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Abstract

Previous research has indicated that many European buildings are vulnerable to moderate-

magnitude earthquakes. For example, during the L´Aquila (Italia, Mw 6.3, 2009) and Lorca

(Spain, Mw 5.9, 2011) earthquakes, many old buildings were severely damaged and some

of them collapsed. In specific, significant damage has been found in several school buildings

after past earthquakes in Europe. This is due to the fact that many of them were constructed

prior to the current seismic codes, thus considering only gravitational loads and with no seis-

mic design whatsoever. Primary schools are even more vulnerable than other typologies

because of their low adult/child ratio. The seismic activity of the Iberian Peninsula is low-

moderate. However, the Algarve and Huelva regions, which are situated in the south-west,

are influenced by large faults which have caused major earthquakes of long-return periods.

The European project PERSISTAH (Projetos de Escolas Resilientes aos SISmos no Terri-

tório do Algarve e de Huelva, in Portuguese) aims to cooperatively evaluate the seismic vul-

nerability of primary schools in the Algarve (Portugal) and Huelva (Spain) regions. The

present work is framed under this project. The objective of this paper is to determine the

most effective retrofitting scheme for a typical primary school building in this area, consider-

ing structural, architectural and constructive parameters. The scheme could be applied to

several buildings of the same typology, decreasing costs and time. An existing reinforced

concrete frame building has been selected for the study. This is one of the most commonly

used typologies for primary schools in this area. A nonlinear static analysis has been carried

out in order to study its seismic behaviour. The performance point of the building has been

obtained through the capacity-demand spectrum method. The preliminary results have con-

firmed the poor seismic behaviour of this building. Specifically, soft-story behaviour has

been identified in the ground floor and short columns have been observed in the upper

floors. Therefore, specific seismic retrofitting solutions have been proposed and evaluated

in order to identify the one that is the most efficient. The combination of reinforcements has

been done considering the structural and architectural impact and constructive parameters.

The calculations have shown that steel X-bracings are the best solution for preventing the
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formation of a soft-storey in the ground floor. Unfortunately, this scheme increases the

deformation in the upper floor columns. The best solution for the upper floors’ short columns

has been the use of steel jackets. The results have also shown that this combination pro-

duces an important reduction of the expected general damage level. The resulting retrofit-

ting scheme can be extrapolated to other buildings with a similar typology.

Introduction

The works described here are concentrated, in particular, in the Spanish province of Huelva.

The seismic activity of the IP is low-moderate. However, the Algarve and Huelva regions,

which are situated in the southwestern IP, are influenced by the contact area between the Eur-

asian and the African tectonic plates. This area is characterised by the presence of large faults,

such as the Azores-Gibraltar faults [1], which produce large earthquakes (Mw�6) of long-

return periods [2] (Fig 1). The San Vicente Cape and Horseshoe faults are also relevant and

caused the most outstanding earthquake that affected the IP. This was the 1755 Lisbon earth-

quake and tsunami (Mw = 8.5) [3], which is the largest documented seismic event that has

affected Europe, killing up to 100,000 people. Another relevant earthquake produced in these

faults was the 1969 earthquake (Mw = 8) [4]. These large earthquakes have long return periods,

which makes the population unaware of the seismic hazard.

It is possible to reduce the seismic risk by improving the prevention studies and emergency

plans. In this sense, it is important to analyse the seismic vulnerability of the buildings given

that a large part of the losses is due to the deficient seismic behaviour of the building structures.

Fig 1. Comparison of response spectrums of EC-8 and NCSE-02 with the response spectrums of historic earthquakes.

https://doi.org/10.1371/journal.pone.0238505.g001
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Therefore, the study of seismic retrofitting techniques, which improves the buildings’ seismic

behaviour, is mandatory [5].

When assessing a community’s vulnerability, the physical damage is not the only important

factor; other indirect effects, such as economic losses, social disorder and lack of resilience of

the population, must also be accounted for.

In this context, schools are especially relevant as they play a key role in our society. Schools

are considered a security reference for children and, therefore, they are a cornerstone for the

creation of resilient communities [6]. In addition, in the event of any natural disaster, schools

must be a refuge for the population. For all of these reasons, in the case of an earthquake,

school buildings must not be severely damaged. Finally, normality is considered to be recov-

ered when schools resume their regular activity. Increasing the safety of primary schools also

has an important impact on society because they are spread across the entire territory, as there

is at least one school in each city or town.

School buildings located in the Huelva region have a high seismic vulnerability due to the

following aspects: their low adult/child ratio and their configuration. The child population

(kids between 3 to 11 years old) are the most vulnerable people in the society. The building´s

configuration is characterized by the presence of several seismic weak points (soft storeys at

ground floors, plan irregularities or short columns). Moreover, these buildings were con-

structed prior to the current seismic resistant codes and their structures were calculated con-

sidering only gravity loads. The buildings designed without considering the seismic action

were seriously damaged in the Lorca earthquake [7]. Likewise, these buildings are simple and

repetitive which allows us to extrapolate the results.

The works described in this paper are framed under the European project PERSISTAH

(Projetos de Escolas Resilientes aos SISmos no Território do Algarve e de Huelva, in Portuguese),

cooperatively developed between Spain and Portugal [8, 9]. The main goal of the project is to

assess the seismic vulnerability of primary schools located in the Algarve (Portugal) and

Huelva (Spain). If there is an earthquake, both regions will be equally affected. The project also

intends to educate children, who are the future of our society, to create resilient communities.

The work’s principal objective is to obtain the most efficient seismic retrofitting solution. In

that sense, there are several paramount aspects which need to be considered. First, it is impor-

tant for the retrofitting scheme to provide a better global seismic behaviour in the structure.

Second, it must be integrated into the building, causing the least possible architectural impact.

Third, the construction process must be as easy and as quick as possible to avoid any hin-

drance to the teaching activities. Finally, the retrofitting scheme needs to be applicable to other

buildings with a similar typology (type and structural system).

For this research, a building has been selected with a typical structural typology, which is

one of the most common in the study area. This is a Reinforced Concrete (RC) frame building

which has been widely used in primary schools. Due to that, the seismic retrofitting results

have a greater impact and it is more easy to extrapolate to other buildings with a similar typol-

ogy. The building information has been extracted from the original project which has been

consulted in several municipal archives. Then, a specific analysis was carried out, in which the

seismic weaknesses of the building have been identified. An analysis of the operation and the

behaviour of the building has also been carried out.

After this first analysis, different reinforcement models using various seismic retrofitting

solutions (steel cross bracings and steel jackets) have been calculated and compared. This

research is focused on obtaining and comparing the capacity curves and the performance

points of different retrofitting solutions. In addition, it is important to note that the study has

been performed in a real building, in contrast with other studies that use only theoretical mod-

els. Because of this, the result of this study can be extrapolated to other buildings with a similar
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typology and a real intervention project could be made in future works. Finally, it must be

highlighted that, compared with previous researches this article try to obtain the most effective

retrofitting scheme considering structural, architectural and constructive parameters.

The school building and the different seismic retrofitting techniques have been analysed by

calculating the limit state of damage according to the EC-08 [10]. In this analysis, the perfor-

mance point has been used to set the level of damage expected. The Significant Damage (SD)

limit state, in which the structure is significantly damaged and it is not economically viable to

repair it, has been used for a comparison.

The rest of this paper is structured as follows. First, the state of art is described: the most rel-

evant studies on the seismic vulnerability of buildings are mentioned. Afterwards, the method-

ology used to determine the seismic vulnerability and to evaluate the different seismic

retrofitting solutions is outlined. Then, the case study building and its seismic weak points are

described in detail. Next, the results of the different seismic retrofitting solutions analysis are

presented. Lastly, the conclusions for this study are summarised.

State of the art

Apart from school buildings, the seismic vulnerability of many other typologies has also been

analysed. In those studies, the systematic evaluation of a large number of buildings in different

cities or countries has been done. For example, several seismic vulnerability and risk research

works have been performed on an urban scale in big cities such as Barcelona [11, 12] or Lisbon

[13]. The seismic behaviour of buildings in Barcelona (Spain) [11, 12] was analysed via the

capacity spectrum. In that case, the seismic vulnerability, the risk, the number of casualties and

the economic losses were evaluated. [13] studied the seismic vulnerability and the risk analysis

of old buildings of a neighbourhood in Lisbon. Three popular Portuguese typologies were ana-

lysed using a pushover analysis, obtaining the capacity curves. After that, the fragility curves of

the models were calculated, estimating the building damage and the economic and life losses

for different earthquake scenarios.

Regarding the studies centred on school buildings, many schools are located in high seis-

micity areas. Due to this, several countries such as Japan [14], Venezuela [15] and Italy [16]

have developed ambitious programmes in order to increase the seismic resilience of schools.

In the case of Venezuela [15], school buildings were analysed and retrofitted. In Venezuela

there are many school buildings in highly hazardous regions, and it is necessary to carry out a

seismic vulnerability analysis. For instance, four school buildings collapsed during the 1997

Cariaco earthquake. In [15], a national programme to evaluate and reduce the seismic risk in

existing schools was described. [17] analysed the public-school buildings in Istanbul using a

probabilistic structural fragility. This analysis is compared with damage ratios calculated for

similar building typologies for the Istanbul building inventory. Other researchers have ana-

lysed the building damage that has been caused by a real earthquake. For example, the Lorca

earthquake in 2011 [18] and the Japan 2011 earthquake [19].

In this research, different seismic codes which present different seismic analyses and retro-

fitting techniques have been used. The ATC-40 [20] presents different seismic retrofitting solu-

tions based on increasing the building strength, reducing the earthquake demand or

increasing the deformation capacity. The FEMA 356 [21] points out the following rehabilita-

tion techniques: local modification of components, removal or lessening of existing irregulari-

ties, global structural stiffening, global structural strengthening, mass reduction, seismic

isolation and supplemental energy dissipation. Finally, the EC-08 part 1 [10] and part 3 [22]

have been used to consult the seismic analysis method and the seismic retrofitting procedure.

Several seismic retrofitting solutions are presented in these documents.
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Many RC frame buildings constructed in southern European countries have been designed

before modern seismic codes existed. These buildings are potentially vulnerable to seismic lat-

eral forces. Therefore, there is a lot of research on seismic rehabilitation techniques which set

out different seismic retrofit systems. [23] evaluated the effectiveness of three different retrofit-

ting solutions (RC jacketing, steel bracing and concrete shear wall). To do so, numerical mod-

els with non-linear static analyses were used. Furthermore, the seismic performance was

compared with the non-linear dynamic analyses results. As a conclusion, the steel bracings

reduced the displacement demand, and increased the global deformation and dissipation

capacities of RC buildings. However, the connections between the brace members and the

structure produced high stress concentrations. In addition, the steel bracings inserted symmet-

rically and along the perimeter of the buildings can increase the torsional stiffness of torsional-

unbalanced structures.

There is a large number of studies about seismic retrofitting techniques applied to theoreti-

cal models and laboratory analysis [24]. However, there are few studies focused on the applica-

tion of these techniques on real buildings. In addition, in this research, architectural

integration and the ease and speed of construction are considered. The seismic retrofitting of

school buildings has been reported in a few studies. In [25], an optimisation technique has

been implemented to obtain the minimum number and the location of seismic retrofitting in

concrete columns required for school buildings. This work concluded that a staggered posi-

tioning of the retrofitted columns is more effective than continuous positioning. In addition,

the location of retrofitting in different areas to each floor contributes to economic benefits.

Steel bracings are one of the most efficient solutions for seismic retrofitting in RC frame

buildings. [26] analysed several seismic retrofitting techniques with different configurations (X

braced, inverted V braced, ZX braced, and Zipper braced) through a static non-linear push-

over analysis. Three-storey and six-storey buildings with different steel bracing configurations

were studied. The research concluded that brace retrofitting enhances the global capacity of

the buildings in terms of strength, deformation and ductility. Moreover, the X and Zipper

bracing systems performed better according to the type and the size of the cross section.

There are many studies on seismic retrofitting with steel jackets [27, 28] and steel braces

[29–33]. Several of these research works analyse the brittle failure connection between the

brace and the building, which is this system’s main weakness. Others have analysed the materi-

ality of the braces because conventional steel braces have a buckling failure in some cases. For

instance, in [34] the non-compression carbon fibre X-bracing system was analysed. They con-

cluded that this system increases the strength and it has no buckling failure, but this system

must be improved, especially in connection with the original structure. In this research, con-

ventional steel X-bracings have been used because of their low cost and easy construction.

In [35], the following factors have been analysed: (i) the behaviour of RC columns before

and after retrofitting with steel X-bracing, (ii) the possible complications, the increase in

demand and the side effects of the latter retrofitting method. The study concludes that in high-

rise frame buildings (in high-rise buildings, for frames located near the top), this retrofitting

system has adverse effects on those columns that are attached to the bracing elements. As a

general conclusion, retrofitting low-rise RC frames with steel X bracing is beneficial to the per-

formance of columns in almost every aspect.

Several studies applied seismic retrofitting to a real model. In the paper [36], a number of

seismic retrofitting systems (steel eccentric braces, steel buckling retrained braces and steel

shear panel) were tested statically and dynamically. The analysis was performed in a real RC

building located in Bagnoli (Naples, Italy). The results showed the effectiveness of the metal

systems analysed in order to improve the strength, stiffness and ductility of the RC structure’s

original capacity.
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Among the majority of research related to steel bracing, this retrofitting system shows

important positive effects, which increase shear capacity, reduce displacements and decrease

drifts.

The analysis of seismic vulnerability in urban spaces is a very critical line of research for

society because it helps to create resilient communities. There are many studies concerning

the seismic behaviour of a large number of buildings, i.e., in cities, neighbourhoods, etc.

Among the most relevant to the present work are the aforementioned studies in the cities of

Barcelona and Lisbon. Although most of the research has been carried out in residential build-

ings, there are also studies that specifically target school buildings, in particular the cases of

Venezuela and Istanbul, cities which were mentioned earlier and are worth noting. For all the

reasons discussed earlier, school buildings are the most vulnerable and, therefore, seismic anal-

ysis in school buildings should be carried out more accurately and more extensively.

In these research studies, the most common method for the analysis of the seismic vulnera-

bility of buildings is the capacity-spectrum method and nonlinear static analysis. Pushover

analysis has been selected since it is the most appropriate considering the main goal of the

research and the building school scale [37]. A dynamic analysis would be more accurate but

would also require more time, greater computational effort and data than the static

procedures.

The majority of these studies mainly performed experimental analyses. The different seis-

mic retrofitting systems were analysed in theoretical or laboratory models. There is a lack of

studies which analyse the seismic retrofit behaviour in real buildings. There are several studies

about the effectiveness of the X-bracing or steel jacket retrofitting systems in theoretical mod-

els or residential buildings, but these retrofitting systems are not applied to school buildings.

In the present work, two different retrofitting techniques (steel jacket and steel X-bracing)

have been used. Several retrofitting schemes have been assessed and compared by means of the

pushover analysis of a real case study building. The analysis of results in terms of capacity and

probability of damage enabled obtaining important conclusions about the impact of these ret-

rofitting schemes in the building’s seismic behaviour.

Methodology

In this section, the different methodology steps proposed in this paper are presented. First, the

different steps in the seismic vulnerability analysis proposed (building information, structural

model, analysis pushover, etc.) are explained. Then, the constructive and structural character-

istics and the case study building´s configuration are presented. Next, the seismic weak points

present in the structure are set out. Finally, the results of the seismic retrofitting techniques are

discussed.

Methodology overview

Firstly, the data of the primary school building (blueprints and characteristics) are obtained

from Local Archives. The structural system (slab type, storey height, span length, etc.), con-

structive characteristics and project configuration are retrieved from the original project. A

database has been created with the building information needed in the analysis (general

dimensions, structural and constructive characteristics, etc.). The general geometry of the

structure is then reflected in a 3D stick model, including the existing building elements (col-

umn, beam, joint, waffle slabs, etc.).

Secondly, the 3D model is imported into SAP2000 v.20 commercial software [38], where

the different structural elements (columns, beams, slabs and joint) are accurately defined,

including element sections and material models. The waffle slabs have been modelled as finite
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element shells which have been defined with the bidirectional slab characteristics. The frames’

elements (beams and columns) are modelled as a linear element which has elastic and nonlin-

ear properties. These elements are defined with a section which has dimensions, materials and

steel rebar characteristics. The nonlinear behaviour of RC elements has been simulated by add-

ing plastic hinges as in [39]. The hinges have been defined according to ASCE-41-13 [40] fail-

ure criteria. Regarding their location, the hinges have been added at the ends of both beams

and columns (5% and 95% of the total element length), as recommended in the EC-8. M3 type

plastic hinges have been selected for beams in order to consider bending. In the case of col-

umns, PM2M3 type plastic hinges have been selected to take into account the axial force and

biaxial moment.

The selection of an appropriate load distribution is an important factor in static pushover

analysis [37]. According to EC-8 [22], two load patterns have been considered in this analysis.

The first is proportional to the mass and height of the slab at each storey and it is introduced as

a linear distribution with an inverted triangle. The second is proportional to the displacement

of each storey in the predominant elastic mode of vibration. For this type of buildings, both

load patterns yield fairly similar results [37]. The control node needs to be situated in the cen-

tre of the mass in the top floor of the building.

The infills are included in the model due to their potential (negative or positive) effect on

the seismic performance of the building [41], both in terms of seismic demand and capacity,

especially given their layout’s lack of symmetry. Moreover, the presence of partial infills in

height in the main façade of some of the buildings studied could cause short-column effects

(Fig 4C). The infills have been put into the model in accordance with [42]: with two crossed

diagonal braces which work only in compression, induced by lateral loads.

In this study, the seismic performance of the building is defined by its Performance Point

(PP), which is the point in the shear-force / displacement domain, where the building capacity

meets the seismic demand. The PP is obtained by the capacity-demand spectrum method [43].

In order to perform this method, both building capacity curves and response spectra are

needed. The PP, which represents the maximum response of the structure, has been obtained

by intersecting the response spectrum and the capacity curves, both in spectral coordinates,

according to the N2 methods [44], using the iterative procedure proposed in annex B of the

EC-8 part 1 [10].

The capacity curves graph the relationship between the base shear force and the displace-

ment of a building’s roof. In this research, a nonlinear pushover analysis has been used in

order to obtain these curves, since it is more appropriate for the project’s scale and the paper’s

main goal. In addition, although dynamic analyses are more accurate, they require greater

computational effort, data and time than static procedures [45]. The capacity curves have been

obtained first for the as-built configuration, and later for the retrofitted building, with different

retrofitting schemes. Finally, the capacity curves have been analysed and compared

graphically.

The response spectrum is defined according to EC-8 and the Spanish annex [46]. This is

determined by several parameters: the agr which is the peak ground acceleration on type A

ground, the type of soil and the importance of the building. In that sense, the basic acceleration

for Spain has been selected from the Updated Seismic Hazard Map of Spain 2012 [47]. Then,

in the EC-8 there are five types of soil, whose values affect the response spectrum. The type of

soil is obtained through geotechnical studies, depending on the place where the building is

located.

In the next phase, the seismic safety assessment of both the original structure and the dif-

ferent retrofitted structural schemes is performed. The damage has been evaluated by means

of the PP and considering the different limit states according to the EC-8 part 3 [22]. The
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ratio “performance point” / “limit state displacement” of the structure has been analysed and

compared with the results of the different seismic retrofit systems. According to the EC-8

part 3 [22] there are three limit states: Limit State of Near Collapse (NC), Limit State of Sig-

nificant Damage (SD), and Limit State of Damage Limitation (DL), and also considering the

limit state for operationality (OP), which is presented in the Italian Code NTC 2018 [48] and

will probably be in the future generation of the Eurocodes. The damages suffered by the

building have been identified with the damage limit states. These points are identified on the

capacity curve of the school building as a fuction of the yielding (dy) and the ultimate dis-

placement (du). In this case, the OP, DL, SD and NC are equal to Sd1, Sd2, Sd3 and Sd4 respec-

tively. These damage limit states have been calculated and we have applied the following

functions (1), which correspond to slight (Sd1), moderate (Sd2), severe (Sd3) and complete

(Sd4) seismic damage, respectively, the same equations used by [12]. These equations have

been implemented to calculate the damage limit state from the idealised bilinear capacity

curve of the building.

Sd1 ¼ 0; 7dy

Sd2 ¼ dy

Sd3 ¼ dy þ 0; 25ðdy þ duÞ

Sd4 ¼ du

ð1Þ

All of the information related to the building (capacity curves, building’s location, struc-

tural characteristics, etc.) are imported in the specific software, which has been developed in

the PERSISTAH project to evaluate the seismic vulnerability of building´s schools [49]. The

aim is to obtain the different points of damage limit states (Sd1 (OP), Sd2 (DL), Sd3 (SD), Sd4

(NC)) (Fig 2), the PP displacement (dt), fragility curves and the probability percentage of the

damage limit state. The fragility curves have been obtained through the HAZUS software

methodology [50], which is the method implemented in the specific software. The fragility

Fig 2. Specific software. Capacity curve with three limit state displacements according to EC-08.

https://doi.org/10.1371/journal.pone.0238505.g002
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curves are computed for each PP. These curves are defined by a lognormal probability distri-

bution and are constructed according to the spectral displacement. The structural fragility is

the probability of the damage level exceeding a give limit state, for a given ground motion

level. The probability percentages of different limit states have been obtained by means of

the PP spectral displacement and the fragility curves.

The seismic safety is evaluated with the SD (Sd3) limit state. The structure at this level pres-

ents significant damage while still capable of some residual lateral strength and stiffness, i.e. it

can sustain after-shocks of moderate intensity. The repair cost of the structure at this point is

uneconomic. The PP displacement (dt) is compared with the displacement (dSD) correspond-

ing to the SD limit state. If (dt) is lower than (dSD), then the structure is safe. If (dt) is higher

than (dSD), then the structure is unsafe. The condition (dt<dSD) is checked in all seismic retro-

fit systems to confirm that the structure is safe in the event of an earthquake. Finally, the retro-

fitting resistance of each model is compared with its corresponding capacity curves and PPs.

As a result, the improved seismic behaviour is analysed and compared.

The results obtained calculating the structure with a multiple-degree-of-freedom (MDOF)

model are converted to their equivalent single-degree-of-freedom (SDOF) system through the

mass equivalent to SDOF (m�) (2) and the transformation factor (Γ) (3), according to annex B

of the EC-8 part 1 [10].

m� ¼ Smiϕi ¼ SFi ð2Þ

G ¼
m�

Smiϕi
2
¼

SFi

S
Fi2

mi

� � ð3Þ

The limit states of damage are defined considering the idealised elasto-perfectly plastic

force-displacement relationship, according to annex B of the EC-8 part 1 [10]. This is obtained

by implementing the pushover analysis, which has been explained earlier, to obtain the build-

ing’s capacity curve. The capacity of the equivalent non-linear SDOF system is modelled as a

bilinear capacity curve (Fig 3). The yield strength (Fy
�), which represents the ultimate strength

Fig 3. Bilinear capacity curve. SDOF system equivalent.

https://doi.org/10.1371/journal.pone.0238505.g003
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of the idealised system, is equal to the base shear force at the formation of the plastic mecha-

nism. In this sense, the yield displacement of the idealised SDOF system (dy
�) is given by the

equation (9). Where d�m is the displacement and E�m is the deformation energy leading to the

formation of the plastic mechanism (A).

d�y ¼ 2 d�m �
E�m
F�y

 !

ð4Þ

The period of the structure of the equivalent SDOF system is calculated according to the fol-

lowing function (10) which is in accordance with annex B of the EC-8 part 1 [10].

T� ¼ 2p

ffiffiffiffiffiffiffiffiffiffi
m�d�y
F�y

s

ð5Þ

Once this first analysis of the building’s seismic behaviour has been carried out, the most

critical points where the structure shows a weak seismic behaviour are identified. In this case,

the formation of mechanisms in the plastic hinges of some zones of the structure are analysed,

as well as the structure displacement.

The seismic weak points detection is an important step with the aim of having a first

approach to the possible failure points of the structure in case of earthquake. This will help to

choose the seismic retrofitting typology and the priority areas in the structure to insert it. In

the 2011 Lorca earthquake [18], the most damaged buildings had severe failures in these seis-

mic weak points and several non-structural elements. For this reason, a first specific visual

analysis to identify weak element typologies of the structure (short columns, short beams, waf-

fle slabs, soft storeys, etc.) is performed. Then, those element typologies that present a greater

weakness according to the previous analysis are selected for retrofitting. For each of them, the

seismic retrofit scheme has been selected according to the seismic behaviour and seismic weak

points analysis. These retrofitting schemes are included in the model to improve their seismic

behaviour. Finally, the resulting schemes for each retrofit solution are analysed and compared.

At this point, it is assessed that the structure aided by all the different seismic retrofit mod-

els is safe in terms of its damage limit states. The different retrofitting systems are analysed

according to their seismic effectiveness, their degree of architectural integration in the building

and their level of construction simplicity. This methodology can be used in other future stud-

ies. In Fig 4, the process followed in this method has been illustrated graphically.

Case study building

Building description. In the current study, a school building, which is one of the most

common typology in the Huelva region, has been analysed in the present work. The building

is located in Huelva, whose soil type is III according to the Spanish seismic construction code

of building (NCSE-02) and is type C according to the EC-8. Furthermore, the schools are class

importance III according to EC-8 part 1 [10]. In this case, the basic acceleration has been mul-

tiplied with the importance factor γI = 1.3, according to the Spanish annex to the EC-8 [46].

In particular, there are 13 schools that share the exact same blueprints (Table 1). Due to

this, the seismic retrofit proposal could be extrapolated to a wide range of schools with a simi-

lar structural system. Furthermore, it should be taken into account that the 13 schools’ loca-

tions have a different Peak Ground Acceleration (PGA), according to the updated Seismic

Hazard Map of Spain 2012 [47]. For this study, a school located in Huelva city is selected, as it

has the highest PGA: 0.12.
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The case study building is a three-storey RC frame building that has an H-shape floor plan

(Figs 5 and 6). This building was constructed in 1976. The common areas are located on the

ground floor with a central hall and an exterior porch (Fig 5A). The ground floor suspended

slab is a ribbed slab and the other levels are waffle slabs. The classrooms are located in the

outer part of the bays, whereas the corridors, stairs and toilets are situated in the inner part

(Fig 5B).

The ground floor suspended slab is 0.65 m high, whereas the other floors are 3.3 m high.

This is based on a double symmetry design with three parallel strips and a central yard which

is covered with a canopy. The floor, which has a dimension of 45.32 x 21.60 m, is configured

through a module of 0.9 x 0.9 m. This has a central structural joint which divides it into two

Fig 4. Schematic diagram of the methodology used to perform the proposed seismic vulnerability and retrofit analysis.

https://doi.org/10.1371/journal.pone.0238505.g004

PLOS ONE Specific seismic retrofitting of a compact reinforced concrete primary school building in Huelva

PLOS ONE | https://doi.org/10.1371/journal.pone.0238505 September 11, 2020 11 / 31

https://doi.org/10.1371/journal.pone.0238505.g004
https://doi.org/10.1371/journal.pone.0238505


structural blocks of 22.5 x 21.6 m. It has ten spans parallel to the X-direction and three spans

parallel to the Y-direction. In the X and Y directions, the span between columns is 4.5 m and

7.5 m respectively (Fig 7A). In this research only one of the structural blocks (Fig 7B) has been

calculated and analysed since both blocks are exactly symmetrical.

The RC frames characteristics are shown in Table 2. The columns have a rectangular cross-

section with a dimension of 0.30 x 0.45 m in all the storeys. All the beams are 0.30 m wide and

0.30 m deep and the thickness of the waffle slab is 0.30 m. The ribbed floor slab has a thickness

of 0.22 m. The concrete is H-200 and the steel rebar AEH-400. This data has been consulted in

the original project of the school.

The gravitational loads (GL) have been obtained from the school´s data and the Spanish

code CTE [8], the weight of structural and constructive elements (W) is: bidirectional slabs,

thickness<0.30m (4 kN/m2), the ceramic flooring <0.08m (1 kN/m2), the roof of tiles gables

over lightened partitions (3 kN/m2), the internal partitions (1 kN/m2), the ceramic flooring (1

kN/m2), the infills (10 kN/m) and the live load (Q) for public spaces with tables and chairs (3

KN/m2). These have been combined according to the combination GL = W+DL+0.3Q estab-

lished in the seismic code NCSE-02 [51].

Seismic weak points. Firstly, a visual analysis of the building has been carried out. It is

important to acquire a thorough understanding of the floor plan and façade configuration (Fig

5A and 5C). The building has several weak points which are characterised by a poor aseismic

behaviour. The seismic retrofit system should integrate smoothly in the building and it ought

not to affect its use. Also, the façade openings should not be affected negatively by the retrofit

system.

The building is composed of waffle slabs and flat beams, which nowadays is a very common

structural system. This typology has a low ductility value according to the NCSE-02 Spanish

code [51]. Several seismic codes do not recommend these structural elements in seismic areas.

In [52], an analysis regarding buildings with low ductility is carried out. In this research, the

behaviour and the overload stress values in a three-storey building are calculated and evalu-

ated. The waffle slabs show a high probability of severe damage compared to a building

designed in accordance with the current Spanish codes EHE-08 [53] and NCSE-02 [51].

The building has, on the one hand, a ground floor suspended slab and, on the other hand,

horizontal openings in the façade which do not cover the entire column length. Because of

this, there are short columns which have a weak aseismic behaviour. These structural elements

Table 1. School building with the same compact typology in Huelva region (Spain).

School Location PGA (TR = 475)

CEIP Los Llanos Almonte 0.10

CEIP José Romero Macı́as Aroche 0.07

CEIP Las Viñas Bollullos Par del Condado 0.10

CEIP Manuel Pérez Bollullos Par del Condado 0.10

CEIP Divino Salvador Cortegana 0.07

CEIP Fuenteplata Gibraleón 0.10

CEIP José Oliva Huelva 0.12

CEIP Marismas del Odiel Huelva 0.12

CEIP Onuba Huelva 0.12

CEIP Oria Castañeda Lepe 0.12

CEIP Maestro Rojas Nerva 0.07

CEIP José Nogales Valverde del Camino 0.08

CEIP Los Rosales Huelva 0.12

https://doi.org/10.1371/journal.pone.0238505.t001
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receive high shear stress and they may result in double diagonal cracking failure when they

receive lateral loads during an earthquake. Additionally, the ground floor has an elevated per-

centage of isolated columns (Fig 5A). Due to this, the ground floor is less stiff than the upper

floors and, in the case of an earthquake, will suffer more deformation, with early formation of

plastic hinges at the top and bottom of the columns. Furthermore, the floor plan distribution

of these isolated columns is rather irregular, which may cause a strongly asymmetric seismic

behaviour. Due to the presence of the central structural joint, the lateral displacement of the

building during an earthquake may mean that the two structural blocks collide with each

other. This would cause damage in the infill walls and structural elements. In the 2011 Lorca

Fig 5. School´s distribution on the ground floor (a), first-second floors (b) and façade (c).

https://doi.org/10.1371/journal.pone.0238505.g005
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Earthquake [18], many failures were derived from both weak structural elements (short col-

umns and soft floors) and the collapse of different non-structural elements.

Based on the analysis of the weak points of the building, two seismic retrofitting techniques

have been selected to study their effectiveness, (i) Steel X-Bracing, and (ii) Steel Jackets (Fig 8).

The selection of these retrofitting techniques has been selected considering the following

aspects: constructability, architectural impact (both aesthetics and functional), cost and hin-

drance to educational activity.

These retrofitting techniques have been configured in several retrofitting models, as shown

in Figs 9–11. The purpose of the steel bracing solution is to counter the deformation and dis-

placement in ground floor columns. This system requires strengthening and stiffening accord-

ing to the ATC-40 [20] and has been implemented mostly in the X-direction where stresses

Fig 6. Pictures of the school´s typology selected as case study (author’s ownership).

https://doi.org/10.1371/journal.pone.0238505.g006

Fig 7. School´s configuration (dimensions in metres). (a) Dimensions and module configuration (b) 3D model.

https://doi.org/10.1371/journal.pone.0238505.g007
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showed higher values and where a higher number of plastic hinges formed. Steel bracing is

one of the most popular systems of seismic retrofitting in RC frames. The construction of this

method adds less mass to the structure and it can be constructed with less disruption of the

building. In addition, the construction of this method in the building is easy because the col-

umns on the ground floor are isolated and they are accessible for the assembly of the steel

braces.

Steel Jackets have been selected due to the presence of short columns and a system that

enhances deformation capacity according to the ATC-40 [20] has been applied. They are

inserted in the first and second floors to improve the seismic behaviour of short columns. This

seismic retrofit improves the shear capacity and seismic deformation behaviour in these struc-

tural elements. In addition, in the façade, part of the columns’ profile is not bounded by infill

elements (Fig 8). Due to this, this part is accessible for the construction of the steel jacket in the

column. This system covers the exterior area of the structural element with a steel jacket, pro-

viding an easy construction and good architectural integration (Fig 8).

Retrofitting models definition

For the seismic retrofitting proposals of the case study building, and according to the weak

points and the seismic behaviour of the original building of the model, two different options

were analysed under several scenarios: X-Bracing (XB) and Steel-Jacket (SJ) reinforcement

Table 2. Parameters of structural elements.

Parameters Columns Load Beams Tied Beams Tied Beams Bidirectional Slabs

Unidirectional Slab Unidirectional Slab

Dimensions 30x45 cm 30x50 cm 30x30 cm 30x30 cm

Longitudinal rebar 6Ø16mm Top: 4Ø16mm Top: 2Ø16mm Top: 2Ø16mm

Lower: 4Ø16mm Lower: 2Ø16mm Lower: 2Ø16mm

Transversal rebar Ø6/22cm Ø6/25cm Ø6/15cm Ø6/15cm

https://doi.org/10.1371/journal.pone.0238505.t002

Fig 8. Constructive detail of the retrofitting solutions.

https://doi.org/10.1371/journal.pone.0238505.g008
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(Fig 7). These retrofitting techniques have been considered with the aim of improving the

building’s seismic behaviour and the seismic weak points detected. They have been analysed in

different schemes in the school building (Figs 6, 8 and 9), where the retrofitting elements have

been situated with different configurations, varying the position and the number of them.

The Steel L-profile (50�50�3mm) and steel rebar of ø25 mm section have been used in the

X-bracing elements. The steel jacket has been incorporated with a 3 or 5 mm thick steel plate.

The rebar material is steel B400S. Its elastic limit (Fy) is 400 MPa and the modulus of elasticity

(Ec) is 200,000 MPa. The L-profile material is structural steel S275. Its unit weight is 76.98 kN/

m3, the modulus of elasticity (Ec) is 210,000 MPa and the elastic limit (Fy) is 275 MPa.

X-Bracing retrofitting scenarios definition. The name of the different retrofitting mod-

els has been determined according to the different procedure. The retrofitting element is

assigned: X-Bracing (XB) or Steel Jacket (SJ). Then, in case of XB the following value is the X

or Y direction. The end factor is the number of the retrofitting model. In the following figures

(Figs 9 and 10), XB retrofitting schemes have been represented.

Steel-jacket retrofitting scenarios definition. The different SJ retrofitting models have

been named with a number of retrofitting scenarios. In the following figure (Fig 11), SJ retro-

fitting schemes have been represented.

Fig 9. Seismic retrofitting models with X-bracing. X-direction.

https://doi.org/10.1371/journal.pone.0238505.g009
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Architectural integration of seismic retrofitting models

The architectural integration of the seismic retrofitting regards not only the visual impact of

the intervention, but also, and quite importantly, that the seismic retrofit systems do not inter-

fere with the building’s configuration and use. In this light, the X-bracing integration is better

than RC shear walls because isolated columns populate the ground floor (Fig 5A). This seismic

retrofitting does not interfere with the openings of the façade. In addition, this system does not

reduce visibility and illumination in the interior building. Another important factor is the ease

of construction and the reduction of the execution time, because it is very important that the

teaching period is not interrupted. In the X-direction, the installation of X-bracing systems is

quick and easy to perform as they can be fixed to isolated columns (Fig 8).

In the Y-direction, the seismic retrofit with X-bracing has been introduced in the façade

and interior wall spans without openings. In this case, the X-bracings are integrated in the

interior of walls so that the different openings do not interfere.

The seismic retrofitting with a steel jacket has been incorporated into columns in the first

and second floor. In this case, the construction is more complicated but this seismic retrofit-

ting is integrated completely in the building. It is introduced by covering the columns with a

metal sheet (Fig 8).

Fig 10. Seismic retrofitting models with X-bracing. Y-direction.

https://doi.org/10.1371/journal.pone.0238505.g010
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Results and discussion

The most relevant results obtained from all the hypotheses calculated are shown in this section.

First, the calculated main periods of vibration are discussed. Second, an analysis of the structure

deformation and plastic hinges formation in structural elements is presented. Third, the struc-

ture’s capacity is analysed by means of the capacity curves and the PPs of different retrofitting

models. Then, an analysis of structural security against the seismic action by means of damage

limit states is laid out. Finally, an analysis of probability of damage limit states is presented.

Period of vibration

The main period of vibration of the original building was found to be T = 1.022s in X direc-

tion. After the retrofitting (SJ3), this period shifted to T = 0.906s. Regarding the Y direction,

the original period was of T = 0.84s, decreasing down to T = 0.73s after retrofitting (XB-Y 2).

Structure deformation analysis

In the first analysis, the building’s deformation and formation of plastic hinges in some struc-

ture zones have been analysed in the structural elements. The default plastic hinge properties

Fig 11. Seismic retrofitting models with steel jackets.

https://doi.org/10.1371/journal.pone.0238505.g011
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are implemented according to FEMA 356 [21]. The ultimate rotation capacity of structural ele-

ments is defined by different deformation states: Immediate Occupancy (IO), Life Safety (LS)

and Collapse Prevention (CP). They have a plastic hinge deformation capacity of 10%, 60%

and 90%, respectively.

In XB-X 1 (Fig 9), all the spans have been reinforced by steel X-bracing (L-profile and steel

ø25 section), in the X-direction. This model improves the column deformation and the num-

ber of plastic hinges is reduced in the ground floor. Only plastic hinges in the range IO-LS

appear in the ends of columns. Nevertheless, the deformation of first floor columns increases.

The majority of plastic hinges are concentrated in columns of this floor. Furthermore, the

short columns, which have plastic hinges in the residual strength (C-D) range fail by shear

force.

In XB-X 4 and XB-X 8 (Fig 9), the results are similar. In these cases, the majority of the plas-

tic hinges, which are in the C-D range, are concentrated in columns in the first floor. The

short columns also fail by shear force.

In XB-X 3 and XB-X 7 (Fig 9), with a steel L-profile, the majority of the plastic hinges are

concentrated in the ground floor columns in the range C-D (residual strength). In this case,

the two central spans provide a greater improvement in the formation of plastic hinges than

the opposite spans. In the case of X-bracing (ø25 section), the reduction of deformation in

ground floor columns is better than using an L-profile in the previous two models. The façade

columns have plastic hinges in the IO-LS range and the interior columns have plastic hinges in

the C-D range. In this case, the first floor columns have a high number of plastic hinges and

the short columns fail by shear force.

In general, the different seismic retrofit models with steel X-bracing improve the ground

floor column deformation and upgrade the structure’s seismic behaviour. However, the first

floor columns have a larger deformation and they present several plastic hinges in both ends.

The short columns in this floor have a high deformation and develop plastic hinges in both

ends in the range of residual strength. Due to this, it is necessary to introduce steel jackets in

these columns to enhance the seismic behaviour, solving the short column problem.

In the second retrofit model, steel jackets with different thicknesses have been introduced

in the upper floor columns (Fig 11). In SJ 1, the number of plastic hinges in the first floor col-

umns is reduced, in contrast to the second floor short columns which have plastic hinges in

the C-D range.

The analysis shows that in general, the different retrofit models using only steel jackets (SJ4,

SJ5 and SJ6) have similar results. The ground floor and ground floor suspended slab column

deformation is similar to the original RC structure. The majority of plastic hinges, which are in

the C-D range, are concentrated in the ends of ground floor columns. In the SJ 4 (Fig 11) with

different thickness jackets, several short columns in the ground floor suspended slab have

collapsed.

Retrofitting models with steel X-bracing in the Y-direction (Fig 10) improve the perfor-

mance of the structure in general, and in particular, its irregular deformation (rotation). The

XB-Y 3 model (Fig 10) benefits the reduction in deformation of ground floor columns. In con-

trast, the first floor columns present greater deformation and more plastic hinges in the C-D

range (residual strength) at the top and bottom.

In the XB-Y 1 model (Fig 10), the columns in the façade show a greater deformation than

those in the reinforced spans area. The majority of plastic hinges are concentrated in the ends

of ground floor columns. Furthermore, several columns in the façade have developed plastic

hinges at the top, in the range of C-D. The deformation in the façade columns, which have

restricted movement by infill elements, is (0.016–0.114) (0.098m).
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The XB-Y 4 and XB-Y 5 models (Fig 10) reduce the formation of plastic hinges in the col-

umns of all the floors. However, several ground floor columns have a plastic hinge residual

strength range (C-D) at the top. In the case of XB-Y 6 (Fig 10), the majority of plastic hinges

are at the top and bottom in the first floor columns, which have a greater deformation (0.0343

to 0.1039m) (0.0696m). The XB-Y 7 scheme (Fig 10) considerably reduces the formation of

plastic hinges in the different floor columns.

Structure capacity analysis

There is a significant difference in the building’s capacity curves for each direction. The build-

ing presents a higher capacity in the Y-direction, with a base shear of 3325 KN for displace-

ments (0.05285m). In the X-direction, the base shear is 1877 KN for higher displacement

(0.06615m). This could be due to fact that the Y-direction is the direction of the higher inertia

of the columns and the loading direction of the ground floor suspended slab. The structure is

symmetric and, because of that, the retrofit zones have been defined with symmetric configu-

rations so that the seismic structure deformation is regular.

In the X-direction, the columns in the ground floor suffer a greater deformation (13 cm)

than the in the upper floors, which have a deformation of (0.2 cm). Due to this, the greatest

concentration of plastics hinges is at the top and bottom columns of the ground floor in the

range of residual strength (range C-D). Furthermore, several short columns in the ground

floor suspended slab have collapsed. This problem has been resolved with steel X-bracing ret-

rofitting which improves the structure’s seismic behaviour, increasing the strength and stiff-

ness of frames and preventing the formation of soft-stories.

In the X-direction, the structure is unsafe against the seismic action (Table 3). The PP dis-

placement (dt = 0.064m) is greater than the Limit State of Significant Damage (dSD). In this

direction it is necessary to introduce seismic reinforcement so that the structure is safe. The

structure has a high percentage in the limit of damage Sd3 and Sd4 (Fig 12A).

dt ¼ 0:064m dSD ¼ 0:059m dt > dSD

In the Y-direction, some columns in the ground floor present a very large deformation (6.65

cm). The concentration of plastics hinges is at the top and bottom columns of the ground floor in

the range of residual strength (range C-D). The structure has rotated, and due to this, the columns

near the structural joint present a higher deformation. This behaviour can be explained by the fact

that in this area there are no bracing infills, which restrict movement in these columns.

Table 3. Damage limit states displacement and performance points (X-direction). X-bracing (L-steel profile 50�50�3mm).

Damage Limit States displacement (m) Performance Point

Seismic retrofit model Sd1 Sd2 Sd3 Sd4 dt (m) Ft (KN)

Original 0.017 0.025 0.059 0.162 UNSAFE 0.066 1877.78

XB-X 1 0.035 0.051 0.062 0.094 SAFE 0.051 3518.56

XB-X 8 0.038 0.054 0.071 0.123 SAFE 0.059 3265.70

XB-X 7 0.050 0.071 0.090 0.146 SAFE 0.067 2993.35

XB-X 6 0.030 0.042 0.073 0.163 SAFE 0.068 2449.97

XB-X 4 0.038 0.054 0.070 0.119 SAFE 0.060 3295.21

XB-X 3 0.060 0.086 0.107 0.169 SAFE 0.066 2981.00

XB-X 2 0.028 0.040 0.070 0.159 SAFE 0.069 2452.82

XB-X 5 0.048 0.068 0.092 0.162 SAFE 0.063 3008.08

https://doi.org/10.1371/journal.pone.0238505.t003
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In the Y-direction, the structure is safe in the event of an earthquake (Table 6). The PP dis-

placement (dt) is smaller than the Limit State of Significant Damage (dSD). However, the PP is

very close to the limit state dSD. The structure reaches a high probability percentage in the

limit of damage Sd3 and Sd4 (Fig 12B).

dt ¼ 0:053m dSD ¼ 0:055m dt < dSD

Thus, several seismic retrofitting proposals have been studied in order to lower the PP and

the probability percentage in the Sd3 and Sd4 limit of damage.

The results of the different retrofitting models analysed show the effectiveness of the steel-

based reinforcement systems examined in improving the original capacity of the RC structure

in terms of strength and stiffness. Figs 13A, 14A, 15A and 16A illustrate the comparison

among capacity curves and Figs 13B, 14B, 15B and 16B show a comparison of the PPs corre-

sponding to the different seismic retrofitting models tested, also showing an improvement in

the response with respect to the original RC structure.

Fig 13A compares the capacity curves of the different seismic retrofitting with X-bracing

(L-steel profile 50�50�3mm) in the X-direction. In general, the increase in the number of rein-

forced spans increases the building’s capacity. As expected, the strongest capacity has been

obtained with this XB-X 1, XB-X 4 and XB-X 8 retrofitting system, which produces a large

increase of stiffness and strength.

The capacity and PPs (Fig 14A and 14B) are similar in those models that share the same

number of retrofit spans, in opposite or central spans. The XB-X 5 model has a similar shear

force to those other models where only two spans are reinforced (XB-X 3 and XB-X 7),

whereas the PP and displacement is slightly lower. One possible explanation for this is that the

model has a different number of retrofit spans in each façade, thus the model has a worse aseis-

mic behaviour.

In the case of models with X-bracing (steel ø25 section) in the X-direction, Fig 14A illus-

trates that a bigger capacity is obtained with smaller displacements than in the case of X-brac-

ing with (L-steel profile 50�50�3mm) (Fig 13A). When reinforcing all spans, the PP in the first

Fig 12. Fragility curves. (a) X-direction (b) Y-direction.

https://doi.org/10.1371/journal.pone.0238505.g012
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Fig 13. Capacity curves (a) and performance points (b) (X-direction). X-Bracing (L-steel profile 50�50�3mm).

https://doi.org/10.1371/journal.pone.0238505.g013

Fig 14. Capacity curves (a) and performance points (b) (X-direction). X-bracing (steel ø25 section).

https://doi.org/10.1371/journal.pone.0238505.g014
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case is dt = 0.03943 (Fig 14B), which is fairly lower than the displacement in the second case

dt = 0.05073 (Fig 13B).

Fig 15A displays the capacity curves of different retrofitting models with X-bracing and

steel jackets in the X-direction. As expected, the biggest capacity has been obtained in retrofit

systems with steel X-bracing on the ground floor (SJ 1, SJ 2 and SJ 3), which produce a large

increase of capacity. Little variation in the capacity has been observed in the retrofitting models

which only use steel jackets, even after testing several thicknesses and configurations (SJ 4, SJ 5

and SJ 3). The capacity of the SJ 5 5mm model is the highest of all the retrofitting models with

steel jackets. It is relevant to emphasise that both the model where all the first floor columns

are reinforced and the one where all the columns in the first and second floors are reinforced

present the same capacity (SJ 1 and SJ 2). However, reinforcement should be introduced in

any case in the first and second floors because both are affected by short column problems

which need to be addressed.

Fig 16A depicts the capacity curves of retrofit models with X-bracing (steel ø25 section) in

the Y-direction. In this direction the building presents a higher capacity than in the opposite

direction since it is the direction of higher inertia of the columns. In general, all the retrofit

models improve the capacity of the structure. The XB-Y 5 model has a higher capacity than the

XB-Y 6 model given the same displacement (Fig 16A), despite having the same number of

reinforced spans. However, the XB-Y 6 scheme has a greater irregularity in the distribution of

Fig 15. Capacity curves (a) and performance points (b) (X-direction). X-Bracing + Steel Jacket.

https://doi.org/10.1371/journal.pone.0238505.g015
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the retrofitting spans than XB-Y 5. The XB-Y 2 model has the greatest capacity and PP (Fig

16B). Several models (XB-Y 5, XB-Y 6 and XB-Y 7) present the same displacement with vary-

ing shear force at the PP. In general, all the retrofitting models improve the PP which increases

the shear force with smaller displacements (Fig 16B).

Damage limit states displacement and structure security

Tables 3–6 show the displacements of the different damage limit states and the PPs of the origi-

nal RC structure and the seismic retrofitting models. The results in Tables 3 and 4 show that in

Fig 16. Capacity curves (a) and performance points (b) (Y-direction). X-bracing (steel ø25 section).

https://doi.org/10.1371/journal.pone.0238505.g016

Table 4. Damage limit states displacement and performance points (X-direction). X-bracing (steel ø25 section).

Damage Limit States displacement (m) Performance Point

Seismic retrofit model Sd1 Sd2 Sd3 Sd4 dt (m) Ft (KN)

Original 0.017 0.025 0.059 0.162 UNSAFE 0.066 1877.78

XB-X 1 0.028 0.040 0.049 0.076 SAFE 0.039 3727.89

XB-X 8 0.034 0.048 0.065 0.116 SAFE 0.050 3632.93

XB-X 7 0.042 0.060 0.074 0.115 SAFE 0.058 3429.21

XB-X 6 0.060 0.085 0.109 0.179 SAFE 0.068 2866.49

XB-X 4 0.034 0.049 0.058 0.087 SAFE 0.050 3623.41

XB-X 3 0.042 0.060 0.073 0.112 SAFE 0.059 3433.18

XB-X 2 0.052 0.075 0.098 0.165 SAFE 0.067 2883.67

XB-X 5 0.036 0.052 0.060 0.085 SAFE 0.052 3557.05

https://doi.org/10.1371/journal.pone.0238505.t004
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general the seismic retrofit models with steel X-bracing improve the seismic behaviour of the

structure in the X-direction. In this case, the structure is safe in all the retrofitting models. The

displacements are shorter and the base shear is greater in those models with a steel ø25 section

(Table 4) than X-bracing with a steel L-profile (Table 3).

In the case of the seismic retrofitting models with X-bracing + Steel Jackets (Table 5), the

models with steel X-bracing in the ground floor produce the largest increase in base shear with

the smallest top displacement. There is little improvement in the PP in those retrofitting mod-

els which only use steel jackets. The PP displacements (dt) with these reinforcement models is

near to or surpasses the limit state displacement (Sd3). Specifically, the structure is unsafe in SJ

4 of 3 and 5 mm models.

The seismic retrofit models with steel X-bracing in the Y-direction (Table 6) improve the

seismic behaviour of the structure in all the schemes. In this case the structure is safe in all the

retrofitting models.

Probability percentage of different damage limit states

Figs 17–19 show the comparison of probability percentage of the damage limit state of the dif-

ferent seismic retrofitting models. Also, they show the improvement of probability with respect

to the original RC structure.

In the case of X-bracing (steel L-profile 50�50�3mm and ø25 section) in the X-Direction,

Fig 17A and 17B, all the models improve the probability of damage of the original RC

Table 5. Damage limit states displacement and performance points (X-direction). X-bracing + Steel Jacket.

Damage Limit States displacement (m) Performance Point

Seismic retrofit model Sd1 Sd2 Sd3 Sd4 dt (m) Ft (KN)

Original 0.017 0.025 0.059 0.162 UNSAFE 0.066 1877.77

SJ 1 3mm 0.074 0.106 0.123 0.173 SAFE 0.052 3630.53

SJ 1 5mm 0.074 0.106 0.121 0.167 SAFE 0.052 3630.53

SJ 2 3mm 0.062 0.089 0.102 0.140 SAFE 0.052 3614.17

SJ 2 5mm 0.072 0.104 0.114 0.147 SAFE 0.050 3699,32

SJ 3 5mm 0.060 0.086 0.106 0.166 SAFE 0.052 3614.17

SJ 4 3mm 0.021 0.030 0.063 0.164 UNSAFE 0.065 2274.09

SJ 4 5mm 0.025 0.035 0.067 0.163 UNSAFE 0.069 2492.48

SJ 5 3mm 0.024 0.034 0.068 0.169 SAFE 0.062 2618.56

SJ 5 5mm 0.029 0.042 0.075 0.175 SAFE 0.062 3074.00

SJ 6 3mm 0.024 0.034 0.068 0.169 SAFE 0.062 2618.56

https://doi.org/10.1371/journal.pone.0238505.t005

Table 6. Damage limit states displacement and performance points (Y-direction). X-bracing (steel ø25 section).

Damage Limit States displacement (m) Performance Point

Seismic retrofit model Sd1 Sd2 Sd3 Sd4 dt (m) Ft (KN)

Original 0.031 0.044 0.053 0.080 SAFE 0.053 3325.10

XB-Y 1 0.034 0.048 0.064 0.113 SAFE 0.048 3684.43

XB-Y 2 0.037 0.054 0.068 0.113 SAFE 0.044 3878.17

XB-Y 3 0.038 0.054 0.067 0.105 SAFE 0.045 3550.20

XB-Y 4 0.043 0.061 0.073 0.107 SAFE 0.047 3772.23

XB-Y 5 0.040 0.058 0.073 0.117 SAFE 0.045 3827.55

XB-Y 6 0.034 0.049 0.065 0.113 SAFE 0.045 3649.26

XB-Y 7 0.035 0.051 0.057 0.074 SAFE 0.045 3774.33

https://doi.org/10.1371/journal.pone.0238505.t006
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structure. In general, the higher percentages have been obtained in the damage limit state Sd2

(Damage Limitation (DL)) which is approximately 40%. In this damage limit state, the struc-

ture is only lightly damaged, according to EC-08 part 3 [22]. The structural elements prevent

significant yielding and retain their strength and stiffness properties. The XB-X 2 solution with

a steel L-profile (50�50�3mm) does not cause significant changes in the probability of damage

regarding the original RC structure. The larger percentage is in Sd3 (40%) and the percentage

in Sd4 is also high (35% approximately).

In the case of X-bracing + steel jacket in X-Direction (Fig 18), those seismic retrofitting

models with only steel jackets do not improve the probability of damage significantly with

respect to the original RC structure. In these models, the percentage in Sd4 has been reduced

and the percentage in Sd2 and Sd3 has been increased slightly. The percentages of the damage

limit states Sd3 and Sd4 are very high in general. In the models with X-bracing in the ground

Fig 17. Damage limit states percentage X-bracing in the X-direction. L-steel profile 50�50�3mm (a) and steel ø25 section (b).

https://doi.org/10.1371/journal.pone.0238505.g017

Fig 18. Damage limit states percentage in the X-direction. X-bracing + Steel Jacket.

https://doi.org/10.1371/journal.pone.0238505.g018
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floor and steel jackets in the upper floor, the probability of damage in the structure has been

improved significantly. The highest percentage is in Sd1 (85%).

In the case of X-bracing (steel ø25 section) in the Y-Direction (Fig 19), all the models

increase the probability percentage in the damage limit states Sd1 and Sd2. The highest percent-

ages have been obtained in Sd2 (Damage Limitation (DL)), which is approximately 40%. There-

fore, the probability percentage of the damage limit states Sd3 and Sd4 has been reduced by

approximately 5–10%.

Conclusions

This RC compact school typology is one of the most common typologies of school buildings in

Huelva. This typology is vulnerable, and it is unsafe in a seismic event. Therefore, a seismic ret-

rofitting solution is necessary to reduce its vulnerability. A retrofit system with steel X-bracing

and steel jackets has been selected, upon thorough analysis, from a range of models. This seis-

mic retrofitting solution improves the seismic behaviour and reinforces the seismic weak

points detected in this structure.

The analysis of the results shows that the seismic reinforcement of the structure is necessary

to guarantee the security of the school in the case of an earthquake. It has also been demon-

strated that without retrofitting, the structure is unsafe under seismic loads in the X-direction.

In the Y-direction, the PP displacement is near the damage limit state Sd3, therefore the struc-

ture can suffer much damage during an earthquake. In this case, the analysis has demonstrated

that the structure could be safe provided that the seismic retrofitting proposed is applied.

The results have shown that the steel X-bracing models produce the greatest improvements

in the structure’s seismic behaviour. The X-bracing solution in the X-direction improves the

seismic behaviour of the ground floor columns, which present a greater deformation in the

original RC structure. This retrofitting intervention increases the strength and stiffness of the

frames and prevents the formation of soft-storey effects in the ground floor. The X-bracing

model with a steel ø25 section conveys a greater reduction in displacements in comparison

with the steel L-profile 50�50�3mm model.

Fig 19. Damage limit states percentage in the Y-direction. X-bracing (steel ø25 section).

https://doi.org/10.1371/journal.pone.0238505.g019
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The analysis has shown that steel jacketing in the upper floors in the X-direction is neces-

sary to solve the short column problem, which is a seismic weak point. Furthermore, the defor-

mation in the first floor columns increases when steel X-bracing is introduced in the ground

floor. In this case, the majority of the plastic hinges are concentrated in the first floor columns

in the residual strength range.

In general, the capacity and the seismic damage probability are considerably improved in

all the seismic retrofit models. The highest percentages have been obtained in Sd2 which corre-

spond to DL (Damage Limitation).

The most efficient retrofitting model is XB-X 2 and XB-X 3 because it enhances the struc-

ture’s seismic behaviour and it does not interfere with the functioning of school buildings. Fur-

thermore, the probability that the building is in the damage limit state of Damage Limitation

(DL) Sd2 increases up to the maximum percentage (38%, approximately). The retrofitting dis-

tribution (opposite or central zones) does not affect the increase in capacity, since different ret-

rofit models share very similar results. The seismic capacity of the structure increases

according to the number of reinforced spans in each façade.

The capacity of the structure increases slightly in the retrofitting models with steel jackets of

different thicknesses. Several of them present high percentages in the damage limit state Sd3 in

which the structure is unsafe against seismic actions. However, the retrofitting schemes with

X-bracing in the ground floor and steel jacket in the upper floor produce a remarkable

improvement and the high percentages are in Sd1 (90%, approximately).

The seismic retrofitting with steel jackets in the second floor columns does not improve the

capacity of the structure. However, the seismic retrofit is introduced in all columns of both

floors to solve the problem of short columns. Although the upper floors are reinforced with

steel jackets, the ground floor must also be reinforced with steel X-bracing so that the structure

improves its seismic behaviour and capacity.

As a result, it has been demonstrated that selecting the weak seismic points where adding

the seismic retrofitting elements is more effective than obtaining a profitable improvement in

the structure. In that sense, the most effective solutions have been proved to be the retrofitting

scheme SJ3 with two or three reinforced spans in the ground floor by means of X-bracing in

the X-direction, which is the most vulnerable in the building. These retrofitting proposals do

not interfere in the use of the building and they considerably enhance the seismic performance

of the original structure.

In future studies, the ease of construction of this seismic retrofitting model will be analysed.

A quick and easy construction technique will be developed. The construction will be subse-

quently extrapolated to 13 school buildings with the same typology in the zone.
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