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Resumen
El objeto de estudio de este trabajo es la ecuación de Schrödinger independiente

del tiempo que surge de considerar un potencial tipo Rosen-Morse. Dividimos este
trabajo en tres capítulos. En el primero, realizamos una breve introducción a la
mecánica cuántica no relativista que justifica la necesidad de resolver esta ecuación
para caracterizar un sistema dinámico. En el segundo capítulo, introducimos las
distintas técnicas y resultados que nos permitirán tratar la ecuación de Schrödin-
ger. En concreto, se estudia la reducción a ecuaciones hipergeométricas a través del
método de Nikiforov-Uvarov y la obtención de soluciones con distintas propiedades
(de cuadrado integrable o acotadas) haciendo uso de los polinomios ortogonales clási-
cos y las funciones hipergeométricas. Por último, en el tercer capítulo, se resuelve
la ecuación de Schrödinger con el potencial tipo Rosen-Morse y se explora su apli-
cación en el estudio de la estabilidad de ondas solitarias procedentes de ecuaciones
de Klein-Gordon no lineales.

Abstract
In this work, we study the time-independent Schrödinger equation that arises from

considering a Rosen-Morse potential. We divide this work into three chapters. In
the first one, we give a brief introduction to non-relativistic quantum mechanics
that justifies the need to solve this equation to characterize a dynamical system.
In the second chapter, we introduce the different techniques and results that will
allow us to treat the Schrödinger equation. In particular, we study the reduction to
hypergeometric equations through the Nikiforov-Uvarov method and the obtaining
of solutions with different properties (square-integrability or boundedness) using
classical orthogonal polynomials and hypergeometric functions. Finally, in the third
chapter, the Schrödinger equation with the Rosen-Morse potential is solved and its
application to the study of the stability of solitary waves in nonlinear Klein-Gordon
equations is explored.
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Chapter 1

An introduction to non-relativistic quantum
mechanics

1.1 A brief historical note

Experimental and phenomenological origins of quantum mechanics is vast. Usually,
its seed is located in 1900 when German physicist Max Planck, in an attempt to ex-
plain blackbody radiation distribution, reluctantly introduced the idea that energy
in the electromagnetic field at a given frequency ω could only come in integer mul-
tiples of a basic unit equal to1 ℏω, or rather, that matter, understood as oscillators,
could only absorb or emit that energy in that particular way.

Surely enough, Austrian physicist Ludwig Boltzmann had already suggested in 1877
that the energy levels of certain physical systems could be discrete, yet, it was Planck
who effectively made use of quantization in order to derive a formula for the observed
frequency dependence of the energy emitted by a blackbody and, subsequently, gave
birth to the first quantum theory.

Later on, in 1905, German physicist Albert Einstein hypothesized that not only
material oscillators emit and absorb energy in a quantized way but also that light
itself can be divided into a finite number of energy quanta (photons) with frequency
dependent energy. Therefore, Einstein establishes a wave-particle duality of light.

In this way, he was able to explain the photoelectric effect by which electromagnetic
radiation striking a metal causes electrons to be emitted. Experimentally, it can be
found that as one increases the intensity of the incident light, the number of electrons
emitted increases, but the energy of each individual electron does not change. From
the perspective of the wave theory of light, this result is impossible to explain since
an increase of light intensity implies an increase of light energy and, thus, an increase
of energy transferred to the electrons.

On the contrary, if one were to suppose that light is actually a stream of particles
with fixed frequency ω, then, increasing the intensity simply augments the number
of photons and does not affect their energy. Therefore, only the number of electrons
emitted are increased but not their energies as observed experimentally.

1Here, ℏ is the Planck constant.

1



2 Chapter 1. An introduction to non-relativistic quantum mechanics

Another important step towards non-relativistic quantum mechanics was taken in
1913 by Danish physicist Niels Bohr by explaining the spectral lines of the hydrogen
atom, again by using quantization. Bohr pictured the hydrogen atom as consisting of
an electron orbiting a positively charged nucleus obeying classical mechanics, except
that its angular momentum is quantized. That is, from all the possible orbits, they
are only accessible those in which its angular momentum is an integer multiple of ℏ.

Thanks to his approach, he was able to explain the Rydberg formula for the spectral
emission lines of atomic hydrogen by using the transitions of electrons between
orbits. However, Bohr did not explain why the angular momentum of an electron is
quantized.

It was French physicist Louis de Broglie who, in 1924, reinterpreted Bohr’s condi-
tion on the angular momentum as a wave condition. He hypothesized that, since
corpuscular theory had been overly neglected during centuries in optics, the same
could also be happening concerning wave theory and matter. Thus, he proposed
that just as light has both wave-like and particle-like properties, electrons also have
wave-like properties.

De Broglie’s hypothesis is that an electron can be described by a wave where its
spatial frequency, k, is related to the momentum of the electron by the relation
p = ℏk. Through this approach, a wave is superimposed on the classical trajectory
of the electron, where quantization emerges from the fact that wave should match up
with itself when going around the orbit and, by imposing this condition, de Broglie
obtained back Bohr’s results.

The first attempt to develop a formulation of quantum mechanics was due to Ger-
man physicist Werner Heisenberg. In 1925, he, alongside German physicists Max
Born and Pascual Jordan, proposed a matrix model based on treating the position
and momentum of particles as, essentially, matrices of infinite dimension.

In order to reach such conclusion, convinced that an adequate physical theory should
be enunciated solely in terms of physical quantities and by observing that frequen-
cies of the spectral lines of atomic hydrogen, ωnm, depended on two subscripts2,
Heisenberg theorized that every physical quantity should also follow that depen-
dence. After Heisenberg explained his theory to Born, he recognized its connection
to matrix theory and made it explicit.

At that time, matrix theory was not common knowledge amongst physicists and
Heisenberg’s matrix theory was not well received. In response, Austrian physicist
Erwin Schrödinger proposed a wave theory of quantum mechanics in 1926. After
inspecting de Broglie’s work on wave-particle duality of electrons, he decided to
associate a wave to each particle and find the differential equation governing its law
in a non-relativistic regime: the Schrödinger equation.

2Experimentally (and through Bohr’s analysis), it had been found that wavelength, λnm, for
emitted radiation of atomic hydrogen followed the law

1

λnm
= RH

(
1

n2
− 1

m2

)
.



1.2. Postulates of quantum mechanics 3

In this way, Schrödinger was able to describe how the waves evolve over time and
showed that the energy levels of the hydrogen atom could be understood as eigen-
values of a certain operator.

Although Schrödinger gave the correct mathematical description of quantum me-
chanics, he did not provide a widely accepted interpretation of the theory. That task
fell to Born, who in 1926 proposed that the wave function or, rather, its squared
modulus should be interpreted statistically, that is, as determining the probabilities
for observations of certain physical quantities of a system.

In this way, sponsored by Schrödinger’s wave formulation and Born’s statistical
interpretation of quantum mechanics, we shall begin our report by introducing the
mathematical framework of quantum mechanics through, mainly, a series of postu-
lates or axioms that can be partially traced back to the Dirac-Von Neumann axioms
presented in 1930-1932 and have been proved to actually describe reality in a certain
way.

Before proceeding any further, we mention that a more detailed historic revision
can be found in Chap. 2 of reference [1] and Chap. 1 of reference [6].

1.2 Postulates of quantum mechanics

As a summary, we present the two fundamental ingredients that constitute the
quantum theory.

The first ingredient comes from De Broglie’s hypothesis regarding wave-particle
duality. That is, to each physical system (say, a collection of particles), we shall
assign a wave function, Ψ(x, t), where x ∈ Ω ⊂ Rn represents the possible values of
the position of the particles and the time, t ∈ R+, plays a parametric role, whose
time evolution is determined by the time-dependent Schrödinger equation3.

The second ingredient is its probabilistic behaviour. Quantum theory states that
to predict ahead of time the result of an experiment is impossible in the sense that
nature itself deals in randomness. That is the reason the best we can do is to
determine the probabilities for the outcome of the experiment.

These probabilities are encoded in the wave function in such a way that the func-
tion |Ψ(x, t)|2 is experimentally consistent with considering it to be the probability
density for the position of the particle4 at a fixed time t. In this way, given E ⊂ Ω∫

E
|Ψ(x, t)|2 dx

represents the probability that the position of the particle belongs to E at a time t.
So that this interpretation makes sense, it should happen that∫

Ω

|Ψ(x, t)|2 dx <∞

3We shall see that this is not entirely true if measurement is involved.
4From now on and for the sake of simplicity, we simplify our physical system to a single particle

of mass m without spin and make n = 1 as this shall be the case we will be dealing with throughout
our report.
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in such a way that |Ψ(x, t)|2 is normalizable ∀t ∈ R+. Therefore, the space of square-
integrable functions naturally arises as the working space (in the case of a quantum
particle), which we shall denote as L2(Ω) or, simply, L2.

However, at this point, L2 has merely emerged as a set of functions to which any
wave function will belong but not as a Hilbert space. The fact remains that, as we
shall see later on, this property will be vital in order to introduce the postulates
of quantum mechanics. Thus, for the sake of simplicity, we shall start considering
L2 as a separable Hilbert complex space from now on. Therefore, we present the
following definition.

Definition 1.2.1. We shall denote L2(Ω) or, simply, L2 to the space of square-
integrable complex functions in Ω, i.e,

L2(Ω) =

{
f : Ω → C

∣∣∣ ∫
Ω

|f(x)|2 dx <∞
}
.

Moreover, (L2(Ω), (·|·)) constitutes a separable Hilbert space with inner product given
by

(f |g) =
∫
Ω

f(x)g(x)dx, ∀f, g ∈ L2

where g(x) denotes the complex conjugate of g(x) and, of course, whenever we refer
to a specific function, we are actually referring to its equivalence class under the
“equal almost everywhere” relation.

On the other hand, by concreteness, we may specify the normalization of a wave
function to unity. This means that given two wave functions, Ψ1(x, t) and Ψ2(x, t),
satisfying that Ψ1(x, t) = λΨ2(x, t) for a certain λ ∈ C, they shall be considered as
representing the same physical state, that is, we shall check that both wave functions
will provide us the same prediction, since we will normalize them both to unity in a
certain way. Regarding the concept of physical state, the next definition follows.

Definition 1.2.2. To each wave function, Ψ ∈ L2, we shall associate a class of
equivalence under the relation ∼ on L2 given by

Ψ1 ∼ Ψ2 ⇐⇒ Ψ1 = λΨ2

for some complex number λ. In this way, its class of equivalence constitutes the
vector state, quantum state or, simply, state of the system since knowledge of any of
the wave functions on the class of equivalence exhaust all that can be predicted about
the system’s behaviour.

From now on and for the sake of simplicity, whenever we speak of a certain wave
function Ψ ∈ L2, we shall consider that we are referring to the vector state it
represents. At the same time, we shall denote a vector space by any of its wave
functions. Because of this, we shall generally assume Ψ is an unit vector.

At this point, we are in a proper condition to introduce the first postulate which,
somehow, summarizes all of the above.
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Postulate I. At a fixed time t ∈ R+, a quantum system is completely characterized
by a vector state5 , Ψ(x, t) = Ψ ∈ Φ ⊂ L2(Ω), where Φ denotes the state space. In
particular, for the case of a particle, |Ψ(x, t)|2 represents the probability density of
its position.

It can be noted that we have introduced the concept of state space, Φ ⊂ L2(Ω). As
we have previously seen, Ψ must belong to L2(Ω). Nevertheless, not every square-
integrable function constitutes an actual possible wave function with a physical
significance.

We shall see that Ψ must satisfy a dynamical equation of second order in space
and first order in time: the Schrödinger equation; making natural to impose that6

Ψ(x, t) ∈ C2(Ω) for a fixed t. Moreover, we shall discuss certain inconveniences
regarding observability, which shall be properly introduced later on, of certain op-
erators and their domains of definition.

Moreover, we are interested in the interactions of waves functions so that wave-
related phenomena such as interference or diffraction, which are empirically ob-
served, can be studied. In addition, a bit more complex mathematical structure
associated to the state space, Φ, shall allow us to consider its dual space and intro-
duce the so-called braket notation. This is the reason why the following fundamental
postulate is introduced.

Postulate II. At a fixed time t ∈ R+, Φ is a linear subspace of L2(Ω). That is,
given two wave functions Ψ1, Ψ2 ∈ Φ, then7,

Ψ = c1Ψ1 + c2Ψ2, c1,2 ∈ C, |c1|2 + |c2|1 ̸= 0,

constitutes another wave function representing a quantum state.

This allows us to consider the state space, Φ, not only as a linear subspace but
also as an inner product space since it can inherit inner product (·|·) introduced
in Definition (1.2.1). In particular, this shall imply that the dynamic equation
governing the time evolution of a given vector state, Ψ(x, t), must be linear as we
shall verify later on.

Remark 1.2.3. In quantum mechanics, physicists almost invariably use the Dirac
or braket notation introduced by Dirac in 1939. To begin with, a vector state Ψ1 ∈
Φ ⊂ L2(Ω) is often referred to as a ket and is denoted |Ψ1⟩. In this way, given
any other vector state Ψ2 ∈ Φ ⊂ L2(Ω), its associated bra8, ⟨Ψ2| ∈ Φ∗, can be
constructed acting in the way

⟨Ψ2| (Ψ1) = ⟨Ψ2|Ψ1⟩ = (Ψ1|Ψ2).

5Most of the times we will get rid of spatial and temporal dependencies. Just bare in mind that
t acts as a parameter and square-integrability is related to the spatial coordinate.

6In this way, there is no ambiguity by saying Ψ ∈ L2(Ω) as Ψ needs to be continuous.
7We are excluding Ψ ≡ 0 case as this would imply no presence probability of the associated

particle resulting in a no physical system.
8Here, Φ∗ denotes the set of continuous linear functional defined over Φ. Notice that for the

introduction of this dual space, Postulate II is vital.
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That is to say, ⟨Ψ2| is the “inner product with Ψ2” functional and ⟨Ψ2|Ψ1⟩ is the
bracket of |Ψ2⟩, |Ψ1⟩ which acts as the inner product except for the fact that the
complex conjugate goes into the first factor.

In fact, bras not only originate from kets. Any linear functional T ∈ Φ∗ is considered
to be a bra and denoted as ⟨T | so that its acting can be written in a similar way.
Subsequently, we shall heuristically justify that this bras and kets space conforms
the correct structure to deal with quantum mechanics and constitutes a more general
space than a Hilbert space.

In any case, we would like to stress that physics constitutes an experimental, quan-
titative science. That is, any physical theory worth mentioning must be enunciated
in a series of, say, rules that allows for quantitative reasoning about the observ-
able world and, in particular, about (intuitively) measurable or observable physical
quantities such as position, momentum or energy. In this regard, the following two
postulates are vital so that quantum mechanics can be treated as an actual theory.
Postulate III.A. Every measurable physical quantity A is described by a self-adjoint
operator Â acting in the state space Φ. This operator is an observable meaning that
its eigenvectors forms a basis for Φ in a certain sense that shall be specified later
on. Moreover, if the system is characterized by the unit vector state Ψ = |Ψ⟩ ∈ Φ,
the probability distribution for the measurement of the observable satisfies

EΨ(Am)(t) = (Ψ|ÂmΨ) = (ÂmΨ|Ψ) = ⟨Ψ|ÂmΨ⟩ = ⟨ÂmΨ|Ψ⟩ ≡ ⟨Ψ|Âm|Ψ⟩.
In particular, for m = 0, we obtain the expectation value.

As a result of the previous postulates, it feels natural to define the position operator,
X̂ : Φ → Φ, acting in the way

X̂|Ψ⟩ = x|Ψ⟩, ∀|Ψ⟩ ∈ Φ,

so that its expectation value predicted by Postulate III.A coincides with the one
predicted by Postulate I. At this point, it can be noticed that X̂ cannot be defined
in the entirety of L2(Ω) without losing its self-adjointness.

In effect, given |Ψ⟩ ∈ L2(Ω), X̂|Ψ⟩ might fail to be in L2(Ω). Even if X̂Ψ is L2(R),
there might still exist an m ∈ N for which X̂m|Ψ⟩ fails to be in L2(R). In fact, by
considering Ω = R, (possible) vector state

|Ψ⟩ = 1

x1+m + 1

satisfies that |Ψ⟩ ∈ L2(R), yet, X̂m|Ψ⟩ /∈ L2(R) for every m ∈ N \ {0}. In this way,
not only the prediction on the probability distribution would fail but also and more
importantly (as we shall see below), self-adjoint character of its powers would be
lost due to unboundedness of the operators9. In this way, it naturally follows that,
generally, Φ ⊊ L2.

On the other hand, following a series of physical considerations related to De
Broglie’s hypothesis on momentum, p, associated to a wave of spatial frequency, k,
it can be reached10 that a proper definition for the momentum operator, P̂ : Φ → Φ,

9Recall any self-adjoint operator is necessarily bounded.
10See Chap. 3.4 of reference [6] for the deduction.
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is

P̂ |Ψ⟩ = −iℏ∂|Ψ⟩
∂x

, ∀|Ψ⟩ ∈ Φ.

Analogously, it can also be noticed that P̂ cannot be defined in the entirety of L2(Ω)
without losing its self-adjointness. Obviously, given |Ψ⟩ ∈ L2(Ω), |Ψ(m)⟩ might fail
to be in L2(Ω) for some m ∈ N. Therefore, same problems arise as for the position
operator. Subsequently, we shall continue our discussion on this topic.

Now that we have defined the position and momentum operator, we are in adequate
conditions to define the operator associated to any physical quantity A. In order to
do so, we shall make use of certain classical mechanics hypothesis stating that every
A = A(x, p, t). In this way, the following quantization rules arise.

Postulate III.B. (Quantization rules). Given A = A(x, p, t), its associated self-
adjoint operator Â is constructed in the way

Â = Â(X,P, t) = A(X,P, t).

If A(x, p, t) contains terms of the form xp = px, then a symmetrization is performed
so that 2X̂P̂ or 2P̂ X̂ is replaced by X̂P̂ + P̂ X̂ in Â.

The last part is related to the fact that X̂P̂ ̸= P̂ X̂ which results in an ambiguity
when dealing with terms of the form xp = px. In order to solve this issue, the
symmetrization rule arises which proves be to of good practice when constructing
operators. In addition, neither X̂P̂ nor P̂ X̂ constitute a self-adjoint operator. It is
an important characteristic when dealing with observable physical quantities which
further justifies symmetrization.

Remark 1.2.4. In quantum mechanics (and in group theory, in general), commu-
tation properties of two operators Â and B̂ are studied through their commutator

[Â, B̂] = ÂB̂ − B̂Â.

which, in a certain sense, determines how “well” two physical quantities can be mea-
sured simultaneously11. In particle for Â = X̂ and B̂ = P̂ , it can be found that12

[X̂, P̂ ] = iℏI.

where I : Φ → Φ is the identity operator. This ultimately leads to the uncertainty
principle

∆X̂∆P̂ ≥ ℏ
2
,

where ∆Â denotes the uncertainty of the operator, which is of capital relevance for
the quantum theory.

11See Chap. III of reference [3] for a further analysis.
12By applying product rule: P̂ X̂|Ψ⟩ = −iℏ d

dx (x|Ψ⟩) = −iℏ|Ψ⟩ − iℏxd|Ψ⟩
dx = −iℏ|Ψ⟩+ X̂P̂ |Ψ⟩
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In any case, A(x, p, t) can usually be expanded in terms of a power series in x, p and
t in such a way that, if we are concerned that its associated operator Â is self-adjoint
acting on the state space, it seems logical to consider that Φ is such that any power
of X̂ and P̂ is self-adjoint on it. In particular, it needs to happen that Φ ⊂ L2(Ω)
satisfies for every m ∈ N that X̂m (Φ) ⊂ Φ and P̂m (Φ) ⊂ Φ. That is, Φ needs to be
invariant under polynomial multiplication and derivation of any order.

In this manner, a pair of dense linear subspaces of L2(Ω) naturally arises as possible
candidates for our state space, Φ: the space of test functions, D(Ω), which are
infinitely differentiable and has compact support and the Schwartz space, S(Ω),
whose functions are also infinitely differentiable and satisfy that

sup
x∈Ω

|x|k
∣∣f (l)(x)

∣∣ <∞

for every k, l ≥ 0; both satisfying that are dense in L2(Ω). Accordingly, we would
identify Φ∗ with the space of distributions, D′(Ω), or the space of tempered distri-
butions, S∗(Ω) which will prove to be vital later on when introducing our problem.

Anyhow, thanks to Postulate III.B we are able to construct the Hamiltonian oper-
ator, Ĥ. Both in quantum and classical mechanics, the Hamiltonian associated to a
system encodes its dynamical behaviour and is related to its energy, oversimplifying.
In a non-relativistic regime, it takes the form

H(x, p) =
p2

2m
+ V (x)

where V (x) is the potential13 to which the particle is subjected and the other term
constitutes its kinetic energy. This implies that in non-relativistic quantum mechan-
ics the Hamiltonian operator is written in the way

Ĥ = − ℏ2

2m

∂2

∂x2
+ V (x).

As we mentioned before, for the case of an hydrogen atom, Schrödinger proved
that the experimentally observed energy levels could be understood as eigenvalues
of the associated Hamiltonian. This result is extended to the rest of the operators
associated to physical quantities though the following postulate.

Postulate IV.A. The only possible results of the measurement of a physical quantity
A is one of the eigenvalues of its corresponding observable Â.

Moreover, the state of the system after the measurement is determined by a corre-
sponding eigenfunction14.

This postulate might seem bizarre to those foreign to quantum mechanics. Nonethe-
less, it has been experimentally proven to be adequate and allows us, just as we

13In principle, V (x) could also be time-dependent, yet, we shall not consider such cases. Ulti-
mately, this makes the Hamiltonian not dependent of time.

14This known as the wave packet reduction. Again, for further details see Chap. III of reference
[3].
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stressed earlier, to make prediction (in this case, possible results of measurements)
about physical quantities governing a system.

In this way, as a first step to characterize a system, we are generally interested
in solving the associated eigenvalue problem related to the different operators, Â,
emerging from the quantization rules of their physical quantities, A, so that their
possible values of measurement can be predicted. This eigenvalue problem is set
forth below.

Problem 1.2.5. Find all values of a ∈ R for which the self-adjoint operator Â :
Φ → Φ has non-trivial solutions, |Ψa⟩ ∈ Φ satisfying the relation

Â|Ψa⟩ = a|Ψa⟩.

We shall refer to |Ψa⟩ ∈ Φ as an eigenvector or eigenfunction associated to the
eigenvalue “a” and to the set of all eigenvalues as the spectrum of the operator,
σ(Â) ⊂ R.

In principle, depending on whether the spectrum is a countable or uncountable
subset of R, we shall distinguish the discrete and continuous spectrum, respectively.
In general, an operator may have a spectrum composed of a discrete and a continuous
part. On the other hand, there exists the possibility that two or more linearly
independent eigenfunction, |Ψn

a⟩ are associated to the same eigenvalue, a ∈ R. In
this case, a ∈ R is a so-called degenerate eigenvalue. In the opposite case, a ∈ R is
non-degenerate.

We note that, due to Postulate IV.A, self-adjoint character of operators associated
to physical quantities is vital as, in this way, we can be certain that their eigenvalues
are real quantities. It would make no physical sense to obtain a non real number
as the result of the measurement of a physical quantity. Additionally, this self-
adjoint character of the operators provides us another great property: eigenvectors
|Ψa1⟩ and |Ψa2⟩ associated to different eigenvalues, a1 ̸= a2, are orthogonal in the
common sense, this is, ⟨Ψa1 |Ψa2⟩ = 0. We shall make use of this fact to further
specify the definition of observability regarding operators.

Although Postulate IV.A allows us to make some predictions, we can go even further.
It is clear, as we have stated before, that a certain type of determinism is lost due to
quantum mechanics’ statistical nature: in any of the ways we are (generally) unable
to predict beforehand the results of a given measurement. Despite this fact, this
quantum theory allows us to construct another type of “determinism”: to predict
the probability distribution of the possible measurements of the physical quantities
governing a system.

To begin with, let us consider the case in which the spectrum of a certain observable
associated to a physical quantity, Â, is entirely discrete and all of its eigenvalues
are non-degenerate. That is, σ(Â) = {an}n∈I ⊂ R where I ⊂ N, an ̸= am whenever
n ̸= m and, associated to each an ∈ R, there exists a unique |n⟩ ∈ Φ unit eigenvector
satisfying that

Â|n⟩ = an|n⟩, ∀n ∈ I.
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In addition, recall that, since Â is an observable, accordingly to Postulate III.A,
its eigenvectors necessarily form a basis for Φ in a certain way. For this case (dis-
crete spectrum plus non-degeneracy), it is “straightforward” to assume that this is
equivalent to assuming that every |Ψ⟩ ∈ Φ can be expanded in the form

|Ψ⟩ =
∑
n

cn|n⟩,

where coefficients cn ∈ C can be obtained by remembering that eigenvectors associ-
ated to different eigenvalues are orthogonal which ultimately leads to cn = ⟨n|Ψ⟩.

In such manner, this decomposition allows to postulate that the probability, P(an),
of finding an when A is measured is

P(an) = |⟨n|Ψ⟩|2 = |cn|2 .

To intuitively justify this postulate, let us first consider the case in which the state
of a certain physical system is characterised by, say, |Ψ⟩ = |n⟩ ∈ Φ for a certain
n ∈ I. For this situation, it would not make much sense to consider the possibility
of obtaining any other eigenvalue am ̸= an as the result of a measurement, since,
the wave function, which encodes everything there is to know about the physical
system, contains no “information” relating its associated eigenfunction space simply
because cm = 0. This leads us to argue that P(an) = 1 = |cn|2. Now, if we were to
consider another unit state |Ψ⟩ = cn|n⟩ + cm|m⟩, |cn|2 + |cm|2 = 1, again, we could
argue that obtaining any other eigenvalue ak satisfying an ̸= ak ̸= am is absurd and,
since, P(an) + P(am) = 1, it could make sense to assign

P(an) = |⟨n|Ψ⟩|2 = |cn|2 , P(am) = |⟨m|Ψ⟩|2 = |cm|2 .

By extending this argument, we may set forth the following postulate which sum-
marize what has been said thus far.

Postulate IV.B (Discrete case). Let a system characterized by the unit state
vector |Ψ⟩ ∈ Φ. Then, the probability, P(an), of obtaining the value “an” as a result
of the measurement of the physical quantity A satisfies

P(an) = |⟨n|Ψ⟩|2

where |n⟩ is the unit eigenvector of the associated observable Â corresponding to
the eigenvalue “an”. In addition, if this eigenvalue is obtained as a result of the
measurement, the state of the system after it, |Ψ′⟩, satisfies |Ψ′⟩ = |n⟩.

This postulate can be easily generalized to the case in which the operator, Â, has a
degenerated discrete spectrum, yet, we shall not include it for the sake of concision.

Now, let us assume that the spectrum of Â is entirely continuous and, again, non-
degenerate. That is, σ(Â) = {ak}k∈I ⊂ R where I ⊂ R is uncountable, ak ̸= ak′
whenever k ̸= k′ and, associated to each ak ∈ R, there exists a unique |k⟩ ∈ Φ unit
eigenvectors satisfying that

Â|k⟩ = k|k⟩, ∀k ∈ I.
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Again, since Â is an observable, its eigenvectors necessarily form a basis for Φ in
a certain way. In this case, the most “straigthforward” way to achieve this is by
assuming that every |Ψ⟩ can be expanded in the form

Ψ =

∫
I
c(k)|k⟩dk

where, analogously, c(k) = ⟨k|Ψ⟩ ∈ C can be obtained by taking into account
orthogonality of eigenvectors |k⟩. Therefore, accordingly to previous argument, we
postulate that the probability, P(k) of obtaining a value included between k and
k + dk is given by

P(k) = |⟨k|Ψ⟩|2 dk = |c(k)|2 dk.

In such manner, the following postulate is enunciated.

Postulate IV.B (Continuous case). Let a system characterized by the unit state
vector |Ψ⟩ ∈ Φ. Then, the probability, P(k), of obtaining a value between k and
k + dk as a result of the measurement of the physical quantity A satisfies

P(k) = |⟨k|Ψ⟩|2 dk

where |k⟩ is the unit eigenvector of the associated observable Â corresponding to
the eigenvalue k ∈ R. In addition, if this eigenvalue is obtained as a result of the
measurement, the state of the system after it, |Ψ′⟩, satisfies |Ψ′⟩ = |k⟩.

Of course, this postulate can be easily generalized (see Chap. III of [3]) to the case
in which the spectrum of the observable is composed of a discrete and a continuous
part with arbitrary degeneracy, yet, we shall not include it for the sake of concision.

In the next section, we shall see that the continuous case is much more complicated
than we have enunciated here. Nevertheless, for the time being, we shall be content
with what has been said so far so that we may finish specifying the concept of
observability as follows, again, for the non-degenerate case.

Definition 1.2.6. Let Â : Φ → Φ be a self-adjoint operator. Then, Â is an observ-
able whenever its eigenvectors form a basis for Φ. That is, any given |Ψ⟩ ∈ Φ can
be expanded in the form

|Ψ⟩ =
∑
n∈I

⟨n|Ψ⟩|n⟩+
∫
I
⟨k|Ψ⟩|k⟩dk,

provided that σ(Â) = {an}n∈I ∪ {ak}k∈I where, generally, I ⊂ N and I ⊂ R is
an uncountable set, and, associated to each eigenvalues an, ak ∈ R, there exist unit
eigenfunctions |n⟩, |k⟩ ∈ Φ.

In this sense, notice how vital is for an operator, Â associated to the physical
quantity, A, to satisfy the observability definition we have just introduced. Were it
otherwise, we could not effectively make use of Postulates IV.A and IV.B in order to
predict the possible outcomes and its probabilities resulting from the measurement
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of A and we would have needed to construct the quantum theory in a different way.
Again, though this might seem strange, it has been empirically proven to be true.

In any case, to finalize introducing the postulates, we present the equation governing
the dynamic evolution of any physical system.

Postulate V. The time evolution of the state15 |Ψ(t)⟩ is governed by the (time-
dependent) Schrödinger equation

iℏ
∂

∂t
|Ψ(t)⟩ = Ĥ|Ψ(t)⟩

where Ĥ is the Hamiltonian operator associated to the total energy of the system.
In particular, for a non-relativistic regime, accordingly to Postulate III.B, previous
equation takes the form

iℏ
∂

∂t
|Ψ(t)⟩ =

[
− ℏ2

2m

∂2

∂x2
+ V (x)

]
|Ψ(t)⟩.

Usually, in order to deal with the time-dependent Schrödinger, separation of vari-
ables is applied. In that sense, we will further assume that any given wave solution
|Ψ(t)⟩ ∈ Φ can be written in the form

|Ψ(t)⟩ = e−
i
ℏEt|Ψ⟩

where |Ψ⟩ ≠ |Ψ(t)⟩ in the sense that it does not depend on time and contains all
the spatial variation of the wave and satisfies the following eigenvalue equation:

Ĥ|Ψ⟩ = E|Ψ⟩,

being E ∈ R the associated eigenvalue. In such manner, it can be seen that, in
order to obtain all the possible wave solutions of the time-dependent Schrödinger
equation, Problem (1.2.5) associated to the Hamiltonian, Ĥ, needs to be solved
which is usually known as the time-independent Schrödinger equation.

Furthermore, solving this problem allows us to characterize the dynamic behaviour
of any possible wave function known its value at a fixed time t ∈ R+. In effect, given
any possible |Ψ(0)⟩ ∈ Φ, since Ĥ is an observable, it can be expanded in the form

|Ψ(0)⟩ =
∑
n∈I

cn|n⟩+
∫
I
c(k)|k⟩dk,

where |n⟩, |k⟩ ∈ Φ are eigenfunctions of the Hamiltonian operator associated to the
discrete and the continuous part of its spectrum, σ(Ĥ) = {En}n∈I ∪ {E(k)}k∈I , in
the usual way. Now, by assuming that time dependency appears on the coefficients
cn and c(k), this is,

|Ψ(t)⟩ =
∑
n∈I

cn(t)|n⟩+
∫
I
c(k; t)|k⟩dk

15Dependence on t is explicitly added to stress its dynamic evolution.
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and imposing that it satisfies time-dependent Schrödinger equation considering that
|n⟩ and |k⟩ do not depend on time and are orthogonal, it can be found that

|Ψ(t)⟩ =
∑
n∈I

cne
− i

ℏEnt|n⟩+
∫
I
c(k)e−

i
ℏE(k)t|k⟩dk.

In this way, as we advanced before, it can be noticed that, by solving the time-
independent Schrödinger equation, that is, finding all the eigenvalue-eigenfunction
pairs (E, |ΨE⟩); the dynamic behaviour of any given wave function can be obtained
which ultimately leads to the characterization of the physical system due to the fact
that the wave encodes all that there is to know about it.

Before proceeding any further, we mention that this section has been primarily
based on Chap. 3 of [6] and Chap. III of [3].

1.3 Introducing the problem

Accordingly with what has been exposed thus far, the main objective of our report
is to study a certain class of Hamiltonian, ĤMF , arising from assuming a particle of
mass m subjected to a so-called Rosen-Morse potential which takes the form

V (x) = V0 cosh
2 µ

[
tanh

(
x− µl

l

)
+ tanhµ

]2
, x ∈ R. (1.3.1)

This potential was introduced in [13] and detailed studied in [9, §12.3]. In particular,
we are interested in solving the eigenvalue problem associated to the Hamiltonian
and confirming that, in fact, is an observable, which ultimately characterize the
dynamical response of any quantum system described by this potential as we showed
at the end of the previous section.

From a point of view of a physicist, any Hamiltonian and, more generally, any
operator associated to a physical quantity constitutes an observable, accordingly
to the postulates, as far as it is assumed that any physical quantity is quantifiable
through different processes of measurement. Therefore, within this framework of
quantum mechanics, quantification can only be understood through observability in
the sense of Definition 1.2.6. In short, this constitutes a physical hypothesis rather
than a mathematical one.

In any case, the interest associated to this class of Hamiltonian is double.

On the one hand, it shall prove to be useful for the case of studying the stability of
different classes of nonlinear Klein-Gordon static solutions, that we shall introduce
later on.

On the other hand, its spectrum will prove to be rich in the sense that we shall dis-
tinguish different state regions with different properties that shall allow us to extend
our discussion on observability for this Hamiltonian. In addition, this complexity in
its spectrum shall lead us to justify that the eigenvalue Problem 1.2.5 associated to
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any observable is incomplete if we desire to actually construct a base of Φ with its
eigenfunctions.

Regarding this last fact, let us further analyze previous potential and we shall see
that we reach some incompatibilities with what we have said thus far. We start
by assuming that V0, µ and l are positive, non-zero parameters of the problem. In
this way, we are able to distinguish (see figure 1.1) three different ranges of energy
in which the particle may propagate since energies below or equal to the potential
minimum are not allowed16.

V−

V+

V (x)

x

Bound states

V (x)

Reflecting states

Free states

Figure 1.1: Potential V (x) = V0 cosh
2 µ

[
tanh

(
x−µl

l

)
+ tanhµ

]2
.

By examining equation (1.3.1), we may observe that the potential asymptotic be-
haviour is asymmetric since we fixed µ > 0 (the case µ = 0 will be studied later).

Therefore, if we denote V± = limx→±∞ V (x) = V0e
±2µ and notice V− < V+, the

so-called bound states region, where the particle would be classically confined in a
finite region of space, lies in the interval of energies, E, ranging from zero to V−; the
so-called reflecting states region, where the classical particle could reach −∞ but
not +∞, lies in the interval of energies ranging from V− to V+; and the so-called free
states region, where the particle could reach any point in space, lies in the interval
of energies greater than V+. These two last regions constitute the unbound states
regions.

If we attempt to solve the eigenvalue problem associated to the bound states region,
we will find no inconsistencies relating Definition 1.2.6 or Problem 1.2.5. Actually,
this will lead us to complete the discrete spectrum of the operator and we shall
check that it cannot constitute a basis for itself since we will find a finite number of
bound solutions and the dimension of the space is infinite.

Nevertheless, for the reflecting and free states regions, incongruities shall arise from
16This is one of the main differences between non-relativistic and relativistic quantum mechanics

where negative energies can be associated to antiparticles.
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the fact that we will not be able to find any eigenvectors, |Ψ⟩, satisfying the minimum
hypothesis |Ψ⟩ ∈ L2(R). This would result in an observable without a basis.

This can be intuitively seen by taking into account its asymptotic behaviour. It
was found that V (x) has constant and bounded asymptotic values which implies
that, in a certain sense, we are dealing with a Hamiltonian associated to a particle
subjected to no potential, that is17, V (x) = 0 at x→ ±∞.

Therefore, let us consider solving the eigenvalue problem 1.2.5 associated to a free
Hamiltonian resulting from a potential V (x) ≡ 0. This translates to finding all
possible values of E > 0 for which there exists a non-trivial wave function |Ψ⟩ ∈
Φ ⊂ L2(R) satisfying

− ℏ2

2m

d2|Ψ⟩
dx2

= E|Ψ⟩, E > 0.

However, it can be verified that the only possible candidates for |Ψ⟩ have the form

|ΨE⟩ ∝ e±i
√
2mE
ℏ x, (1.3.2)

where it can be verified that |Ψ⟩ /∈ L2(R). In addition, it can be argued (and we shall
check) that any possible eigenvectors, |Ψ⟩, associated to the reflecting or free states
regions share this asymptotic behaviour as x → ±∞ which results in |Ψ⟩ /∈ L2(R)
and an empty continuous spectrum. Just as we said before, this would result in
a Hamiltonian, which is considered to be an observable in the sense of Definition
1.2.6, without a proper base in Φ.

Moreover, this implies a much deeper issue involving observability of momentum
and position operators. It can be easily checked that the following equality holds:

− ℏ2

2m

d2|Ψ⟩
dx2

=
P̂ 2

2m
|Ψ⟩,

which means that eigenvalue problem associated to a free Hamiltonian is equivalent
to that associated to operator P̂ 2 implying that both P̂ and P̂ 2 has no eigenvalues18

resulting in an empty spectrum and no observability. This is pretty traumatic as it
is assumed that possibles measurable values for momentum, p, constitute the whole
real axis and is a fundamental physical quantity when dealing with mechanics.

In this way, the concept of eigenfunction needs to be extended in order to solve these
incongruities. In fact, if we examine possibles eigenfunction, |ΨE⟩, given by equation
(1.3.2), it can be noticed that19 |ΨE⟩ ∈ L∞(R). Moreover, since any possible state
space Φ ⊂ L2(R) needs to be invariant under polynomial multiplication, it can be

17Origin of energies can always be changed.
18If |Ψa⟩ is an eigenfunction associated to the eigenvalue a for an operator, Â it satisfies

Â|Ψ⟩ = a|Ψ⟩

which implies
Â2|Ψ⟩ = aÂ|Ψ⟩ = a2|Ψ⟩.

19Here, L∞(Ω) denotes the set of bounded functions in the open subset Ω ⊂ R.
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checked that L∞(R) can be understood inside of Φ∗ in the sense that, given any
|ϕ⟩ ∈ L∞(R), we can construct a bra ⟨ϕ| ∈ Φ∗ acting in Φ in the form20

⟨ϕ|(|Ψ⟩) = ⟨ϕ|Ψ⟩ =
∫
R
ϕ(x)Ψ(x)dx, ∀|Ψ⟩ ∈ Φ

which is, indeed, a functional of Φ∗. In this sense, we could say that instead of
finding an autoket, we found an autobra. Therefore, this allows us to extend our
concept of eigenvectors to Φ∗ as well in order to solve previous issues. Inspired by
these facts, we reformulate the eigenvalue problem associated to any observable in
the following way.

Problem 1.3.1. Find all eigenvalues a ∈ R for which the observable Â : Φ → Φ
has non-trivial solutions |Ψa⟩ ∈ Φ ∪ Φ∗ satisfying the relation21

Â|Ψa⟩ = a|Ψa⟩.

Of course, we have merely introduced a heuristic approach to justify this formu-
lation. The reality is much more complex as the bra and ket formalism devel-
oped by Dirac on which this formulation is based on is highly dependant on rigged
Hilbert spaces. We simply comment that, through these constructions, previous is-
sues about observability disappear and eigenvalue problem becomes “complete”. For
an extended discussion on rigged Hilbert spaces and the extension of the eigenvalue
problem see [4].

In any case, we shall drop this bracket formalism as this was simply introduced to
properly construct the problem to solve that characterizes the Hamiltonian, ĤMF .
In short, when solving its time-independent Schrödinger equation, we shall deal with
two types of wave solutions, Ψ ∈ L2(R) ∪ L∞(R), with different mathematical and
physical interpretations.

To begin with, when dealing with the bound states region, we shall find wave
function solutions, Ψ, satisfying boundedness and square-integrability which results
in a clear and direct statistical interpretation along the lines previously described.
Such solutions will conform physically admissible wave functions and their form
would, in principle, allow us to identify Φ. In principle, its identification is beyond
the scope of this paper.

In contrast, when dealing with the unbound states regions (which includes both the
reflecting and free states regions), we will be unable to find square-integrable wave
functions, Ψ. For that reason, we will drop that boundary condition and will settle
for bounded functions. Only in this way we will be able to complete the base for
the state space, Φ, by identifying these solutions as functionals, Ψ ∈ Φ∗.

From a physical point of view, these solutions cannot be interpreted in the same
way as the previous ones. However, they can model wave-packet solutions of the

20This integral is finite for every |Ψ⟩ ∈ Φ since invariance under polynomial multiplication implies
(1 + x2)Ψ(x) ∈ L2(R) ⊂ L∞(R) leading to Ψ(x) ∈ L1(R). On the other hand, continuity of the
bra operator is not that clear as we won’t be identifying Φ.

21It can be noticed that this problem is not properly defined as observable Â is not defined acting
on Φ∗. For a proper formulation on the extension of the eigenvalue problem see Chapter 3.5 of [4].
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Schrödinger equation, this is, a beam of particles interacting with the potential. We
shall briefly explore this interpretation after solving the Hamiltonian.

Therefore, as a summary of all that have been exposed, we present the problem
that we shall consider equivalent to the time-independent Schrödinger equation as-
sociated to the Rosen-Morse potential. We merely note that this is generally the
way of proceeding in physics when dealing with a potential similar to the one we
shall treat.

Problem 1.3.2. Find all eigenvalues E ∈ R for which the time-independent Schrö-
dinger equation associated to the Rosen-Morse potential, that is,

− ℏ2

2m

d2Ψ(x)

dx2
+ V0 cosh

2 µ

[
tanh

(
x− µl

l

)
+ tanhµ

]2
Ψ(x) = EΨ(x), (1.3.3)

where x ∈ R, has non-trivial wave functions solutions, Ψ, satisfying that

• Ψ ∈ L2(R) for the bound states region, that is, for E ∈ (0, V−) and

• Ψ ∈ L∞(R) for the unbound states regions, that is, for E ∈ [V−,∞).

In this way, we point out that we have dropped the formalism associated to oper-
ators as we shall treat Problem 1.3.2 as a Sturm-Liouville problem with boundary
conditions given by Ψ ∈ L2(R) or Ψ ∈ L∞(R) depending on the peculiarities of each
region.

In order to solve the problem, we shall, as a first step, reduce it to a generalized
hypergeometric equation which we shall study in depth in the next chapter.
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Chapter 2

Solving the generalized hypergeometric equation

Through this chapter, we aim to solve the generalized hypergeometric equation
which attains the form

u′′(z) +
τ̃(z)

σ(z)
u′(z) +

σ̃(z)

σ2(z)
u(z) = 0,

where σ(z), σ̃(z) and τ̃(z) are polynomials. Firstly, we shall reduce it, through
means of the Nikiforov-Uvarov method, to the much simpler form

σ(z)y′′(z) + τ(z)y′(z) + λy(z) = 0,

called hypergeometric differential equation. Due to its simplicity, we will be able to
completely solve it by means of the hypergeometric functions.

Moreover, by means of the classical orthogonal polynomials, we shall obtain the
solutions (λ, y(x)) where y(x) is square-integrable in a certain sense of the eigenvalue
problem associated to the hypergeometric differential equation and connect it to the
resolution of the eigenvalues problems arising from Schrödinger equations.

Before proceeding any further, we note that most of the results exposed in this
chapter have been extracted from reference [10].

2.1 The Nikiforov-Uvarov method

Definition 2.1.1. Let O ⊂ C be an open subset. An (ODE)1 of the form

u′′(z) +
τ̃(z)

σ(z)
u′(z) +

σ̃(z)

σ2(z)
u(z) = 0, z ∈ O (2.1.1)

is said to be a generalized hypergeometric equation or, simply, (GHE) whenever2

σ(z), σ̃(z) ∈ C2[z] and τ̃(z) ∈ C1[z].

1Here, (ODE) stands for ordinary differential equation.
2Fp[x] denotes the set of polynomials with coefficients on F (F is C or R) and degree at most p

on the variable x.

19
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Our first step into solving (2.1.1) is to reduce it to a simpler form by taking u(z) =
ϕ(z)y(z) and making a convenient selection of ϕ(z). In this regard, the following
proposition hints us toward the choice.

Proposition 2.1.2. Let u(z) be a solution of (2.1.1), π(z) ∈ C1[z] and ϕ(z) any
function fulfilling

ϕ′(z)

ϕ(z)
=
π(z)

σ(z)
, (2.1.2)

then, y(z) satisfying u(z) = ϕ(z)y(z) solves another (GHE).

Proof. Let τ(z) ∈ C1[z] arbitrary and we set

π(z) =
τ(z)− τ̃(z)

2
∈ C1[z] (2.1.3)

Now, by taking u(z) = y(z)ϕ(z) into (2.1.1), we obtain

y′′(z)+

(
2
ϕ′(z)

ϕ(z)
+
τ̃(z)

σ(z)

)
y′(z)+

(
ϕ′′(z)

ϕ(z)
+
ϕ′(z)τ̃(z)

ϕ(z)σ(z)
+
σ̃(z)

σ2(z)

)
y(z) = 0.

Finally, by taking into account (2.1.2), (2.1.3) and the identity

ϕ′′(z)

ϕ(z)
=

(
ϕ′(z)

ϕ(z)

)′
+

(
ϕ′(z)

ϕ(z)

)2

the previous (ODE) takes the following form:

y′′(z) +
τ(z)

σ(z)
y′(z) +

σ(z)

σ2(z)
y(z) = 0, (2.1.4)

where

τ(z) = τ̃(z) + 2π(z), σ(z) = σ̃(z) + π2(z) + π(z)[τ̃(z)− σ′(z)] + π′(z)σ(z) (2.1.5)

and it can be checked that σ(z) ∈ C2[z] since we have chosen τ(z) ∈ C1[z]. That is,
(2.1.4) constitutes a (GHE) for y(z).

We notice that if we choose a proper π(z), which is equivalent to choosing τ(z)
or ϕ(z) accordingly to (2.1.2) and (2.1.3), σ(z) can be forced to be proportional to
σ(z), that is, σ(z) = λσ(z), λ ∈ C. In this way, (2.1.4) is reduced to

σ(z)y′′ + τ(z)y′ + λy = 0.

which, indeed, has a simpler form than (2.1.1). This phenomenon encourages the
following definition.

Definition 2.1.3. Let O ⊂ C be an open subset. An (ODE) of the form

σ(z)y′′(z) + τ(z)y′(z) + λy(z) = 0, z ∈ O, (2.1.6)

is said to be a hypergeometric differential equation or, simply, (HDE) whenever
σ(z) ∈ C2[z], τ(z) ∈ C1[z] and λ ∈ C. Also, we shall refer to its solutions as
functions of hypergeometric type.
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Before continuing analyzing equation (2.1.6) and its solutions, we show, through
the next proposition, a way to obtain π(z) so that (2.1.4) is actually transformed
into (2.1.6).

Proposition 2.1.4. Let k ∈ C satisfying that

P2(z; k) =

(
σ′(z)− τ̃(z)

2

)2

− σ̃(z) + kσ(z) ∈ C2[z]

(dependence on k is parametric) is the square of a polynomial P1(z) ∈ C1[z]. Then,
by choosing

π(z) =
σ′(z)− τ̃(z)

2
±
√
P2(z; k), (2.1.7)

π(z) ∈ C1[z] and σ(z) in (2.1.5) takes the form σ(z) = λσ(z) where λ = k + π′(z).
Therefore, (2.1.4) is reduced to (2.1.6).

Proof. It is obvious that, under such circumstances, π(z) ∈ C1[z].

Also, it can be checked that

π(z) =
σ′(z)− τ̃(z)

2
±

√(
σ′(z)− τ̃(z)

2

)2

− σ̃(z) + kσ(z).

satisfies
π2(z) + [τ̃(z)− σ′(z)]π(z) + [σ̃(z)− kσ(z)] = 0.

From this, σ(z) = λσ(z) easily follows from (2.1.5).

It can be verified that P2(z; k) ∈ C2[z] is a perfect square if and only if its dis-
criminant, ∆P2(k), is zero. Thus, by making ∆P2(k) = 0, we can find k ∈ C and,
ultimately, π(z), ϕ(z), τ(z) and λ so that a (HDE) related to the original (GHE) is
produced.

Also we note that, generally, by imposing ∆P2(k) = 0 we will obtain two possible
values for k ∈ C which, together with the ambiguity of the sign in (2.1.7), generates
a total of four possibles choices of π(z) which leads to four possibly different (HDE).

In this way, this transformation allows to replace the study of (2.1.1) by the study of
a the much simpler equation (2.1.6). This is what we shall focus on in the following
section.

Remark 2.1.5. Before finalizing this section, we give two examples in which by
using the method described above the resolution of a (GHE) cannot be reduced to
four different (HDE).

• Given σ(z) = 1 and τ̃(z)/2 − σ̃(z) ∈ C1[z], the (GHE) associated cannot be
transformed into (HDE) by imposing ∆P2(k) = 0, since there is no solution
to the equation.
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• Given σ(z) = 1, σ̃(z) = w− z2 and τ̃(z) = 0, by imposing ∆P2(k) = 0 we only
obtain k = w which leads to two equivalent (HDE) instead of four as discussed
in the general case.

That is to say, the Nikiforov-Uvarov method is not suitable for every and each
generalized hypergeometric equation, yet, has proven to be very useful in solving
many problems of theoretical and mathematical physics, as we previously discussed.

2.2 The hypergeometric differential equation

In an effort to solve the hypergeometric differential equation, we shall start by
analyzing the properties of its solutions. To begin with, a (HDE) is characterised by
possessing the so-called hypergeometric property which consists on the fact that given
any of its solution, y(z), any of its derivatives, y(n)(z), also satisfies a differential
equation of the same type. This is shown through the following proposition.

Proposition 2.2.1. Let y(z) be a function of hypergeometric type that solves (2.1.6).
Then, its m-th derivative, vm(z) = y(m)(z), solves the following hypergeometric dif-
ferential equation:

σ(z)v′′(z) + τm(z)v
′(z) + µmv(z) = 0, z ∈ O, (2.2.1)

where

τm(z) = τ(z) +mσ′(z) ∈ C1[z], µm = λ+mτ ′(z) +
m(m− 1)

2
σ′′(z) ∈ C.

Therefore, all the derivatives of functions of hypergeometric type are also of hyper-
geometric type.

Proof. We prove it through means of induction.

Let v1(z) = y′(z). Then, by differentiating (2.1.6), we obtain

σ(z)v′′1(z) + [σ′(z) + τ(z)] v′1(z) + [λ+ τ ′(z)] v1(z) = 0.

Thus, by naming τ1(z) = σ′(z) + τ(z) and µ1 = λ + τ ′(z), we conclude that v1(z)
solves

σ(z)v′′(z) + τ1(z)v
′(z) + µ1v(z) = 0

which, obviously, conforms a (HDE) and has the form (2.2.1) for m = 1.

Now, let us assume that vm(z) = y(m)(z) satisfies

σ(z)v′′m(z) + τm(z)v
′
m(z) + µmvm(z) = 0,

where τm(z) and µm were previously defined.

Then, again, by differentiating it, we obtain that

σ(z)v′′m+1(z) + [σ′(z) + τm(z)] v
′
m+1(z) + [µm + τ ′m(z)] vm+1(z) = 0.

It can be checked that τ ′m+1(z) = σ′(z) + τm(z) and µm+1 = µm + τ ′m(z) which
concludes the proof.
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Also, the following conversion is true.

Proposition 2.2.2. Let vm(z) be a solution of (2.2.1). Then, if µk ̸= 0 ∀k < m, it
can be represented in the form vm(z) = y(m)(z), where y(z) is a solution of (2.1.6).

Proof. See [10], Chap. I.2, pages 6-7.

In this way, we may construct particular solutions given an specific λ ∈ C. In fact,
whenever

λ = λn = −n
[
τ ′(z) +

(n− 1)

2
σ′′(z)

]
,

µn = 0 and (2.2.1) has the solution vn(z) = Cn where Cn ∈ C is constant. Therefore,
provided that3 µk ̸= 0, for all k < n, (2.1.6) has a particular solution y(z) = yn(z) ∈
Cn[z] which is a polynomial of degree n.

Remark 2.2.3. Condition µk ̸= 0 ∀k < n can be rewritten in a clearer way. It can
be noticed that whenever µm = 0 for some m ∈ N ∪ {0}, λ = λm. This implies that
λ = λn, µk ̸= 0 ∀k < n is equivalent to λ = λn, λn ̸= λm ∀m ̸= n. Moreover,

µnm = λn − λm = (m− n)

[
τ ′(z) +

m+ n− 1

2
σ′′(z)

]
, (2.2.2)

so that, condition λn ̸= λm ∀m ̸= n can be replaced by

τ ′(z) +
m+ n− 1

2
σ′′(z) ̸= 0, ∀m ̸= n. (2.2.3)

Now, by inspecting the case (n,m) = (1, 0), µ10 = −τ ′(z) ̸= 0, which means that
(2.2.3) implies τ(z) ∈ C1[z] \ C.

This is known as regularity condition and shall grant us a key property for the
resolution of eigenvalue problems related to quantum mechanics, as we will discuss
later on.

For these reasons, from now on, we shall assume condition (2.2.3) is met for the
hypergeometric equations of our analysis, as it will actually be true for the cases of
physical relevance.

In any case, we retake our examination on the polynomial solutions of (2.1.6).

Definition 2.2.4. Any polynomial solution of (2.1.6) is said to be a polynomial of
hypergeometric type.

Therefore, we aim to study the polynomials of hypergeometric type. As a first step,
we obtain explicit representation for the polynomials yn(z) through the following
theorem.

3This condition is not very traumatic as µ(n) = µn ∈ C2[n] and has, at most, two different
roots. Therefore, if n ∈ N ∪ {0} is given so that µn = 0, most likely µk ̸= 0 for all k < n follows.
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Theorem 2.2.5. Let n ∈ N ∪ {0} such that

λ = λn = −nτ ′(z)− n(n− 1)

2
σ′′(z),

i.e, µn = 0, then, ignoring those obtained through multiplicative constants, there
exists, at least, one polynomial solution, yn(z) ∈ Cn[z], with degree n for (2.1.6).
Moreover, ∀m ≤ n, if we denote vm(z) = y

(m)
n (z)

vm(z) =
AmnBn

ρm(z)
[ρn(z)]

(n−m)

where

A0n = 1, Amn = (−1)m
m−1∏
k=0

µnk, Bn =
1

Ann

vn(z), ρm(z) = σm(z)ρ(z),

µnk is given by (2.2.2) and ρ(z) is any solution of

(σ(z)ρ(z))′ = τ(z)ρ(z) (2.2.4)

that satisfies ρ(z) ̸= 0 ∀z ∈ Ω. In particular, for m = 0 we obtain the Rodrigues’
formula

yn(z) =
Bn

ρ(z)
[σn(z)ρ(z)](n) (2.2.5)

Therefore, we shall associate4 to each (HDE) its family of polynomials, (yn(z))n,
through the previous formula.

Proof. Existence of polynomial solution was discussed above.

Since (σ(z)ρ(z))′ = τ(z)ρ(z), it can be checked that (σ(z)ρm(z))
′ = τm(z)ρm(z)

∀m ≤ n. Therefore, both (2.1.6) and (2.2.1) can be written in self adjoint form as
follows

(σ(z)ρ(z)y′(z))′ + λρ(z)y(z) = 0,

(σ(z)ρm(z)v
′
m(z))

′ + µmρm(z)vm(z) = 0. (2.2.6)

By taking into account that σ(z)ρm(z) = ρm+1(z) and v′m(z) = vm+1(z), we may
rewrite (2.2.6) in the following manner:

ρm(z)vm(z) = − 1

µm

(ρm+1(z)vm+1(z))
′.

Thus, by reiterating this argument we end up obtaining

ρm(z)vm(z) = − 1

µm

(ρm+1(z)vm+1(z))
′ =

1

µmµm+1

(ρm+2(z)vm+2(z))
′′ =

− 1

µmµm+1µm+2

(ρm+3(z)vm+3(z))
(3) = ... =

Amn

Ann

(ρn(z)vn(z))
(n−m)

(2.2.7)

4This is merely heuristic since the condition µk ̸= 0 ∀k < n might disallow us from asserting
that yn(z) for a given n ∈ N ∪ {0} is, indeed, a polynomial solution of the corresponding (HDE).
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Now, by particularizing to our case, that is, vn(z) = y
(n)
n (z) = Cn where Cn ∈ C and

µm = µnm for every m ∈ N ∪ {0} whenever λ = λn (recall relation (2.2.2)), we can
rewrite (2.2.7) as shown in the next line

vm(z) =
AmnBn

ρm(z)
[ρn(z)]

(n−m)

which concludes the proof.

In this way, our study of the (HDE) and its solutions splits. On the one hand,
we shall further examine the properties of polynomials of hypergeometric type by
classifying them, analyzing their orthogonality and finding their connection to the
resolution of eigenvalue problems related to finding square-integrable wave function
in quantum mechanics, as we advanced earlier.

On the other hand, we shall generalize the Rodrigues formula to find particular
solutions of the equation (2.1.6) for arbitrary values of λ. This will lead us to
characterize all the solutions through a integral representation and, finally, through a
power series that will allow us to find the asymptotic behaviour so that boundedness
of wave solution can be studied.

2.2.1 Classical orthogonal polynomials

For the rest of the discussion on polynomials of hypergeometric type, z is to be
considered on the real axis, that is, we make z = x ∈ R and enunciate (2.1.6) on
Ω = (a, b) ⊂ R. Also, we are adding new conditions on σ(x), τ(x). We shall only
consider5 τ(x) ∈ R1[x] \R and σ(x) ∈ R2[x] with real and distinct roots. Therefore,
our cases of studies reduce.

Definition 2.2.6. An (HDE) on the previous conditions is said to be a possibly-
regular hypergeometric differential equation or, simply, (PHDE).

Although it might seem that polynomials of hypergeometric type cover a vast set,
the fact is that every (PHDE) can be transformed through different methods to
one of three possible canonical forms. Consequently, classification of polynomials of
hypergeometric type can be achieved by examining the families of polynomials as-
sociated to these canonical forms. This analysis is carried out through the following
proposition.

Proposition 2.2.7. Let a (PHDE). Then, it can be reduced through linear changes
of variables to one the three following canonical forms:

(1) the Jacobi form where

σ(x) = 1− x2, ρ(x) = (1− x)α (1 + x)β , τ(x) = − (α + β + 2)x+ β − α

5Notice that this condition is necessary for condition (2.2.3) to be met as we aim to obtain later
on.
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and its corresponding polynomials, yn(x), are called, accordingly, the Jacobi
polynomials, are denoted by P (α,β)

n (x) and satisfy

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α (1 + x)−β

dn

dxn

[
(1− x)n+α (1 + x)n+β

]
(2) the Laguerre form where

σ(x) = x, ρ(x) = xαe−x, τ(x) = −x+ α + 1

and its corresponding polynomials, yn(x), are called, accordingly, the Laguerre
polynomials, denoted by Lα

n(x) and satisfy

Lα
n(x) =

1

n!
exx−α

dn

dxn
(
xα+ne−x

)
(3) the Hermite form where

σ(x) = 1, ρ(z) = e−x
2

, τ(x) = −2x

and its corresponding polynomials, yn(x), are called, accordingly, the Hermite
polynomials, denoted by Hn(x) and satisfy

Hn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)

Proof. Since any (PHDE)

σ(s)u′′(s) + τ(s)u′(s) + λu(s) = 0, τ(s) ∈ R1[s] \ R, σ(s) ∈ R2[s] (2.2.8)

is an homogeneous (ODE), the coefficient of the leading term can be chosen arbitrar-
ily. In this way, it can be checked that every (PHDE) falls into one of the following
three categories:

(1)


σ(s) = (b− s)(s− a)

τ(s) =− (β + α + 2) s
+ b (β + 1) + a (α + 1)

ρ(s) = (b− s)α (s− a)β

(2)


σ(s) = s− a

τ(s) = βs− aβ + α + 1,

ρ(s) = (s− a)α eβs

(3)


σ(s) = 1

τ(s) = 2αs+ β,

ρ(s) = eαs
2+βs

(2.2.9)

where we are assuming a < b. Notice that coefficients of τ(s) are expressed in such
a way that ρ(s) is written in the simplest possible form.

We start analyzing case (1). By setting s = 1
2
[(a− b)x+ (a+ b)], it can be checked

that (2.2.8) is indeed reduced to the Jacobi form as presented in (1).

Now, for case (2), if we make x = −β (s− a), the (PHDE) associated reduces to

−βxy′′(x)− β (−x+ α + 1) y′(x) + λy(x) = 0.
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Thus, by dividing it into −β ̸= 0, we obtain the Laguerre form.

For case (3), by making the change of variables 2αs = −2
√
−αx+β and multiplying

the resulting (PHDE) by −α, it can be checked that we obtain the Hermite form.

Finally, the explicit expression of the different families of polynomials is obtained
through the Rodrigues’ formula (2.2.5).

Remark 2.2.8. Concerning the previous proof, we make the following statements:

• This result is also true if we consider x = z in the complex plane, since, as it
can be noticed, the real variable plays no role on the previous proof.

• Regarding λ parameter, it can be noticed that after reduction of a (PHDE) into
canonical forms, it takes a different form. That presents no inconveniences
since, in the final analysis, λ will become an unknown of certain eigenvalue
problem so that redefinition of λ is not a big deal.

• Regarding last remark, one could be tempted to argue that reduction of case (3)
possibly-regular hypergeometric equation might entail trouble whenever we are
dealing with α > 0 as change of variable contains a complex number. Despite
this, we will see that the previous case is not of interest for our study.

Now that we have shed some light into what kind of (PHDE) we are to expect, we
commence to analyze integrability and orthogonality of polynomials of hypergeo-
metric type proceeding from any (HDE) since they will be crucial properties to be
considered later on when we start solving quantum mechanics problems.

Then, we shall check that the following propositions applied to a (PHDE) under cer-
tain conditions will allow us to solve the eigenvalue problem stated at the beginning
of the chapter. In this way, if ρ(x) satisfies some additional condition, polynomials
yn(x) will be orthogonal in a certain sense.

Proposition 2.2.9. Let (2.1.6) be enunciated on Ω = (c, d) ⊂ R where c, d ∈ R
may not be finite. Let ρ(x) satisfy

σ(x)ρ(x)xk
∣∣∣
x=c

= σ(x)ρ(x)xk
∣∣∣
x=d

= 0, ∀k ∈ N ∪ {0}. (2.2.10)

Let yn(x), ym(x) polynomials of hypergeometric type corresponding to λn ̸= λm,
respectively. Then, they are orthogonal on (a, b) with weight ρ(x) in the following
sense: ∫ d

c

yn(x)ym(x)ρ(x)dx = 0, λn ̸= λm. (2.2.11)

Moreover, polynomials, yn(x), for which ρ(x) satisfies (2.2.10) are known as the
classical orthogonal polynomials.

Proof. Let yn(x), ym(x) polynomials of hypergeometric type associated to λn, λm,
respectively, satisfying λn ̸= λm. Therefore, they solve the following (HDE) written
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on self adjoint form:

(σ(z)ρ(z)y′n(z))
′ + λnρ(z)yn(z) = 0,

(σ(z)ρ(z)y′m(z))
′ + λmρ(z)ym(z) = 0.

Then, by multiplying the first equation by ym(x) and the second by yn(x), subtract-
ing the second from the first and integrating, we end up obtaining

(λm − λn)

∫ d

c

yn(x)ym(x)ρ(x)dx = σ(x)ρ(x)W [ym(x), yn(x)]
∣∣∣d
c

where W (u, v) = uv′ − vu′ is the Wronskian. Since both yn(x) and ym(x) are
polynomials, W [ym(x), yn(x)] so is too. Therefore, due to (2.2.10), the right hand
side is zero and, since λn ̸= λm, necessarily follows∫ d

c

yn(x)ym(x)ρ(x)dx = 0.

This concludes the proof.

Moreover, condition (2.2.10) for the classical orthogonal polynomials allows us to
express the ρ-weighted squared norm6 of yn(x), i.e,

d2n =

∫ d

c

ρ(x)y2n(x)dx

in terms of ρn+1(x). This is presented through the next proposition.

Proposition 2.2.10. Let ρ(x) satisfy the condition (2.2.10) for orthogonal polyno-
mials. Let d2nk denote the ρk-weighted squared norm of y(k)n (x), i.e,

d2nk =

∫ d

c

ρk(x)
[
y(k)n (x)

]2
dx.

Then, d2k+1,n = µknd
2
kn where µkn = µk(λ = λn). In particular, this implies that

(
y(n)n (x)

)2 ∫ d

c

ρn(x)dx = d2nn = d2n

n−1∏
k=0

µkn

Therefore, yn(x) ∈ L2
ρ(c, d) whenever ρn(x) = σn(x)ρ(x) ∈ L1(c, d).

Proof. By considering (2.2.6) for m = k+1, multiplying it by y(k)n (x) and integrating
over (a, b), we obtain

ρk+1(x)y
(k+1)
n (x)y(k)n (x)

∣∣∣d
c
−
∫ d

c

ρk+1(x)
[
y(k+1)
n (x)

]2
dx+µkn

∫ d

c

ρk(x)
[
y(k)n (x)

]2
dx = 0.

6At this point, this is merely notation as we have not checked whether it constitutes an actual
norm.
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Since, ρ(x) satisfies (2.2.10), ρk+1(x) = σn(x)ρ(x) and σn(x)y
(k+1)
n (x)y

(k)
n (x) is a

polynomial, the integrated term is zero. This allows to write d2k+1,n = µknd
2
kn.

In particular,

d2nn = µn−1,nd
2
n−1,n = µn−1,nµn−2,nd

2
n−2,n = ... = d2n

n−1∏
k=0

µkn

which concludes the proof.

Usually, condition (2.2.10) for orthogonal polynomials is also accompanied by as-
suming ρ(x), σ(x) > 0 so that previous concepts of ρk-weighted square norm and
orthogonality are sustained by an actual inner product space.

Moreover, thanks to these two results, we can check that any (PHDE) fulfilling
condition for orthogonal polynomials also satisfies that its family of polynomials,
(yn(x))n, is regular, in the sense that, there exists a polynomial solution of degree
n ∀n ∈ N ∪ {0}; and (yn(x))n ⊂ L2

ρ(c, d). This is proven through the following
proposition.

Proposition 2.2.11. Every (PHDE) whose associated ρ(x) fulfills condition (2.2.10)
for orthogonal polynomials in Ω = (c, d), satisfies that λn ̸= λm ∀n ̸= m and
ρn(x) = σn(x)ρ(x) ∈ L1(c, d). Therefore, (yn(x))n ⊂ L2

ρ(c, d), is regular and orthog-
onal.

Proof. For the sake of simplicity, we may discuss it in terms of the expressions
written in (2.2.9).

To begin with, we consider case (1). In this case,

σ(x)ρ(x)xk = (b− x)α+1 (x− a)β+1 xk,

which provokes that (c, d) = (a, b) and α, β > −1 so that (2.2.10) can be fulfilled.
Obviously, ρn(x) ∈ L1(a, b) since it is bounded on a finite interval. Let’s also check
that λn ̸= λm whenever n ̸= m under such circumstances. We could try making
λn − λm = (n2 − m2) + (α + β + 1)(n − m) = 0 for m ̸= n and would reach to
0 < (n+m) + (α + β + 1) = 0 which is an absurd.

Now, for the case (2), σ(x)ρ(x)xk = (x − a)α+1eβxxk which implies that α > −1
and (c, d) = (a,∞) if β < 0 or (c, d) = (−∞, a) if β > 0 for (2.2.10) to be fulfilled.
Integrability of ρn(x) in (c, d) is equivalent to integrability of xne−x in (0,∞) and
it can be checked that λn = −βn which provokes, obviously, λn ̸= λm whenever
n ̸= m.

Finally, for the case (3), σ(x)ρ(x)xk = eαx
2+βxxk which means α < 0 and (c, d) =

(−∞,∞). Under such circumstances, it can be easily checked that λn ̸= λm when-
ever n ̸= m and ρn(x) ∈ L1(c, d).

The final thesis is reached thanks to proposition (2.2.10), (2.2.9) and theorem 2.2.5.
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With this, we justify our assumption about regularity condition that we made before
introducing the Rodrigues’ formula.

Usually, (PHDE) are reduced to canonical forms. Because of this, below, we show a
table containing basic information about the Jacobi, Laguerre and Hermite polyno-
mials related to intervals of orthogonality, squared norm, conditions on parameters
for orthogonality, etc.

yn(x) P
(α,β)
n (x) (α > −1, β > −1) Lα

n(x) (α > −1) Hn(x)

(c, d) (−1, 1) (0,∞) (−∞,∞)

ρ(x) (1− x)α (1 + x)β xαe−x e−x
2

σ(x) 1− x2 x 1

τ(x) β − α− (α + β + 2)x 1 + α− x −2x

λn n (n+ α + β + 1) n 2n

ρn(x) (1− x)n+α (1 + x)n+β xn+αe−x e−x
2

Cn
Γ(2n+α+β+1)
2nΓ(n+α+β+1)

1 (−1)nn!

d2n
2α+β+1Γ(n+α+1)Γ(n+β+1)
n!(2n+α+β+1)Γ(n+α+β+1)

Γ(n+α+1)
n!

2nn!
√
π

Table 2.1: Basic data for the classical orthogonal polynomials.

At this point, we are in good position to present the results that shall lead us to
solve the discrete spectrum of a great number of Schrödinger equations.

Eigenvalue problems solved by means of the classical orthogonal polyno-
mials and its relation to quantum mechanics.

We commence by considering the following eigenvalue problem.

Problem 2.2.12. Find all values of λ ∈ C for which the possibly-regular hypergeo-
metric differential equation

σ(x)y′′(x) + τ(x)y′(x) + λy(x) = 0, x ∈ O = (a, b),

has non-trivial solutions, yλ(x), satisfying that yλ(x)
√
ρ(x) ∈ L2(a, b) ∩ L∞(a, b),

where ρ(x), as usual, is any solution of (σ(x)ρ(x))′ = τ(x)ρ(x).

At first instance, let us show that under certain conditions related to the classical
orthogonal polynomials, this problem can be completely solved through the following
theorem that acts as the key result of this section.

Theorem 2.2.13. Let us consider Problem 2.2.12. Let ρ(x) ∈ L∞(a, b) and satisfy
condition (2.2.10) on classical orthogonal polynomials. Then, non-trivial solutions,
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yλ(x), satisfying that yλ(x)
√
ρ(x) ∈ L2(a, b) ∩ L∞(a, b) exist only when

λ = λn = −nτ ′(x)− n(n− 1)

2
σ′′(x), n ∈ N ∪ {0}

and have the form (yλ(x) = yλn(x) = yn(x))

yn(z) =
Bn

ρ(z)
[σn(z)ρ(z)](n) .

Therefore, they are the classical orthogonal polynomials associated to the weight
function ρ(x).

Proof. Thanks to Proposition 2.2.11, (λn, yn(x)) are, indeed, non-trivial solution of
Problem 2.2.12, yet, there could be more. Reasoning by contradiction, it can be
proved that they actually constitute the only non-trivial solutions.

For the rest of the proof see [10], Chap. II.9, pages 68-71.

Finally, we show the possible connection of problem (2.2.12) to certain quantum
mechanics problems. For that, let us reconsider problem (1.3.2) for the bound
states region in one dimension, i.e, find all eigenenergies E for which the Schrödinger
equation [

− ℏ2

2m

d2

dx2
+ V (x)− E

]
Ψ(x) = 0, x ∈ R (2.2.12)

has non-trivial solutions ΨE(x) ∈ L∞(R) ∩ L2(R). Then, if (2.2.12) can be reduced
to a (GHE) through a “sufficiently nice” change of variable and, subsequently, to a
(PHDE) through the Nikiforov-Uvarov method; resolution of the previous problem
is equivalent to that of Problem 2.2.12 associated to the obtained (PHDE).

Let us consider that, through the change of variable x = f(s), (2.2.12) can be
transformed into a (GHE) with the usual form (u(s) = Ψ(f(s)))

u′′(s) +
τ̃(s)

σ(s)
u′(s) +

σ̃(s)

σ2(s)
u(s) = 0, s ∈ O = (a, b)

where the eigenenergy E is a parameter in the coefficients. In this way, we can
rewrite it in self adjoint form

(σ(s)ρ̃(s)u′(s))
′
+

(
σ̃(s)

σ(s)

)
ρ̃(s)u(s) = 0

where (σ(x)ρ̃(x))′ = τ(x)ρ̃(x) and we are assuming ρ̃(x) > 0.

Let us also consider that through the change u(s) = y(s)ϕ(s), the previous (GHE) is
transformed into the following (PHDE) as described through the Nikiforov-Uvarov
method:

σ(s)y′′(s) + τ(s)y′(s) + λy(s) = 0, s ∈ O = (a, b),

with an associated ρ(s) > 0 satisfying the usual differential equation.

Then, we begin by considering the following intermediate problem related to the
previous E-parametric (GHE).
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Problem 2.2.14. Find all values of E ∈ R for which the following (GHE)

u′′(s) +
τ̃(s)

σ(s)
u′(s) +

σ̃(s)

σ2(s)
u(s) = 0, s ∈ O = (a, b)

has non-trivial solutions, uE(s), satisfying that uE(s)
√
ρ̃(x) ∈ L2(a, b) ∩ L∞(a, b).

In this way, it can be proven that Problem 2.2.14 is equivalent to Problem 2.2.12.
The part related to non-triviality of solution is obviously equivalent. Therefore,
we only need to check that uE(s)

√
ρ̃(x) ∈ L2(a, b) ∩ L∞(a, b) is equivalent to

yλ(x)
√
ρ(x) ∈ L2(a, b) ∩ L∞(a, b). Through equations (2.1.2), (2.1.3) and defini-

tions of ρ(x) and ρ̃(x), it can be checked that

ρ′(x)

ρ(x)
=
ρ̃ ′(x)

ρ̃(x)
+ 2

ϕ′(x)

ϕ(x)

which implies ρ(x) = ϕ2(x)ρ̃(x) and proves the equivalence. Now, we would need
to prove that Problem 1.3.2 is equivalent to Problem 2.2.14. Obviously, again,
the part related to non-triviality of solution is equivalent. Unfortunately for the
integrability part, this is as far as we can go since it will depend on the particular
change of variable. Therefore, we will need to prove that ΨE(x) ∈ L∞(R) ∩ L2(R)
is equivalent to uE(s)

√
ρ̃(x) ∈ L2(a, b) ∩ L∞(a, b) every time we are dealing with a

certain Schrödinger equation.

We conclude this section by providing a proposition that shall aid us to make
a choice of π(x) during reduction of (GHE) into a (HDE) through the Nikiforov-
Uvarov method so that ρ(x) can satisfy condition (2.2.10) for the classical orthogonal
polynomials.

Proposition 2.2.15. Let ρ(x) satisfy condition (2.2.10) for the classical orthogonal
polynomials on (a, b). Then, τ(x) has to vanish at some point of (a, b) and τ ′(x) < 0.

Proof. See [10], Chap. II.9, page 67.

Therefore, whenever we are dealing with the reduction of a (GHE) previous propo-
sition leads us to choose k and π(x) so that τ(x) is consistent with condition (2.2.10)
as we will be inclined to make use of Theorem 2.2.13 during our report.

Throughout this section, we have mainly aimed to solve the eigenvalue problem
related to the bound states region associated to a particular Schrödinger equation
by distinguishing among all possible solutions of an (HDE) those of integrable square.

In the next section, we shall completely solve the (HDE) by characterising its so-
lution space, that is, finding two independent solutions and, subsequently, as we
attempt to solve the eigenvalue problem related to the unbound states region, we
shall distinguish bounded solution, manually.
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2.2.2 The hypergeometric function

We now attempt to generalise Rodrigues’ formula for arbitrary values of λ ∈ C
so that we may try finding particular solutions for, in principle, every (HDE) and,
ultimately, completely characterise its solution space.

By making use of Cauchy’s integral formula, we may rewrite7

yn(z) =
Bn

ρ(z)
[σn(z)ρ(z)](n) ,

in the following fashion:

yn(z) =
cn
ρ(z)

∫
C

σn(s)ρ(s)

(s− z)n+1ds,

where cn = Bnn!
2πi

and C is a closed contour surrounding s = z. In this particular
case, the fact that n ∈ N ∪ {0} appears in the expressions is due to λ = λn. This
allows us to guess that we should test

y(z) = yν(z) =
cν
ρ(z)

∫
C

σν(s)ρ(s)

(s− z)ν+1ds

as a possible solution of (2.1.6) given ν ∈ C satisfying the relation

λ = λν = −ντ ′(z)− ν (ν − 1)

2
σ′′(z).

Through the following proposition, we shall check that, for an appropriate choice
of the contour, this intuitive approach is correct.

Theorem 2.2.16. Let ν ∈ C such that

λ = λν = −ντ ′(z)− ν (ν − 1)

2
σ′′(z), (2.2.13)

ρ(z) satisfy
[σ(z)ρ(z)]′ = τ(z)ρ(z), (2.2.14)

and
u(z) =

∫
C

σν(s)ρ(s)

(s− z)ν+1ds. (2.2.15)

Then (2.1.6) has the particular solution

y(z) = yν(z) =
cν
ρ(z)

u(z) (2.2.16)

provided that
7Notice yn(z) satisfies a second order differential equation which implies yn(z) ∈ H(Ω) (see

footnote 8) ∀n ∈ N ∪ {0} assuming regularity of the (HDE).
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(1) in calculating u′(z) and u′′(z) we can interchange differentiation with respect
to z and integration with respect to s, that is,

u′(z) = (ν + 1)

∫
C

σνρ(s)

(s− z)ν+2ds, u′′(z) = (ν + 1) (ν + 2)

∫
C

σνρ(s)

(s− z)ν+3ds ,

(2) the contour is chosen so that

σν+1(s)ρ(s)

(s− z)ν+2

∣∣∣∣∣
s1

s2

= 0 , (2.2.17)

where s1 and s2 are the endpoints of C.

Proof. See [10], Chap. I.3, pages 10-11.

In principle, if we were to apply the previous result in constructing particular solu-
tions for (2.1.6), we would face two main problems. On the one hand, interchange
of differentiation with respect to z and integration with respect to s in (2.2.15) is a
process that cannot always be done.

On the other hand, obviously, not every contour C satisfies condition (2.2.17). In
practice, we shall choose contours, C, satisfying that σν+1(s)ρ(s)/ (s− z)ν+2 is zero
at both of its ends, s1,2, which implies condition (2.2.17) is met.

Despite above discussion, we shall be able to construct many particular solutions of
hypergeometric differential equations corresponding to different contours and values
of ν by employing Theorem (2.2.16), under certain restrictions on the parameters
characterizing the particular considered (HDE).

Subsequently, we shall transform the original (HDE) into another (HDE) by means
of the Nikiforov-Uvarov method, since any (HDE) can be seen as a (GHE) with the
particularity that σ̃(z) = λσ(z) and τ̃(z) = τ(z), and construct, again, particular
solutions thanks to Theorem (2.2.16) for the new (HDE) that can be mapped to,
in principle, another particular solution of the original (HDE). In such wise, we,
generally, end up completely characterising the solutions space associated to the
original (HDE) as it constitutes a second order differential equation.

Now, in order to remove the restrictions imposed on the parameters of the (HDE) so
that Theorem 2.2.16 may be employed, we shall make use of analytic continuation.
Therefore, we begin by reviewing certain notions related to analyticity among other
concepts.

Definition 2.2.17. Let Ω ⊂ Ω′ ⊂ C, f : Ω → C and F : Ω′ → C satisfying
that8 F ∈ H(Ω′). Then, if F (z) = f(z) ∀z ∈ Ω ⊂ Ω′, F (z) constitutes an analytic
continuation of f(z).

8H(Ω) denotes the set of all holomorphic functions defined in Ω which is equivalent to analyticity
in Ω.



2.2. The hypergeometric differential equation 35

In addition, if Ω satisfies a certain relation related to Ω′, the possibles analytic
continuations are not infinite. Therefore, we present the principle of analytic con-
tinuation.

Proposition 2.2.18. If Ω contains at least one limit point of Ω′, then f(z) has at
most one analytic continuation to Ω′.

Proof. See [14], Chap. 15.

Furthermore, since we are making an explicit use of integral representations of
particular solutions of a (HDE) whose parameters are restricted to a certain domain
and we are interested in their analyticity so that we may extend that domain of
definition, we shall rely on the following theorem.

Theorem 2.2.19. Let C be a piecewise smooth curve of finite length and f : O =
C×Ω ⊂ C×C → C satisfying that f(z, s) ∈ C(O), f(z, s0) ∈ H(Ω), ∀s0 ∈ C, then,
the function

F (z) =

∫
C

f(z, s)ds

satisfies that F (z) ∈ H(Ω), and

F (n)(z) =

∫
C

∂nf

∂zn
(z, s)ds.

Proof. See [2], Chap. 6.

Notice that the previous theorem also solves problem related to the interchange
of differentiation with respect to z and integration with respect to s in Theorem
2.2.16. In this way, we are only left with the task of finding a contour, C, satisfying
condition (2.2.17). More often than not, this is, indeed, a tough task. To overcome
these issues, we shall, as discussed above, restrict ourselves to a convenient domain
for the parameters defining the (HDE) so that we may find a simple contour (usually
straight lines or segments of straight lines) satisfying what is needed.

In such manner, we would obtain a particular solution y(p; z) (dependence on p is
parametric) for a (HDE) enunciated in Ω ⊂ C that is valid ∀p ∈ Ωp ⊂ Ck, where p
denotes the parameters defining the (HDE). We insist, this solution would be valid
under certain restrictions of the parameters.

Now, since9 y′(p; z) is also a function of hypergeometric type, by continuing ana-
lytically y(p; z) to a greater domain we would also obtain analytical continuation of
y′(p; z) and y′′(p; z) to that greater domain, and, ultimately, of the left hand side of
the (HDE) since the rest of the terms involved are polynomials. This would imply
that the analytic continuation also satisfies the (HDE) but in a greater domain of
the parameters. In other words, we have the following.

9Here, prime denotes derivation with respect to z.
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Proposition 2.2.20. Let a (HDE) enunciated for z ∈ Ω, defined by a set of param-
eters p ∈ Ck and let y(p; z) ∈ H(Ω) be a particular solution of the (HDE) defined
for (p; z) ∈ Ωp×Ω. If ỹ(p; z) ∈ H(Ω′) constitutes an analytic continuation of y(p; z)
to Ω′p × Ω′, then, ỹ(p; z) solves the same (HDE) enunciated for z ∈ Ω′ in the bigger
parametric domain Ω′p

⊂Ωp.

Therefore, this shall be our way of proceeding for the rest of the discussion: reduce
the domain of definition, apply Theorem 2.2.16 in that domain by choosing an ade-
quate contour, obtain linearly independent solutions via Nikiforov-Uvarov method,
analytically continue those solutions and make use of the previous proposition.

To begin with, as for the classical orthogonal polynomials, we shall also reduce our
cases of study. For the rest of the discussion on functions of hypergeometric type,
we shall only consider τ(z) ∈ C1[z] \ C and σ(z) ∈ C2[z] with distinct roots. That
is, we restrict ourselves to (PHDEs) enunciated on the complex plane.

Nonetheless, in this context, the concept of regularity is not relevant. That is the
reason we introduce the following definition.

Definition 2.2.21. An (HDE) on the previous conditions is said to be a reduced
hypergeometric differential equation or, simply, (RHDE).

The fact that we are referring to that particular hypergeometric differential equa-
tion as reduced is just related to the reduction of cases of study rather than to a
simplification of the form. This is just to say, this is merely notation to clarify which
differential equations are being examined.

As a result, we shall be able to reduce every (RHDE) to one of three possible
canonical form through linear transformation of variable, according to the degree of
σ(z). Before introducing the corresponding proposition, we note that these canonical
forms could be those described at the previous section: the Jacobi, Laguerre and
Hermite forms. However, we shall introduce the following canonical forms, as main
results are usually constructed on those terms.

Proposition 2.2.22. Every (RHDE) can be reduced through linear changes of vari-
ables and by making an adequate definition of the parameters to one the three fol-
lowing canonical equations:

(1) the Gauss’s hypergeometric equation

z (1− z)u′′(z) + [γ − (α + β + 1) z]u′(z)− αβu(z) = 0, (2.2.18)

which satisfies that

ρ(z) = zγ−1 (1− z)α+β−γ , ν = −α, −β; (2.2.19)

(2) the confluent hypergeometric equation

zu′′(z) + (γ − z)u′(z)− αu(z) = 0,

which satisfies that
ρ(z) = zγ−1e−z, ν = −α;
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(3) the Hermite equation

u′′(z)− 2zu′(z) + 2αu(z) = 0,

which satisfies that
ρ(z) = e−z

2

, ν = α.

Proof. As for the polynomials, since any (RHDE)

σ(s)u′′(s) + τ(s)u′(s) + λu(s) = 0, τ(s) ∈ C1[s] \ C, σ(s) ∈ C2[s] (2.2.20)

is an homogeneous (ODE), the coefficient of the leading term can be chosen arbitrar-
ily. In this way, it can be checked that every (RHDE) falls into one of the following
three categories:

(1)

{
σ(s) = (b− s)(s− a)

τ(s) = − (α + β + 1) s+ γ(b− a) + (α + β + 1) a,
(2)

{
σ(s) = s− a

τ(s) = cs+ γ − ca,

(3)

{
σ(s) = 1

τ(s) = cs+ d,

where, remember, we are considering a ̸= b. Notice how coefficients of τ(s) are ex-
pressed in such a way that, through the following linear transformations of variables,
the (RHDE) is reduced to one of the canonical forms.

We start by analyzing case (1). By making the change of variable s = a+ (b− a)z,
(2.2.20) is reduced to the form

z(1− z)u′′(z) + τ(a+ (b− a)z)
1

b− a
u′(z) + λu(z) = 0

which translates to

z (1− z)u′′(z) + [γ − (α + β + 1) z]u′(z) + λu(z) = 0.

It can be noticed that in choosing α, β ∈ C, there is a certain indetermination as
long as α + β remains constant. Therefore, so that it matches Gauss’s equation’s
form, they are chosen in such a way that λ = −αβ.

For case (2), by making z = c (a− s), the (RHDE) is transformed to

−czu′′(z)− c

[
τ(a)− τ ′(a)

c
z

]
u′(z) + λu(z) = 0

which implies

zu′′(z) + (γ − z)u′(z)− λ

c
u(z) = 0.

Now, by defining α = −λ
c
, confluent hypergeometric equation is reached.

Lastly, for case (3), by making cs = −d + z
√
−2c, the considered (RHDE) can be

reduced to
u′′(z)− 2zu′(z)− 2λ

c
u(z) = 0

which reduced to the Hermite equation if we define αc = −1.

The rest of results are obtained by making use of equations (2.2.13) and (2.2.14).
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With these canonical representations, we shall start constructing particular solu-
tions under certain restrictions of z and the parameters α, β and γ. In principle, the
results we are about to present can be obtained for the confluent hypergeometric
and Hermite equations, yet, for the sake of concision, we shall content ourselves
with particularizing them to the Gauss’s hypergeometric equation, since this is the
equation we will need to solve in the corresponding chapter when we introduce the
Rosen-Morse potential.

Proposition 2.2.23. Consider the following Gauss’s hypergeometric differential
equation:

z (1− z)u′′(z) + [γ − (α + β + 1) z]u′(z)− αβu(z) = 0, z ∈ (0, 1).

Then, assuming t ∈ [0, 1], the following contours satisfy condition (2.2.17) for the
previous (HDE) under the parametric restrictions specified:

(1) s = zt, ℜ(γ) > ℜ(α) > 2, s1 = 0, s2 = z;

(2) s = 1− (1− z) t, ℜ(γ) < ℜ(β) + 1, ℜ(α) > 2, s1 = 1, s2 = z − 1;

(3) s = z/t, ℜ(β) > 1, ℜ(α) > 2, s1 → ∞, s2 = z.

In this manner, their associated particular solutions, u(z), are written in the form

u(z) = F (α, β, γ; z),

u(z) = F (α, β, α + β − γ + 1; 1− z), (2.2.21)
u(z) = z−αF (α, α− γ + 1, α− β + 1; 1/z), (2.2.22)

respectively, where

F (α, β, γ; z) =
Γ(γ)

Γ(α)Γ(γ − α)
(1− z)γ−α−β

∫ 1

0

tγ−α−1 (1− t)α−1 (1− zt)−β dt

(2.2.23)
is the so-called Gauss’s hypergeometric function or, simply, hypergeometric function
and Γ(z) is the gamma function10.

Proof. For the Gauss’s hypergeometric equation, condition (2.2.17) translates to

p(s2)− p(s1) = sγ−α (1− s)β−γ+1 (s− z)α−2
∣∣∣s2
s1
= 0

since ρ(z) and ν is given by (2.2.19). Therefore, it can be checked that under the
restrictions specified, p(s1) = p(s2) = 0 for each one of the cases.

10The gamma function Γ(z) is defined as follows:∫ ∞

0

e−ttz−1dz, ℜ(z) > 0

and can be analytically extended to C \ (Z− ∪ {0}).
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Regarding the particular solution, it can be seen that

f(t, z) = tγ−α−1 (1− t)α−1 (1− zt)−β

satisfies that f(t, z) ∈ C((0, 1) × (0, 1)) and f(t0, z) ∈ H(0, 1) for every t0 ∈ (0, 1)
which means that Theorem 2.2.19 can be employed to justify interchange of inte-
gration and differentiation.

Therefore, accordingly to Theorem 2.2.16, (2.2.23) constitutes a particular solution
of the Gauss’s hypergeometric equation enunciated whenever ℜ(γ) > ℜ(α) > 2.

The rest of the particular solutions are obtained similarly.

To finalize, we just note that the constant is chosen so that F (α, β, γ; 0) = 1. In
principle, we are solving the (HDE) on (0, 1). Nonetheless, it can be checked that
the integral representation has no further problem at z = 0 given the restrictions
imposed.

As we advanced before, the number of these particular solutions can be increased
by transforming the equation through means of the Nikiforov-Uvarov method. This
is achieved through the following proposition.

Proposition 2.2.24. Given a particular solution, u1(z) = f(α, β, γ; z), of the equa-
tion

z (1− z)u′′(z) + [γ − (α + β + 1) z]u′(z)− αβu(z) = 0,

the following functions also constitute solutions for the previous equation:

u2(z) = z1−γf(α− γ + 1, β − γ + 1, 2− γ; z), (2.2.24)

u3(z) = (1− z)γ−α−β f(γ − α, γ − β, γ; z), (2.2.25)
u4(z) = f(β, α, γ; z). (2.2.26)

Proof. We begin by transforming the previous Gauss’s hypergeometric equation ac-
cordingly to the Nikiforov-Uvarov method and the identification σ(z) = z(1 − z),
τ̃(z) = γ − (α + β + 1) z and σ̃(z) = −αβσ(z).

To that purpose, we make use of Proposition 2.1.4 which tells us that our first step
is to find k ∈ C satisfying that ∆P2(k) = 0 where, in our case,

P2(z; k) =

[
1− γ + (α + β − 1) z

2

]2
+ (k + αβ)z(1− z).

In this way, by setting the discriminant to zero, we obtain the following two possible
values for k:

k1 = −γ2 + (β + α + 1) γ − (α + 1)β − α, k2 = −αβ.

In principle, we discard the transformation that k = k2 would provide us since
it would be redundant. In any case, by putting k = k1, we obtain the following
possibilities for π(z) and ϕ(z) (recall equations (2.1.7) and (2.1.2)):
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(1) π1(z) = (1− γ)(1− z), ϕ1(z) = z1−γ

(2) π2(z) = (α + β − γ)z, ϕ2(z) = (1− z)γ−α−β.

Now, since λ = k + π′(z) and τ(z) = τ̃(z) + 2π(z), we obtain accordingly to the
previous possibilities:

(1) λ1 = −(α− γ + 1)(β − γ + 1), τ1(z) = z (−α− β − 3 + 2γ) + 2− γ,

(2) λ2 = −(γ − α)(γ − β), τ2(z) = γ + z (α + β − 2γ − 1).

This produces the following two (HDE) that can be mapped to successive Gauss’s
hypergeometric equations with a redefinition of parameters as suggested:

z(1− z)y′′(z) + [2− γ − (α + β − 2γ + 3)z] y′(z)− (α− γ + 1)(β − γ + 1)y(z) = 0,

α′ = α− γ + 1, β′ = β − γ + 1, γ′ = 2− γ.

z(1− z)y′′(z) + [γ + (α + β − 2γ − 1) z] y′(z)− (γ − α)(γ − β)y(z) = 0,

α′′ = γ − α, β′′ = γ − β, γ′′ = γ.

By remembering solutions for original (HDE), u(z), can be obtained by multiplying
solutions of the transformed (HDE), y(z), by the factor ϕ(z), we find the following
new solutions:

u2(z) = z1−γf(α− γ + 1, β − γ + 1, 2− γ; z),

u3(z) = (1− z)γ−α−β f(γ − α, γ − β, γ; z),

u4(z) = f(β, α, γ; z).

where u4(z) is reached just by taking into account that any Gauss’s hypergeometric
equation is unchanged whenever α and β are interchanged.

From Proposition 2.2.23 we obtained a particular solution for (2.2.18) and, thanks
to the previous proposition, we may extend the number of (possibly independent)
solutions, by taking f(α, β, γ; z) = F (α, β, γ; z) in equations (2.2.24), (2.2.25) and
(2.2.26).

The integral representation defining these four solutions exist simultaneously pro-
vided that 0 < ℜ(α) < 1 and 0 < ℜ(γ − α) < 1. Under such restrictions, it can
be noticed that functions u1(z) and u2(z) are linearly independent whenever γ ̸= 1
since they behave differently as11 z → 0. Since, any (HDE) is a second order (ODE),

11Accordingly to previous discussion, u1(z) = F (α, β, γ, z) → 1 as z → 0, which implies that
u2(z) = z1−γF (α− γ+1, β− γ+1, 2− γ; z) → 0 whenever ℜ(1− γ) > 0 and u2(z) → ∞ whenever
ℜ(1 − γ) < 0 as z → 0. When ℜ(1 − γ) = 0, u2(z) oscillates as z → 0 and independence is not
clear. Nonetheless, we shall see that they are, indeed, linearly independent given γ ̸= 1.
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there must be a relation among the ui(z) solutions. By comparing their behaviour,
we find that

F (α, β, γ; z) = (1− z)γ−α−β F (γ − α, γ − β, γ; z),

F (α, β, γ; z) = F (β, α, γ; z).

In this way, we may, accordingly to Theorem (2.2.16), replace the integral represen-
tation in (2.2.23) by the simpler representation

F (α, β, γ; z) =
Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0

tα−1 (1− t)γ−α−1 (1− zt)−β dt

provided that the conditions imposed on the parameters hold. Because of the latter,
it might seem that we are not interested in simplifying the integral expression at the
expense of reducing the parametric domain of the solution, since, as we have dis-
cussed above, our aim is to find explicit representations for the solutions of (2.2.18)
in the greatest possible domain.

Nonetheless, through the following proposition, we shall show that the hypergeo-
metric function, F (α, β, γ, z), defined by the latter integral representation is analytic
in a domain bigger than that imposed for the representation in (2.2.23).

Proposition 2.2.25. The hypergeometric function, F (α, β, γ; z), defined by the in-
tegral representation

F (α, β, γ; z) =
Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0

tα−1 (1− t)γ−α−1 (1− zt)−β dt (2.2.27)

is analytic in each α, β, γ and z in the domain defined by the restrictions ℜ(γ) >
ℜ(α) > 0, |arg(1− z)| < π.

Proof. See [10], chap. IV.20, pages 262-263.

With this, we have analytically continued (2.2.23) and we would be in a good
position to make use of Proposition 2.2.20. However, through (2.2.27), we can obtain
a series representation for F (α, β, γ; z) that shall enlarge the domain of analyticity
even further. This is presented in the next proposition.

Proposition 2.2.26. The so-called hypergeometric series
∞∑
n=0

(α)n(β)n
(γ)nn!

zn (2.2.28)

constitutes an analytic continuation for F (α, β, γ; z) to the domain defined by the
restrictions γ ̸= −k, ∀k ∈ N ∪ {0} and |z| < 1, where

(a)0 = 1, (a)n = a(a+ 1)...(a+ n− 1) =
Γ(a+ n)

Γ(a)

is the so-called Pochhammer symbol.
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Proof. To begin with, we expand the term (1 − zt)−β appearing in (2.2.27) in its
power series. It can be found that

(1− zt)−β =
∞∑
n=0

(β)n(zt)
n

n!

which converges uniformly for 0 ≤ t ≤ 1 provided that |z| < 1. Therefore, we may
interchange summation and integration symbols in (2.2.27) which implies that, for
ℜ(γ) > ℜ(α) > 0,

F (α, β, γ; z) =
Γ(γ)

Γ(α)Γ(γ − α)

∞∑
n=0

(β)n
n!

zn
∫ 1

0

tn+α−1(1− t)γ−α−1dt

=
∞∑
n=0

(α)n(β)n
(γ)nn!

zn,

where the last equality follows from the definition of the Euler’s beta function [11,
equation (5.12.1)]. By D’Alembert’s test, the series converges uniformly in all pa-
rameters in every compact subset of their domain not containing negative integral
or zero values of γ, provided that |z| < 1. Thus, by Weierstrass’s theorem, the series
represents an analytic function in all variables under the restrictions imposed.

Before, analysing its analytic properties, we notice that provided that α or β is a
negative integer, the series is cut and, therefore, a polynomial arises. This property
will be used later on when solving the Schrödinger equation.

In principle, we are reducing the domain of z variable through this series represen-
tation. Nonetheless, we shall see how the problem we are to solve in Chapter 3 is
enunciated for z ∈ (0, 1) which means we shall find no further inconveniences. On
the other hand, what really matters is that we have extended the parametric domain
of the solution to almost every value for the parameters α, β and γ.

In this way, thanks to Proposition 2.2.20, by defining

F (α, β, γ; z) =
∞∑
n=0

(α)n(β)n
(γ)nn!

zn,

it solves (2.2.18) enunciated on every Ω ⊂ {z ∈ C : |z| < 1} provided that the
γ ̸= −k is fulfilled. Furthermore, assumed that γ ̸= 0,±1,±2, ... both series repre-
sentation for u1(z) = F (α, β, γ; z), u2(z) = z1−γF (α−γ+1, β−γ+1, 2−γ; z) would
exist and be linearly independent which would completely characterise the space so-
lution for the corresponding Gauss’s hypergeometric equation. To summarize these
results, we present the following.

Proposition 2.2.27. Let the Gauss’s hypergeometric equation

z (1− z) y′′(z) + [γ − (α + β + 1) z] y′(z)− αβy(z) = 0, z ∈ Ω,

let Ω ⊂ {z ∈ C : |z| < 1} and let γ ̸= k, ∀k ∈ Z. Then, u1(z) = F (α, β, γ; z) and
u2(z) = z1−γF (α−γ+1, β−γ+1, 2−γ; z) defined through their series representation
from (2.2.28) both solve the previous equation and are linearly independent.
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With this, we have reached a convenient and useful result. However, when solving
the Schrödinger equation with a Rosen-Morse potential we shall encounter two main
issues. First of them is related to the fact that we shall face the case γ ∈ Z+ \ {0}
which is not covered through previous proposition. The other one is related to
the fact that we shall need to distinguish wave solution that are bounded from the
unbounded ones.

Again, for the sake of concision, we shall solve these issues by presenting a series of
propositions regarding asymptotic behaviour, Wronskians and functional equations
associated to the hypergeometric function that shall serve of good use subsequently.
Therefore, we commence by clarifying the asymptotic behaviour of the hypergeo-
metric series.

Proposition 2.2.28. The hypergeometric series

F (α, β, γ; z) =
∞∑
n=0

(α)n(β)n
(γ)nn!

zn

converges inside the unit circle, |z| < 1 provided γ is not zero or a negative integer.
Outside the unit circle, |z| > 1 the series, in general, diverges. On the unit circle,
|z| = 1, the series is absolutely convergent, provided ℜ(γ − α − β) > 0. The series
converges but not absolutely, for |z| = 1, z ̸= 1, as long as −1 < ℜ(γ − α− β) ≤ 0.
If ℜ(γ − α− β) ≤ −1 the series diverges on |z| = 1.

Proof. See [7], chap. 5, pages 64-66.

In fact, regarding the behaviour as z → 1− we have a much more precise result.

Proposition 2.2.29 ([11], §15.4(ii)). The following relations are satisfied by the
hypergeometric function:

(1) If ℜ(γ − α− β) > 0, then

F (α, β, γ; 1) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
.

(2) If γ − α− β = 0, then

lim
z→1−

F (α, β, γ; z)

− ln(1− z)
=

Γ(γ)

Γ(α)Γ(β)
.

(3) If ℜ(γ − α− β) = 0 but c ̸= a+ b, then

lim
z→1−

(1− z)α+β−γ
(
F (α, β, γ; z)− Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)

)
=

Γ(γ)Γ(α + β − γ)

Γ(α)Γ(β)
.

(2.2.29)
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(4) If ℜ(γ − α− β) < 0, then

lim
z→1−

F (α, β, γ; z)

(1− z)γ−α−β
=

Γ(γ)Γ(α + β − γ)

Γ(α)Γ(β)
.

Furthermore, in increasing the number of solutions through Proposition 2.2.24, we
may have considered particular solutions (2.2.21), (2.2.22) as u1(z) and, in principle,
obtain a proper characterization for the solution space of a certain Gauss’s hyper-
geometric equation enunciated in a particular domain. In such manner, we could
obtain results similar to Proposition 2.2.27.

Yet, we shall content ourselves with the following proposition regarding the Wron-
skian12, W [u1(z), u2(z)], of u1(z) and its associated u2(z) accordingly to Proposition
2.2.24.

Proposition 2.2.30 ([11], §15.10(i)). The following relations are satisfied:

(1) If we take u1(z) = F (α, β, γ; z), then

u2(z) = z1−γF (α− γ + 1, β − γ + 1, 2− γ; z),

W [u1(z), u2(z)] = (1− γ) z−γ (1− z)γ−α−β−1 .
(2.2.30)

(2) If we take u1(z) = F (α, β, α + β + 1− γ; 1− z), then

u2(z) = (1− z)γ−α−β F (γ − α, γ − β, γ − α− β + 1; 1− z),

W [u1(z), u2(z)] = (α + β − γ)z−γ (1− z)γ−α−β−1 .
(2.2.31)

(3) If we take u1(z) = z−αF (α, α− γ + 1, α− β + 1; 1/z), then

u2(z) = z−βF (β, β − γ + 1, β − α + 1; 1/z),

W [u1(z), u2(z)] = (α− β)z−γ (z − 1)γ−α−β−1 .

With views of effectively making use of previous proposition, we introduce the
following basic result regarding Wronskians and linear independence of solutions of
a certain homogeneous (ODE).

Proposition 2.2.31. Let u1(z), u2(z) be two solutions of the homogeneous differ-
ential equation

u′′(z) + P (z)u′(z) +Q(z)u(z) = 0, z ∈ Ω

where Ω ⊂ C is an open subset, P (z), Q(z) ∈ C0(Ω). Then, their Wronskian,
W [u1(z), u2(z)] is either identically zero or never zero on Ω.

12The Wronskian associated to a pair of functions, ui(z) i = 1, 2, is defined as follows

W [u1(z), u2(z)] = u1(z)u
′
2(z)− u′1(z)u2(z).



2.2. The hypergeometric differential equation 45

Furthermore, u1(z) and u2(z) are linearly dependent if and only if there exists z0 ∈
Ω satisfying that W [u1(z0), u2(z0)] = 0. Similarly, u1(z) and u2(z) are linearly
independent if and only if there exists z0 ∈ Ω satisfying that W [u1(z0), u2(z0)] ̸= 0.

Moreover, for the case Ω = (a, b) ⊂ R, if there exists
∫
I
P (x)dx on any interval

I ⊂ Ω, then u1(x) and u2(x) are linearly dependent provided that

lim
x→a

W [u1(z), u2(z)] = 0 or lim
x→b

W [u1(z), u2(z)] = 0.

Proof. See [7], Chap. 2.2.

In principle, we shall need to be careful when using Proposition 2.2.31 when dealing
with a (RHDE) since, in order to write the differential equation in the form described
above, we shall have to divide it by σ(z) which may cause that P (z) orQ(z) /∈ C0(Ω).
However, since the (HDE) we shall deal with later on will come from a (GHE), we will
find no further problem in that regard, given that σ(z) appears in the denominator
in any (GHE).

Therefore, for instance, accordingly to Proposition 2.2.31 and relation (2.2.30), we
shall argue that u1(z) = F (α, β, γ; z) and its associated u2(z) are linearly indepen-
dent whenever γ ̸= 1 considered Ω = (0, 1) ⊂ R, which justifies the discussion
above.

In addition, thanks to Proposition 2.2.31, we can construct propositions similar to
Proposition 2.2.27 where the protagonists are the ui(z) defined in cases (2) and (3).
We shall make use of this idea to deal with the case γ ∈ Z+ \ {0}.

Now, we present a series of functional equations connecting the hypergeometric
functions of different arguments introduced in Proposition 2.2.23 to each other and
to the Jacobi polynomials introduced in the previous section. This shall serve of
good use when studying the asymptotic behaviour of the wave solutions.

Proposition 2.2.32 ([11], §15.9(i) and §15.10(ii).). The following relations are sat-
isfied:

F (α, β,γ; z) = Γ1(α, β, γ)F (α, β, α + β − γ + 1; 1− z)

+ Γ2(α, β, γ) (1− z)γ−α−β F (γ − α, γ − β, γ − α− β + 1; 1− z),
(2.2.32)

F (α, β,γ; z) = Γ3(α, β, γ)(−z)−αF (α, α− γ + 1, α− β + 1; 1/z)

+ Γ4(α, β, γ) (−z)−β F (β, β − γ, β − α; 1/z), |arg(−z)| < π

where

Γ1(α, β, γ) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
, Γ2(α, β, γ) =

Γ(γ)Γ(α + β − γ)

Γ(α)Γ(β)
,

Γ3(α, β, γ) =
Γ(γ)Γ(β − α)

Γ(β)Γ(γ − α)
, Γ4(α, β, γ) =

Γ(γ)Γ(α− β)

Γ(α)Γ(γ − β)
.
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In addition, the Jacobi polynomials can be written in terms of the hypergeometric
as follows

P (α, β)
n (s) =

(1 + α)n
n!

F

(
−n, n+ α + β + 1, 1 + α;

1− s

2

)
, (2.2.33)

whenever α ̸= −2,−3, ....

In this manner, we are in a good position to solve the Schrödinger equation with a
Rosen-Morse potential as we shall present in the following chapter.



Chapter 3

The Schrödinger equation with a Rosen-Morse
potential

In the present chapter, we consider the resolution of the Schrödinger equation

− ℏ2

2m

d2Ψ(x)

dx2
+ V (x)Ψ(x) = EΨ(x),

associated to a Rosen-Morse potential, that is, a potential of the form

V (x) = V0 cosh
2 µ

[
tanh

(
x− µl

l

)
+ tanhµ

]2
, x ∈ R. (3.0.1)

As we introduced earlier, resolution of the Schrödinger problem shall be understood,
in a first step, as solving the associated eigenvalue problem of the Hamiltonian oper-
ator, Ĥ = − ℏ2

2m
d2

dx2 + V (x), in the sense stated in Problem 1.3.2. To summarize, we
shall consider the eigenvalue problem in the strict sense (eigenfunctions belonging to
L2(R)) whenever we are dealing with bound states regions and in the extended sense
(eigenfunctions belonging to L∞(R) and, subsequently, interpreted as functionals)
whenever we are dealing with unbound states regions.

Furthermore, its resolution shall not only provide us a characterization of the wave
dynamics of an hypothetical particle subjected to the above potential but also a
series of applications related to the stability problem for a family of nonlinear Klein-
Gordon equations, among others. Therefore, we commence completing the first step
by using the results we obtained in Chapter 2.

3.1 The solution for µ > 0, V0 > 0

In such manner, let us start by considering a particle of mass m in a potential field
of the above form, that is, the one depicted in equation (3.0.1) propagating in the
whole one-dimensional real axis, R.

In principle, V0, µ and l shall act as parameters of the problem. For the sake of

47
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simplicity, µ and l ̸= 0 can be taken to be positive1. Regarding2 V0 ̸= 0, its sign
does change the nature of the physical problem. We shall only consider the case in
which V0 is positive. This is, we are setting V0, l, µ ∈ R+ \ {0}.

Nevertheless, for the sake of simplicity we shall assume, for the moment, that µ ̸= 0.
All of the results we shall obtain for µ > 0 will also be valid for µ = 0. In the next
section, we shall particularize the solutions for the latter scenario and discuss its
peculiarities.

Therefore, since µ > 0, the potential asymptotic behaviour is asymmetric and, in
this way, we are able to distinguish three different ranges of energy which shall
result in three different state regions: one bound and two unbound state regions.
In addition, these regions are, obviously, delimited by the asymptotic values, V± =
limx→±∞ V (x) = V0e

±2µ ∈ R+ \ {0}. Notice that 0 < V− < V+.

V−

V+

V (x)

x

Bound states

V (x)

Reflecting states

Free states

Figure 3.1: Potential V (x) = V0 cosh
2 µ

[
tanh

(
x−µl

l

)
+ tanhµ

]2
.

Consequently, we may distinguish (see figure 3.1) three different energy states re-
gions:

(R1) E ∈ (0, V−). This is the so-called bound states region, where the particle
would be classically confined in a finite region of space and the eigenvalue
problem would be enunciated in the strict sense.

(R2) E ∈ [V−, V+). This is the so-called reflecting states region which constitutes
an unbound states region, where the particle could reach −∞ but not +∞ and
square-integrability condition on its wave eigenfunction could be dropped and
substituted with a bounded condition.

1The rest of the cases involving the signs of µ and l can be reduced to, as we shall see explicitly
later on, the previous one, except for µ = 0 which shall be discussed separately. l = 0 would make
no sense.

2V0 = 0 would mean V (x) = 0 which is not of interest to be considered here.
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(R3) E ∈ [V+,∞). This is the so-called free states region which also constitutes
an unbound states region, where the particle could reach any point in the
one-dimensional space and its wave function would only need to be bounded.

In addition, we shall denote to any wave function solution associated to the region
(R1) as bound solution meaning the potential binds the particle to a finite space.
As for the regions (R2) and (R3), any of their associated wave solutions shall be
denoted as unbound solutions.

Subsequently, we shall treat each region accordingly to this distinction. In order
to carry out this task, we shall start by reducing the time-independent Schrödin-
ger equation associated to the potential (3.0.1), which, recall, is equivalent to the
eigenvalue equation, for x ∈ R

− ℏ2

2m

d2Ψ(x)

dx2
+ V0 cosh

2 µ

[
tanh

(
x− µl

l

)
+ tanhµ

]2
Ψ(x) = EΨ(x), (3.1.1)

to a (GHE). We begin by making z = x−µl
l

and multiplying (3.1.1) by the factor
2ml2/ℏ2. This results in the equation[

d2

dz2
− 2ml2

ℏ2
V0 cosh

2 µ (tanh z + tanhµ)2 +
2ml2

ℏ2
E

]
Ψ(z) = 0, z ∈ R.

To simplify the notation, we may define v0 := 2ml2

ℏ2 V0 and ε := 2ml2

ℏ2 E and rewrite
previous equation as follows[

d2

dz2
− v0 cosh

2 µ (tanh z + tanhµ)2 + ε

]
Ψ(z) = 0, z ∈ (−∞,∞). (3.1.2)

At this point, we might as well notice that, if we define

v(z) = v0 cosh
2 µ (tanh z + tanhµ)2 ,

this function acts as the potential for the z variable and the facts remarked above
for V (z) are inherited by v(z) just by substituting V for v and E for ε. Thus, ε ∈ R
shall now act as the transformed eigenenergy that needs to be found in order to
solve the eigenvalue problem.

Our first step, then, is to transform (3.1.2) into a (GHE) so that we can make use of
the method described in the previous sections. To this purpose, we set u = − tanh z
and, by dividing the obtained equation by (1 − u2)2 (which is non-zero for every
u = − tanh z since −1 < tanh(z) < 1), (3.1.2) is transformed into[

d2

du2
− 2u

1− u2
d

du
+
ε− v0 cosh

2 µ (u− tanhµ)2

(1− u2)2

]
Ψ(u) = 0, u ∈ (−1, 1), (3.1.3)

where we can easily identify

τ̃(u) = −2u, σ(u) = 1− u2, σ̃(u) = ε− v0 cosh
2 µ (u− tanhµ)2 . (3.1.4)

In short, we are dealing with a generalized hypergeometric equation. As schematized
in the previous section, our next task is to convert the resolution of (3.1.3) into the
resolution of a (HDE). To such purpose, we present the following proposition.
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Proposition 3.1.1. By means of the Nikiforov-Uvarov method, resolution of gen-
eralized hypergeometric equation (3.1.3) can be reduced to that of any of the four
hypergeometric equations defined by the following pairs3 of (τ(u; ε), λ(ε))

τ+(u; ε) = 2 (±b+(ε)− 1)u∓ 2a+(ε), λ+(ε) = k+(ε)± b+(ε), (3.1.5)
τ−(u; ε) = 2 (±b−(ε)− 1)u∓ 2a−(ε), λ−(ε) = k−(ε)± b−(ε), (3.1.6)

where, notice, each line contains two possibilities and we have defined the following
parameters as functions4 of ε

a±(ε) =
v0 coshµ sinhµ√
v0 cosh

2 µ− k±(ε)
, b±(ε) =

√
v0 cosh

2 µ− k±(ε), (3.1.7)

depending parametrically on the (transformed) eigenenergy, ε, through k±(ε) given
by

k±(ε) =
ε+ v0

2
±

√(
ε+ v0

2

)2

− v0ε cosh
2 µ. (3.1.8)

Proof. Accordingly to Proposition 2.1.4, we need to find k ∈ C satisfying that

P2(u; k) =

(
σ′(u)− τ̃(u)

2

)2

− σ̃(u) + kσ(u) ∈ C2[u]

is the square of a polynomial P1(u) ∈ C1[u] so that by choosing

π(u) =
σ′(u)− τ̃(u)

2
±
√
P2(u; k)

we may, indeed, transform (3.1.3) into a (HDE) through Proposition 2.1.2. By
taking a look to (3.1.4), we find that

π(u) = ±
√
P2(u; k),

P2(u; k) =
(
v0 cosh

2 µ− k
)
u2 − v0 sinh 2µu+ k − ε+ v0 sinh

2 µ.

Now, in order for P2(u; k) to be a perfect square, we impose that ∆P2(k) = 0. By
expanding ∆P2(k) we end up obtaining

k2 − k(ε+ v0) + v0ε cosh
2 µ = 0,

which implies that k± must satisfy the following equality:

k±(ε) =
ε+ v0

2
±

√(
ε+ v0

2

)2

− v0ε cosh
2 µ,

3Recall any (HDE) is written in the form

σ(z)y′′(z) + τ(z)y′(z) + λy(z) = 0.

In addition, if the (HDE) proceeds from a (GHE), σ(z) is inherited. In our case, σ(z) = 1− z2.
4We shall check that a(ε) is well-defined for every positive ε, at least, for the minus case, i.e.,

for a−(ε).
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that is (3.1.8), where it is worth noting that the solution depends on the eigenvalue
ε. Now, we need only to remember that τ(u) = 2π(u) + τ̃(u) and λ = k + π′(u)
to obtain the rest of the pairs (τ(u; ε), λ(ε)). Notice that we have obtained four
possibilities as is (generally) predicted in Chapter 2 and they posses the Jacobi
canonical form.

In such manner, we have obtained four different (HDE) whose resolution is equiv-
alent to that of the original (GHE). However, since, as we discussed earlier, we
distinguish three different regions of energy and in each region we are interested
in finding wave functions with different properties, it becomes necessary to analyze
real or complex nature (among other properties) of the parameters a±(ε), b±(ε) and
k±(ε) so that we may make an appropriate choice of (HDE).

In particular, for the bound states region5, ε ∈ (0, v−), we shall be interested in
applying Theorem 2.2.13 to the chosen (HDE) and, to that purpose, Proposition
2.2.15 hints us toward the adequate choice by stating that if ρ(u) satisfies condition
(2.2.10) for the classical orthogonal polynomial on R, then τ ′(u) < 0. Equations
(3.1.5) and (3.1.6) tell us that τ ′(u; ε) = 2(±b(ε) − 1) which would be negative
provided that b(ε) ∈ R+ and we picked the lower option, i.e., the minus sign. Let
us show that this is, in effect, our case if we make use of the pair (τ−(u; ε), λ−(ε))
given by (3.1.6).

Lemma 3.1.2. Let k(ε) = k−(ε) given by equation (3.1.8), then b(ε) = b−(ε) =√
v0 cosh

2 µ− k(ε) satisfies that b(ε) ∈ R+ \ {0} for every ε ∈ (0, v−), that is, for
region (R1).

Proof. As a first step, we analyze k±(ε). We recall that

k±(ε) =
ε+ v0

2
±

√
q(ε), q(ε) =

(
ε+ v0

2

)2

− v0ε cosh
2 µ

where, if we impose q(ε) = 0, we find that ε = ε± = v± = v0e
±2µ which are the

asymptotic values for v(z). By factorizing the polynomial q(ε), we may rewrite
(3.1.8) in the following manner:

k±(ε) =
ε+ v0

2
± 1

2

√
(v+ − ε)(v− − ε).

This implies that

2k±(ε) =


ε+ v0 ±

√
(v+ − ε)(v− − ε) ∈ R, ε ∈ (0, v−) =⇒ bound states,

ε+ v0 ± i
√
(v+ − ε)(ε− v−) ∈ C, ε ∈ [v−, v+) =⇒ reflecting states,

ε+ v0 ±
√

(ε− v+)(ε− v−) ∈ R, ε ∈ [v+,+∞) =⇒ free states.

which shall prove to be an useful decomposition later on. Now, let us show that
b(ε) ∈ R+ \ {0} for every ε ∈ (0, v−). It is sufficient to show that v0 cosh2(µ) −
k(ε) > 0.

5Recall properties for V (x) were inherited by v(z) just by substituting V for v and E for ε.
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In effect, by examining equation (3.1.8) and noticing that q(ε) <
(
ε+v0
2

)2 for all
positive ε, we can justify that 0 ≤ k(ε) ≤ ε+v0

2
for the bound states region which

ultimately implies that

v0 cosh
2 µ−k− ≥ v0 cosh

2 µ−ε+ v0
2

> v0 cosh
2 µ−v0

1 + e−2µ

2
=
v0
4

(
e2µ − e−2µ

)
> 0,

where, in the second inequality, we have made use of the condition ε < v−. Also,
notice that b(ε) ∈ R+ \ {0} implies a(ε) = v0 coshµ sinhµ b

−1(ε) it is not only
well-defined but also satisfies a(ε) ∈ R+ \ {0}.

With this result, we could solve the Schrödinger equation for the bound states
region. Nevertheless, before proceeding any further we shall continue our analysis
of the parameters in the rest of the regions.

To begin with, we shall get rid of the possibilities provided by the first line of
equation (3.1.6), that is, those coming from choosing k(ε) = k+(ε). In this way, we
redefine the parameters by making a(ε) := a−(ε), b(ε) := b−(ε) and k(ε) := k−(ε)
so that we stop dragging the “−” subindex. Remember a−(ε), b−(ε) and k−(ε) are
given by equations (3.1.7) and (3.1.8), respectively. This means, our last choice to
make is the sign of the square root in b(ε) (which, notice, is equivalent to the ±
choice fixed k).

For the region (R1), Lemma 3.1.2 plus Proposition 2.2.15 points us to choosing the
negative root. For regions (R2) and (R3), since we are not making use of any partic-
ular theorem, resolution of any of the four (HDE) by means of the hypergeometric
function would be enough. However, we shall choose the (HDE) that provides us
the wave solution with the most direct physical interpretation. To that purpose, we
provide the following auxiliary lemma that provides a good representation of the
parameters a(ε) and b(ε).

Lemma 3.1.3. The parameters a(ε) and b(ε) previously defined in (3.1.7) can be
written in the form

a(ε) =


1

2

√
v+ − ε− 1

2

√
v− − ε, ε ∈ (0, v−) =⇒ bound states,

1

2

√
v+ − ε− i

2

√
ε− v−, ε ∈ [v−, v+) =⇒ reflecting states,

− i

2

√
ε− v+ − i

2

√
ε− v−, ε ∈ [v+,+∞) =⇒ free states,

(3.1.9)

b(ε) =


1

2

√
v+ − ε+

1

2

√
v− − ε, ε ∈ (0, v−) =⇒ bound states,

1

2

√
v+ − ε+

i

2

√
ε− v−, ε ∈ [v−, v+) =⇒ reflecting states,

− i

2

√
ε− v+ +

i

2

√
ε− v−, ε ∈ [v+,+∞) =⇒ free states,

(3.1.10)

Proof. Before finding decomposition (3.1.9) and (3.1.10), we start by analyzing the
real or complex nature of the parameter b(ε) in the rest of the regions considered.
We already knew that b(ε) ∈ R+ \ {0} for the bound states region (region (R1)).
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Now, since k(ε) ∈ C \ R for the reflecting states region (if we exclude ε = v−, that
we treated in the bound states region through the previous lemma) which implies
that b(ε) ∈ C \ R for every ε ∈ (v−, v+).

For the free states region, k(ε) ∈ R, therefore, at first glance, we cannot be certain
whether b(ε) is real or complex. In order to reach a conclusion, we first show that
k′(ε) < 0 for every ε ∈ (v+,∞). In effect,

k′(ε) =
1

2
− 1

4

(ε− v−) + (ε− v+)√
(ε− v−)(ε− v+)

< 0 ⇐⇒ 2 < x+
1

x
, x =

√
ε− v−
ε− v+

,

which is true since x > 0 and x ̸= 1. Secondly, it can be checked that

lim
ε→∞

k(ε) = v0 cosh
2 µ,

by applying L’Hôpital in the form

lim
y→∞

(
y −

√
y2 − v0(2y − v0) cosh

2 µ

)
= lim

y→∞

y2 −
(
y2 − v0(2y − v0) cosh

2 µ
)

y +
√
y2 − v0(2y − v0) cosh

2 µ
,

where 2y = ε+v0. This implies that k(ε) > v0 cosh
2 µ for the free states region which

makes b(ε) ∈ iR \ {0} for every energy in the free state region which is consistent
with decomposition (3.1.10). On the other hand, we introduce the new parameter
as function of ε

p̃±(ε) = a(ε)± b(ε) =
v0 coshµ sinhµ± v0 cosh

2 µ∓ k(ε)√
v0 cosh

2 µ− k(ε)

which shall prove to be an important parameter when checking boundedness of
solution for the unbound states regions. By expanding coshµ sinhµ and cosh2 µ in
terms of v+ and v−, it can be found that

p̃±(ε) =
±v± ∓ ε±

√
(v+ − ε)(v− − ε)[

(v+ − ε) + (v− − ε) + 2
√

(v+ − ε)(v− − ε)
] 1

2

.

Now, by taking into account that the denominator in p̃(ε) corresponds to b(ε), the
term inside its square root is a perfect square and extracting the proper factor from
the numerator:

√
ε− v−,

√
v− − ε,

√
ε− v+ or

√
v+ − ε; it can be noticed that p̃±(ε)

satisfies

p̃+(ε) =


+
√
v+ − ε ∈ R+, ε ∈ (0, v−) =⇒ bound states,

+
√
v+ − ε ∈ R+, ε ∈ [v−, v+) =⇒ reflecting states,

−i
√
ε− v+ ∈ iR−, ε ∈ [v+,+∞) =⇒ free states,

(3.1.11)

p̃−(ε) =


−
√
v− − ε ∈ R−, ε ∈ (0, v−) =⇒ bound states,

−i
√
ε− v− ∈ iR−, ε ∈ [v−, v+) =⇒ reflecting states,

−i
√
ε− v− ∈ iR−, ε ∈ [v+,+∞) =⇒ free states.

(3.1.12)

This concludes the proof.
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In such manner, we are in a good position to completely solve Problem 1.3.2 asso-
ciated to the Rosen-Morse potential. To begin with, we deal with the bound states
region, that is, ∀ε ∈ (0, v−), where we are interested in finding wave functions6

Ψε(x) ∈ L2(R).

Bound states region, ε ∈ (0, v−)

Accordingly with the above analysis, we found that possibles solutions, Ψε(u), for
(3.1.3) can be written in the form Ψε(u) ∝ ϕ(u; ε)F (u; ε) where F (u; ε) is the solution
of the following (HDE):

(
1− u2

) d2F (u)
du2

+2 [(−b(ε)− 1)u+ a(ε)]
dF (u)

du
+(k(ε)− b(ε))F (u) = 0, (3.1.13)

where u ∈ (−1, 1) and a(ε), b(ε), k(ε) are defined in Lemmas 3.1.2 and 3.1.3. In
addition, we can make use of equations (2.1.2) and (2.2.4) to find that

ϕ(u; ε) = (1− u)
b(ε)−a(ε)

2 (1 + u)
b(ε)+a(ε)

2 ,

ρ(u; ε) = (1− u)b(ε)−a(ε) (1 + u)b(ε)+a(ε) .
(3.1.14)

With these results, we only need to find F (u; ε) satisfying the proper conditions
and, to that end, we rely on Theorem 2.2.13 to obtain the following Theorem.

Theorem 3.1.4. The only non-trivial, bound solutions of time-independent Schrö-
dinger equation (3.1.1), (ε,Ψε(x)), for ε ∈ (0, v−) satisfying that Ψε(x) ∈ L2(R),
that is, the solutions of Problem 1.3.2 for region (R1), are

Ψε(x) = Ψεn(x) = Ψn(x) = Nnϕ(− tanh z(x); εn)Fn(− tanh z(x)),

where
z(x) =

x− µl

l
, (3.1.15)

Nn ∈ R is a normalizing constant and their corresponding eigenvalues ε = εn ∈
(0, v−) must fulfill the eigenenergy equation

kn − bn = n(n+ 2bn + 1), n ∈ N ∪ {0}, (3.1.16)

for a finite number of integers n, where an := a(εn), bn := b(εn), and kn := k(εn).
Moreover, Fn(u) are related to the Jacobi polynomials in the following way

Fn(u) = P (bn−an,bn+an)
n (u). (3.1.17)

Therefore,

Ψn(x) = Nne
−anz(x) sechbn

(
z(x)

)
P (bn−an,bn+an)
n (− tanh z(x)) = Ψn(z(x)). (3.1.18)

6Notice that enunciating the problem in terms of the eigenenergy, E, is equivalent to do so in
terms of the transformed eigenenergy, ε = 2ml2

ℏ2 E.
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Proof. We already discussed that possible wave solutions, Ψε(u), may take the form
described in the theorem. In addition, the evaluation of the terms in “− tanh z(x)”
comes from the different changes of variables introduced at the beginning of the
section.

Now, to find the eigenvalue equation that ε must satisfy and the relation between
F (u; ε) and the Jacobi polynomials, we rely on Theorem 2.2.13. To that purpose,
we must check that ρ(u; ε) (defined in equation (3.1.14)) is bounded and satisfies
condition (2.2.10) of classical orthogonal polynomials, that is, for every fixed ε ∈
(0, v−), we must guarantee that

1. ρ(u; ε) = (1− u)b(ε)−a(ε) (1 + u)b(ε)+a(ε) ∈ L∞(−1, 1),

2. ukσ(u)ρ(u; ε)
∣∣∣1
−1

= uk (1− u)b(ε)−a(ε)+1 (1 + u)b(ε)+a(ε)+1
∣∣∣1
−1

= 0, ∀k ∈ N ∪
{0},

where a(ε) and b(ε) are given in Lemma 3.1.3. In principle, it can be noted that
these conditions are satisfied provided that both b(ε)±a(ε) ≥ 0 for every ε ∈ (0, v−)
which is obviously true accordingly to decompositions (3.1.9) and (3.1.10), since,
b(ε)± a(ε) =

√
v± − ε ∈ R+ for the bound states region.

Consequently, by virtue of Theorem 2.2.13 non-trivial solutions of (3.1.13), Fε(u),
satisfying that Fε(u)

√
ρ(u; ε) ∈ L2(−1, 1) ∩ L∞(−1, 1) exist only when

λ = λn = kn − bn − nτ ′(u; ε)− n(n− 1)

2
σ′′(u),

and have the form (Fε(u) = Fεn(u) = Fn(u))

Fn(u) =
Bn

ρ(u; ε)
[σn(u)ρ(u; ε)](n) .

In our case, this translates to relations (3.1.16) and (3.1.17), respectively. In this
way, wave functions Ψn(x) in (3.1.18) are some possible solutions of Problem 1.3.2
for the bound states region.

To finalize, we should, as suggested by the remark of Theorem 2.2.13, prove that
square-integrability of Ψn(x) in R is equivalent to that of Fε(u)

√
ρ(u; ε) in (−1, 1).

Nevertheless, we shall proceed in a different way to prove that (εn,Ψn(x)) are
the only non-trivial, bound solution of the eigenvalue Schrödinger problem for
ε ∈ (0, v−).

To begin with, we note that Ψn(x) ∈ L2(R) is completely equivalent to Ψn(z) ∈
L2(R) where relation between z and x appears in (3.1.15). In addition, the latter
can be easily checked since, recall,

Ψn(z) = e−anz sechbnz P (bn−an,bn+an)
n (− tanh z) ,

the Jacobi polynomial is bounded ∀z ∈ R, since, tanh(z) ∈ (−1, 1) and a(ε), b(ε),
b(ε)±a(ε) > 0 implies that the part e−anz sechbn z is square-integrable in R for every
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ε ∈ (0, v−). This ultimately leads to Ψn(z) ∈ L2(R). Now, let us show that there
cannot exist more solutions.

In effect, by reduction to the absurd, let us assume that we find another wave func-
tion solution, Ψε(z), satisfying that Ψε(z) ∈ L2(R). Since, ϕ(− tanh z; ε) is nonzero,
Ψε(z) can be written in the way Ψε(z) = ϕ(− tanh z; ε)F (− tanh z; ε) where, neces-
sarily, F (u; ε) is a solution of the hypergeometric differential equation (3.1.13).

Let us show that Ψε(z) ∈ L2(R) implies that F (u; ε)
√
ρ(u; ε) ∈ L2(−1, 1). By a

straightforward calculation, it can be checked that∫ 1

−1

∣∣∣√ρ(u; ε)F (u; ε)
∣∣∣2 du =

∫ +∞

−∞
|Ψε(z)|2 sech2 zdz ≤

∫ +∞

−∞
|Ψε(z)|2 dz,

where we have made use of the substitution u = − tanh z, the fact that ϕ2(u; ε) =
ρ(u; ε) and that 0 < sech z ≤ 1. This implies F (u; ε) = Fn(u) for some n ∈ N ∪ {0}
or, equivalently, Ψε(z) = Ψn(z) accordingly to Theorem 2.2.13 which is an absurd.
This concludes the proof.

Before proceeding with the unbound states region, we shall make the following
remark.

Remark 3.1.5. In principle, there might be no n ∈ N ∪ {0} satisfying eigenvalue
equation (3.1.16) which would result in no bound solutions for region (R1). To clarify
this possible situation, let us further analyse the eigenvalue equation. By making use
of relation between k(ε) and b(ε) given by equation (3.1.7) we can turn (3.1.16) into

b2n + (1 + 2n)bn + n+ n2 − v0 cosh
2 µ = 0

which means that

bn =

√
v0 cosh

2 µ+
1

4
−

(
n+

1

2

)
, an =

v0 sinhµ coshµ

bn
. (3.1.19)

From decompositions (3.1.9) and (3.1.10), we may find the explicit form of εn by
equaling

bn − an =
√
v− − εn > 0

where ε ∈ (0, v−) provided that bn > an, which translates to the condition

n <

√
v0 cosh

2 µ+
1

4
−

√
1

2
v0 sinh 2µ− 1

2
= N(v0, µ), n ∈ N ∪ {0}. (3.1.20)

This condition will allow us to calculate the number of bound solutions by taking the
largest integer, nb, smaller than N(v0, µ) and adding to it the unity as n = 0 is a
possible index. Notice also that from the above it follows that there is only a finite
number of bound states of the Schrödinger equation (3.1.1).

In addition, we shall later see that, if we were to substitute the square integrability
condition with a bounded condition, we would also obtain condition (3.1.19) on b(ε).
This implies that, in region (R1), there is no more possible bounded wave solutions
apart from the bound ones that we have previously acquired. This will be useful
when dealing with the stability problem of the Klein-Gordon equation.
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Unbound states regions, ε ∈ [v−,∞)

In order to solve the eigenvalue problem for the unbound states regions, that is, for
every ε ∈ (v−,+∞), we aim to make use of the results described in subsection 2.2.2.
To that end, we attempt to transform equation (3.1.13) it into a Gauss’s (HDE).

By setting u = −1 + 2s in (3.1.13), we transform it into

s(1− s)
d2F (s)

ds2
+
[
− 2(b(ε) + 1)s+ b(ε) + a(ε) + 1

]dF (s)
ds

+ (k(ε)− b(ε))F (s) = 0,
(3.1.21)

where s ∈ (0, 1). Simply, by comparing above equation with (2.2.18), it can be
found that it, indeed, constitutes a Gauss’s (HDE). Actually, we can identify its
parameters as follows

α(ε) = b(ε) +
1

2
−

√
v0 cosh

2 µ+
1

4
, β(ε) = b(ε) +

1

2
+

√
v0 cosh

2 µ+
1

4
,

γ(ε) = a(ε) + b(ε) + 1,

(3.1.22)

where, as before, a(ε) and b(ε) are defined in Lemma 3.1.2.

In this way, our possible wave solutions take the following form in the recently
introduced variable s

Ψ(s) ∝ ϕ(−1 + 2s; ε)F (s; ε) = (1− s)
b(ε)−a(ε)

2 s
b(ε)+a(ε)

2 F (s; ε) (3.1.23)

where ϕ(u; ε) was introduced on equation (3.1.14) and F (s; ε) solves (3.1.21). There-
fore, before introducing the theorem solving these states regions, we recall that for
the unbound states regions (regions (R2) and (R3)), we are dropping the square-
integrability condition on the wave function and substituting it with a bounded
condition.

Theorem 3.1.6. The non-trivial, unbound solutions of time-independent Schrödin-
ger equation (3.1.1), (ε,Ψε(x)), for ε ∈ [v−,∞) satisfying that Ψε(x) ∈ L∞(R), that
is, the solutions of Problem 1.3.2 for the unbound states regions, are given by

• for region (R2) and ε = v+, this is, for ε ∈ [v−, v+],

Ψε(x) = cΨ1(x; ε), c ∈ C, (3.1.24)

• for region (R3) excluding ε = v+, this is, for ε ∈ (v+,∞),

Ψε(x) = c1Ψ1(x; ε) + c2Ψ2(x; ε), c1,2 ∈ C, (3.1.25)

where z(x) = (x− µl)/l and, Ψ1(x; ε), Ψ2(x; ε) are given by

Ψ1(x; ε) =
sechb(ε) z(x)

ea(ε)z(x)
F

(
α(ε), β(ε), γ(ε);

1− tanh z(x)

2

)
,

Ψ2(x; ε) =
eb(ε)z(x)

secha(ε) z(x)
×

F

(
α(ε)− γ(ε) + 1, β(ε)− γ(ε) + 1, 2− γ(ε);

1− tanh z(x)

2

)
,

(3.1.26)
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being, α(ε), β(ε) and γ(ε), defined in (3.1.22). Moreover, there are no restrictions
on the eigenvalues, ε ∈ [v−,∞), as long as α(v−) = −n for some n ∈ N ∪ {0},
otherwise, ε = v− would be excluded as an eigenvalue.

Proof. As for the bound case, we already discussed the possible forms that the wave
solutions of Eq. (3.1.1) may take in the s variable and are depicted in equation
(3.1.23). In this manner, we need only to find the adequate solutions for (3.1.21)
so that we may find F (s; ε) making the wave solution bounded. Recall that we are
looking for unbound solutions characterised by being bounded functions.

In addition, it can be noticed that Ω = (0, 1) ⊂ {s ∈ C : |s| < 1} and γ(ε) /∈ Z
for almost every ε ∈ [v−,∞). Let us further clarify this situation by examining the
parameter γ(ε). We can make use of the definition of p̃+(ε) to find that

γ(ε) =

{
1 +

√
v+ − ε ∈ R+, ε ∈ [v−, v+] =⇒ region (R2) including ε = v+,

1− i
√
ε− v+ /∈ R, ε ∈ (v+,+∞) =⇒ region (R3) excluding ε = v+.

This means that Proposition 2.2.27 may be used to characterise the space solution
for (3.1.21) ∀ε ∈ [v−,∞) except for a certain countable set, say Nε, in the range
[v−, v+] that makes γ(ε) ∈ Z+ provoking u2(s; ε) not to be well-defined. To begin
with, let us ignore these cases and focus on the rest.

As stated in Proposition 2.2.27,

F1(s; ε) =F (α(ε), β(ε), γ(ε); s) = u1(s; ε),

F2(s; ε) =s
1−γ(ε)F (1 + α(ε)− γ(ε), 1 + β(ε)− γ(ε), 2− γ(ε); s)

=s1−γ(ε)u2(s; ε),

(3.1.27)

both are solutions for (3.1.21) and are linearly independent (excluding Nε). Thus,
a general solution of (3.1.1) could be written as an arbitrary linear combination of
the wave functions

Ψ1(s; ε) = (1− s)
b(ε)−a(ε)

2 s
a(ε)+b(ε)

2 u1(s; ε),

Ψ2(s; ε) = (1− s)
b(ε)−a(ε)

2 s−
a(ε)+b(ε)

2 u2(s; ε).
(3.1.28)

In principle, Ψ1,2(s; ε) ∈ C2(0, 1) which means we only need to check boundedness
as s→ 0+ and s→ 1−.

To begin with, both u1,2(s; ε) (see (3.1.27)) have no problems as s → 0+, since,
recall, the hypergeometric series is analytic in {z ∈ C : |z| < 1}.

Now, in order to simplify the notation, we omit dependence on ε in the parameters.
In this way, we shall write α, β, γ, a, b and p̃± whenever we refer to α(ε), β(ε), γ(ε),
a(ε), b(ε) and p̃±(ε), respectively, unless otherwise specified.

In any case, as for asymptotic behaviour as s → 1−, we make use of Proposition
2.2.29. By denoting

α′(ε) = 1 + α− γ, β′(ε) = 1 + β − γ, γ′(ε) = 2− γ,



3.1. The solution for µ > 0, V0 > 0 59

it can be checked that7

γ − α− β = γ′ − α′ − β′ = a− b = p̃−(ε) = −i
√
ε− v−

which implies that ℜ(γ − α− β) = ℜ(γ′ − α′ − β′) = 0. Except for ε = v−, relation
(3) from Proposition 2.2.29 tell us that they are bounded as s → 1−. In any case,
we start analysing the prefactors in (3.1.28). It can be seen that

(1− s)
b−a
2 = (1− s)−

p̃−
2 = (1− s)

i
√

ε−v−
2

which implies there are no further problems (relating boundedness) as s→ 1−. On
the other hand,

± (a+ b) =

{
±
√
v+ − ε ∈ R+, ε ∈ [v−, v+]

∓i
√
ε− v+ /∈ R, ε ∈ (v+,+∞).

which means that factor s
a+b
2 has no problems in Ψ1(s; ε) as s → 0+ for every

ε ∈ [v−,∞). However, prefactor s−
a+b
2 makes Ψ2(s; ε) unbounded for the reflecting

states region (the rest of the factors are non-zero) but bounded for the free states
regions (excluding ε = v+) as s→ 0+.

Therefore, Ψ1(s; ε) ∈ L∞(0, 1) ∀ε ∈ (v−,∞), Ψ2(s; ε) ∈ L∞(0, 1), ∀ε ∈ (v+,∞) and
they are linearly independent in this last region of energy which justifies (3.1.25).

As for ε ∈ (v−, v+], we already have Ψ1(s; ε) as a bounded solution that always exists
(γ > 0), and it is linearly independent to Ψ2(s; ε) which is unbounded whenever
u2(s; ε) is well-defined (everywhere except for Nε). This partially justifies (3.1.24).

Let us deal with Nε ⊂ [v−, v+]. Accordingly to Propositions 2.2.23 and 2.2.24
another pair of possible solutions for (3.1.21) are

F3(s; ε) =F (α, β, α + β − γ + 1; 1− s) = u3(s; ε),

F4(s; ε) = (1− s)γ−α−β F (−α + γ,−β + γ, γ − α− β + 1; 1− s) =

= (1− s)γ−α−β u4(s; ε),

which both exist in ε ∈ [v−,∞), since

1± (γ − α− β) = 1± (a− b) = 1± p̃− = 1∓ i
√
ε− v− /∈ Z− ∪ {0},

and they are linearly independent accordingly with equation (2.2.31) except for
ε = v−. By denoting

α′(ε) = α, β′(ε) = β, γ′(ε) = 1 + (α + β − γ),

α′′(ε) = γ − α, β′′(ε) = γ − β, γ′′(ε) = 1− (α + β − γ);

it can be checked8 that γ′ − α′ − β′ = γ′′ − α′′ − β′′ = 1 − γ = −
√
v+ − ε < 0 for

any reflecting state excluding ε = v+. Again, accordingly to Proposition 2.2.29, this
7We also omit dependence on ε in α′, β′ and γ′.
8We also omit dependence on ε for α′′, β′′ and γ′′. Notice we have redefined α′, β′ and γ′.
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implies that9

F (α′, β′, γ′; 1− s) ∼ Γ2(α
′, β′, γ′)s−

√
v+−ε as s→ 0+,

F (α′′, β′′, γ′′; 1− s) ∼ Γ2(α
′′, β′′, γ′′)s−

√
v+−ε as s→ 0+,

(3.1.29)

which gives unboundedness of u3(s; ε) and u4(s; ε) as s → 0+ for every reflecting
state excluding ε = v±. Since the associated wave solutions take the form

Ψ3(s; ε) = (1− s)
b−a
2 s

a+b
2 u3(s; ε),

Ψ4(s; ε) = (1− s)−
b−a
2 s

a+b
2 u4(s; ε),

it can be checked that they both are unbounded as s → 0+ and are linearly inde-
pendent which, coupled to the fact that Ψ1(s; ε) is a bounded solution, implies that
Ψ1(s; ε) is the only bounded solution for every ε ∈ (v−, v+).

To finalize we must deal with the cases ε = v±.

Let us first consider case ε = v+. In this case, Ψ1(s; ε) is a bounded solution
but Ψ1(s; ε) = Ψ2(s; ε). In addition, Ψ3(s; ε) and Ψ4(s; ε) are linearly independent
since α(v+) + β(v+) − γ(v+) = −i

√
v+ − v− ̸= 0 (recall µ ̸= 0). In any case,

γ′(v+)−α′(v+)−β′(v+) = γ′′(v+)−α′′(v+)−β′′(v+) = 1−γ(v+) = 0 which implies,
thanks to Proposition 2.2.29, that

u3(s) ∼ − Γ(γ′(v+))

Γ(α′(v+))Γ(β′(v+))
ln(s), u4(s) ∼ − Γ(γ′′(v+))

Γ(α′′(v+))Γ(β′′(v+))
ln(s) as s→ 0+.

Since the factor a(v+)+ b(v+) = 0, Ψ3,4(s; v+) will be unbounded which implies that
Ψ1(s; ε) is the only bounded solution for ε = v+.

Lastly, let us deal with ε = v−. In this case, Ψ2(s; v−) may not exist and Ψ1(s; v−)
exists and could be unbounded, since, in principle,

u1(s) ∼ − Γ(γ(v−))

Γ(α(v−))Γ(β(v−))
ln(1− s), as s→ 1−, (3.1.30)

accordingly to equation (2.2.29) from Proposition 2.2.29. However, this relation is
valid only when all the terms involved are well-defined. Therefore, α(v−), β(v−),
γ(v−) ̸= k ∈ Z− ∪ {0} for Γ(α(v−)), Γ(β(v−)) and Γ(γ(v−)) to be well-defined10. In
fact, the only term that could vanish or be a negative integer is α(v−), since, β(v−),
γ(v−) > 0 accordingly to (3.1.22).

In addition, Ψ3(s; v−) = Ψ4(s; v−) and they are a possible wave solution. Accord-
ingly to asymptotic behaviour from (3.1.29), it can be checked that its possible
boundedness depends on α(v−) vanishing or being a negative integer.

In this way, provided that α(v−) ̸= n for some n ∈ Z− ∪ {0}, they would both be
unbounded in a different way (compare (3.1.29) and (3.1.30)) causing ε = v− not to
be an eigenvalue.

9Recall notation employed on Proposition (2.2.29).
10It can be checked that there are no such trouble regarding non analyticity of the gamma

function for the rest of the asymptotic behaviour employed throughout this proof. We omit this
verification for the sake of conciseness
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On the other hand, whenever α(v−) = −n for some n ∈ N ∪ {0}, asymptotic
behaviour (3.1.30) is not valid since the hypergeometric series terminates and it
becomes into a bounded polynomial in the interval Ω = (0, 1) which implies bound-
edness of Ψ1(s; ε). This causes ε = v− to be an eigenvalue. To finalize, let us check
that there cannot be more bounded wave functions (unbound solutions).

In effect, let us assume that there exists another linearly independent, bounded wave
function χ(z) ∈ L∞(R) which is a solution of equation (3.1.2). Then, necessarily,
accordingly to Proposition 2.2.31,

lim
z→−∞

W [Ψ1(z; ε), χ(z)] = lim
z→−∞

Ψ1(z; ε)χ
′(z)−Ψ′1(z; ε)χ(z) ̸= 0, (3.1.31)

where Ψ1(z; ε) = Ψ1((1− tanh z) /2; ε) which takes the form presented in (3.1.26)
by substituting z(x) for z and the prime denotes derivation with respect to z. In
this sense, it can be checked that both Ψ1(z; ε), Ψ′1(z; ε) → 0 as z → −∞ since
u1((1− tanh z) /2; ε) is a bounded polynomial evaluated on tanh z and the prefactor
eb(v−)z sech−a(v−) z → 0 as z → −∞. This implies that either χ(z) or χ′(z) is
unbounded as z → −∞ so that (3.1.31) is fulfilled. Obviously, χ(z) unbounded
would a contradiction. Then, it necessarily follows that χ′(z) is unbounded as z →
−∞. However, this is also a contradiction because, since z and x are linearly related,
χ′(z) is proportional to the linear momentum11 of the beam of particles this solution
would represent. In this way, its unboundedness would imply unboundedness of
their linear momentum. Nevertheless, we were expecting a behaviour similar to
that related to a constant potential which would entail a finite and defined linear
momentum as z → −∞. This implies that both unboundedness results in a solution
with no physical interpretation which means the only bounded solution12 is Ψ1(s; ε).

By undoing all the changes of variables introduced, the wave functions can be
written as shown in the theorem. This concludes the proof.

Remark 3.1.7. In this proof, we showed that ε = v− is an eigenvalue whenever
α(v−) = −n where n ∈ N ∪ {0}. By explicitly imposing this, we obtain condition

11Recall momentum operator, P̂ , was defined by

P̂Ψ(z) = −iℏdΨ(z)

dz
, ∀Ψ ∈ Φ

which implies that its possibles eigenvectors, Ψp(z), satisfy

Ψp(z) ∝ ei
p
ℏ z, p ∈ R.

12We could have proven this last part making use of a more “mathematical” argument. Just as
we expressed, in the case ε = v− the function u2(s; v−) may not exist since 2− γ(v−) could vanish
or equal a negative integer. To solve this issue, usually another linearly independent solution can
be constructed, Φ(α, β, γ; s), as it is shown in pages 278-281 of reference [10]. Here, unboundedness
would come from the fact that

lim
s→0+

m∑
k=1

(−1)
k−1

(k − 1)!

(n− k)k (α− k)k (β − k)k
s

m
2 −k = ∞,

whenever α = −n and γ = 1 +m for some n,m ∈ N ∪ {0}.
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(3.1.19) on b(v−), that is, b(v−) = bn. This means that ε = v− could be treated as a
(quasi)bound state.

Actually, to include this case, we could relax condition (3.1.20) on existence on
bound solution by replacing “<” by “≤” and adding the case ε = v− to the bound
states region. Nevertheless, due to physical considerations, we shall keep treating
this case as part of the unbound states regions (R2) and (R3).

To conclude our analysis, let us study the asymptotic behaviour of these waves.

Asymptotic behaviour for the unbound solutions

Let us corroborate that, as it was advanced during the introduction of the problem,
unbound solutions previously obtained can represent a beam particles under differ-
ent initial conditions. In order to do so, we make use of the functionals relations
established in Proposition 2.2.32 and we work with the z variable. Therefore, by
using (2.2.32), it can be shown that

Ψ̃1(z; ε) = 2−b(ε)Ψ1(z; ε) ∼

{
e−p̃+(ε)z, z → +∞,

Γ1(ε)e
−p̃−(ε)z + Γ2(ε)e

p̃−(ε)z, z → −∞,
(3.1.32)

Ψ̃2(z; ε) = 2+a(ε)Ψ2(z; ε) ∼

{
ep̃+(ε)z, z → +∞,

Γ′1(ε)e
−p̃−(ε)z + Γ′2(ε)e

p̃−(ε)z, z → −∞,
(3.1.33)

where

Γ1,2(ε) = Γ1,2(α(ε), β(ε), γ(ε)), Γ′1,2(ε) = Γ1,2(α
′(ε), β′(ε), γ′(ε)).

This behaviour inspires us to introduce the following definitions of two new wave
functions:

Ψ→ε (z) =
1

Γ1(ε)
Ψ̃1(z; ε), Ψ←ε (z) = Ψ̃2(z; ε)−

Γ′1(ε)

Γ1(ε)
Ψ̃1(z; ε).

In this manner, it can be checked that

Ψ→ε (z) ∼


1

Γ1(ε)
e−p̃+(ε)z, z → +∞,

e−p̃−(ε)z +
Γ2(ε)

Γ1(ε)
ep̃−(ε)z, z → −∞,

Ψ←ε (z) ∼


ep̃+(ε)z − Γ′1(ε)

Γ1(ε)
e−p̃+(ε)z, z → +∞,

Γ′2(ε)Γ1(ε)− Γ′1(ε)Γ2(ε)

Γ1(ε)
ep̃−(ε)z, z → −∞.
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In particular, by making use of decompositions (3.1.11) and (3.1.12) in the free states
region, we can write

Ψ→ε (z) ∼


1

Γ1(ε)
ei
√
ε−v+z = T→(z; ε), z → +∞,

ei
√
ε−v−z +

Γ2(ε)

Γ1(ε)
e−i
√
ε−v−z = I→(z; ε) +R←(z; ε), z → −∞,

Ψ←ε (z) ∼


e−i
√
ε−v+z − Γ′1(ε)

Γ1(ε)
ei
√
ε−v+z = I←(z; ε) +R→(z; ε), z → +∞,

Γ′2(ε)Γ1(ε)− Γ′1(ε)Γ2(ε)

Γ1(ε)
e−i
√
ε−v+z = T←(z; ε), z → −∞.

Therefore, it can be noticed that each of the terms I→, I←, R→, R←, T→ and T←

involved in the previous asymptotic behaviour have a well-defined linear momentum
as they represent an eigenvector of its associated momentum, P̂ .

Actually, Ψ→ε (z) can be interpreted as a beam of particles coming from −∞ which,
as it interacts with the potential barrier, is partially reflected or transmitted. In
addition, the initial condition “coming from −∞” is related to the term I→(z : ε) (I
stands for incident beam of particles) where the arrow indicates that its associated
linear momentum is positive, this is, it travels form left to right; and the reflec-
tion/transmission phenomena are related to the terms T→(z : ε) and R←(z : ε) (T
stands for transmission and R stands for reflection), respectively13.

Similar conclusion can be drawn from the wave solution Ψ→ε (z) for the reflecting
states region except for the fact that the transmitted term, T→(z; ε), would be
written in the form

T→(z; ε) =
1

Γ1(ε)
e−
√
v+−ε

implying that its associated linear momentum is non-real which means there is no
actual propagation of the beam of particles to +∞.

An analogous conclusion can be reached by examining the term Ψ←ε (z) for the free
states region (recall it is not a wave solution for the reflecting states region).

In addition, this explanation allows us to interpret why cases ε = v− and ε = v+
behave as they do. If we were to put a beam of particle at z = ∞ with ε = v+,
this would imply that its associated linear momentum would be null making it
impossible for the beam to propagate. Therefore, if Ψ←ε (z) cannot be a possible
eigenvector neither can Ψ2(z; ε). A similar analysis can be carried out for Ψ→ε and
ε = v− and we would obtain that Ψ→ε have no physical meaning as a incident beam
of particles.

With asymptotic behaviours (3.1.32) and (3.1.33) we may justify what we advanced
after solving the discrete spectrum, that is, bounded condition is equivalent to square

13Reflection of an incident beam of particles whose energy surpasses that of the potential barrier
it interacts with might seem odd for those foreign to quantum mechanics. Yet, it is a fact that is
experimentally proven to be true.
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integrability condition for the bound states region (region (R1)). In fact, Ψ2(z; ε) is
obviously irremediably unbounded due to the term

ep̃+(ε)z = e
√
v+−εz as z → ∞.

and, in principle, is linearly independent to14 Ψ1(z; ε). Now, it can be checked that
Ψ1(z; ε) is bounded if and only if Γ2(ε) vanishes. By remembering that

Γ2(ε) = Γ2(α(ε), β(ε), γ(ε)) =
Γ(γ(ε))Γ((α + β − γ)(ε))

Γ(α(ε))Γ(β(ε))
,

Γ2(ε) = 0 whenever the denominator “goes to infinity” which is true whenever α(ε)
or β(ε) is a negative integer or zero. Nevertheless, β(ε) > 0 for the bound states
region. By imposing condition on α(ε), we obtain

α(εn) = b(εn) +
1

2
−

√
v0 cosh

2 µ+
1

4
= −n, n ∈ N ∪ {0},

which is, again, the same condition (3.1.19). We could have also justified this equiv-
alence by stating that if we were to demand boundedness of solution, its asymptotic
behaviour would necessarily be of a negative exponential implying square integra-
bility.

In any case, we have been able to completely solve the eigenvalue problem associated
to the Rosen-Morse potential by making use of the results described in Chapter 2.
In this way, we have distinguished two different types of spectra; one discrete for
the bound states region (region (R1)) and one continuous for the unbound states
regions (regions (R2) and (R3)). Also, we have been able to check that eigenvectors
associated to different spectra possess different properties. All that would be left for
us to be completely certain that the Hamiltonian operator associated to the Rosen-
Morse potential is actually an observable would be to prove that its eigenvectors
constitute a complete basis of the state space, Φ.

In any case, in the next section, we shall discuss the symmetric case µ = 0 before
commencing our analysis on linear stability.

3.2 The solution for µ = 0, V0 > 0

As we advanced before, we can particularize previous results for µ = 0. The main
reason we are addressing this case in a separate section is because it has some
interesting peculiarities and the symmetric case shall be useful when dealing with
the stability problem for the family of nonlinear Klein-Gordon equations in the next
section.

In any case, by putting µ = 0 in (3.0.1), and considering it in the z variable, we
obtain the expression

v(z) = v0 tanh
2 z = v0

(
1− 1

cosh2 z

)
, (3.2.1)

14Obviously, it could happen as in the proof, this is, the existence of a set Nε where Ψ2(z; ε)
does not exist. However, it can be sorted out analogously.



3.2. The solution for µ = 0, V0 > 0 65

which is clearly symmetric and, therefore, the associated Schrödinger equation takes
the form

− d2Ψ(z)

dz2
+ v0 tanh

2 zΨ(z) = εΨ(z), z ∈ R, (3.2.2)

and, as before, z = x−µl
l

, v0 := 2ml2

ℏ2 V0, and ε := 2ml2

ℏ2 E.

Due to this symmetric behaviour v+ = v− = v0, the reflecting states region is lost,
this is, we can only distinguish two ranges of energies:

(S1) ε ∈ (0, v0), which constitutes the bound states region.

(S2) ε ∈ [v0,∞), which constitutes the free states region.

In addition, it can be checked that putting µ = 0 in the results of section 3.1 and
their proofs entails no further problems except perhaps in the formula (3.1.7) of
a±(ε) where an indetermination arises. Nonetheless, decomposition (3.1.9) solves
that issue.

Therefore, without further ado, let us present the solutions for the bound and free
states region. To begin with, we notice that parameters a(ε) and b(ε) take a much
simpler form.

Lemma 3.2.1. The parameters a(ε) and b(ε) in the symmetric case can be written
in the form

a(ε) = −i
√
ε− v01[v0,+∞)(ε), b(ε) =

√
v0 − ε1[0,v0)(ε),

where 1A denotes the characteristic function15 of the set A.

With this particularization, we can find the expression for k(ε) simply by considering
expression for b(ε) in (3.1.7) (which presents no issues for µ = 0). In such manner,
k(ε) = ε, which shall be used to express the eigenvalue equation that εn must satisfy
for the bound states region analogously to equation (3.1.16).

Before stating the main results of this section, we point out that we will use the
same notation of Theorems 3.1.4 and 3.1.6 from above.

Theorem 3.2.2. The only non-trivial, bound solutions of time-independent Schrö-
dinger equation (3.2.2), (ε,Ψε(x)), for ε ∈ (0, v0) satisfying that Ψε(x) ∈ L2(R),
that is, the solutions of the symmetric Problem (1.3.2) for region (S1), are

Ψε(x) = Ψεn(x) = Ψn(x) = Nnϕ(− tanh z(x); εn)Fn(− tanh z(x)),

where z(x) = x/l, Nn is a normalizing constant, and the eigenvalue ε = εn ∈ (0, v0)
satisfy the relation

εn = v0 − b2n, n ∈ N ∪ {0},

bn =

√
v0 +

1

4
− n− 1

2
, n ∈ N ∪ {0},

15The characteristic function of a set A, 1A(x), is defined as follows 1A(x) =

{
0, x /∈ A,

1, x ∈ A.
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whenever εn is positive. Moreover, Fn(u) are related to the Jacobi polynomials in
the way, Fn(u) ∝ P

(bn, bn)
n (u). Therefore,

Ψn(x) = N sechbn z(x)P (bn, bn)
n (− tanh z(x)) = Ψn(z(x)).

In this manner, condition on existence of bound solutions translates, for the sym-
metric potential, to

n <

√
v0 +

1

4
− 1

2
= N(v0, 0) = b0, n ∈ N ∪ {0}.

On the other hand, it can be noticed that parameters α(ε), β(ε) and γ(ε) in equation
(3.1.22) also take the much simpler form

α(ε) = α =
1

2
−

√
v0 +

1

4
= −b0, β(ε) = β =

1

2
+

√
v0 +

1

4
= b0 + 1,

γ(ε) = 1− i
√
ε− v0.

Theorem 3.2.3. The non-trivial, unbound solutions of time-independent Schrödin-
ger equation (3.2.2), (ε,Ψε(x)), for ε ∈ [v0,∞) satisfying that Ψε(x) ∈ L∞(R), that
is, solves the symmetric Problem 1.3.2 for region (S2), are

Ψε(x) = c1Ψ1(x; ε) + c2Ψ2(x; ε), c1,2 ∈ C,

where z(x) = x/l. Moreover, there is no restriction on the eigenvalue, ε, as long as
α = −n for some n ∈ N∪{0}, otherwise, ε = v0 would be excluded as an eigenvalue
and, lastly, Ψ1(x; ε), Ψ2(x; ε) are given by

Ψ1(x; ε) = e−a(ε)z(x)F

(
α, β, γ(ε);

1− tanh z(x)

2

)
,

Ψ2(x; ε) =
1

secha(ε) z(x)
×

F

(
−b0 − γ(ε) + 1, b0 + 1− γ(ε) + 1, 2− γ(ε);

1− tanh z(x)

2

)
.

Notice that, whenever ε = v0, Ψ1(x; ε) and Ψ2(x; ε) are linearly dependent.

Remark 3.2.4. The above theorems generalize the results of [12] that were obtained
for the special case when v0 = l(l + 1), l ∈ N.

In the next section, we shall profit from the resolution of this Schrödinger problem
in order to study the linear stability of a certain family of nonlinear Klein-Gordon
equation.
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3.3 Application: stability of the nonlinear Klein-Gordon equa-
tion

The nonlinear Klein-Gordon equation appears in the field of relativistic quantum
mechanics and reads

φtt − φxx +
∂U(φ)

∂φ
= 0, (3.3.1)

where the subindices denotes the partial derivatives with respect to x and t, and U(φ)
is the nonlinear Klein-Gordon potential. The domain of the above partial differential
equation will be, in general, a subset A of R, but in most cases we will consider
A = R. In addition, any solution φ(x, t) must satisfy16 φ(x, t) ∈ C2

∞(A× [0,∞)).

Throughout this section, we shall assume that the nonlinear Klein-Gordon potential
U (φ(x, t)) has at least two extrema. This ensures the existence of kink and pulse-like
solutions. Specifically, a pulse is a solution connecting a minimum and a maximum
which are consecutive extrema, whereas the kink solution connects two consecutive
minima sharing the same value. This behaviour results in the minimization of the
energy associated with the system and, therefore, these are the solutions we shall
aim to study.

In principle, the nonlinear Klein-Gordon equation can model numerous phenom-
ena such as the interaction of subatomic particles in nuclear physics, the resonant
soliton-impurity interactions or the dynamics of DNA and proteins in biophysics.
Nonetheless, this is true in a first order approximation, meaning that their equa-
tions, rather than evolve exactly by equation (3.3.1), contain additional terms. This
justifies that the observation of this waves in experiment depends on their stability.
In such manner, we are interested in determining whether the perturbed solution of
equation (3.3.1) does not deviate far from the exact solution when the perturbations
are small enough, that is, whether the exact solution would be detected in a real
system.

Due to Lorentz invariance of equation (3.3.1), it is sufficient to investigate the
stability of static kinks, φ(x, t) = φ0(x), to carry out this stability analysis. In this
way, we are interested in the analysis of small departures from the static solution
φ0(x), i.e., we linearize (3.3.1) around φ0(x). In order to achieve this, we insert the
function

φ(x, t) = φ0(x) + ϵΨ(x, t)

in (3.3.1) and assume that ϵ is small in two ways: firstly, it verifies that17 ∥ϵΨ∥∞ ≪
∥φ0∥∞, meaning the perturbation is “small” and; secondly, |ϵ| ≪ 1, making any of
its powers greater than one negligible in comparison with ϵ. In this manner, the
function Ψ(x, t) satisfies the following linear wave equation:

Ψtt −Ψxx + U ′′(φ0)Ψ = 0, (3.3.2)

16Here, C2
∞(Ω) denotes the space of functions f : Ω → C that are two times differentiable with

continuous second order partial derivatives in Ω, and such that f and their first partial derivatives
are bounded in Ω.

17Here, ∥f∥∞ denotes the supremum or the infinity norm of f .



68 Chapter 3. The Schrödinger equation with a Rosen-Morse potential

where the prime denotes the derivative with respect to φ. In order to solve (3.3.2)
we will further assume that

Ψ(x, t) = (c1e
−iωt + c2e

iωt)ψ(x),

where, in general, ω ∈ C, and we will insert this ansatz into (3.3.2). Then, the
function ψ(x) is a solution of the Sturm-Liouville problem

ψxx +
(
ω2 − U ′′(φ0(x))

)
ψ = 0, (3.3.3)

where the eigenvalue ω2 ∈ R. This implies that ω can either be pure imaginary or
real. The former case implies that Ψ(x, t) blows up when t → ∞ resulting in an
unstable static solution: the perturbation deviates far from the exact solution. This
would also be the case provided that ψ(x) was not bounded. In this way, it can be
found that a proper definition for linear stability of static solutions is the following.

Definition 3.3.1. The static solution φ0(x) ∈ C2
∞(Ω) of equation (3.3.1) is linearly

stable in Ω if all the solutions (ω, ψ(x)) of the associated Sturm-Liouville problem
(3.3.3) which belong to C2

∞(Ω) have real ω. Moreover, in the case Ω = R, we will
say that φ0(x) is linearly stable.

From this definition, it follows that the solution is stable if all eigenvalues ω2 are
non-negative, provided that ψ(x) is bounded.

Therefore, we are interested in solving the equation (3.3.3) for certain potentials U
which will allow us to determine the stability of their static kink solutions. In order
to do so, we shall find the correspondence relating Sturm-Liouville problem (3.3.3)
with Schrödinger equation (3.1.2).

In addition, we note that, since the function φ0 satisfies φ0xx − U ′(φ0) = 0, its
derivative with respect to x satisfies (φ0x)xx−U ′′(φ0)φ0x = 0. Therefore, ψ(x) = φ0x

is always a solution of (3.3.3) corresponding to ω = 0. Usually this solution is called
the Goldstone mode and we will refer to it as the stationary solution of (3.3.2).

Before proceeding any further, we point out that a more detailed analysis of the
concept of linear stability is carried out in reference [12]. Here, we have heuristically
justified the need to solve problem (3.3.3) when dealing with the stability of kink
solutions so that we may use the results of previous sections as an application. In the
first two cases, we choose the normalizing factor in such a way that the eigenfuncions
coincide with the ones in [12].

3.3.1 The sine-Gordon equation

The sine-Gordon potential reads

U(φ) = 1− cos(φ), (3.3.4)

where the static kink solution is given by

φ0(x) = 4 arctan[exp(x)]. (3.3.5)
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In such manner,

U ′′(φ0(x)) = 1− 2

cosh2 x
,

which means the Sturm-Liouville problem to analyse is

ψxx +

(
ω2 +

2

cosh2 x
− 1

)
ψ = 0, x ∈ R. (3.3.6)

In order to do so, we compare equation (3.3.6) with equation (3.1.2) and find that
their resolution can be related by considering the following correspondence:

z → x, µ = 0, v0 = 2, ω2 = ε− 1, (3.3.7)

where stability of the kink and antikink solutions will arise from the fact that ε ≥ 1
for every possible eigenvalue. Therefore, by considering the resolution of the Rosen-
Morse potential associated to this choice of parameters we obtain the following
result.

Corollary 3.3.2. Let be the sine-Gordon equation, that is, equation (3.3.1) with
potential (3.3.4) and consider the static solution given by equation (3.3.5).

Then, the static solution φ0(x) is linearly stable in the sense of definition (3.3.1)
which means that the associated Sturm-Liouville problem (see equation (3.3.6)) has
a set of eigenfunctions that belong to L∞(R) and such that ω ∈ R. Specifically, these
pairs (ω, ψ(x)) ∈ R× L∞(R) satisfy that:

• The discrete spectrum of equation (3.3.6) contain only one single point ω = 0
which corresponds to the Goldstone mode ψ0(x) = sechx/

√
2.

• The continuous spectrum of equation (3.3.6) is ω2 ∈ [1,∞), and their associ-
ated eigenfunctions are written in the form

ψ(x; k) = c1ψ1(x; k) + c2ψ2(x; k)

where k ∈ R+ satisfy relation ω2 = k2 + 1 and ψ1(x; k), ψ2(x; k) are the real
and imaginary parts of

eikx [tanh(x)− i k]√
2π(1 + k2)

.

Proof. Accordingly to correspondence (3.3.7) and Sturm-Liouville problem (3.3.6),
we consider the resolution of the equivalent (as we have already seen) Schrödinger
problem associated to the symmetric Rosen-Morse potential

v(x) = 2

(
1− 1

cosh2 x

)
.

We begin analysing the bound states region. By computing N(v0, 0) = b0 = 1 we
find that there exists only one bound solution corresponding to the eigenvalue ε0 = 1
which translates to ω = 0 and that ε = v0 = 2 is an actual eigenvalue. Accordingly
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Figure 3.2: Goldstone mode (ω = 0, blue line) and unbound solutions, ψ1(x; k) (thicker
line) and ψ2(x; k) (thinner line), for k = 1,

√
3 (red and yellow lines, respectively). The

dotted lines represent the eigenenergy, ε, of the associated Schrödinger equation for each
solution. The solutions have been moved upwards ε in the y axis. The black line represents
the symmetric Rosen-Morse potential.

to Theorem 3.2.2, its associated eigenfunction takes the form (recall correspondence
z → x)

ψ0(x) ∝ sechxP
(1, 1)
0 (− tanhx) = sechx.

As to the unbound states region, it can be found that

α = −1, β = 2, γ(ε) = 1− i
√
ε− 2.

Moreover, it can be checked that k =
√
ε− 2 > 0 which, added to Theorem 3.2.3,

allows us to state that the closed interval of ε ∈ [2,+∞) constitutes the continuous
spectrum. In this way, their associated eigenfunctions are given by

Ψ1(x; k) = eikxF

(
−1, 2, 1− ik;

1− tanhx

2

)
,

Ψ2(x; k) = sechik xF

(
ik − 1, 2 + ik, 1 + ik;

1− tanhx

2

)
,

however, we shall dispose of solution Ψ2(x; k) because a simpler pair of linearly
independent solution can be constructed from Ψ1(x; k). By making use of relation
(2.2.33), it can be found that

Ψ1(x; k) = ψ(x; k) ∝ eikx (ik − tanhx) .

Now, to finalize, since there are no complex arguments in the associated Schrödinger
equation, both the real and imaginary parts of ψ(x; k) must satisfy it separately
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which means ψ1(x; k) and ψ2(x; k) (as defined in the statement of this corollary) are
eigenfunctions.

On the other hand, by analysing the Wronskian of the functions

u1(x) = (1− ik)ℜ(ψ(x; k)), u2(x) = (1− ik)ℑ(ψ(x; k)),

it can be found that ψ1(x; k) and ψ2(x; k) are linearly independent except for k = 0
which is equivalent to ε = v0 = 2 where its degeneracy is necessarily one and
ψ2(x; k) ≡ 0 accordingly to Theorem 3.2.3.

In figure 3.2, we show the bound solution, ψ0(x), associated to ω = 0 which
corresponds to the Goldstone mode and the two linearly independent solutions,
ψk
j (x), j = 1, 2, for a pair of unbound states for the Sturm-Liouville problem as-

sociated to the sine-Gordon equation. Notice that they have a different behaviour.
The bound solution (blue line) is spatially localized and does not oscillate (ω = 0),
in contrast to the unbound solutions (red and yellow lines). Naturally, they all are
bounded.

3.3.2 The φ4 equation

The φ4 potential is represented when

U(φ) =
1

2
(φ2 − 1)2, (3.3.8)

where the kink and antikink solutions connect two stable equilibrium points φ = −1
with φ = +1. In particular, the static kink and antikink solutions read

φ0(x) = ± tanh(x), (3.3.9)

respectively. This implies

U ′′(φ0(x)) = 2
(
3 tanh2 x− 1

)
.

In such manner, the Sturm-Liouville problem to analyse is

ψxx +
[
ω2 + 2

(
1− 3 tanh2 x

)]
ψ = 0. (3.3.10)

With that purpose in mind, we, again, compare it with equation (3.1.2) and find
that their solutions can be related by considering the following correspondence:

z → x, µ = 0, v0 = 6, ω2 = ε− 2, (3.3.11)

where stability of the static solution will come from the fact that ε ≥ 2 for every
possible eigenvalue. Therefore, by considering the resolution of the Rosen-Morse
potential associated to this choice of parameters we obtain the following result.
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Corollary 3.3.3. Let be the φ4 equation, that is, equation (3.3.1) with potential
(3.3.8) and consider the static solution given by equation (3.3.9).

Then, the static solution φ0(x) is linearly stable in the sense of definition (3.3.1)
which means that the associated Sturm-Liouville problem (see equation (3.3.10)) has
a set of eigenfunctions that belong to L∞(R) and such that ω ∈ R. Specifically, these
pairs (ω, ψ(x)) ∈ R× L∞(R) satisfy that:

• There exist two eigenvectors, ψ1,2(x), one associated to ω0 = 0 which corre-
sponds to the Goldstone mode ψ0(x) =

√
3/2 sech2 x, and the other one to

ω1 =
√
3 and ψ1(x) =

√
3/
√
2 sech x tanhx. This constitutes the discrete spec-

trum of equation (3.3.10).

• The continuous spectrum of equation is ω2 ∈ [4,∞), and their associated eigen-
functions are written in the form

ψ(x; k) = c1ψ1(x; k) + c2ψ2(x; k), c1,2 ∈ C, (3.3.12)

where k ∈ R+ satisfy relation ω2 = k2 + 4 and ψ1(x; k), ψ2(x; k) are the real
and imaginary parts of

eikx
[
3 tanh2(x)− 3ik tanh(x)− k2 − 1

]√
2π(k2 + 1)(k2 + 4)

. (3.3.13)

This constitutes the continuous spectrum of equation (3.3.10).

Proof. We omit the proof as it is completely analogous to previous one.

In figure 3.3, we show the bound solutions, ψ0(x) and ψ1(x), associated to ω = 0 and
ω1 =

√
3, respectively, and the two linearly independent solutions, ψk

j (x), j = 1, 2,
for an unbound state for the Sturm-Liouville problem associated to the φ4 equation.
Notice that they have a different behaviour. The bound solutions (blue and red lines)
are spatially localized. Moreover, the Goldstone mode does not oscillate (ω = 0)
whereas the rest of solutions including the other bound solution (ω1 =

√
3) do

oscillate. In addition, ψ0(x) is even with no zeros and ψ1(x) is odd with one zero.
Naturally, they all are bounded.

3.3.3 The φ6 equation

Consider now the φ6 potential [8]

U(φ) = −1

2
λ2φ2

(
φ2 − µ̃

λ

)2

, λ, µ̃ > 0. (3.3.14)

The static kink is given by

φ0(x) =
[ µ
2λ

(1 + tanh µ̃x)
] 1

2
, (3.3.15)



3.3. Application: stability of the nonlinear Klein-Gordon equation 73

Figure 3.3: Goldstone mode (ω = 0, blue line), bound solution for ω1 =
√
3 (red line)

and unbound solutions, ψk
1 (x) (thicker line) and ψk

2 (x) (thinner line), for k =
√
5 (yellow

line). The dotted lines represent the eigenenergy, ε, of the associated Schrödinger equation
for each solution. The solutions have been moved upwards ε in the y axis. The black line
represents the symmetric Rosen-Morse potential.

so that
U ′′(φ0(x)) =

5µ̃2

2
+

3µ̃2

2
tanh(µ̃x)− 15µ̃2

4 cosh2 µ̃x
.

In such manner, the Sturm-Liouville problem to analyse is

ψxx +

[
ω2 +−5µ̃2

2
− 3µ̃2

2
tanh(µ̃x) +

15µ̃2

4 cosh2 µ̃x

]
ψ = 0. (3.3.16)

With that purpose in mind, we, again, compare it with equation(3.1.2) and find that
their solutions can be related by considering the following correspondence:

z → µ̃x, µ = arctanh
1

5
, v0 =

18

5
, ω2 = µ̃2

(
ε− 7

5

)
, (3.3.17)

where stability of the static solution will come from the fact that ε ≥ 7/5 for every
possible eigenvalue. Therefore, by considering the resolution of the Rosen-Morse
potential associated to this choice of parameters we obtain the following result.

Corollary 3.3.4. Let be the φ6 equation, that is, equation (3.3.1) with potential
(3.3.14) and consider the static solution given by equation (3.3.15).

Then, the static solution φ0(x) is linearly stable in the sense of definition 3.3.1
which means that the associated Sturm-Liouville problem (see equation (3.3.16)) has
a set of eigenfunctions that belong to L∞(R) and such that ω ∈ R. Specifically, these
pairs (ω, ψ(x)) ∈ R× L∞(R) satisfy that
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• The discrete spectrum of equation (3.3.16) contain only one single point ω = 0

which corresponds to the Goldstone mode ψ0(x) ∝ e−µ̃
x
2 sech

3
2 (µ̃x) .

• The continuous spectrum of equation (3.3.16) is ω2 ∈ (µ̃2,∞), and their asso-
ciated eigenfunctions, ψ(x;ω), satisfy that:

1. for ω2 ∈ (µ̃2, 4µ̃2 ],
ψ(x;ω) ∝ ψ1(x;ω)

2. for ω2 ∈ (4µ̃2,∞),

ψ(x;ω) = c1ψ1(x;ω) + c2ψ2(x;ω), c1,2 ∈ C

where

ψ1(x;ω) =
sechb(ω) µ̃x

ea(ω)µ̃x
F

(
b(ω)− 3

5
, b(ω) +

5

2
, 1 + k+(ω);

1− tanh µ̃x

2

)
,

ψ2(x;ω) =
eb(ω)µ̃x

secha(ω) µ̃x
F

(
a(ω)− 3

5
, a(ω) +

5

2
, 1− k+(ω);

1− tanh µ̃x

2

)
.

In addition, k−(ω) > 0, ℜ(k+(ω)) ≥ 0 and ℑ(k+(ω)) ≤ 0 are given by

k2−(ω) =

(
ω

µ̃

)2

− 1, k2+(ω) = 4−
(
ω

µ̃

)2

, (3.3.18)

a(ω) =
1

2
k+(ω)−

i

2
k−(ω), b(ω) =

1

2
k+(ω) +

i

2
k−(ω). (3.3.19)

Proof. We proceed in a similar fashion. Accordingly to correspondence (3.3.17) and
Sturm-Liouville problem (3.3.16), we consider the resolution of the equivalent Schrö-
dinger problem associated to the, in this case, asymmetric Rosen-Morse potential

v(x) =
9

4

(
tanh z +

1

5

)2

.

By computing N(v0, µ) ≈ 0.63, we find that there exists only one bound solution
corresponding to the eigenvalue ε0 = 7/5 which translates to ω = 0 (the Goldstone
mode) and, in this case, ε = v− is not an eigenvalue. Accordingly to Theorem 3.1.4,
the associated eigenfunction takes the form

ψ0(x) ∝ e−a0µ̃x sechb0 µ̃xP
(b0−a0, b0+a0)
0 (− tanh µ̃x) = e−µ̃

x
2 sech

3
2 µ̃x

since it can be found that a0 = 1/2 and b0 = 3/2.

For the unbound states region, we start by noticing that

α(ε) = b(ε)− 3

2
, β(ε) = b(ε) +

5

2
, γ(ε) = a(ε) + b(ε) + 1,

which added to the relation between ε and ω (see (3.3.17)) implies that parameters
involved in the definitions of ψω

i can be written as stated in the theorem with defi-
nitions (3.3.18) and (3.3.19). The rest of the results comes from a direct application
of Theorem 3.1.6.
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Figure 3.4: Goldstone mode (ω = 0, blue line), real part of reflecting solution, ψω
1 (x)

(red line) for ω =
√
2.6 and real parts of ψω

1 (x) (thicker line) and ψω
2 (x) (thinner line) for

ω =
√
5.1 (yellow line). The dotted lines represent the eigenenergy, ε, of the associated

Schrödinger equation for each solution. The solutions have been moved upwards ε in the
y axis. The black line is the asymmetric Rosen-Morse potential.

In figure 3.4, we show the bound solution, ψ0(x), associated to ω = 0 which corre-
sponds to the Goldstone mode, the real part of an unbound solution for the reflecting
state region, ψω

1 (x) for ω =
√
2.6, and the real parts of the two linearly independent

solutions, ψω
i (x) for ω =

√
5.1, for the Sturm-Liouville problem associated to the

φ6 equation with µ̃ = 1. Notice that they have a different behaviour. The bound
solution (blue line) is spatially localized and does not oscillate, in contrast to the
unbound solutions (red and yellow lines). In addition, the reflecting state solution
(red line) vanishes as x→ ∞ as it is expected for this region. Furthermore, we can
take the real or imaginary parts as a solution because the Schrödinger equation has
no complex arguments. This necessarily implies that they are proportional for the
reflecting states. Finally, notice that both ψω

j (x) (j = 1, 2) for the free state behave
differently as they are linearly independent. Naturally, they all are bounded.

In this way, we have made use of Theorems 3.1.4, 3.1.6, 3.2.2 and 3.2.3 to justify
linear stability of static kink solutions in the sense of definition 3.3.1 arising from
the sine-Gordon, φ4 and φ6 equations.
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Chapter 4

Conclusions and further problems

In this last chapter, we provide a summary of the different concepts and problems we
have developed and solved throughout our work, and we will mention some further
problems.

In first instance, we have developed a brief introduction to non-relativistic quantum
mechanics, mainly through the introducing of its postulates. We have emphasized
the importance of the observability hypothesis related to intuitively measurable phys-
ical quantities, since this property (among others) is the one that allows us to con-
struct a quantitative physical theory. This led us to formulate the central problem
of our work as stated in Problem 1.3.2 so that the Hamiltonian operator associated
to the Rosen-Morse potential constitutes an actual observable whose resolution of
its spectrum characterises the dynamical behaviour of any system subjected to it.

Treating Problem 1.3.2 as a Sturm-Liouville problem with different boundary con-
ditions, we considered its reduction to a generalized hypergeometric equation or
(GHE) as a first step in its resolution. Regarding this, we presented, at the begin-
ning of the second chapter, a way to reduce a (GHE) into a much simpler differential
equation via the Nikiforov-Uvarov method: a hypergeometric differential equation
simply denoted with (HDE). Subsequently, we split the study of (HDE) in two parts.

In the first of those, we presented a series of results that allowed us to solve the dis-
crete spectrum through the use of classical orthogonal polynomials which emerged as
the simplest possible solutions of a given (HDE). In this section, we note that Theo-
rem 2.2.13 is a key result as it linked square-integrability needed for wave solutions
in the bound states region with the weighted square-integrability of polynomials.

In the second part, we generalised Rodrigues’ formula in order to obtain a greater
number of solutions. With this and the analytic continuation, we were able to anal-
yse Gauss’s hypergeometric equation and construct a pair of linearly independent
solution based on the hypergeometric series for certain conditions of its parameters.
In addition, we presented auxiliary results that allowed us to study boundedness of
this hypergeometric series leading to the resolution of the continuous spectrum.

In the third chapter, we solved the time-independent Schrödinger equation asso-
ciated to Problem 1.3.2 by, simply, following the lines set out in the second chap-
ter. We reduced the Schrödinger equation to a (GHE) and, subsequently, via the

77



78 Chapter 4. Conclusions and further problems

Nikiforov-Uvarov method to a (HDE). In this way, we were able to obtain theorems
3.1.4 and 3.1.6 as main results of our report. In addition, we particularized to the
symmetric case. To finalize this chapter, we employed these results to study stability
of nonlinear Klein-Gordon equations and found linear stability of the static kinks
related to the sine-Gordon, φ4 and φ6 equations as corollaries of theorems 3.1.4 and
3.1.6, mainly.

Therefore, the main objective of our work is completed. Nevertheless, we would
like to mention that, regarding observability of the Hamiltonian operator we have
studied, there is one last important aspect we have not been able to treat in this
report. Although we have obtained all the wave solution, we have not checked
whether or not they constitute a complete basis for the state space, Φ, which, in
reality, translates to verifying its observability. The fact is that they do constitute
a complete basis. This proof is beyond the scope of this paper. Nevertheless,
the Rosen-Morse potential (3.0.1) belong to the class of potentials studied in [15,
Example 2.1 page 177], and therefore the results obtained there can be applied to
our case. In particular in [15, Example 2.1 page 177] it is proven the completeness
property of the solutions of the corresponding Schrödinger equation (1.3.2). It is
straightforward to apply this result to our particular case in the same fashion it was
done in [12].

The content of Chapter 3 will be used for writing the original research article [5].
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