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1. Introduction

Persistent homology has become one of the most important tools in Topological Data Analysis [1,2]. Persistence modules 
help to understand persistent homology [3–5]. Specifically, persistence modules indexed by a totally ordered set T are functors 
from T to the category Vectk , where k is a fixed field. In this setting, under mild assumptions, a persistence module can be 
completely described by a multiset of intervals of T called its barcode [6].

In practice, TDA software take discrete data as an input, and give a barcode as the output [7–9]. In some situations, 
the user may want to repeat the procedure, after applying some minor modifications to the original data. In such case, 
two questions arise. Could we reuse the calculations previously made to obtain the new barcode, taking advantage of the 
similarities in the input? Is there any relation between both barcodes?

Answering the first question would speed up the calculations significantly. Answering the second question would allow, 
for example, to describe how intervals in the barcode change (or are kept unchanged) when the data is modified. More 
concretely, if a change in data induces a morphism f : V →→→ U between persistence modules indexed by T , then answering 
the second question means to know how f induces a partial matching Rep B(V ) �→ Rep B(U ) between representations of 
the corresponding barcodes. It is known that such a partial matching cannot be functorial [10].

Trying to answer both questions, we could think of two possible research directions: (1) Considering the morphism f as 
a persistence module in its own right and describing it in terms of “simple pieces”, that may have an interpretation at the 
barcode level. (2) Trying to define rules that produce a partial matching induced by f , guaranteeing that it satisfies some 
desirable properties. Before going into details, let us comment on the state of the art in both directions.
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1. Decomposition of persistence modules We say that a persistence module V is decomposable when V � U ⊕ W with U , W �=
0. Otherwise, V is said to be indecomposable. Under mild assumptions, indecomposable modules indexed over T are well-
known and are called interval modules [3,6]. Indecomposable modules of the form

U

V

f �
U1 U2 . . . Un

V 1 V 2 . . . Vn

(1)

where f : V → U is a morphism between persistence modules, are also well understood for all n ≤ 4. When n > 4, the 
theory becomes increasingly complex, and for n ≥ 6 there is no way to parametrize the set of indecomposable modules 
since the underlying graph (the quiver) is of “wild” type (see, for example, [11–13] for the use of quivers in TDA). Recall 
that the category of modules of the form (1), also known as ladder modules, is isomorphic to the category of morphisms 
between persistence modules indexed by the set n = {1, . . . , n} (see [14]).

2. The induced partial matching χ f In [10] and [15], given f : V → U , the authors provided a procedure to construct a partial 
matching between representations of the barcodes, Rep B(V ) and Rep B(U ), denoted by χ f . The aim of providing such a 
construction was to give an explicit proof of the Stability Theorem for barcodes [10]. However, this partial matching has some 
limitations when applied to real data. In particular, it produces the following undesired result.

Consider the morphism f of persistence modules determined by the following commutative diagram:

U

V

f �
0 0 0

0 k kId

⊕
k k 0

0 k 0 .

Id

Id (2)

Then Rep B(V ) = {[2, 3]1, [2, 2]1} and Rep B(U ) = {[1, 2]1}. Note that, looking at the decomposition of f , one would expect 
to obtain the following matching:

[2,3]1 �−→ ∅ , [2,2]1 �−→ [1,2]1 .

However, χ f produces the following partial matching:

[2,3]1
χ f�−→ [1,2]1 , [2,2]1

χ f�−→ ∅
which is counter-intuitive.

In opposition to χ f , we propose M f , a block function induced by the morphism f , which gives a better insight of how 
f works. As we will see in Example 5.2:

M f ([2,2], [1,2]) = 1 , M f ([2,3]1, [1,2]) = 0 .

More concretely, M f is defined entirely algebraically, is linear with respect to the direct sum of morphisms and can be eas-
ily calculated using matrix column reductions. As explained in Subsection 5.1, M f also allows to induce partial matchings 
efficiently.

The paper is organized as follows. Firstly, the background is introduced in Section 2. In Section 3, we introduce the 
operators Im± and Ker± and illustrate them by using persistence bases. In Section 4, the aforementioned operators are used 
to define the block function M f induced by a morphism f : V → U and we prove it is well-defined. Its main properties, 
together with an explanation of how M f can be used to compute partial matchings, are given in Section 5. In Section 6, 
we give a method to compute M f using matrix calculations. Finally, the main conclusions and some open questions are 
discussed in Section 7.

2. Preliminaries

We recall the notions of persistence modules, decorated endpoints, barcodes and partial matchings. We also introduce 
some necessary algebraic tools.

2.1. Persistence modules

All vector spaces considered in this paper are defined over a fixed field k with unit denoted by 1k and they can be 
infinite dimensional, except in Section 6, where they are finite dimensional. Vectors are expressed in column form.

A persistence module V indexed by a totally ordered set T is a functor from T to Vectk . Then V consists of a set of 
vector spaces V p for p ∈ T and a set of linear maps ρpq : V p → Vq for p ≤ q satisfying that ρqlρpq = ρpl if p ≤ q ≤ l; and 
ρpp being the identity map. The set of linear maps {ρpq}p≤q is denoted by ρ and its elements are known as the structure 
2
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maps of V . Since the category of persistence modules is abelian, the direct sum of persistence modules together with the 
intersection and quotient of persistence modules are also persistence modules (see for example [4, Sec. 2]).

We consider the functor category of persistence modules. In other words, given two persistence modules, V and U , with 
structure maps, ρ and φ, a morphism, f : V → U , is given by a set of linear maps { f p}p∈T , such that fqρpq = φpq f p if 
p ≤ q. A morphism f is injective (surjective) if all its linear maps f p , p ∈ T , are injective (surjective). Notice that Im f and 
Ker f are particular cases of persistence modules. We assume that all persistence modules that appear in this paper satisfy 
the descending chain condition (d.c.c.) for images and kernels. In other words, for t ≥ p1 ≥ p2 ≥ . . . and t ≤ . . . ≤ q2 ≤ q1, the 
following chains stabilize:

Vt ⊇ Imρp1t ⊇ Imρp2t ⊇ . . . and Vt ⊇ Kerρtq1 ⊇ Kerρtq2 ⊇ . . .

2.2. Decorated points and interval modules

In this subsection, we use the notation appearing in [10] based on the one introduced in [3, Sec. 2.4]. Let E denote the 
set of decorated endpoints defined as E := R × D ∪ {−∞, ∞}, where D = {−, +}. In what follows, decorated points (r, −) and 
(r, +) are denoted by r− and r+ , respectively. Note that E can be seen as a totally ordered set stating that r− < r+ together 
with the order inherited by the extended reals. The sum + : E × R → E is defined as r± + s := (r + s)± . There is a bijection 
between the pairs {(a, b) ∈ E × E : a < b} and the intervals of R. The following table shows all possible cases:

s− s+ ∞
−∞ (−∞, s) (−∞, s] (−∞,∞)

r− [r, s) [r, s] [r,∞)

r+ (r, s) (r, s] (r,∞)

From now on, an interval of R represented by (a, b) ∈ E × E, with a < b, is denoted by ❲a,b❳. Intervals of any other totally 
ordered set may turn up. We use the letters a, b, c and d to denote elements of E; the letters r, s and t to denote elements 
of R; and the letters p, q and l to denote elements of a general, totally ordered set T .

Given an interval I of R, the interval module, kI , is composed by kIt = k for all t ∈ I and kIt = 0 otherwise, while the 
structure maps are given by the identity whenever possible. As shown in the next subsection, interval modules are the 
building blocks of persistence modules.

2.3. Decomposition of persistence modules

The results that appear in this section are directly taken from [6] where the following statement is proven.

Theorem 2.1 (Theorem 1.2 of [6]). For any persistence module V indexed by R satisfying the d.c.c. for images and kernels, we have:

V �
⊕
I∈S V

(⊕mI kI
)

where S V is a set of intervals of R and mI is the multiplicity of kI .

The proof of the theorem uses the operators Im± and Ker± (which are introduced in Section 3) as well as the concept 
of section. A section of a vector space A is a pair of vector spaces (F −, F +) such that F − ↪→ F + ↪→ A. We say that a set 
{(F −

λ , F +
λ ) : λ ∈ �} of sections (with � its index set) of A is disjoint if, for all λ �= μ, either F +

λ ↪→ F −
μ or F +

μ ↪→ F −
λ .

Sections are used in Lemma 4.5 and Theorem 5.5. In particular, we use the following result, whose justification is part 
of the proof of Theorem 6.1 in [6].

Lemma 2.2. Suppose that {(F −
λ , F +

λ ) : λ ∈ �} is a disjoint set of sections of a vector space A. Then⊕
λ∈�

(
F +

λ

/
F −

λ

)
↪→ A .

2.4. Barcodes and partial matchings

A multiset is a pair (S, m) where S is a set and m : S → N ∪ {∞} represents the multiplicity of the elements of S . 
An element of the multiset (S, m) is denoted by the pair (I, mI ) where I ∈ S and mI = m(I). The barcode of a persistence 
module V is the multiset B(V ) = (S V , m) where S V is the set of intervals that appear in the decomposition of V , and mI is 
the multiplicity of I ∈ S . The representation of a multiset (S, m) is the set

Rep(S,m) = {(I, i) ∈ S ×N : i ≤ mI )} .

From now on, we use the notation Ii instead of (I, i).
3
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Example 2.3. Consider the persistence module

U � k2 k3 k

[
1 0
0 1
0 0

]
[ 0 0 1 ]

that can be decomposed as

k[1,2] ⊕ k[1,2] ⊕ k[2,3] .

Then its barcode is B(U ) = {([1, 2], 2), ([2, 3], 1)} and the representation of its barcode is Rep B(U ) = {[1, 2]1, [1, 2]2, [2, 3]1}, 
which can be displayed as:

Given two barcodes, B1 and B2, a partial matching between Rep B1 and Rep B2 is a bijection σ : R1 → R2 where R1 ⊂
Rep B1 and R2 ⊂ Rep B2. By abuse of notation, we might write instead σ : Rep B1 → Rep B2, and say σ(I) = ∅ when we mean 
I /∈ R1.

Definition 2.4. A block function between two barcodes B1 = (S1, m) and B2 = (S2, n) is a function M : S1 × S2 −→Z≥0 ∪{∞}
such that:∑

J∈S2

M(I, J ) ≤ mI .

Remark 2.5. Note that when a block function satisfies∑
I∈S1

M(I, J ) ≤ n J ,

it is straightforward to show that M induces a partial matching between Rep B1 and Rep B2.

2.5. Persistence bases

A persistence basis [16,3] for a persistence module V is an isomorphism

α :
⊕
i∈


k❲ai ,bi❳ → V ,

where 
 is an index set. By Theorem 2.1, such persistence bases exist for all persistence modules satisfying the d.c.c. 
condition for images and kernels. The persistence generator αi : k❲ai ,bi ❳ → V is defined as the morphism α restricted to 
k❲ai ,bi ❳ for i ∈ 
. When we write αi ∼ ❲ai,bi❳, we mean that k❲ai ,bi ❳ is the domain of αi . We also specify a persistence basis 
α by its set of persistence generators, A = {αi}i∈
 and we denote its cardinality by #A.

Definition 2.6. Given a subset S = {αi}i∈� of A, we define the span of S , denoted by 〈S〉, as the image of the sum of 
persistence generators of S , that is

〈S〉 = Im

(⊕
i∈�

αi :
⊕
i∈�

k❲ai ,bi ❳ → V

)
.

For t ∈ R, we define St := {α1
it : i ∈ � and t ∈ ❲ai,bi❳} where α1

it means αit(1k) by abuse of notation. In particular, Vt = 〈At〉
and 〈S〉t = 〈St〉, where At and St are linearly independent sets of vectors in Vt . Notice that in general, the submodule 〈S〉
of V depends on α.

The following result is later used to prove that M f is well-defined.

Lemma 2.7. Let V be a submodule of a persistence module U indexed by R such that Vt = 0 for all t ∈ ❲d, ∞❳ for some d ∈ E. Then, 
given a persistence basis α for U , we have that V is also a submodule of

W = 〈αi : αi ∼ ❲·,b′❳ with b′ ≤ d〉 .
4
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Proof. By contradiction, assume that V is not a submodule of W . Then, for some s ∈ ❲−∞, d❳, there exists x ∈ V s such that 
x /∈ W s . Thus,

x =
∑
i∈
1

xiα
1
is +

∑
j∈
2

x jα
1
js

for coefficients xi, x j ∈ k \ {0} for all i ∈ 
1 and j ∈ 
2; where 
1 and 
2 are two disjoint indexing subsets 
1 ⊆ {i : αi ∼
❲·, b′❳ with b′ ≤ d} and 
2 ⊆ { j : α j ∼ ❲·, b′❳ with d < b′}. Note that 
2 is non empty since x /∈ W s by hypothesis. We choose 
j′ in 
2, such that α1

j′s �= 0 and x j′ �= 0. Denote the right endpoint of α j′ as d′ . Let t ∈ ❲d, d′❳. Then

0 = ρst x =
∑
j∈
′

2

x jα
1
jt ,

where 
′
2 = { j ∈ 
2 : ρst(α

1
js) �= 0}, so that j′ ∈ 
′

2. However, as {α1
jt} j∈
′

2
is linearly independent by Definition 2.6, x j must 

be zero for all j ∈ 
′
2, including j′ , leading to a contradiction. �

In particular, notice that the submodule W of V from Lemma 2.7 is independent for the chosen persistence basis α, as 
given another persistence basis α′ with the corresponding submodule W ′ , we would obtain W ⊆ W ′ and also W ⊇ W ′; 
thus W = W ′ .

Finally, let f : V → W be a morphism between persistence modules and let A and B be persistence bases for V and 
U , respectively. If f is an injection, then #A ≤ #B while if f is a projection, then #A ≥ #B. This is a consequence of the 
result of persistence submodules and quotients given in [10, Thm. 4.2].

2.6. Direct limits

We need the notion of direct limits to define the block function M f and the notion of sections to prove it is well-
defined. The definition of direct limit and some useful lemmas involving direct limits are given in Appendix A. In this 
section, we just give a characterization of direct limits for our context.

Proposition 2.8 (Characterization of direct limits for persistence modules). Let V be a persistence module indexed by an interval ❲a, b❳, 
and consider the endpoint a < d ≤ b. Then

lim−→
t∈❲a,d❳

Vt �
⊕

p∈❲a,d❳ V p

Z

where Z is the vector space generated by v p ⊕ −ρpq(v p) ∈ V p ⊕ Vq, with p ≤ q and p, q ∈ ❲a, d❳.

Proof. See [3, Def. 3.41] and [3, Prop. 3.43]. �
The direct limit lim−→t∈❲a,d❳

Vt does not depend on a and, intuitively, it is isomorphic to the vector space generated by the 
intervals ❲c,b❳ with c ≤ d ≤ b. Actually, if d represents a closed right endpoint, i.e. d = s+ , it follows from the characteriza-
tion that lim−→t∈❲a,s+❳

Vt = V s .

Example 2.9. Consider a persistence module V isomorphic to

k[1,3) ⊕ k(1,3] ⊕ k[0,4)

and a persistence basis A = {α1, α2, α3} for V . For example, if v ∈ V 2, then v = x1α
1
12 +x2α

1
22 +x3α

1
32 for some x1, x2, x3 ∈ k. 

Note that for 1+ < a < b ≤ 3− and t, s ∈ ❲a, b❳, all structure maps ρst are injective. Then,

Z = 〈α1
it ⊕ −α1

is : i = 1,2,3; t ≤ s ∈ ❲a,b❳〉.
Applying Proposition 2.8, for a fixed i, all α1

it represent the same class in lim−→
t∈❲a,b❳

Vt . Then, denoting this class by α1
i , we have

lim−→
t∈❲a,b❳

Vt = 〈α1
i : i = 1,2,3〉 .

On the contrary, for b = 3+ , we have that (α1
1t ⊕ 0) ∈ Z for t ∈ ❲a,3−❳ since ρt3α

1
1t = 0, then

lim−→+
Vt = V 3 = 〈α1

i3 : i = 2,3〉 .
t∈❲a,3 ❳

5
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3. The operators Im± and Ker±

The operators Im± and Ker± were used in [6] to prove Theorem 2.1. In this section, we introduce these operators from 
the point of view of persistence bases with the aim of using them later to construct M f . Let V be a persistence module 
indexed by R with structure maps ρ and with persistence basis A = {αi}i∈
 . Let c ∈ E. We consider the following subsets of 
A:

• I+
c (A) = {

αi ∈A | αi ∼ ❲ai,bi❳ such that ai ≤ c
}

,
• I−

c (A) = {
αi ∈A | αi ∼ ❲ai,bi❳ such that ai < c

}
,

• K+
c (A) = {

αi ∈A | αi ∼ ❲ai,bi❳ such that bi ≤ c
}

,
• K−

c (A) = {
αi ∈A | αi ∼ ❲ai,bi❳ such that bi < c

}
.

As a convention, given t ∈ R, we write I±
ct (A) instead of I±

c (A)t and K±
ct(A) instead of K±

c (A)t . As Lemma 3.1 shows, 
I±

ct (A) and K±
ct(A) generate the following vector spaces, which were first introduced in [6]:

Im+
ct(V ) :=

⋂
s∈❲c,t+❳

Imρst , Im−
ct(V ) :=

⋃
s∈❲−∞,c❳

Imρst , for t ∈ ❲c,∞❳;

Ker+ct(V ) :=
⋂

r∈❲c,∞❳

Kerρtr , Ker−ct(V ) :=
⋃

r∈❲t−,c❳

Kerρtr , for t ∈ ❲−∞, c❳.

By convention, Im−
ct(V ) := 0 if c = −∞, and Ker+ct(V ) := V (t) if c = ∞.

Lemma 3.1. For all c ∈ E, we have the equalities:

(a) Im±
ct(V ) = 〈I±

ct (A)〉 for all t ∈ ❲c, ∞❳,
(b) Ker±ct(V ) = 〈K±

ct(A)〉 for all t ∈ ❲−∞, c❳.

Proof. See the first proof in Appendix B �
Example 3.2. Consider a persistence module V isomorphic to k[1,2] ⊕k[2,3] and a persistence basis A = {α1, α2} for V where 
the generators are given by

α1 =
k k2 k

k k 0

[
1
0

]
[ 0 1 ]

Id

Id

[
1
0

]
and α2 =

k k2 k

0 k k .

[
1
0

]
[ 0 1 ]

Id

[
0
1

]
Id

Using Lemma 3.1, the subspaces Im±
22(V ) and Ker±32(V ) of V 2 = k2 are given by

〈I+
22(A)〉 = 〈K+

32(A)〉 = 〈α1
12,α

1
22〉 = k2 , 〈I−

22(A)〉 = 〈K−
32(A)〉 = 〈α1

12〉 = 〈 1
0
〉.

As shown in the following result, Im± and Ker± are linear.

Proposition 3.3. Let c ∈ E and let V 1 and V 2 be two persistence modules. Then,

Im±
ct(V 1 ⊕ V 2) = Im±

ct(V 1) ⊕ Im±
ct(V 2) for all t ∈ ❲c,∞❳ and

Ker±ct(V 1 ⊕ V 2) = Ker±ct(V 1) ⊕ Ker±ct(V 2) for all t ∈ ❲−∞, c❳ .

Proof. First, notice that we have the following equalities

Im−
ct(V ) = lim−→

s∈❲−∞,c❳

Imρst Ker−ct(V ) = lim−→
r∈❲t−,c❳

Kerρtr,

and since direct sums commute with limits (see Lemma A.1), the result holds for these operators. In the other case, by the 
d.c.c. for images and kernels, we know there exists s ∈ ❲c, t+❳ and r ∈ ❲c, ∞❳ such that,

Im+
ct(V ) = Imρst , Im+

ct(V 1) = Imρst |V 1 , Im+
ct(V 2) = Imρst |V 2 ,

Ker+ct(V ) = Kerρtr , Ker+ct(V 1) = Kerρtr |V 1 , Ker+ct(V 2) = Kerρtr |V 2 ,

see [6, Lemma 2.1] for details. In such cases, the linearity follows directly from the linearity of Im and Ker. �

6
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Let V be a persistent module and let I = ❲a, b❳ be an interval of R. We use the operators Im± and Ker± to define the 
persistence modules V +

I , V −
I and V I pointwisely. For t ∈ I , define

V +
It := Im+

at(V ) ∩ Ker+bt(V )

V −
It := Im−

at(V ) ∩ Ker+bt(V ) + Im+
at(V ) ∩ Ker−bt(V )

V It := V +
It

/
V −

It

and, for t /∈ I , let them all be 0. These modules played an important role in Theorem 2.1. Specifically, V I is isomorphic to 
the direct sum ⊕mI kI . As we will see later, such modules are also a key ingredient for the definition of M f . We end this 
section with an interpretation of V I in terms of persistence bases. Define

A+
I = I+

a (A) ∩K+
b (A)

A−
I = (I+

a (A) ∩K−
b (A)) ∪ (I−

a (A) ∩K+
b (A)) ,

which can also be described as:

A+
I ={αi ∈ A | ai ≤ a and bi ≤ b}

A−
I ={αi ∈ A | (ai < a and bi ≤ b) or (ai ≤ a and bi < b)} .

We define AIt as A+
It \A−

It and obtain:

AI = {αi ∈ A | (ai = a and bi = b)} .

Proposition 3.4. V +
It = 〈

A+
It

〉
and V −

It = 〈
A−

It

〉
for all t ∈ I .

Proof. Let I = ❲a, b❳ with a, b ∈ E. From Lemma 3.1 and Lemma B.1, we have:

V +
It = Im+

at(V ) ∩ Ker+bt(V ) = 〈I+
at (A)〉 ∩ 〈K+

bt(A)〉 = 〈I+
at (A) ∩K+

bt(A)〉 = 〈A+
It 〉 .

And, similarly,

V −
It = Im−

at(V ) ∩ Ker+bt(V ) + Im+
at(V ) ∩ Ker−bt(V )

= 〈I−
at (A)〉 ∩ 〈K+

bt(A)〉 + 〈I+
at (A)〉 ∩ 〈K−

bt(A)〉
= 〈I−

at (A) ∩K+
bt(A)〉 + 〈I+

at (A) ∩K−
bt(A)〉 = 〈A−

It 〉 . �
We are now ready to present an interpretation of V I in terms of persistence bases.

Theorem 3.5. V It � 〈AIt〉 for all t ∈ I .

Proof. Using Proposition 3.4 and Lemma B.2, we obtain:

V It = V +
It

V −
It

= 〈A+
It 〉

〈A−
It 〉

� 〈A+
It \A−

It 〉 = 〈AIt〉 . �

Example 3.6. Going back to Example 3.2, we know that the interval [2, 3] has multiplicity 1. Then, V [2,3]2 must be a space 
of dimension 1. Using Theorem 3.5, this can be rapidly checked by the following computation:

V [2,3]2 � 〈A[2,3]2〉 = 〈A+
[2,3]2 \A−

[2,3]2〉 = 〈{α1
12,α

1
22} \ {α1

12}〉 = 〈α1
22〉 .

4. The block function M f

The definition of M f is formulated algebraically, via operators of persistence modules. Recall from Subsection 2.3 that 
given a persistence module V , the multiplicity mI of an interval I in the barcode B(V ) is completely determined by the 
persistence module V I defined in Section 3. Given a morphism f : V → U between persistence modules, our aim is to 
create a new persistence module, XI J , relating V I and U J via f . Hence, denoting the respective barcodes of V and U by 
B(V ) = (S V , m) and B(U ) = (SU , n), from XI J , we obtain the block function M f relating (I, mI ) and ( J , n J ) for all pairs of 
intervals I ∈ S V and J ∈ SU .
7
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For this, let us assume that V and U , with structure maps ρ and φ, respectively, are indexed by R. Let I = ❲a, b❳ and 
J = ❲c, d❳. For t ∈ I ∩ J , define the vector space:

XI Jt := f V +
It ∩ U+

J t

f V −
It ∩ U+

J t + f V +
It ∩ U−

J t

.

If t /∈ I ∩ J , then XI Jt := 0. Notice that when we write f V ±
It we mean ft(V ±

It ). Observe that, since XI J is made up of 
sums, intersections and quotient of persistence modules, XI J is also a persistence module. Intuitively, XI Jt is equal to the 
intersection f (V It) ∩ U Jt . Inspecting such an intersection on the limit, we obtain a way to relate the elements (I, mI ) and 
( J , m J ) which is induced by f .

Definition 4.1. Let B(V ) = (S V , m) and B(U ) = (SU , n). We define the function M f : S V × SU →Z≥0 ∪ {∞} as,

M f (I, J ) := dim lim−→
t∈I∩ J

X I Jt .

Example 4.2. Consider the morphism between persistence modules f : V → U given by the following commutative diagram:

U

V

f �
k k2 k

0 k k .

[
1
0

]
[ 0 1 ]

Id

[
1
1

]
Id

The respective barcodes are

B(V ) = {([2,3],1)} and B(U ) = {([1,2],1), ([2,3],1)} .

We calculate the set f A = { f α1} which will be used later. Concatenating both functions, α1 and f , we get

f α1 = k[2,3]
Id→ V

f→ U = f .

If I = [2, 3] and J = [1, 2], then we can calculate XI J and XI I as follows. First,

f V +
I2 ∩ U+

J 2 = 〈 1
1
〉 ∩ 〈 1

0
〉 = 0 and XI J 2 = 0 .

Moreover

f V +
I2 ∩ U+

I2 = 〈 1
1
〉 ∩ 〈 1 0

0 1
〉 = 〈 1

1
〉 ,

f V −
I2 ∩ U+

I2 + f V +
I2 ∩ U−

I2 = 〈 0
0
〉 ∩ 〈 1 0

0 1
〉 + 〈 1

1
〉 ∩ 〈 1

0
〉 = 0 ;

and

f V +
I3 ∩ U+

I3 = 〈1〉 ∩ 〈1〉 = 〈1〉 ,

f V −
I3 ∩ U+

I3 + f V +
I3 ∩ U−

I3 = 〈0〉 ∩ 〈1〉 + 〈1〉 ∩ 〈0〉 = 〈0〉 .

From these computations, we conclude that the only non-zero case for X is the submodule X[2,3][2,3] : 0−→〈 1
1
〉 [ 0 1 ]−→ k, and 

then

M f ([2,3], [1,2]) = 0 and M f ([2,3], [2,3]) = 1 .

As the following result shows, the cases of study can be reduced considerably.

Proposition 4.3. Let I = ❲a, b❳ and J = ❲c, d❳. If M f (I, J ) �= 0, then

c ≤ a ≤ d ≤ b .

Proof. By definition, a < b and c < d. Moreover, if I ∩ J is empty, then M f (I, J ) is zero. Then we just have to prove that 
M f (I, J ) is zero when a < c or b < d. Following the definitions of Im± and Ker± given in Section 3, we have:

ft(Im+
at(V )) ↪→ Im+

at(U ) ft(Ker+bt(V )) ↪→ Ker+bt(U ) ,
8
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and:

Im+
at(U ) ↪→ Im−

ct(U ) Ker+bt(U ) ↪→ Ker−dt(U ) ,

when a < c or b < d respectively (see Lemma 7.1 in [6] for details). If a < c,

f V +
It ∩ U+

J t ↪→ ft(Im+
at(V )) ∩ Ker+dt(U ) ↪→ Im−

ct(U ) ∩ Ker+dt(U ) ↪→ U−
J t , (3)

then f V +
It ∩ U+

J t ↪→ f V +
It ∩ U−

J t and XI Jt = 0. Exchanging Im± by Ker± in Expresion (3), the same reasoning works when 
b < d. �

This is an expected result due to the commutativity of f with respect to the structure maps. An equivalent result for χ f
is given in [10, Prop. 5.3].

4.1. M f is well-defined

Given a morphism f : V → U between persistence modules V and U with barcodes B(V ) = (S V , m) and B(U ) = (SU , n), 
respectively, the aim of this subsection is to prove the following theorem.

Theorem 4.4. M f is well-defined, that is, it is a block function.

Given I = ❲a, b❳ ∈ S V , we have to prove that 
∑

J∈SU
M f (I, J ) ≤ mI . Fixing J = ❲c, d❳ ∈ SU , we can assume that d ≤ b

without loss of generality (see Proposition 4.3). In such case, I ∩ J has d as the right endpoint.
To prove Theorem 4.4, we would like to relate the vector spaces XI Jt with f V It and use that dim f V It ≤ mI (since by 

definition f V It means f V +
It / f V −

It ). However, the vector spaces XI Jt and f V It are subspaces of different vector spaces and 
there is no straightforward way of relating them. For this reason, we define a new intermediate vector space, and use it to 
compare the dimension of 

⊕
J∈SU

XI Jt and f V It . Lemma 4.5 makes this statement precise. To prove it, for fixed I ∈ S V and 
c, d ∈ E, we use the following persistence modules indexed by t ∈ R:

Ad
ct := f V −

It ∩ U+
❲c,d❳t + f V +

It ∩ U−
❲c,d❳t

f V −
It ∩ U+

❲c,d❳t

and, Bd
ct := f V +

It ∩ U+
❲c,d❳t

f V −
It ∩ U+

❲c,d❳t

.

The choice of the vector spaces is justified by the following property,

Bd
ct

Ad
ct

� XI Jt .

Due to our previous assumption about I ∩ J , the following limits are equivalent:

Ãd
c := lim−→

t∈I∩ J

Ad
ct = lim−→

t∈❲−∞,d❳

Ad
ct and B̃d

c := lim−→
t∈I∩ J

Bd
ct = lim−→

t∈❲−∞,d❳

Bd
ct .

In the following, we write either I ∩ J or ❲−∞, d❳ when taking limits, since it does not affect the calculation. Due to 
Lemma A.2, we also have:

B̃d
c

Ãd
c

� lim−→
t∈I∩ J

X I Jt .

Moreover, varying c, we can see the vector spaces Ãd
c and B̃d

c as persistence modules indexed by c ∈ E.

Lemma 4.5. For a fixed d ∈ E, we have:(⊕
c<d

lim−→
t∈I∩ J

X I❲c,d❳t

)
↪→ lim−→

c<d

B̃d
c ↪→ lim−→

t∈❲−∞,d❳

f V It .

Proof. First, let us prove the second injection. Notice that, for each t ∈ I ∩ J ,

f V +
It ∩ U+

J t ↪→ f V +
It and ( f V +

It ∩ U+
J t) ∩ f V −

It = f V −
It ∩ U+

J t ,

so that Bd
ct ↪→ f V It . By Lemma A.3, we also have that, for each c,
9
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B̃d
c = lim−→

t∈❲−∞,d❳

Bd
ct ↪→ lim−→

t∈❲−∞,d❳

f V It .

Using Lemma A.3 again and since f V It does not depend on c,

lim−→
c<d

B̃d
c ↪→ lim−→

c<d

(
lim−→

t∈❲−∞,d❳

f V It

)
= lim−→

t∈❲−∞,d❳

f V It .

To obtain the other injection, let us prove that 
{
( Ãd

c , B̃d
c ) : c ∈ E

}
is a disjoint set of sections of lim−→c<d

B̃d
c . In other words, let 

us prove that

• for each c, Ãd
c ↪→ B̃d

c ↪→ lim−→
c<d

B̃d
c and,

• for all c′ < c, B̃d
c′ ↪→ Ãd

c .

If so, the result follows by Lemma 2.2 since B̃d
c / Ãd

c is isomorphic to lim−→t∈I∩ J
X I Jt .

Note that Ad
ct ↪→ Bd

ct by definition. Then, by Lemma A.3, Ãd
c ↪→ B̃d

c . We also have that Im+
c′t(U ) ↪→ Im−

ct(U ) if c′ < c, implying,

U+
❲c′,d❳t = Im+

c′t(U ) ∩ Ker+dt(U ) ↪→ Im−
ct(U ) ∩ Ker+dt(U ) ↪→ U−

❲c,d❳t

Then, 
(

f V +
It ∩ U+

❲c′,d❳t

)∩ ( f V −
It ∩ U+

❲c,d❳t

)= f V −
It ∩ U+

❲c′,d❳t and also

f V +
It ∩ U+

❲c′,d❳t ↪→ f V +
It ∩ U−

❲c,d❳t ↪→ f V +
It ∩ U−

❲c,d❳t + f V −
It ∩ U+

❲c,d❳t ,

so that Bd
c′t ↪→ Ad

ct and using Lemma A.3 we obtain the inclusion B̃d
c′ ↪→ Ãd

c .

We still have to prove that, B̃d
c ↪→ lim−→

c<d

B̃d
c . We already proved that B̃d

c′ ↪→ Ãd
c ↪→ B̃d

c for each c′ < c. In particular, B̃d
c′ ↪→ B̃d

c

for each c′ < c. Finally, applying Lemma A.4 we obtain the desired result. �
Proof of Theorem 4.4. We need to prove that 

∑
J∈SU

M f (I, J ) ≤ mI . Using that M f (I, J ) �= 0 for I = ❲a, b❳ and J = ❲c, d❳

only if c ≤ a ≤ d ≤ b, we can rewrite the sum as∑
J∈SU

M f (I, J ) =
∑
d≤b

∑
c<d

M f (I, J ) =
∑
d≤b

∑
c<d

dim lim−→
t∈❲−∞,d❳

XI❲c,d❳t

which is equivalent to∑
d≤b

dim

(⊕
c<d

lim−→
t∈❲−∞,d❳

XI❲c,d❳t

)
and, by Lemma 4.5, is less or equal to∑

d≤b

dim lim−→
c<d

B̃d
c .

Moreover, given a persistence basis A of f V I , we obtain the inequality

dim lim−→
c<d

B̃d
c ≤ #{αi ∈ A : αi ∼ ❲·,d❳} , (4)

which is deduced later on. Then, as we have V I � f V I ,∑
J∈SU

M f (I, J ) ≤
∑
d≤b

#{αi ∈ A : αi ∼ ❲·,d❳} ≤ #A ≤ mI .

To prove Inequality (4), recall from the proof of Lemma 4.5 that Bd
ct is a submodule of f V It . Since Bd

ct = 0 for t ∈ ❲d, ∞❳, by 
Lemma 2.7, we have:

Bd
ct ↪→ 〈α1

it : αi ∼ ❲·,b′❳ with b′ ≤ d〉
for t ∈ ❲c, d❳. By Lemma A.3, direct limits are compatible with injections and so

lim−→ B̃d
ct = lim−→ lim−→ Bd

ct ↪→ lim−→ lim−→ 〈α1
it : αi ∼ ❲·,b′❳ with b′ ≤ d〉
c<d c<d t∈❲−∞,d❳ c<d t∈❲−∞,d❳

10
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which is equal to

lim−→
t∈❲−∞,d❳

〈α1
it : αi ∼ ❲·,b′❳ with b′ ≤ d〉 ,

since it does not depend on c. Finally, since the class of α1
it is zero in the above limit if αi ∼ ❲·, b′❳ with b′ < d, we have:

dim lim−→
t∈❲−∞,d❳

〈α1
it : αi ∼ ❲·,b′❳ with b′ ≤ d〉

≤ dim lim−→
t∈❲−∞,d❳

〈α1
it : αi ∼ ❲·,b′❳ with b′ = d〉.

Then

dim lim−→
c<d

B̃d
ct ≤ #{αi : αi ∼ ❲·,d❳} ,

which is the same inequality as (4). �
5. Properties of M f

Let us study the main properties of M f to obtain a better insight of how it works. We already saw in Proposition 4.3
that M f (❲a, b❳, ❲c, d❳) is non-zero only if c ≤ a ≤ d ≤ b. Another important property is its linearity.

Theorem 5.1. Given a direct sum of morphisms:

f 1 ⊕ f 2 : V 1 ⊕ V 2 −→ U 1 ⊕ U 2

We have that,

XI Jt[ f 1 ⊕ f 2] = XI Jt[ f 1] ⊕ XI Jt[ f 2]
and M f 1⊕ f 2(I, J ) = M f 1(I, J ) +M f 2(I, J ).

Since direct sums commute with quotients, finite intersections, finite sums and direct sums of persistence modules (see 
Appendix A), Theorem 5.1 is a direct consequence of Proposition 3.3.

Example 5.2. Theorem 5.1 allows performing a quick calculation of M f for the morphism f = f 1 ⊕ f 2 given in Expression 
(2) and recalled here:

U

V

f �
0 0 0

0 k kId

⊕
k k 0

0 k 0 .

Id

Id

Indeed, M f 1 is always zero for the first summand, and it is non-zero for the second one only in the case M f 2 ([2, 2], [1, 2])
= 1, as expected.

The following proposition explains how M f (I, J ) behaves when the domain of f is an interval module.

Proposition 5.3. Consider a non-null morphism f : kI → U and a persistence basis β for U . Let J be the set of intervals that appear 
in the expression of f kI in terms of β . Then M f (I, J ) = 1 if J is the interval with the smallest length between the ones with the largest 
right endpoint in J .

Proof. Since f is non-null, there exists a finite, non-empty set {βi}i=1...n and t ∈ I such that ft(1k) =∑n
i=1 xiβ

1
it , for some 

x1, . . . , xn ∈ k \ {0}. Notice that the finiteness condition follows from considering β−1
t ft(1k) which can only have finite non-

zero coordinates, since it lies in a direct sum of vector spaces.
Now, sort in decreasing order the set {b′ : ∃i with βi ∼ ❲·,b′❳} and define b, d as the first and second value respectively. Then 
there is a subset � ⊂ {1, . . .n}, such that, for i ∈ �, βi ∼ ❲·,b❳. We have that f s(1k) =∑

i∈� xiβ
1
is for any s ∈ ❲d,b❳. Now, let 

J be the interval with the smallest length in { J ′ : ∃i ∈ �, βi ∼ J ′}. Then, by definition of U±
J , we have that for s ∈ ❲d,b❳, 

f s(1k) ∈ U+
J s but f s(1k) /∈ U−

J s . Then there is K with ❲d,b❳ ⊂ K ⊂ I ∩ J such that kK � XI J . This implies that M f (I, J ) = 1, 
and by Theorem 4.4 it must be the only non-zero case. �
11
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However, as the following example shows, M f does not always induce a unique partial matching, since if there are 
nested bars, 

∑
I∈S V

M f (I, J ) can be greater than n J (see Remark 2.5).

Example 5.4. Consider the morphism of persistence modules given by the following commutative diagram:

U

V

f �
k k 0

k k2 k .

[
1
0

]
[ 1 0 ]

[ 1 1 ]

Notice that B(V ) = {([1, 3], 1), ([2, 2], 1)} and B(U ) = {([1, 2], 1)}. Let I = [1, 3], K = [2, 2] and J = [1, 2]. Then

f V +
I ∩ U+

J = k → k → 0,

f V −
I ∩ U+

J + f V +
I ∩ U−

J = 0 → 0 → 0,

f V +
K ∩ U+

J = 0 → k → 0,

f V −
K ∩ U+

J + f V +
K ∩ U−

J = 0 → 0 → 0.

Taking the direct limit in d = 2+ , we have

M f (I, J ) = 1 and, M f (K , J ) = 1.

Then M f (I, J ) +M f (K , J ) > n J = 1.

As the following theorem shows, if there are no nested bars then the block function M f induces a partial matching.

Theorem 5.5. Consider an ordered set of intervals, {❲ai, bi❳}i∈
 , and an interval J = ❲c, d❳, such that for all i ≤ j, ai ≤ a j and bi ≤ b j , 
and supi∈
{ai} < d. Then∑

i∈


M f (❲ai,bi❳, J ) ≤ n J .

Proof. Notice that we can assume without loss of generality that c ≤ ai ≤ d ≤ bi for all i ∈ 
, since otherwise X❲ai ,bi ❳ J t = 0. 
Our strategy is similar to the proof of Theorem 4.4. We define a set of subspace pairs of U Jt , {(A❲ai ,bi ❳t , B❲ai ,bi ❳t) : i ∈ 
}, for 
all t ∈ ❲e, d❳ where e = supi∈
{ai}. We prove that it is a disjoint set of sections of U Jt and that B❲ai ,bi ❳t/A❲ai ,bi ❳t � X❲ai ,bi ❳ J t . 
Then, by Lemma 2.2,⊕

i∈


X❲ai ,bi ❳ J t ↪→ U Jt .

As a consequence, using Lemma A.1 and Lemma A.3, we obtain the inclusion

lim−→
t∈❲e,d❳

⊕
i∈


X❲ai ,bi❳ J t =
⊕
i∈


lim−→
t∈❲e,d❳

X❲ai ,bi❳ J t↪→ lim−→
t∈❲e,d❳

U Jt .

Thus,

∑
i∈


M f (❲ai,bi❳, J ) = dim

(⊕
i∈


lim−→
t∈❲e,d❳

X❲ai ,bi❳ J t

)
≤ dim lim−→

t∈❲e,d❳

U Jt = n J .

We define A❲ai ,bi ❳t and B❲ai ,bi ❳t as follows:

A❲ai ,bi❳t :=
f V −

❲ai ,bi❳t
∩ U+

J t

f V −
❲ai ,bi❳t

∩ U−
J t

, B❲ai ,bi❳t :=
f V +

❲ai ,bi❳t
∩ U+

J t

f V +
❲ai ,bi❳t

∩ U−
J t

.

Notice that A❲ai ,bi ❳t ↪→ B❲ai ,bi ❳t since ( f V −
❲ai ,bi ❳t

∩ U+
J t) ∩ ( f V +

❲ai ,bi ❳t
∩ U−

J t) = f V −
❲ai ,bi ❳t

∩ U−
J t . To prove that {(A❲ai ,bi ❳t, B❲ai ,bi ❳t) :

i ∈ 
} is a disjoint set of sections of U Jt , let us see that B❲ai ,bi ❳t ↪→U Jt and B❲ai ,bi ❳t ↪→A❲a j ,b j❳t whenever i < j. The first 
injection is true since

f V +
i i ∩ U+ ↪→ U+ and f V +

i i ∩ U+ ∩ U− = f V +
i i ∩ U− .
❲a ,b ❳t Jt J t ❲a ,b ❳t Jt J t ❲a ,b ❳t Jt

12
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Recall that the intervals in the set {❲ai, bi❳}i∈
 are all different, which implies that for i < j, either ai < a j or bi < b j . 
Consequently, we have that V +

❲ai ,bi ❳t
↪→ V −

❲a j ,b j❳t
and f V +

❲ai ,bi ❳t
↪→ f V −

❲a j ,b j❳t
. Then,(

f V +
❲ai ,bi ❳t

∩ U+
J t

)∩ ( f V −
❲a j ,b j❳t

∩ U−
J t

)= f V +
❲ai ,bi❳t

∩ U−
J

and f V +
❲ai ,bi ❳t

∩U+
J t ↪→ f V −

❲a j ,b j❳t
∩U+

J t , so there are inclusions B❲ai ,bi ❳t ↪→A❲a j ,b j❳t . Thus, {(A❲ai ,bi ❳t, B❲ai ,bi ❳t) : i ∈ 
} is a disjoint 
set of sections of U Jt . �

The contraposition of the previous result shows the already mentioned fact that, when there are nested intervals, M f
may not induce a partial matching.

Corollary 5.6. If, for a given set of intervals S ⊆ S V , we have that∑
I∈S

M f (I, J ) > n J ,

then there are at least two nested intervals in S.

5.1. Inducing a partial matching

Although M f does not always induce a partial matching, we can use it to obtain a new block function, M̃ f , which 
does. Firstly, let J = {

J ∈ SU :∑I∈S V
M f (I, J ) > n J

}
. For each J ∈J , we create the multiset

B J = (
S J ,m̃

)= {(
I,m̃I

) : I ∈ S V , with m̃I = M f (I, J ) �= 0
}

,

and calculate a partial matching,

σ J : Rep B J → Rep{ J ,n J } ,

depending on the application. For example, one could consider σ J that provides the bottleneck distance between B J and 
{( J , n J )}. Once we have a partial matching σ J for each J , we define the new block function as:

M̃ f (I, J ) =
{

#
{

i : ∃ j with σ J (Ii) = J j
}

if J ∈ J and I ∈ S J

M f (I, J ) otherwise

Note that, by definition, 
∑

I∈S V
M̃ f (I, J ) ≤ n J and, since M̃ f (I, J ) ≤ M f (I, J ), we have that 

∑
J∈SU

M̃ f (I, J ) ≤ mI by 
Theorem 4.4. Then, we can induce directly a partial matching using M̃ f .

Example 5.7. Let us consider a pair of persistence morphisms f , g : V → U where f is given by the following commutative 
diagram:

0 0 0 0

k k2 k 0

⊕
k k 0 0

k k k k

and g is given by:

k k 0 0

k2 k3 k2 k .

[
1 0
0 0
0 1

][ 1 1 ] [
0 1 0
0 0 1

][ 1 1 1 ]

[ 0 1 ]

Note that the image of f and g is the same, then, by [10, Prop. 5.4], χ f is equal to χg . In particular, it is the same matching 
as the one induced by M f , [1, 4] �→ [1, 2]. However, Mg gives the following non-null values,

Mg([1,4], [1,2]) = 1, Mg([2,3], [1,2]) = 1.

We have two options: either match [1, 4] with [1, 2] or [2, 3] with [1, 2]. If we choose the first option, we obtain the same 
partial matching as the one induced by M f . If we choose the second option by matching the longest bars, then we get a 
different partial matching.
13
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6. A matrix method for computing M f for p.f.d. persistence modules

The main goal in this section is to provide a combinatorial method, based on matrix column additions, to obtain the 
block function M f . To this aim, we limit ourselves to persistence modules of finite vectors spaces indexed by R, also 
known as pointwise finite-dimensional (p.f.d.) persistence modules [6].

Let I = ❲a, b❳ and J = ❲c, d❳ be intervals of R. We assume that c ≤ a ≤ d ≤ b (otherwise, XI J = 0). Let f : V → U be a 
morphism between persistence modules together with a pair of persistence bases A = {αi}i∈� for V and B = {βi}i∈
 for U . 
For a fixed t , let us focus on the following composition of linear maps:

V +
It Vt Ut Ut

/
U−

J t .
ιIt ft π J t

(5)

By Proposition 3.4, A+
It is a persistence basis for V +

It and Bt \B−
J t is a persistence basis for Ut

/
U−

J t using also Lemma B.2. 
Therefore, we consider the associated matrix LI J t of the composition (5) on the bases A+

It and Bt \B−
J t :

LI J t :=
⎛⎜⎝ A−

It AIt

B J t 1 2
Bt \ B+

J t ∗ ∗

⎞⎟⎠ (6)

We define the reduced matrix NI J t that one obtains after a Gaussian elimination of LI J t by using left to right column 
additions. Then we consider the following submatrices of NI J t :

• R+
I J t := matrix restricted to the rows of NI J t associated to B J t and the columns from A+

I = AI ∪ A−
I which are zero 

on the rows associated to Bt \B+
J t .

• R−
I J t := matrix restricted to the rows of NI J t associated to B J t and the columns from A−

I which are zero on the rows 
associated to Bt \B+

J t .
• RI J t := matrix restricted to the rows of NI J t associated to B J t and the columns from AI which are zero on the rows 

associated with Bt \B+
J t .

The submatrix R+
I J t is contained within the block regions 1 and 2 from Expression (6), while R−

I J t is contained within 
the block 1 and RI J t within the block 2 . Let 

〈
R±

I J t

〉
and 

〈
RI J t

〉
the subspaces of 〈B J t〉 which are generated by the columns 

of the respective matrices.
To find XI Jt , we use the following quotients

X+
I J t = f V +

It ∩ U+
J t + U−

J t

U−
J t

and X−
I J t = f V −

It ∩ U+
J t + U−

J t

U−
J t

,

which satisfy,

XI Jt = f V +
It ∩ U+

J t

f V −
It ∩ U+

J t + f V +
It ∩ U−

J t

� f V +
It ∩ U+

J t + U−
J t

f V −
It ∩ U+

J t + U−
J t

� X+
I J t

X−
I J t

.

In the following, we work with the subindex sets �+
It ⊆ � and 
 J t ⊆ 
 so that A+

It = {α1
it}i∈�+

It
and also B J t = {α1

it}i∈
 J t .

Proposition 6.1. For all t ∈ I ∩ J , the following equalities hold:

(a) X+
I J t = 〈

R+
I J t

〉
,

(b) X−
I J t = 〈

R−
I J t

〉
.

Proof. Let us prove first (a), and, in particular, the inclusion ⊇. Consider γ ∈ R+
I J t . By construction, we must have γ =

π J t ◦ ft ◦ ιIt
(∑

i∈�+
It

xiα
1
it

)
for some coefficients xi ∈ k for all i ∈ �+

It . This implies γ ∈ ( f V +
It + U−

J t

)/
U−

J t . Also, by hypotheses, 
there exist coefficients x′

i ∈ k for all i ∈ 
 J t , so that γ =∑
i∈
 J t

x′
iβ

1
it and so γ ∈ U Jt . Altogether, γ ∈ X+

I J t and thus the claim 
follows since X+

I J t is a well-defined subspace of U Jt .

Let us show now that the inclusion ⊆ from (a) holds. Consider σ ∈ X+
I J t . Since σ ∈ U Jt , it can be written in terms of the 

persistence basis B J t and so we might consider σ as a column Cσ of coordinates in Bt \B−
J t whose coordinates in Bt \B+

J t

are all zero. On the other hand, since σ ∈ ( f V +
It + U−

J t

)/
U−

J t , we can write Cσ as a combination of columns from LI J t . Since 
elementary column operations preserve rank, the reduced matrix NI J t of LI J t still generates Cσ by the Rouché-Frobenius 
14
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theorem. In particular, since the coordinates of Cσ in Bt \B+
J t are all zero, we can write Cσ in terms of R+

I J t , and the claim 
follows.
One might repeat the argument to show that the equality (b) holds, changing R+

I J t for R−
I J t and writing X−

I J t instead of 
X+

I J t in the above two paragraphs. On the second paragraph, Cσ must be written in terms of columns from the block 1 in 
Expression (6). �

Now, we characterize XI Jt in terms of a matrix that can be easily computed.

Theorem 6.2. XI Jt � 〈
RI J t

〉
for all t ∈ I ∩ J .

Proof. It follows from Proposition 6.1 and Lemma B.2 and the fact that the corresponding sets of columns satisfy RI J t =
R+

I J t \R−
I J t . �

Finally, due to Theorem 6.2, we have the following result.

Corollary 6.3. Assuming that M f (I, J ) is equivalent to the dimension of XI Jt for some t ∈ I ∩ J , then:

M f (I, J ) = the number of pivots in RI J t .

Example 6.4. Let k be a field of characteristic �= 2, e.g. k =Z3. Consider V � k[1,4] ⊕ k[2,3] ⊕ k[2,5] and U � k[0,3] ⊕ k[1,4] . We 
take the canonical bases A = {α1, α2, α3} for V and B = {β1, β2} for U , see below.

0 1 2 3 4 5

β1
β2

α1
α2
α3

U

V

Next, consider a morphism f : V → U between persistence modules given by the following commutative diagram:

U

V

f �
k k2 k2 k2 k 0

0 k k3 k3 k2 k

[
1
0

]
Id Id [ 0 1 ]

[
1
0
0

]
[

1
1

]
Id

[
1 1 2
1 0 1

]
[

1 0 0
0 0 1

]
[

1 1 2
1 0 1

]
[ 0 1 ]

[ 1 1 ]

It leads to the matrices LI J t for all I ∈ S V and all J = [s, t] ∈ SU :

L[1,4][0,3]3 =
[

1
1

]
, L[2,3][0,3]3 =

[
1
0

]
, L[2,5][0,3]3 =

[
1 1 2
1 0 1

]
,

L[1,4][1,4]4 = [ 1 ] , L[2,3][1,4]4 = ∅ , L[2,5][1,4]4 = [ 1 1 ] .

Next, we reduce L[2,5][0,3]3 and L[2,5][1,4]4, so that we obtain:

N[2,5][0,3]3 =
[

1 1 0
1 0 0

]
, N[2,5][1,4]4 = [ 1 0 ] .

Altogether, we obtain:

R[1,4][0,3]3 = R[2,3][1,4]4 = ∅ , R[1,4][1,4]4 = R[2,3][0,3]3 = [ 1 ] ,

R[2,5][0,3]3 = R[2,5][1,4]4 = [ 0 ] .

Hence, a partial matching that can be obtained from M f is:

[1,4] �→ [1,4] and [2,3] �→ [0,3] .

Notice that, in this example, Im( f ) � k[1,4] ⊕k[2,3] and so the induced partial matching X f is different from M f , as is given 
by

[1,4] �→ [1,4] and [2,5] �→ [0,3] .
15
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7. Conclusions and future work

In this paper, we have provided an entirely algebraic definition of a block function M f induced by a morphism between 
two persistence modules V and U . We have proven that M f is linear with respect to the direct sum of morphisms. We 
have also discussed how to derive partial matchings from M f and provided a combinatorial method to compute M f based 
on matrix operations.

We are developing an efficient algorithm to compute partial matchings from morphisms between persistence modules, 
taking Section 6 as a starting point. A specially interesting case is the morphism obtained from a function between point 
clouds and the corresponding Vietoris-Rips filtrations. Moreover, since in some special cases the proposed induced partial 
matching is defined ad-hoc from M f and not algebraically, we are investigating if it is possible to find an alternative 
algebraic definition of M f such that M f always gives directly a partial matching.

Some additional research directions can be followed from this paper, for example, the relation between M f and in-
decomposable modules. We believe that, when 

∑
I M f (I, J ) > n J , there should exist non-trivial indecomposable modules 

containing J . Finally, relations between persistence modules which come from dynamical systems are not usually given by 
morphisms but through diagrams of the form V ← W → U [17,18]. Then, another research line could be to construct block 
functions in that context.
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Appendix A. Direct limits

Let J be filtered category, and consider a functor F :J → Vectk . We consider the direct limit lim−→ j∈J F ∈ Vectk , which is 
a particular case of the general definition of colimits (see [19, Sec. 3.1.] and [20, Sec. 3.]). Since Vectk is an abelian category, 
lim−→i∈J F exists. Examples of colimits include direct sums of vector spaces, 

⊕
j∈J V i , and cokernels, coker( f ), of linear maps 

f : A → B . By [19, Thm. 3.8.1], colimits commute with colimits, deducing Lemma A.1 below.

Lemma A.1. Consider a set of functors {Fi :J → Vectk}i∈
 , then:

lim−→
j∈J

⊕
i∈I

Fi( j) �
⊕
i∈I

lim−→
j∈J

Fi( j) ,

Lemma A.2. Consider a pair of functors F1, F2 :J → Vectk such that F1( j) ⊆ F2( j) for all j ∈J . Thus:

lim−→
j∈J

(
F2( j)

/
F1( j)

)� lim−→
j∈J

F2( j)
/

lim−→
j∈J

F1( j) .

Proof. This holds since F2( j)
/

F1( j) is a cokernel, and so a colimit. �
Lemma A.3. Let U, V and W be persistence modules indexed by an interval ❲a, b❳, and let d ∈ E with a < d ≤ b. A short exact sequence 
of persistence modules

0 → V → U → W → 0 ,

produces the following short exact sequence of vector spaces:
16
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0 → lim−→
t∈❲a,d❳

Vt → lim−→
t∈❲a,d❳

Ut → lim−→
t∈❲a,d❳

Wt → 0 .

In particular, if Vt ↪→ Ut for all t ∈ ❲a, d❳, then

lim−→
t∈❲a,d❳

Vt ↪→ lim−→
t∈❲a,d❳

Ut .

Proof. Since colimits are the categorical definition of direct limits, Vectk is an abelian category and any totally ordered 
set is a filtered category, then the first result is a direct consequence of the characterization of abelian categories (see [21, 
Appendix A.4]; the original result comes from [22]). The second result follows directly, since injections can be defined in 
terms of exact sequences. �
Lemma A.4. Consider a persistence module V with structure maps ρ , indexed by an interval ❲a, b❳, and let d ∈ E such that a < d ≤ b. 
If all structure maps ρsr with s, r ∈ ❲a, d❳ are injective, then

V s ↪→ lim−→
t∈❲a,d❳

Vt .

Proof. Fix s ∈ ❲a, d❳. Let us consider the persistence module C as the constant space V s in ❲s−, d❳ and 0 in ❲a, s−❳. Since all 
structure maps in V are injective, we have C ↪→ V . Then by Lemma A.3,

lim−→
t∈❲s−,d❳

Ct ↪→ lim−→
t∈❲s−,d❳

Vt,

and, by definition,

lim−→
t∈❲s−,d❳

Ct = V s and lim−→
t∈❲s−,d❳

Vt = lim−→
t∈❲a,d❳

Vt,

concluding the proof. �
Lemma A.5. Let J be a filtered category and consider three functors from J to Vectk which we call A, B and C. Further, suppose that 
A( j), B( j) are both subspaces of C( j) for all j ∈J . Then

(a) lim−→ j∈J
(

A( j) ∩ B( j)
)�

(
lim−→ j∈J A( j)

)
∩
(

lim−→ j∈J B( j)
)

, and

(b) lim−→ j∈J
(

A( j) + B( j)
)�

(
lim−→ j∈J A( j)

)
+
(

lim−→ j∈J B( j)
)

.

Proof. First, as Vectk is an abelian category, filtered direct limits are exact (see [21, Appendix A.4]), and so they commute 
with kernels and cokernels. We proceed to prove (a). For each j ∈J , consider the exact sequence

0 A( j) ∩ B( j) A( j) ⊕ B( j) C( j)
ι j � j

where ι j sends v ∈ A( j) ∩ B( j) to (v, −v) ∈ A( j) ⊕ B( j) and � j sends (v, w) ∈ A( j) ⊕ B( j) to v + w ∈ C( j). Since A( j) ∩
B( j) � ker(� j) for all j ∈J , the isomorphism (a) follows from using Lemma A.1. That is,

lim−→
j∈J

(
A( j) ∩ B( j)

)
� lim−→

j∈J
ker

(
A( j) ⊕ B( j) → C( j)

)

� ker

⎛⎝ lim−→
j∈J

A( j) ⊕ lim−→
j∈J

B( j) → lim−→
j∈J

C( j)

⎞⎠�
(

lim−→
j∈J

A( j)

)
∩
(

lim−→
j∈J

B( j)

)
.

Next, we prove (b). For each j ∈J , consider the short exact sequence

0 A( j) ∩ B( j) A( j) ⊕ B( j) A( j) + B( j) 0 .
ι j � j

Since A( j) + B( j) � coker(ι j) for all j ∈J , (b) follows by Lemma A.1 together with part (a). That is,
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lim−→
j∈J

(
A( j) + B( j)

)� lim−→
j∈J

(
coker

(
A( j) ∩ B( j) ↪→ A( j) ⊕ B( j)

))
� coker

(
lim−→
j∈J

(
A( j)

)∩ lim−→
j∈J

(
B( j)

)
↪→ lim−→

j∈J

(
A( j)

)⊕ lim−→
j∈J

(
B( j)

)))
� lim−→

j∈J

(
A( j)

)+ lim−→
j∈J

(
B( j)

)
. �

Appendix B. Technical lemmas and proofs related to persistence bases

Proof of Lemma 3.1. First we prove (a), i.e. Im±
ct(V ) = 〈I±

ct (A)〉 for all t ∈ ❲c,∞❳. We start by showing that the inclusion ⊇
holds. Given α1

it ∈ I+
ct (A) (resp. α1

it ∈ I−
ct (A)), we have that ρst(α

1
is) = α1

it for all s ∈ ❲c, t+❳ (resp. for some s ∈ ❲−∞, c❳). In 
particular, α1

it ∈ Im+
ct(V ) (resp. α1

it ∈ Im−
ct(V )). Since Im±

ct(V ) are well-defined subspaces of Vt , we obtain Im+
ct(V ) ⊇ 〈I+

ct (A)〉
(resp. Im−

ct(V ) ⊇ 〈I−
ct (A)〉).

Let us now show that ⊆ holds. Consider v ∈ Im±
ct . Let any s ∈ ❲c, t+❳ (resp. some s ∈ ❲−∞, c❳) such that there exists 

w ∈ V s with ρst(w) = v . Since At = {α1
it}i∈�(t) is a persistence basis for Vt , there exists a subindex set 
 ⊆ �(t), together 

with coefficients xi ∈ k \ {0} for all i ∈ 
 such that 
∑

i∈
 xiα
1
it = v . Similarly, there exists a subset K ⊆ �(s), together with 

coefficients x′
i ∈ k \ {0} for all i ∈ K such that 

∑
i∈K x′

iα
1
is = w . Altogether, we obtain:

ρst(w) =
∑
i∈K

x′
iρst(α

1
is) =

∑
i∈K∩�(t)

x′
iα

1
it = v =

∑
i∈


xiα
1
it ,

which, by linear independence of At , implies that K ∩ �(t) = 
 and also x′
i = xi for all i ∈ 
. Hence, we have that given 

i ∈ 
 with αi ∼ ❲ai, bi❳, we must have s ∈ ❲ai, bi❳. In particular, since we picked up any s ∈ ❲c, t+❳ (resp. some s ∈ ❲−∞, c❳), 
we have that αi ∈ I+

c (A) (resp. αi ∈ I−
c (A)) for all i ∈ 
. This implies that v ∈ 〈I+

ct (A)〉 (resp. v ∈ 〈I−
ct (A)〉) as claimed.

The proof of (b) is analogous to that of (a), although for completeness we reproduce it here. That is, we are going to show 
that Ker±ct(V ) = 〈K±

ct(A)〉 for all t ∈ ❲−∞, c❳. So, let us show first that the inclusion ⊆ holds. Given α1
it ∈ K+

ct(A) (resp. 
α1

it ∈ K−
ct(A)), we have that ρts(α

1
it) = 0 for all s ∈ ❲c, ∞❳ (resp. for some s ∈ ❲t−, c❳). In particular, α1

it ∈ Ker+ct(V ) (resp. 
α1

it ∈ Ker−ct(V )). As Ker±ct(V ) are subspaces of Vt , we obtain the inclusions Ker+
ct(V ) ⊇ 〈K+

ct(A)〉 and Ker−ct(V ) ⊇ 〈K−
ct(A)〉. 

Finally, the inclusion ⊆ from (b) follows from Lemma 2.7; notice that in the case Ker−
ct(V ) ⊆ 〈K−

ct(A)〉, if c is decorated by 
+ we need to change the decoration to − to apply Lemma 2.7. �
Lemma B.1. Consider a basis W for a vector space W , together with a pair of subsets S, T ⊆W . Then 〈S〉 ∩ 〈T 〉 = 〈S ∩ T 〉.

Proof. The inclusion ⊇ is clear, so we only need to prove ⊆. We use the notation W = {wi}i∈
 , S = {wi}i∈
(S) and T =
{wi}i∈
(T ) , where 
(S) and 
(T ) denote the corresponding subindex sets of 
. Consider a vector v ∈ 〈S〉 ∩ 〈T 〉, then there 
exist coefficients xi ∈ k for all i ∈ 
(S) and x′

i ∈ k for all j ∈ 
(T ) so that v =∑
i∈
(S) xi wi and also v =∑

j∈
(T ) x′
i w j . We 

define xi = 0 for all i ∈ 
 \ 
(S) and also x′
i = 0 for all j ∈ 
 \ 
(T ). Altogether, we obtain 

∑
i∈
(S) xi wi −∑

j∈
(T ) x′
i w j =∑

i∈
(xi − x′
i)wi = 0, and by linear independence of W , we have that xi = x′

i for all i ∈ 
. In particular, xi �= 0 if and only if 
x′

i �= 0, and so if xi �= 0 then i ∈ 
(S) ∩ 
(T ). Therefore v =∑
i∈
(S)∩
(T ) xi wi and v ∈ 〈S ∩ T 〉 as claimed. �

Lemma B.2. Consider a basis W for a vector space W , together with a subset S ⊆W . Then 〈W \ S〉 � W
/〈S〉.

Proof. Define a linear map φ : 〈W \ S〉 → W
/〈S〉 sending w ∈ 〈W \ S〉 to its class w + 〈S〉 ∈ W

/〈S〉. It is clear that φ is 
surjective. On the other hand, dim(〈W \ S〉) = dim(W

/〈S〉) and so φ must be an isomorphism. �
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