, and special catenoids, which can have either bounded or unbounded height. All these
xamples form the classification of complete rotational elliptic Weingarten surfaces in [34,35].

For the case of surfaces with singularities, we have 10 types: footballs, bracelets, pinched and singular
pecial unduloids, pinched and singular special nodoids, and pinched and singular special catenoids, which
an again have bounded or unbounded height.

In Theorem 6.2 we will classify when all these catenoids have bounded or unbounded height.

. The halfspace theorem

By the Hoffman–Meeks halfspace theorem [22], any properly immersed minimal surface in R3 that lies
n one side of a plane Π must be itself a plane parallel to Π . The validity of a fully nonlinear version of
his theorem, for the case of elliptic Weingarten surfaces, was studied by Sa Earp and Toubiana in [34].
hey showed that a halfspace theorem in this context is not generally true, since there exist special elliptic
eingarten catenoids properly embedded in a slab between two parallel planes (see also [27] for additional

xamples of this type). On the other hand, they proved the halfspace theorem for some elliptic Weingarten
lasses Wg; see the discussion above Theorem 6.5. In this section we improve upon the results by Sa Earp
nd Toubiana, using the classification obtained in Theorem 5.3.

To start, we characterize the elliptic Weingarten classes Wg for which the special catenoids in Wg have
nbounded height. For the case of a linear elliptic Weingarten relation κ2 = aκa with a < 0, this was done

by López and Pámpano in [27].
Recall from Section 5.2 that, on any elliptic Weingarten class Wg with α = 0, there are two types of

special catenoids: C+
τ , with an interior unit normal, and C−

τ , with an exterior one. The principal curvature
λ of C+

τ (resp. of C−
τ ) is positive (resp. negative). Theorem 6.2 below applies to C+

τ , C−
τ , but also to the

inched and singular catenoids of Wg classified in Theorem 5.3, in case they exist.

emark 6.1. The if part in Theorem 6.2 below is proved in [34, Theorem 1] and so it will be omitted
ere. We remark that the result in [34] is stated only for the case of (complete) special catenoids, and using a
ifferent notation for the Weingarten equation, but the proof works also for the case of pinched and singular
atenoids of Wg, since it only deals with the behavior at infinity of such surfaces.

heorem 6.2. Let Wg be an elliptic Weingarten class with α = 0. Let m := g′(0) < 0. Then, the rotational
urfaces in W with λ > 0 (resp. λ < 0) have unbounded height if and only if −1 ≤ m < 0 (resp. m ≤ −1).
g
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Proof. Let Σ be a rotational surface in Wg with λ > 0 (the case λ < 0 is analogous). Then, f has a finite
ight derivative at the origin, given by m. Assume that m < −1. For t > 0 near zero we can write

f(t) < f2(t) < 0, (6.1)

here f2(t) := a2t for a2 ∈ (m, −1).
Given a fixed (x0, λ0) ∈ R with λ0 > 0, consider (x(λ), λ) and (x2(λ), λ) the orbits passing through

x0, λ0) for the systems (3.7) associated to the functions f , f2, respectively. Since these orbits are given
y (3.10), if we choose λ0 small enough so that (6.1) holds in (0, λ0), we obtain for every λ ∈ (0, λ0) that
(λ) < x2(λ).

Let now Σ2 be the rotational surface associated to the orbit (x2(λ), λ), where λ ∈ (0, λ0]. By choosing
0 > x0 large enough, both surfaces Σ ,Σ2 can be seen as radial graphs around the z-axis, with associated
raphing functions u1(r), u2(r), where r varies in [r0, ∞). For any such r > r0, we have

u′
i(r)2 = λ2

i r2

1 − λ2
i r2 ,

where λi, i = 1, 2, are the values at r of the principal curvature λ of each of the graphs z = ui(r). Using
here now that x(λ) ≤ x2(λ) for every λ ∈ (0, λ0) for their associated orbits, we deduce that λ1 ≤ λ2, and
hence

u′
1(r)2 ≤ u′

2(r)2.

Therefore, up to a vertical translation and possibly a 180◦-rotation around the x-axis, the graph Σ lies
etween z = 0 and Σ2 outside a sufficiently large compact set. In [27], López and Pámpano proved that the
eight of a rotational surface satisfying µ = a λ for some a < 0 is bounded if and only if a < −1. Thus, Σ2

as bounded height, since so does Σ . As explained in Remark 6.1, the converse was proved in [34]. □

efinition 6.3. We say that an elliptic Weingarten class Wg satisfies the halfspace property if the only
roperly immersed surfaces Σ of Wg that lie on one side of a plane Π in R3 are the planes parallel to Π .

orollary 6.4. A necessary condition for Wg to satisfy the halfspace property is that g(0) = 0 and
′(0) = −1.

roof. If g(0) ̸= 0, there exist round spheres in the class Wg, what contradicts the halfspace property. If
(0) = 0 and g′(0) ̸= −1, it follows from Theorem 6.2 that one of the two types of special catenoids C+

τ , C−
τ

f Wg have bounded height, and thus it contradicts again the halfspace property. □

Regarding sufficient conditions, Sa Earp and Toubiana proved in [34, Corollary 1.1] that the following set
of conditions is sufficient for the validity of the halfspace property in an elliptic Weingarten class Wg:

(1) g(0) = 0 and g′(0) = −1. (Note that these are necessary, by Corollary 6.4).
(2) t + g(t) does not change sign in [0, ∞).
(3) b = g(∞) = −∞.

he theorem below improves this result, by providing a more general sufficient condition.

heorem 6.5. Let Wg be a class of elliptic Weingarten surfaces, with g(0) = 0 and g′(0) = −1. If,
additionally, t+g(t) does not change sign in some small interval (0, ε), ε > 0, then Wg satisfies the halfspace
property.
20
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Proof. We use the basic strategy of the classical proof of the halfspace theorem for minimal surfaces,
together with our description of rotational examples of Wg in Theorems 5.3 and 6.2. We will merely outline
ome of the most standard details of the argument, and focus on the new ingredients of the proof.

Arguing by contradiction, assume that Σ ∈ Wg is properly immersed in R3 and lies in, say, the halfspace
z > 0}, but not in any other halfspace {z > z0 > 0}.

We will assume that t + g(t) ≥ 0 in (0, ε); the proof is similar if t + g(t) ≤ 0. Let G1 be the lower half of
he special catenoid C−

τ ′ of the class Wg, with rotation axis the z-axis, for some necksize τ ′ > 0. That is, G1
s the piece of C−

τ ′ that lies below its neck. Then, G1 is a radial graph z = u1(x, y) of a function u1 defined
n the exterior of a disk of radius τ ′ in the plane z = 0, and it lies in Wg for the orientation given by its
pwards-pointing normal vector. The associated orbit γ1 of G1 in R− ends up at the point (τ ′, −1/τ ′) ∈ Γ .

Now consider, for any σ ∈ (0, 1), the orbit γσ = (xσ(λ), λ) passing through the point (τ ′, −σ/τ ′) ∈ R−.
hese orbits give rise to a family of upwards-oriented rotational graphs {Gσ}σ∈(0,1] ⊂ Wg, with the z-axis
s their rotation axis. Up to translation, each such Gσ is a graph z = uσ(x, y) of a function uσ defined over

a domain of the z = 0 plane, that is either the exterior of a disk around the origin or the punctured plane,
and so that uσ = 0 at the boundary of this domain. The meridian and parallel principal curvatures of the
rotational graphs Gσ satisfy λσ < 0 < µσ, and

λσ = g(µσ). (6.2)

Let us describe in more detail the family Gσ, using our discussion in Section 5. If b = −∞ and G(−∞) = ∞
all the surfaces {Gσ}σ∈(0,1] are the lower halves of the special catenoids C−

τ of Wg, with τ ∈ (0, τ ′). They
converge to the horizontal plane z = 0 punctured at the origin as σ → 0 (equivalently, as τ → 0).

If b = −∞ and G(−∞) < ∞, there exists σ0 ∈ (0, 1) such that {Gσ : σ > σ0} are the lower halves of the
special catenoids C−

τ with τ ∈ (0, τ ′), while {Gσ : σ ≤ σ0} is the family of upwards-oriented pinched special
catenoids of Wg. When σ → 0, these pinched catenoids Gσ converge uniformly on compact sets to the plane
z = 0 punctured at the origin.

Finally, if b ̸= −∞, then there exists again σ0 ∈ (0, 1) such that {Gσ : σ > σ0} are the lower halves of the
special catenoids C−

τ with τ ∈ (0, τ ′), but this time {Gσ : σ ≤ σ0} is the family of upwards-oriented singular
pecial catenoids of Wg. As σ → 0, the distance d from the singular curve of Gσ to the rotation axis (the
-axis) also tends to zero. The Gσ converge again to the plane z = 0 punctured at the origin, uniformly on
ompact sets.

Consider next the value ε > 0 as in the statement of Theorem 6.5. The behavior of the orbits γσ implies
hat there exists R > 0 such that, for every σ ∈ (0, 1), it holds

|λσ(r)| < |λ1(r)| < ε, for all r > R, (6.3)

here r is the distance to the rotation axis. See Fig. 6.1.
In particular, since we are assuming t + g(t) ≥ 0 in (0, ε), it follows from (6.2) and (6.3) that the graphs

σ have non-negative mean curvature outside the vertical cylinder in R3 of radius R.
Take now c > 0 small enough so that Σ ∩ Gδ

1 = ∅ for any δ ∈ (0, c], where Gδ
1 := G1 + (0, 0, δ) (recall

hat Σ is proper in R3, while G1 lies in {z ≤ 0}, with ∂G1 contained in the z = 0 plane). Note that, since
′(0) = −1, we have by Theorem 6.2 that the graphs {Gσ}σ∈(0,1] are not bounded from below at infinity.
hen, using the standard argument of the Hoffman–Meeks halfspace theorem together with the already
iscussed fact that the family {Gσ}σ∈(0,1] converges to the punctured z = 0 plane as σ → 0, we deduce
hat for any δ ∈ (0, c], if we denote Gδ

σ := Gσ + (0, 0, δ), then there exists σ(δ) ∈ (0, 1) such that Σ ∩ Gδ
σ is

mpty for all σ > σ(δ), but there exists some p(δ) ∈ Σ ∩ Gδ
σ(δ). Note that Σ , Gδ

σ(δ) are necessarily tangent
t this first contact point p(δ). If they have the same unit normal at p(δ), we reach a contradiction with the
aximum principle within the elliptic Weingarten class Wg. Thus, Σ , Gδ

σ(δ) have opposite unit normals at

(δ), and in particular Σ must be downwards oriented at p(δ).
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Fig. 6.1. The orbits γσ, 0 < σ ≤ 1.

Let R > 0 be the constant in (6.3). Let DR := {(x, y, 0) : x2 + y2 ≤ R2} and ΣR := {p ∈ Σ : π(p) ∈ DR},
here π(x, y, z) := (x, y, 0). Since Σ is proper and lies in {z > 0}, we have dist(ΣR, DR) =: ρ0 > 0. Take
< ρ0, and note that, with the above notations, Gδ

σ always lies in the half-space {z ≤ δ}. Thus, ΣR ∩ Gδ
σ(δ)

s empty, i.e., π(p(δ)) lies outside DR.
In particular, for δ > 0 sufficiently small, and due to the definition of the constant R > 0, the graph
:= Gδ

σ(δ) has non-negative mean curvature around its contact point p(δ) with Σ . Recall also that G is
upwards-oriented and Σ lies above it.

Let Σ∗ denote Σ with its opposite orientation. Then, G,Σ∗ have the same unit normal at p(δ), and Σ∗

lies above G. By the comparison principle, at p(δ), the largest (resp. smallest) principal curvature of Σ∗ is
greater than the largest (resp. smallest) one of G. Thus, if κΣ

1 ≥ 0 ≥ κΣ
2 are the principal curvatures of Σ

with its initial orientation (the one for which Σ ∈ Wg), we have κΣ
1 ≤ −λG < ε at p(δ), by (6.3). Using now

that κΣ
2 = g(κΣ

1 ) and that t + g(t) ≥ 0 if t ∈ [0, ε), we conclude that Σ has non-negative mean curvature
around p(δ). Thus Σ∗ has non-positive mean curvature, HΣ∗ ≤ 0, around p(δ). Since G has H ≥ 0 and
lies below Σ∗, this contradicts the interior maximum principle (see Lemma 1 in [36]). This contradiction
completes the proof. □

Definition 6.6. We say that g has finite order at the origin if, for some n > 1, g is of class Cn around 0,
and g(n)(0) ̸= 0.

Corollary 6.7. Let Wg be an elliptic Weingarten class, and assume that g has finite order at the origin.
Then Wg satisfies the halfspace property if and only if g(0) = 0 and g′(0) = −1.

Proof. The only if part follows from Corollary 6.4. The if part is a consequence of Theorem 6.5, since the
finite order hypothesis implies that t + g(t) does not change sign in some (0, ε). □

7. Isolated singularities of elliptic Weingarten surfaces

We next prove that isolated singularities of elliptic Weingarten graphs in R3, not necessarily rotational,
are always bounded.

Theorem 7.1. If a graph z = u(x, y) over a punctured disk D∗ ⊂ R2 satisfies an elliptic Weingarten
equation, then u is bounded around the puncture.

Proof. Let Wg be the elliptic Weingarten class to which the graph Σ ≡ z = u(x, y) belongs, and let N
∗
be the unit normal of Σ . Without loss of generality, we assume that N points upwards. Let D be a disk
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of radius r0 > 0 centered and punctured at the origin, and take constants m, M such that m ≤ u ≤ M on
he boundary ∂D∗ = S1(r0). We will divide our discussion into several cases, depending on the sign of the
mbilical constant α of Wg.

Assume α > 0. It is clear that u is bounded from above in D∗. Indeed, let Sα ∈ Wg be a round sphere of
rincipal curvatures equal to α. Place Sα so that it lies on the open halfspace z > M of R3, and Sα ∩ Σ is
mpty. If u is not bounded from above, by translating Sα horizontally towards Σ we will reach an interior
rst contact point between both surfaces, where the unit normals agree (note that the unit normal of Sα is

the interior one, and the first contact point happens below the equator of Sα). This contradicts the maximum
principle (see e.g. Theorem A in [2] or Corollary 17.2 in [20]), and shows that u is bounded from above.

We now prove that u is bounded from below, adapting an argument from [33]. Let Oτ0 be the special
unduloid of necksize τ0 of the Weingarten class Wg, with rotation axis given by the z-axis. Its unit normal
points to the interior region bounded by Oτ0 . Let O0

τ0 be the compact piece of Oτ0 whose boundary consists
of two consecutive circles at which the distance from Oτ0 to the rotation axis attains its maximum, τ ′

0.
By taking r0 smaller if necessary, assume that r0 < τ0. Next, translate O0

τ0 downwards, so that its upper
boundary lies in the plane z = m − ε for some ε > 0 (here m = min u on S1(r0)). For each τ ∈ (0, τ0],
let Sτ be the surface obtained from the special unduloid Oτ via the above process; these surfaces exist, see
Remark 5.5. It follows from the phase space analysis that when we decrease τ , the radius τ ′ of its upper
boundary (and also, by symmetry, of its lower boundary) in the plane z = m − ε increases. Note that
both Sτ0 ∩ Σ and Sτ ∩ ∂Σ are empty. Also, the heights of the compact family Sτ are uniformly bounded
for τ ∈ (0, τ0]. Assume now that u is not bounded from below around the origin. Then, by decreasing the
necksize τ → 0 we would reach a first interior contact point of some element of the Sτ -family with Σ , at
which both surfaces have the same unit normal. This contradicts again the maximum principle. Thus, u is
bounded if α > 0.

If α < 0, the argument is similar. This time, we obtain that u is bounded from below using the sphere
Sα ∈ Wg, which is now oriented by its exterior normal. In order to obtain that u is bounded from above, we
use as comparison objects adequate compact pieces of the special nodoids Nτ instead of the special unduloids
Oτ ; see again Remark 5.5. We omit the details, as the process is analogous.

Finally, assume that α = 0. Let C be a compact piece of a special catenoid C+
τ of Wg, with rotation axis

given by the z-axis, and with its interior orientation, and so that ∂C is the union of two circles in horizontal
planes. Let 2h > 0 be the distance between these two planes. By taking r0 smaller if necessary, assume that
r0 < h.

After an isometry, place C so that: (i) the two boundary components of ∂C lie in the vertical planes x = h

and x = −h; (ii) C lies in the open half-space z > M (recall that M = max u on S1(r0)), and (iii) C ∩ Σ

is empty. If u is not bounded from above near the origin, translating now C towards Σ horizontally in the
y-direction we reach a contradiction with the maximum principle.

The same argument using a compact piece of a special catenoid C−
τ of Wg with its exterior orientation

shows that u must also be bounded from below near the origin. This completes the proof. □

We next consider a global classification problem for elliptic Weingarten surfaces with isolated singularities.
Motivated by [13], we introduce the following definition.

Definition 7.2. A peaked elliptic Weingarten ovaloid is a closed convex surface S ⊂ R3 (i.e. the boundary
of a bounded convex set of R3) that is regular everywhere except at a finite set p1, . . . , pn ∈ S, and such
that S \ {p1, . . . , pn} is an elliptic Weingarten surface. We call p1, . . . , pn the singularities of S.

We note that there exist peaked ovaloids with constant curvature K = 1 (which is an elliptic Weingarten

equation), with any number n ≥ 2 of singularities, see [13].
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Theorem 7.3. Let S be a peaked elliptic Weingarten ovaloid with n ≤ 2 singularities. Then either n = 0
nd S is a round sphere, or n = 2 and S is a rotational football Fν (see Theorem 5.1).

roof. If n = 0, the theorem follows directly from the Alexandrov reflection principle [2], or alternatively,
from the Hopf uniqueness theorem for immersed elliptic Weingarten spheres in [16]. From now on, assume
that n ∈ {1, 2}. If n = 2, let {p1, p2} be the two singularities of S. If n = 1, we let p1 be the singularity of

, and p2 be another arbitrary point.
We will use the Alexandrov reflection principle. Let L be the line passing through p1 and p2, and let Π0

e a plane parallel to L. For definiteness, assume after a rigid motion that L is the z-axis of R3, that Π0 is a
lane x = const, and that p1 = (a, 0, 0), p2 = (−a, 0, 0) for some a > 0. Take a plane x = c, with c < 0, away
nough so that it does not intersect S, and start moving it towards S until reaching a first contact point
f S with some plane x = c0 < 0. For each c ∈ (c0, 0) beyond that moment, let S∗

c denote the reflection of
S ∩ {x ≤ c} with respect to x = c. By applying the Alexandrov reflection principle in the standard way, see
.g. [3], we end up having one of the following three possibilities.

(a) There exists a first contact point of S∗
c with S ∩ {x ≥ c} at some regular point of S ∩ {x ≥ c}, for

some c < 0. In that case, x = c would be a plane of symmetry of S, a contradiction with the fact that p1, p2

are singularities of S (they lie on the plane x = 0). So this case does not happen.
(b) There exists a first contact point of S∗

c with S ∩ {x ≥ c} at one of the isolated singularities of S, for
some c < 0. We will see below that this situation is not possible.

(c) S∗
0 is contained in the interior region bounded by S ∩ {x ≥ 0}. In that situation, if we now apply the

eflection principle starting from x = c with c > 0 large enough, using items (a), (b) we deduce that x = 0
ust be a plane of symmetry of S.
As we can do this process with respect to any plane Π parallel to L, we deduce that S is rotationally

ymmetric. By the classification of rotationally symmetric elliptic Weingarten surfaces in Section 5, the only
uch compact, convex surfaces are round spheres and the footballs Fν of Theorem 5.1.

So, to complete the proof of Theorem 7.3 we only need to show that the situation described by item (b)
s not possible. In the conditions of (b), assume that S∗

c has a first contact point with S ∩ {x ≥ c} at a
singularity p of S. In adequate local coordinates (x1, x2, x3), we can assume that p = (0, 0, 0), that S∗

c and
S are graphs x3 = u∗(x1, x2) and x3 = u(x1, x2) over a punctured disk Ω∗ of a small radius ε0 around the
origin, with both D2u, D2u∗ positive definite on Ω∗, and that u ≤ u∗ in Ω∗. Note that u = u∗ = 0 at the
origin. Moreover, we can also assume that Du∗(0, 0) = (0, 0). From these conditions, since u∗ is regular at
the origin, we deduce by convexity that u has a unique support plane at the origin, i.e., u is of class C1 at
the origin, with Du(0, 0) = (0, 0).

Since u∗ > u on S1(ε0) = ∂Ω , we can slightly tilt the graph x3 = u∗(x1, x2) by making a small rotation
around the x1-axis, so that still u∗ > u on S1(ε0) for the function obtained after this tilting, that we still
denote by u∗. Note that now u∗ is not greater than u anymore around the origin. Next, translate the graph
x3 = u∗(x1, x2) vertically until it is above the graph of u, and start translating it back downwards until
reaching a first contact point with the graph of u. This point does not lie above the boundary S1(ε0) or the
origin, since u∗ is not above u near the origin, but u(0, 0) = u∗(0, 0) = 0. This situation contradicts the
maximum principle (note that the tilted graph for u∗ is a solution of the same Weingarten equation as the
original u∗), and completes the proof. □

8. The non-elliptic case

A famous theorem by Chern [8] proves that if the principal curvatures of a C2 ovaloid S in R3 satisfy, in
some order, a Weingarten equation κ = h(κ ), where h is a decreasing function, then S is a round sphere.
1 2
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Chern remarked that the hypothesis that h is decreasing cannot be removed, since any rotational ellipsoid
n R3 satisfies a Weingarten equation of the type

κ2 = cκ3
1, (8.1)

or some c > 0. Inspired by this situation, Yau [40] (Problem 58, p. 682), asked whether any compact surface
n R3 whose principal curvatures κ1, κ2 satisfy (8.1) in some order must be a rotational ellipsoid. One should
ote here that the meridian and parallel principal curvatures µ, λ of a rotational surface do not make sense
nymore for arbitrary surfaces; this explains the in some order comment for κ1, κ2. Also, observe that if a
ompact surface satisfies (8.1), then it has non-negative Gaussian curvature, and thus it has genus zero.

Yau’s question has an affirmative answer in the real analytic case, see [26,37]. Indeed, by a striking classical
heorem of Voss [39], any real analytic Weingarten surface Σ of genus zero in R3 is a rotational sphere.
See [18] for a version of Voss’ theorem in the context of overdetermined PDE problems in the plane). Thus,
f such Σ satisfies (8.1), the meridian and parallel principal curvatures µ, λ of Σ verify either µ = cλ3 or
µ = cλ1/3 at every point. Kühnel and Steller proved that if a real analytic rotational sphere satisfies any of
these two equations, then it is an ellipsoid. This fact together with Voss’ theorem provides a positive answer
to Yau’s question in the real analytic case. An alternative proof was later given by Simon [37].

In contrast, we prove next that for C2 surfaces, the answer to Yau’s problem is negative.

Theorem 8.1. There exist compact surfaces of class C2 in R3 other than ellipsoids whose principal
curvatures κ1, κ2 verify, in some order, (8.1) for c > 0.

Proof. Let u(r) be defined by⎧⎨⎩
u(r) = 0 if 0 ≤ r ≤ 1,

u(r) = −
∫ r

1

√
c3(r2/3−1)3

1−c3(r2/3−1)3 dr if 1 ≤ r < (1 + 1/c)3/2.

A computation shows that u is of class C2, and extends continuously with a finite value to r0 :=
1 + 1/c)3/2. Also, u′(r) → −∞ as r → r0. Let S+ be the rotational C2 surface given by z = u(r), with
=

√
x2 + y2, for 0 ≤ r ≤ r0. The principal curvatures of S+ are zero if r ≤ 1, and are given (for the

downwards unit normal) by

λ(r) =
(

c − c

r2/3

)3/2
, µ(r) = cλ(r)1/3,

f 1 ≤ r ≤ r0. Note that µ(r0), λ(r0) are finite and the tangent plane of S+ is vertical along ∂S+. In this
ay, the surface S+ is C2-smooth up to its boundary. Moreover, writing κ1 = µ(r), κ2 = λ(r), we see that
+ satisfies (8.1).
Let S− denote the reflection of S+ with respect to the horizontal plane of R3 given by z = u(r0), and

onsider the union S = S+ ∪ S−. It is clear that S is a compact C2 surface diffeomorphic to S2, which is
ot an ellipsoid and satisfies (8.1). □

emark 8.2. The existence of the above example was overlooked in [26,37], where Yau’s question was
tudied for the particular case of rotational surfaces. In particular, our example contradicts Proposition 10
n [26].

The basic idea behind the construction in Theorem 8.1 is that one can consider the totally umbilic
otational example that starts at the rotation axis (in this case, a plane), and then bifurcate from it away
rom the axis. This behavior is not possible for elliptic Weingarten surfaces. Indeed, Gálvez and Mira proved
25
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g

in [16] that the umbilics of any surface in R3 satisfying an elliptic Weingarten equation κ2 = g(κ1), with
′(0) < 0, are necessarily isolated. (For the particular symmetric case in which g′(0) = −1, this is a classical

theorem, see [21] or [4]).
However, if we slightly weaken the ellipticity condition g′ < 0 to the degenerate elliptic case g′ ≤ 0, the

umbilics of a Weingarten surface satisfying κ2 = g(κ1) fail to be isolated in general, see [19,30]. Specifically,
there exist examples of such degenerate elliptic Weingarten equations where one can bifurcate from a totally
umbilic sphere meeting the rotation axis, to create non-round, degenerate elliptic, rotational Weingarten
spheres. See Figure A.1 in [19].
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