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Abstract. Throughout this paper, we show on one hand, that there are
nilpotent and solvable Lie superalgebras with infinitely many local su-
perderivations which are not standard superderivations. On the other
hand, we show that every local superderivation is a superderivation on
the maximal-dimensional solvable Lie superalgebras with model filiform
or model nilpotent nilradical. Moreover, we extend the latter result for
Leibniz superalgebras by showing that every local superderivation is a
superderivation on the maximal-dimensional solvable Leibniz superal-
gebras with model filiform or model nilpotent non-Lie nilradical.
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1. Introduction

Local derivations were considered for the first time in 1990 by Kadison [22]
and also by Larson and Sourour [24]. In particular, Kadison showed that
each continuous local derivation from a von Neumann algebra into the dual
bimodule is a derivation. Let us note then, that the main problem studied
in relation to this research topic is to determine when a local derivation is a
derivation, see for instance [9,20]. Additionally, other problem that has been
largely studied is to find types of algebras containing local derivations which
are not derivations [1]. More recently, in [4,5,13] the authors studied the
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aforementioned problems for Lie algebras, proving in particular that every
local derivation of a semi-simple Lie algebra is a derivation and giving exam-
ples of solvable Lie algebras with local derivations which are not derivations.
Likewise, an analogous study has been developed for Leibniz algebras, see for
instance [6] and references therein.

Recently, studying local superderivations on semi-simple Lie superalge-
bras have drawn a lot of attention [14–16,27], however none of them tackle
local superderivations on solvable Lie superalgebras nor Leibniz superalge-
bras. Thus, this is the context of our work, studying local superderivations
on solvable Lie and Leibniz superalgebras. Note that studying solvable Lie
superalgebras presents more difficulties than studying solvable Lie algebras
[26]. In particular, Lie’s theorem is not verified in general and neither its
corollaries. Therefore, for a solvable Lie superalgebra L, L2 := [L,L] can not
be nilpotent, see [25]. Nevertheless, in [11] the authors proved that under the
condition of being L2 nilpotent, any solvable Lie and Leibniz superalgebra
over the real or complex field can be obtained by means of outer non-nilpotent
superderivations of the nilradical in the same way as occurs for Lie and Leib-
niz algebras.

In this frame, we investigate local superderivations of solvable Lie and
Leibniz superalgebras. First, we prove that there are nilpotent and solv-
able Lie superalgebras with infinitely many local superderivations which are
not ordinary superderivations (see Sects. 3 and 5). Second, we prove on the
maximal-dimensional solvable Lie superalgebras with model filiform or model
nilpotent nilradical that every local superderivation is a superderivation (see
Sect. 4). Finally, we extend this last result for the maximal-dimensional solv-
able Leibniz superalgebras with model filiform and model nilpotent non-Lie
nilradical (see Sect. 6).

2. Preliminary Results

2.1. Preliminary for Lie Superalgebras

A vector space V is said to be Z2-graded if it admits a decomposition into
a direct sum, V = V0̄ ⊕ V1̄, where 0̄, 1̄ ∈ Z2. An element X ∈ V is called
homogeneous of degree |x| if it is an element of V|x|, |x| ∈ Z2.

In particular, the elements of V0̄ (resp. V1̄) are also called even (resp.
odd). A Lie superalgebra (see [21]) is a Z2-graded vector space g = g0̄ ⊕ g1̄,
with an even bilinear commutation operation (or “supercommutation”) [·, ·],
which satisfies the conditions

1. [x, y] = −(−1)|x||y|[y, x],
2. (−1)|x||z|[x, [y, z]] + (−1)|x||y|[y, [z, x]] + (−1)|y||z|[z, [x, y]] = 0 (super

Jacobi identity)
for all homogeneous elements x, y, z ∈ g.

Thus, g0̄ is an ordinary Lie algebra, and g1̄ is a module over g0̄; the Lie
superalgebra structure also contains the symmetric pairing S2g1̄ −→ g0̄.

Let us note that both the descending central sequence and the derived
sequence of a Lie superalgebra g = g0̄ ⊕ g1̄ are defined in the same way as for
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Lie algebras: C0(g) := g, Ck+1(g) := [Ck(g), g] and D0(g) := g, Dk+1(g) :=
[Dk(g),Dk(g)] respectively, for all k ≥ 0. Thus, if Ck(g) = {0} (resp. Dk(g) =
{0}) for some k, then the Lie superalgebra is called nilpotent (resp. solvable).
Note that nilpotent Lie superalgebras are in particular solvable. Remark also,
that Engel’s theorem and its corollaries are still valid for Lie superalgebras.
Then, a Lie superalgebra L is nilpotent if and only if adLx is nilpotent for
every homogeneous element x of L. Additionally, a Lie superalgebra L is
solvable if and only if its even part L0 (a Lie algebra) is solvable. However,
Lie’s Theorem does not hold for solvable Lie superalgebras.

At the same time, there are also defined two other crucial sequences
denoted by Ck(g0̄) and Ck(g1̄) which will play an important role in our study.
They are defined as follows:

C0(gī) := gī, Ck+1(gī) := [g0̄, Ck(gī)], k ≥ 0, ī ∈ Z2.

Let us recall now, the definition of superderivations of superalgebras [21].
A superderivation of degree s of a superalgebra L, s ∈ Z2, is an endomorphism
D ∈ EndsL with the property

D(ab) = D(a)b + (−1)s·degaaD(b)

denote Ders(L) ⊂ EndsL the space of all superderivations of degree s. Then
Der(L) = Der0(L) ⊕ Der1(L) is the Lie superalgebra of superderivations of
L, with Der0(L) composed by even superderivations and Der1(L) by odd
ones.

On the other hand, recall also that a homogeneous linear mapping
Δ : L −→ L of degree s is called a local homogeneous superderivation of de-
gree s if for any element x ∈ L, there exists a superderivation Dx : L −→ L
(depending on x) such that Δ(x) = Dx(x). Then, the set of all local su-
perderivations can be expressed

LocDer(L) = LocDer0(L) ⊕ LocDer1(L)

with LocDer0(L) (resp. LocDer1(L)) composed by even (resp. odd) local
superderivations. For more details it can be consulted [14].

2.2. Preliminaries for Leibniz Superalgebras

Let us note that many results and definitions of the above sub-section can
be extended for Leibniz superalgebras.

Definition 2.1. [2]. A Z2-graded vector space L = L0̄ ⊕ L1̄ is called a Leib-
niz superalgebra if it is equipped with a product [·, ·] which for an arbitrary
element x and homogeneous elements y, z satisfies the condition

[x, [y, z]] = [[x, y], z] − (−1)|y||z|[[x, z], y] (super Leibniz identity).

Note that if a Leibniz superalgebra L satisfies the identity [x, y] =
−(−1)|x||y|[y, x] for any homogeneous elements x, y ∈ L, then the super Leib-
niz identity becomes the super Jacobi identity. Consequently, Leibniz super-
algebras are a generalization of Lie superalgebras. Also and in the same way
as for Lie superalgebras, isomorphisms are assumed to be consistent with the
Z2-graduation.
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Let us now denote by Rx the right multiplication operator, i.e., Rx :
L → L given as Rx(y) := [y, x] for y ∈ L, then the super Leibniz identity can
be expressed as R[x,y] = RyRx − (−1)|x||y|RxRy.

If we denote by R(L) the set of all right multiplication operators, then
R(L) with respect to the following multiplication

〈Ra, Rb〉 := RaRb − (−1)īj̄RbRa (2.1)

for Ra ∈ R(L)̄i, Rb ∈ R(L)j̄ , forms a Lie superalgebra. Note that Ra is a
derivation. In fact, the condition for being a derivation of a Leibniz superalge-
bra (for more details see [23]) is d([x, y]) = (−1)|d||y|[d(x), y]+ [x, d(y)]. Since
the degree of Rz as homomorphism between Z2-graded vector spaces is the
same as the degree of the homogeneous element z, that is |Rz| = |z|, then the
condition for Rz to be a derivation is exactly Rz([x, y]) = (−1)|z||y|[Rz(x), y]+
[x,Rz(y)]. This last condition can be rewritten [[x, y], z] = (−1)|z||y|[[x, z], y]+
[x, [y, z]] which is nothing but the super (graded) Leibniz identity. Let us re-
mark that the definition of local superderivation is a natural extension from
Lie theory.

Let us note also that the concepts of descending central sequence, nilin-
dex, the variety of Leibniz superalgebras and Engel’s theorem are natural
extensions from Lie theory.

Let V = V0̄ ⊕ V1̄ be the underlying vector space of L, L = L0̄ ⊕ L1̄ ∈
Leibn,m, being Leibn,m the variety of Leibniz superalgebras, and let G(V ) be
the group of the invertible linear mappings of the form f = f0̄ +f1̄, such that
f0̄ ∈ GL(n, C) and f1̄ ∈ GL(m, C) (then G(V ) = GL(n, C)⊕GL(m, C)). The
action of G(V ) on Leibn,m induces an action on the Leibniz superalgebras
variety: two laws λ1, λ2 are isomorphic if there exists a linear mapping f =
f0̄ + f1̄ ∈ G(V ), such that

λ2(x, y) = f−1
ī+j̄

(λ1(fī(x), fj̄(y))), for any x ∈ Vī, y ∈ Vj̄ .

Furthermore, the description of the variety of any class of algebras or
superalgebras is a difficult problem. Different works (for example, [3,7,10,18,
19]) are regarding the applications of algebraic groups theory to the descrip-
tion of the variety of Lie and Leibniz algebras.

Definition 2.2. For a Leibniz superalgebra L = L0̄ ⊕ L1̄ we define the right
annihilator of L as the set Ann(L) := {x ∈ L : [L, x] = 0}.

It is easy to see that Ann(L) is a two-sided ideal of L and [x, x] ∈
Ann(L) for any x ∈ L0̄. This notion is compatible with the right annihilator
in Leibniz algebras. If we consider the ideal I := ideal〈[x, y]+(−1)|x||y|[y, x]〉,
then I ⊂ Ann(L).

Let L = L0̄ ⊕ L1̄ be a nilpotent Leibniz superalgebra with dimL0̄ = n
and dim L1̄ = m. From Equation (2.1) we have that R(L) is a Lie super-
algebra, and in particular R(L0̄) is a Lie algebra. As L1̄ has L0̄-module
structure we can consider R(L0̄) as a subset of GL(V1̄) , where V1̄ is the
underlying vector space of L1̄. So, we have a Lie algebra formed by nilpo-
tent endomorphisms of V1̄. Applying Engel’s theorem we have the existence
of a sequence of subspaces of V1̄, V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm = V1̄, with
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R(L0̄)(Vi+1) ⊂ Vi. Then, it can be defined the descending sequences Ck(L0̄)
and Ck(L1̄) and the super-nilindex in the same way as for Lie superalge-
bras. That is, C0(Lī) := Lī, Ck+1(Lī) := [Ck(Lī), L0̄], k ≥ 0, ī ∈ Z2. If
L = L0̄ ⊕ L1̄ is a nilpotent Leibniz superalgebra, then L has super-nilindex
or s-nilindex (p, q) if satisfies

Cp−1(L0̄) 	= 0, Cq−1(L1̄) 	= 0, Cp(L0̄) = Cq(L1̄) = 0.

3. Local Superderivations of the Model Filiform Lie
Superalgebra

We start our study with one case of nilpotent Lie superalgebra. Among all of
them one that has been proved to be very relevant due to its properties is the
model filiform Lie superalgebra since all the other filiform Lie superalgebras
can be obtained from it by means of infinitesimal deformations [8]. These
infinitesimal deformations are given by the even 2-cocycles Z2

0 (Ln,m, Ln,m).
We consider then, the model filiform Lie superalgebra Ln,m, that is, the sim-
plest filiform Lie superalgebra which is defined by the only non-zero bracket
products that follow

Ln,m :

{
[x1, xi] = −[xi, x1] = xi+1, 2 ≤ i ≤ n − 1
[x1, yj ] = −[yj , x1] = yj+1, 1 ≤ j ≤ m − 1

with a basis {x1, . . . , xn} of (Ln,m)0̄ and a basis {y1, . . . , ym} of (Ln,m)1̄.
For an even superderivation D of Ln,m we have D(Ln,m

0
) ⊂ Ln,m

0
and

D(Ln,m

1
) ⊂ Ln,m

1
. Then we set

D(x1) =
n∑

k=1

akxk, D(x2) =
n∑

k=1

bkxk, D(y1) =
m∑
t=1

ctyt.

Applying induction and the even superderivation condition for the prod-
ucts [x1, xi] we derive

D(xi) = ((i − 2)a1 + b2)xi +
n∑

k=i+1

bk−i+2xk, 3 ≤ i ≤ n.

Similarly, from the products [x1, yj ] we get

D(yj) = ((j − 1)a1 + c1)yj +
m∑

t=j+1

ct−j+1yt, 2 ≤ j ≤ m.

Finally, from the product [x2, y1] we obtain b1 = 0. Thus, we conclude
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Der0(L
n,m

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 a3 . . . an 0 0 . . . 0

0 b2 b3 . . . bn 0 0 . . . 0

0 0 a1 + b2 . . . bn−1 0 0 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 . . . (n − 2)a1 + b2 0 0 . . . 0

0 0 0 . . . 0 c1 c2 . . . cm
0 0 0 . . . 0 0 a1 + c1 . . . cm−1

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 . . . 0 0 0 . . . (m − 1)a1 + c1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let now D be an odd superderivation of Ln,m. Then we have

D(x1) =
m∑

k=1

akyk, D(x2) =
m∑

k=1

bkyk, D(y1) =
n∑

t=1

ctxt.

According to the odd superderivation condition on the products of Ln,m

and induction, similar to even superderivation case, we obtain

D(xi) =
m∑

k=i−1

bk−i+2yk, 3 ≤ i ≤ n,

D(yj) =
n∑

t=j+1

ct−j+1xt, 2 ≤ j ≤ m.

Considering superderivation property for the products [x2, y1] and [x1,
xn], we get c1 and bi = 0, 1 ≤ i ≤ m−n+1 with m ≥ n. Thus, we conclude

Der1(L
n,m) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 a1 a2 . . . am

0 0 0 . . . 0 b1 b2 . . . bm
0 0 0 . . . 0 0 b1 . . . bm−1

...
...

...
. . .

...
...

...
. . .

...
0 0 0 . . . 0 0 0 . . . b1
...

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . 0 0 0 . . . 0
0 c2 c3 . . . cn 0 0 . . . 0
0 0 c2 . . . cn−1 0 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . c2 0 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . 0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where bi = 0, 1 ≤ i ≤ m − n + 1 with m ≥ n.

Theorem 3.1. Der(Ln,m) � LocDer(Ln,m).

Proof. Consider the homogeneous linear mappings Δt : Ln,m −→ Ln,m, t 	= 2
of degree 0 defined on the basis vectors of Ln,m by

Δt(x1) = x1, Δt(x2) = x2, Δt(x3) = tx3, Δt(xi) = Δt(yj)
= 0, 4 ≤ i ≤ n, 1 ≤ j ≤ m.
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Clearly, Δt is not an even superderivation (because its matrix does not
fit with the general matrix of even superderivations).

Consider the following superderivations:

• d1 is the resultant even superderivation after replacing a1 by 1 and all
the rest of parameters by 0 on the general matrix of Der0(L

n,m),
• d2 is the resultant even superderivation after replacing b2 by 1 and all

the rest of parameters by 0 on the general matrix of Der0(Ln,m),
• dt is the even superderivations defined by dt := d1 + (t − 1)d2.

Clearly,

Δt(x1) = d1(x1), Δt(x2) = d2(x2), Δt(x3) = dt(x3),
Δt(xi) = d0(xi) = Δt(yj) = d0(yj), 4 ≤ i ≤ n, 1 ≤ j ≤ m

being d0 the null superderivation.
For an arbitrary element e = α1x1 + · · · + αnxn + β1y1 + · · · + βmym of

Ln,m we have

Δt(e) = α1x1 + α2x2 + α3tx3.

Define superderivation de as follows de(xi) = de(yj) = 0 with 4 ≤ i ≤ n
and 1 ≤ j ≤ m and

de(x1) = β1x1 + β2x2 + β3x3, de(x2) = γ2x2 + γ3x3,

de(x3) = (β1 + γ2)x3,

where β1, β2, β3, γ2, γ3 are some unknowns parameters. From Δt(e) = de(e)
we derive β1 = 1 and the following linear system of equations

(
α1 0 α2 0
0 α1 α3 α2

) ⎛
⎜⎜⎝

β2

β3

γ2
γ3

⎞
⎟⎟⎠ =

(
α2

α3(t − 1)

)
,

which always has a solution with respect to unknowns β2, β3, γ2, γ3. Thus, we
obtain the existence a superderivation de such that de(e) = Δt(e). The proof
is complete. �

Remark 3.1. In fact, in the proof of Theorem 3.1 we show the existence of
infinitely many local superderivations on the model filiform Lie superalgebra
Ln,m (n ≥ 3) which are not superderivations. Note also, that analogously it
can be found infinitely many odd local superderivations which are not odd
superderivations.

Along the next sections, we consider non-nilpotent solvable Lie and
Leibniz superalgebras with different types of nilradical, starting with abelian
nilradical.
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4. Local Superderivations of Maximal-Dimensional Solvable
Lie Superalgebras with Model Filiform and Model
Nilpotent Nilradical

In this section first, we consider the maximal-dimensional solvable Lie super-
algebra with model filiform nilradical [12]. This superalgebra is unique for
each pair of dimensions (n,m) and can be expressed by the only non-null
bracket products that follow:

SLn,m :⎧⎪⎪⎨
⎪⎪⎩

[x1, xi] = −[xi, x1] = xi+1, 2 ≤ i ≤ n − 1, [t1, yj ] = −[yj , t1] = jyj , 1 ≤ j ≤ m,

[x1, yj ] = −[yj , x1] = yj+1, 1 ≤ j ≤ m − 1, [t2, xi] = −[xi, t2] = xi, 2 ≤ i ≤ n,

[t1, xi] = −[xi, t1] = ixi, 1 ≤ i ≤ n, [t3, yj ] = −[yj , t3] = yj , 1 ≤ j ≤ m,

with {x1, . . . , xn, t1, t2, t3} a basis of (SLn,m)0̄ and {y1, . . . , ym} a basis of
(SLn,m)1̄.

Its superalgebra of superderivations was obtained in [12]. Next, we prove
the following result.

Theorem 4.1. On the maximal-dimensional solvable Lie superalgebra with
model filiform nilradical, every local superderivation is a superderivation.

Proof. First, we are going to express in a more suitable way for our purpose
the solvable Lie superalgebra SLn,m. Thus, after applying an elementary
basis transformation one can express the table of multiplications SLn,m in a
new basis {e1, . . . , en, en+1, . . . , en+m} as follows:

SLn,m :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[e1, ei] = −[ei, e1] = ei+1, 2 ≤ i ≤ n − 1,

[e1, en+j ] = −[en+j , e1] = en+j+1, 1 ≤ j ≤ m − 1,

[t1, ei] = −[ei, t1] = iei, 1 ≤ i ≤ n + m,

[t2, ei] = −[ei, t2] = ei, 2 ≤ i ≤ n,

[t3, en+j ] = −[en+j , t3] = en+j , 1 ≤ j ≤ m.

In [12] the authors proved every superderivation is exactly the adjoint
operator of an element of SLn,m. Let us fix an arbitrary element z = γ1t1 +
γ2t2 + γ3t3 +

∑n+m
p=1 βpep of the superalgebra SLn,m, then for its adjoint

operator adz we obtain

adz(t1) = −
n+m∑
p=1

pβpep, adz(t2) = −
n∑

p=2

βpep, adz(t3) = −
n+m∑

p=n+1

βpep,

adz(e1) = γ1e1 −
n−1∑
p=2

βpep+1 −
n+m−1∑
p=n+1

βpep+1,

adz(ei) = (iγ1 + γ2)ei + β1ei+1, 2 ≤ i ≤ n,

adz(en+j) = ((n + j)γ1 + γ3)en+j + β1en+j+1, 1 ≤ j ≤ m.
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Later on, when needed, from this general expression we will distinguish
between even and odd superderivations. Let us consider now an arbitrary
local superderivation Δ : SLn,m −→ SLn,m. Since the value of a local su-
perderivation on any vector coincides with the value on this vector of a su-
perderivation, in particular on the basis vectors we have the following expres-
sion:

Δ(t1) = −
n+m∑
p=1

pβ1,pep, Δ(t2) = −
n∑

p=2

β2,pep, Δ(t3) = −
n+m∑

p=n+1

β3,pep,

Δ(e1) = γ1,1e1 −
n−1∑
p=2

δ1,pep+1 −
n+m−1∑
p=n+1

δ1,pep+1,

Δ(ei) = (iγi,1 + γi,2)ei + δi,1ei+1, 2 ≤ i ≤ n,

Δ(en+j) = ((n + j)γn+j,1 + γn+j,3)en+j + δn+j,1en+j+1, 1 ≤ j ≤ m.

The goal now is to show that the expressions for adz and Δ coincide.
Firstly, we will show this coincidence on the generators of the basis vectors,
i.e. t1, t2, t3, e1, e2 and en+1. Let us consider Δ(st2−t1) with a fixed s verifying
2 ≤ s ≤ n. Thus as Δ is linear we obtain

Δ(st2 − t1) = sΔ(t2) − Δ(t1) =
n+m∑
p=1

pβ1,pep − s
n∑

p=2

β2,pep

= β1,1e1 +
n∑

p=2

(pβ1,p − sβ2,p)ep +
n+m∑

p=n+1

pβ1,pep,

on the other hand and by definition the above coincides with the value of a
superderivation, named de on the vector st2 − t1, thus

Δ(st2 − t1) = de(st2 − t1) = βe
1e1 +

n∑
p=2

(pβe
p − sβe

p)ep +
n+m∑

p=n+1

pβe
pep,

comparing the coefficients of es on both expressions it follows that s(β1,s −
β2,s) = 0 and β1,s = β2,s. Repeating this process for all the possible s with
2 ≤ s ≤ n, leads to β1,s = β2,s, 2 ≤ s ≤ n.

Let us consider now Δ(st3−t1) with a fixed s verifying n+1 ≤ s ≤ n+m.
Since Δ is linear map, we obtain

sΔ(t3) − Δ(t1) =
n+m∑
p=1

pβ1,pep − s

n+m∑
p=n+1

β3,pep = β1,1e1 +
n∑

p=2

pβ1,pep

+
n+m∑

p=n+1

(pβ1,pep − sβ3,p)ep,

on the other hand and by definition the above coincides with the value of a
superderivation, named de on the vector st3 − t1, thus

Δ(st3 − t1) = de(st3 − t1) = βe
1e1 +

n∑
p=2

pβe
pep +

n+m∑
p=n+1

(pβe
p − sβe

p)ep,
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as above, comparing the coefficients of es on both expressions it follows that
s(β1,s − β3,s) = 0 and β1,s = β3,s. Repeating this process for all the possible
s with n+1 ≤ s ≤ n+m, leads to β1,s = β3,s, n+1 ≤ s ≤ n+m. Renaming
βi,p we have

Δ(t1) = −
n+m∑
p=1

pβpep, Δ(t2) = −
n∑

p=2

βpep, Δ(t3) = −
n+m∑

p=n+1

βpep.

Let us now consider Δ(t1 − 3t2 − e1), on one hand we have

Δ(t1) − 3Δ(t2) − Δ(e1) = −
n+m∑
p=1

pβpep + 3
n∑

p=2

βpep − γ1,1e1 +
n−1∑
p=2

δ1,pep+1

+
n+m−1∑
p=n+1

δ1,pep+1 = (−β1 − γ1,1)e1

+β2e2 +
n∑

p=3

(3βp − pβp + δ1,p−1)ep

−(n + 1)βn+1en+1 +
n+m∑

p=n+2

(δ1,p−1 − pβp)ep,

on the other hand and by definition the above coincides with the value of a
superderivation, named de on the vector t1 − 3t2 − e1, thus

Δ(t1 − 3t2 − e1)

= de(t1 − 3t2 − e1) = −
n+m∑
p=1

pβe
pep + 3

n∑
p=2

βe
pep

−γe
1e1 +

n−1∑
p=2

βe
pep+1 +

n+m−1∑
p=n+1

βe
pep+1

= (−βe
1 − γe

1)e1 + βe
2e2 +

n∑
p=3

(3βe
p − pβe

p + βe
p−1)

×ep − (n + 1)βe
n+1en+1 +

n+m∑
p=n+2

(βe
p−1 − pβe

p)ep,

considering the coefficients of e2 and e3 we obtain δ1,2 = β2. On account of
Δ(t1 − (i+1)t2 −e1) inductively we get δ1,i = βi for i verifying 2 ≤ i ≤ n−1.

In a similar way from Δ(t1 − (n + 2)t3 − e1) and considering the co-
efficients of en+1 and en+2 we obtain δ1,n+1 = βn+1, after and considering
the coefficients of en+1, en+2 and en+3 in Δ(t1 − (n + 3)t3 − e1) we obtain
δ1,n+2 = βn+2. Therefore, by considering Δ(t1−(n+j+1)t3−e1) inductively
we get δ1,n+j = βn+j with 1 ≤ j ≤ m − 1. In summary, we have then

Δ(e1) = γ1e1 −
n−1∑
p=2

βpep+1 −
n+m−1∑
p=n+1

βpep+1.
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Let us now consider Δ(t1 − (i + 1)t2 + ei) with a fixed i verifying 2 ≤
i ≤ n − 1. Then

Δ(t1) − (i + 1)Δ(t2) + Δ(ei) = −
n+m∑
p=1

pβpep + (i + 1)
n∑

p=2

βpep

+(iγi,1 + γi,2)ei + δi,1ei+1

= −β1e1 + · · · + δi,1ei+1.

On the other hand, we have

Δ(t1 − (i + 1)t2 + ei) = de(t1 − (i + 1)t2 + ei)

= −
n+m∑
p=1

pβe
pep + (i + 1)

n∑
p=2

βe
pep

+(iγe
1 + γe

2)ei + βe
1ei+1 = −βe

1e1 + · · · + βe
1ei+1

which leads to δi,1 = β1. By repeating this process for all i with 2 ≤ i ≤ n−1,
we conclude that δi,1 = β1 for all i, 2 ≤ i ≤ n − 1. Summing up

Δ(ei) = (iγi,1 + γi,2)ei + β1ei+1, 2 ≤ i ≤ n.

From Δ(e2 + en+j) we have

Δ(e2) + Δ(en+j) = (2γ2,1 + γ2,2)e2 + β1e3 + ((n + j)γn+j,1

+γn+j,3)en+j + δn+j,1en+j+1,

and on the other hand

Δ(e2 + en+j) = de(e2 + en+j) = (2γe
1 + γe

2)e2 + βe
1e3 + ((n + j)γe

1

+γe
3)en+j + βe

1en+j+1,

which leads to δn+j,1 = β1, 1 ≤ j ≤ m − 1.
Consequently, there is no loss of generality in supposing

Δ(t1) = −
n+m∑
p=1

pβpep, Δ(t2) = −
n∑

p=2

βpep, Δ(t3) = −
n+m∑

p=n+1

βpep,

Δ(e1) = γ1e1 −
n−1∑
p=2

βpep+1 −
n+m−1∑
p=n+1

βpep+1, Δ(e2) = (2γ1 + γ2)e2 + β1e3,

Δ(ei) = (iγi,1 + γi,2)ei + β1ei+1, 3 ≤ i ≤ n,
Δ(en+1) = ((n + 1)γ1 + γ3)en+1 + β1en+2,

Δ(en+j) = ((n + j)γn+j,1 + γn+j,3)en+j + β1en+j+1, 2 ≤ j ≤ m − 1,
Δ(en+m) = ((n + m)γn+m,1 + γn+m,3)en+m.

At this point we are going to distinguish between even and odd local
superderivations. Recall that {t1, t2, t3, e1, . . . , en} are even basis vectors of
SLn,m and {en+1, . . . , en+m} odd ones. Thus, if Δ is an odd local superderiva-
tion in particular Δ is a homogeneous linear mapping of degree 1,

Δ : (SLn,m)0̄ −→ (SLn,m)1̄ and Δ : (SLn,m)1̄ −→ (SLn,m)0̄.
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Therefore, the only non-null values on the basis vectors for an odd local
superderivation are exactly:

Δ(t1) = −
n+m∑

p=n+1

pβpep, Δ(t3) = −
n+m∑

p=n+1

βpep, Δ(e1) = −
n+m−1∑
p=n+1

βpep+1.

Then every odd local superderivation is a standard odd superderivation.
Regarding even local superderivations Δ : (SLn,m)0̄ −→ (SLn,m)0̄ and Δ :
(SLn,m)1̄ −→ (SLn,m)1̄ we have

Δ(t1) = −
n∑

p=1

pβpep, Δ(t2) = −
n∑

p=2

βpep, Δ(t3) = 0, Δ(e1)

= γ1e1 −
n−1∑
p=2

βpep+1,

Δ(e2) = (2γ1 + γ2)e2 + β1e3, Δ(ei) = (iγi,1 + γi,2)ei + β1ei+1, 3 ≤ i ≤ n,

Δ(en+1) = ((n + 1)γ1 + γ3)en+1 + β1en+2,

Δ(en+j) = ((n + j)γn+j,1 + γn+j,3)en+j + β1en+j+1, 2 ≤ j ≤ m.

Only rest to prove that γi,1 = γn+j,1 = γ1, γi,2 = γ2 and γn+j,3 = γ3 in
order to have a standard even superderivation. Let us consider Δ(t1 − (j +
1)t2 + e1 − (j − 1)e2 + 1

(j−2)!ej+1) with a fixed j verifying 2 ≤ j ≤ n − 1, on
one hand we have

Δ(t1) − (j + 1)Δ(t2) + Δ(e1) − (j − 1)Δ(e2) +
1

(j − 2)!
Δ(ej+1)

= −
n∑

p=1

pβpep + (j + 1)
n∑

p=2

βpep + γ1e1

−
n−1∑
p=2

βpep+1 − (j − 1)(2γ1 + γ2)e2 − (j − 1)β1e3 +

+
1

(j − 2)!
((j + 1)γj+1,1 + γj+1,2)ej+1 +

1
(j − 2)!

β1ej+2

= (γ1 − β1)e1 − (j − 1)(2γ1 + γ2 − β2)e2 − [(j − 1)β1

+β2 − (j − 2)β3]e3 −
j∑

k=4

[βk−1 − (j + 1 − k)βk]ek − [βj

− 1
(j − 2)!

((j + 1)γj+1,1 + γj+1,2)]ej+1 + . . .

on the other hand

de(t1 − (j + 1)t2 + e1 − (j − 1)e2 +
1

(j − 2)!
ej+1)

= (γe
1 − βe

1)e1 − (j − 1)(2γe
1 + γe

2 − βe
2)e2 − [(j − 1)βe

1

+βe
2 − (j − 2)βe

3 ]e3 −
j∑

k=4

[βe
k−1 − (j + 1 − k)βe

k]ek − [βe
j
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− 1
(j − 2)!

((j + 1)γe
1 + γe

2)]ej+1 + . . .

On account of the coefficients of e1, . . . , ej+1 we have

(1) γe
1 − βe

1 = γ1 − β1,

(2) 2γe
1 + γe

2 − βe
2 = 2γ1 + γ2 − β2,

(3) (j − 1)βe
1 + βe

2 − (j − 2)βe
3 = (j − 1)β1 + β2 − (j − 2)β3,

(k) 4 ≤ k ≤ j, βe
k−1 − (j + 1 − k)βe

k = βk−1 − (j + 1 − k)βk,

(j + 1) βe
j − 1

(j − 2)!
((j + 1)γe

1 + γe
2) = βj − 1

(j − 2)!
((j + 1)γj+1,1 + γj+1,2).

The following linear combination of the above equations

(j − 1)(1) + (2) + (3) +
j+1∑
k=4

(j − 2)!
(j + 1 − k)!

(k)

leads to (j +1)γj+1,1 + γj+1,2 = (j +1)γ1 + γ2. Repeating this process for all
j with 2 ≤ j ≤ n − 1 allow us to assume

Δ(ei) = (iγ1 + γ2)ei + β1ei+1, 3 ≤ i ≤ n.

Finally, let us consider Δ(t1 + e1 − en+1 + en+j) for a fixed j verifying
2 ≤ j ≤ m. Then on one hand, we have

Δ(t1) + Δ(e1) + Δ(en+1) + Δ(en+j)

= −
n∑

p=1

pβpep + γ1e1 −
n−1∑
p=2

βpep+1 + ((n + 1)γ1 + γ3)en+1 + β1en+2

+((n + j)γn+j,1 + γn+j,3)en+j + β1en+j+1

= (γ1 − β1)e1 + · · · + ((n + 1)γ1 + γ3)en+1 + β1en+2 + ((n + j)γn+j,1

+γn+j,3)en+j + β1en+j+1.

On the other hand, we get

de(t1) + de(e1) + de(en+1) + de(en+j)
= (γe

1 − βe
1)e1 + · · · + ((n + 1)γe

1 + γe
3)en+1 + βe

1en+2 + ((n + j)γe
1

+γe
3)en+j + βe

1en+j+1

which leads to ((n + j)γn+j,1 + γn+j,3) = ((n + j)γ1 + γ3). Hence, we obtain

Δ(en+j) = ((n + j)γ1 + γ3)en+j + β1en+j+1, 2 ≤ j ≤ m,

which completes the proof of the theorem. �
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Let us consider now the maximal-dimensional solvable Lie superalge-
bra with model nilpotent nilradical [12]. We denote this superalgebra by
SN(n1, . . . , nk, 1|m1, . . . ,mp) and it can expressed by the following products:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x1, xj ] = −[xj , x1] = xj+1, 2 ≤ j ≤ n1,

[x1, xn1+···+nj+i] = −[xn1+···+nj+i, x1] = xn1+···+nj+i+1, 1 ≤ j ≤ k − 1, 2 ≤ i ≤ nj+1,

[x1, yj ] = −[yj , x1] = yj+1, 1 ≤ j ≤ m1 − 1,

[x1, ym1+···+mj+i] = −[ym1+···+mj+i, x1] = ym1+···+mj+i+1, 1 ≤ j ≤ p − 1, 1 ≤ i ≤ mj+1 − 1,

[t1, xi] = −[xi, t1] = ixi, 1 ≤ i ≤ n1 + · · · + nk + 1,

[t1, yj ] = −[yj , t1] = jyj , 1 ≤ j ≤ m1 + · · · + mp,

[t2, xi] = −[xi, t2] = xi, 2 ≤ i ≤ n1 + 1,

[tj+2, xn1+···+nj+i] = −[xn1+···+nj+i, tj+2] = xn1+···+nj+i, 1 ≤ j ≤ k − 1, 2 ≤ i ≤ nj+1 + 1,

[t′
1, yi] = −[yi, t

′
1] = yi, 1 ≤ i ≤ m1,

[t′
j+1, ym1+···+mj+i] = −[ym1+···+mj+i, t

′
j+1] = ym1+···+mj+i, 1 ≤ j ≤ p − 1, 1 ≤ i ≤ mj+1,

with {x1, . . . , xn1+···nk+1, t1, . . . , tk+1, t′1, . . . , t
′
p} even basis vectors and {y1,

. . . , ym1+···+mp
} odd basis vectors.

In [12] it is proved that all the superderivations are inner, then and
following the spirit of the proof of the theorem for model filiform nilradical
we have the next result. We omit the computations because they are rather
cumbersome and do not contain any new idea.

Theorem 4.2. On the maximal-dimensional solvable Lie superalgebra with
model nilpotent nilradical, SN(n1, . . . , nk, 1| m1, . . . ,mp) every local superder
-ivation is a superderivation.

5. Local Superderivations of Solvable Lie Superalgebras with
Non-model Nilradical

Along this section, we use an example of solvable Lie superalgebra whose
nilradical is a non-model one, in particular the nilradical is the only one Lie
superalgebra of maximal nilindex K2,m (for more details regarding K2,m see
Theorem 4.17 of [17]). We build over this solvable Lie superalgebra infinitely
many local superderivations which are not superderivations.

Thus, consider for any m odd positive integer m ≥ 3, the (m + 3)-
dimensional solvable Lie superalgebra Lm+3 (named Lm+3

1, 2−m
2 ,1,0,...,0

in [11]).

For that Lie superalgebra there exists a basis, namely {z, x1, x2, y1, . . . , ym}
with {z, x1, x2} even basis vectors and {y1, . . . , ym} odd basis vectors, in
which Lm+3 can be expressed by the only non-null bracket products that
follow:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x1, yi] = −[yi, x1] = yi+1, 1 ≤ i ≤ m − 1,

(yi, ym+1−i) = (ym+1−i, yi) = (−1)i+1x2, 1 ≤ i ≤ 1
2 (m + 1),

[z, x1] = −[x1, z] = x1 + x2

[z, x2] = −[x2, z] = x2

[z, y1] = −[y1, z] = 2−m
2 y1,

[z, yi] = −[yi, z] = ((i − 1) + 2−m
2 )yi, 2 ≤ i ≤ m,
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being its nilradical:

K2,m :

{
[x1, yi] = −[yi, x1] = yi+1, 1 ≤ i ≤ m − 1,

(yi, ym+1−i) = (ym+1−i, yi) = (−1)i+1x2, 1 ≤ i ≤ 1
2 (m + 1).

Note that [·, ·] is the standard skew-symmetric bracket product whereas
(·, ·) denotes the symmetrical ones, recall that a Lie superalgebra structure
g = g0̄ ⊕ g1̄ contains in particular the symmetric pairing S2g1̄ −→ g0̄. More-
over, because of these symmetric products K2,m is not a model nilpotent Lie
superalgebra.

Consider now the even superderivations on Lm+3, that is d ∈ Der0
(Lm+3) with

d(z) = α0z + α1x1 + α2x2,
d(xi) = αi0z + αi1x1 + αi2x2, 1 ≤ i ≤ 2,
d(yj) = βj1y1 + βj2y2 + · · · + βjmym, 1 ≤ j ≤ m.

A straightforward computation leads to the following general matrix of
any even superderivation on Lm+3 :

Der0(L
m+3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 α1 α2 0 0 0 . . . 0
0 α11 α12 0 0 0 . . . 0
0 0 α11 0 0 0 . . . 0
0 0 0 β11 −α1 0 . . . 0
0 0 0 0 β22 −α1 . . . 0
...

...
...

...
...

. . . . . .
...

...
...

...
...

...
...

. . . −α1

0 0 0 0 0 0 . . . βmm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with βii = ((i − 1) + 2−m
2 )α11 for i, 1 ≤ i ≤ m. Note also, from the matrix

that βi,i+1 = −α1 and βij = 0 for the remaining possibilities.

Theorem 5.1. Der(Lm+3) � LocDer(Lm+3).

Proof. Consider the homogeneous linear mappings Δt : Lm+3 −→ Lm+3

(t 	= 1) of degree 0 defined on the basis vectors of Lm+3 by

Δ(z) = 0, Δ(x1) = x1, Δ(x2) = tx2, Δ(yj) = 0, 1 ≤ j ≤ m.

It can be easily checked that Δ is not an even superderivation because
its matrix does not fit with the general matrix of even superderivations.
Nevertheless, for any t the map Δt is an even local superderivation. Indeed,
we have

Δt(z) = d0(z), Δt(x1) = d1(x1), Δt(x2) = td1(x2),
Δt(yj) = d0(yj), 1 ≤ j ≤ m,

where d1 is the resultant even superderivation after replacing α11 by 1 and
all the rest of parameters by 0 on the general matrix of Der0(L

m+3) and d0
is the null superderivation.
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Analogously to proof of Theorem 3.1 for a fixed element e = α0z +
α1x1 + α2x2 + β1y1 + · · · + βmym we have Δt(e) = α1x1 + α2tx2.

Now our goal is to prove the existence of a derivation de such that
Δt(e) = de(e).

Let de(z) = de(yj) = 0 be with 1 ≤ i ≤ m and

de(x1) = a1x1 + a2x2, de(x2) = a3x2

where a1, a2, a3 are unknowns. From the constraint Δt(e) = de(e) we have
that a1 = 1 and the following equation α1a2 + α2(a3 − t) = 0. This equation
always has solution with respect to unknowns a2, a3. Replacing one of theses
solutions of de we get that Δt is a local superderivation.

�

Remark 5.1. In fact, in the proof of Theorem 5.1 we show the existence of
infinitely many local superderivations on the (m + 3)-dimensional solvable
Lie superalgebra Lm+3 which are not superderivations. Note also, that anal-
ogously it can be found infinitely many odd local superderivations which are
not odd superderivations.

6. Local Superderivations of Maximal-Dimensional Solvable
Leibniz Superalgebras with Model Filiform and Model
Nilpotent Non-Lie Nilradical

We consider the maximal-dimensional solvable Leibniz superalgebra with fil-
iform nilradical [12]. This superalgebra is unique for each pair of dimensions
(n,m) and can be expressed by:

SLPn,m :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[xi, x1] = xi+1, 2 ≤ i ≤ n − 1;
[yj , x1] = yj+1, 1 ≤ j ≤ m − 1;
[t1, x1] = −x1,
[x1, t1] = x1,
[xi, t1] = (i − 2)xi, 3 ≤ i ≤ n;
[yj , t1] = (j − 1)yj , 2 ≤ j ≤ m;
[xi, t2] = xi, 2 ≤ i ≤ n;
[yj , t3] = yj , 1 ≤ j ≤ m;

with {x1, x2, . . . , xn, t1, t2, t3} a basis of (SLPn,m)0 and {y1, y2, . . . , ym} a
basis of (SLPn,m)1. Its superalgebra of superderivations was obtained in
[12]. Next, we prove the following result.

Theorem 6.1. On the maximal-dimensional solvable Leibniz superalgebra with
model filiform nilradical, every local superderivation is a superderivation.
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Proof. We rewrite the table of multiplications of the superalgebra SLPn,m

as follows:

SLPn,m :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e1] = ei+1, 2 ≤ i ≤ n − 1;
[en+j , e1] = en+j+1, 1 ≤ j ≤ m − 1;
[t1, e1] = −e1,
[e1, t1] = e1,
[ei, t1] = (i − 2)ei, 3 ≤ i ≤ n;
[en+j , t1] = (j − 1)en+j , 2 ≤ j ≤ m;
[ei, t2] = ei, 2 ≤ i ≤ n;
[en+j , t3] = en+j , 1 ≤ j ≤ m;

The superderivations of SLPn,m are inner [12]. Let us fix an arbitrary
element

z = γ1t1 + γ2t2 + γ3t3 +
n+m∑
p=1

βpep

of SLPn,m. Then for its right operator Rz we obtain

Rz(t1) = −β1e1 Rz(t2) = Rz(t3) = 0,
Rz(e1) = γ1e1

Rz(ei) = ((i − 2)γ1 + γ2)ei + β1ei+1, 2 ≤ i ≤ n − 1,

Rz(en) = ((n − 2)γ1 + γ2)en,

Rz(en+j) = ((j − 1)γ1 + γ3)en+j + β1en+j+1, 1 ≤ j ≤ m − 1,

Rz(en+m) = ((m − 1)γ1 + γ3)en+m.

In [12], we prove that all superderivations are even. Let us consider
an arbitrary local superderivation Δ : SLPn,m −→ SLPn,m. Similar to Lie
superalgebra we have that:

Δ(t1) = −β1,1e1 Δ(t2) = Δ(t3) = 0,
Δ(e1) = γ1,1e1
Δ(ei) = ((i − 2)γi,1 + γi,2)ei + βi,1ei+1, 2 ≤ i ≤ n − 1,
Δ(en) = ((n − 2)γn,1 + γn,2)en,
Δ(en+j) = ((j − 1)γn+j,1 + γn+j,3)en+j + βn+j,1en+j+1, 1 ≤ j ≤ m − 1,
Δ(en+m) = ((m − 1)γn+m,1 + γn+m,3)en+m.

The goal now is to show that the expressions for Rz and Δ coincide.
Firstly, we will show this coincidence on the generators of the basis vectors,
i.e. t1, t2, t3, e1, e2 and en+1. Let us consider Δ(t1 + e2). Thus as Δ is linear
we obtain

Δ(t1 + e2) = Δ(t1) + Δ(e2) = −β1,1e1 + γ2,1e2 + β2,1e3,

on the other hand and by definition the above coincides with the value of a
superderivation, named Re on the vector t1 + e2, thus

Δ(t1 + e2) = Re(t1 + e2) = −βe
1e1 + γe

2e2 + βe
1e3,

comparing the coefficients of e1 and e3 leads to β2,1 = β1,1. Let us consider
Δ(t1 + ej) = −β1,1e1 + ((j − 2)γj,1 + γj,2)ej + βj,1ej+1 for 3 ≤ j ≤ n − 1
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and on the other hand and by the definition of local derivation we get that
Re(t1 +ej) = −βe

1e1 +((j −2)γe
1 +γe

2)ej +βe
1ej+1. Comparing the coefficients

of e1 and ej+1 we obtain βj,1 = β1,1 for 3 ≤ j ≤ n − 1.

We consider now Δ(t1 + en+1) and similar as the above we have that
βn+1,1 = β1,1. Analogously, if we take Δ(t1 + en+j) with 2 ≤ j ≤ m − 1 we
have that βn+j,1 = β1,1 with 2 ≤ j ≤ m − 1.

Consequently, there is no loss of generality in supposing

Δ(t1) = −β1e1, Δ(t2) = Δ(t3) = 0,
Δ(e1) = γ1e1 Δ(e2) = γ2e2 + β1e3,
Δ(ei) = ((i − 2)γi,1 + γi,2)ei + β1ei+1, 3 ≤ i ≤ n − 1, Δ(en) = ((n − 2)γn,1 + γn,2)en,
Δ(en+1) = γ3en+1 + β1en+2,
Δ(en+j) = ((j − 1)γn+j,1 + γn+j,3)en+j + β1en+j+1, 2 ≤ j ≤ m − 1,
Δ(en+m) = ((m − 1)γn+m,1 + γn+m,3)en+m.

Let us consider Δ(t1 + e1 + e2 + e3) = (γ1 − β1)e1 + γ2e2 + (β1 + γ3,1 +
γ3,2)e3 + β1e4 on the other hand and by definition the above coincides with
the value of a superderivation, named Re on the vector t1+e1+e2 +e3, thus

Δ(t1 + e1 + e2 + e3) = Re(t1 + e1 + e2 + e3) = (γe
1 − βe

1)e1 + γe
2e2

+(βe
1 + γe

1 + γe
2)e3 + βe

1e4.

On account of the coefficients of e1, . . . , e4 we have

(1) γ1 − β1 = γe
1 − βe

1 ,
(2) γ2 = γe

2 ,
(3) γ3,1 + γ3,2 + β1 = γe

1 + γe
2 + βe

1 ,
(4) β1 = βe

1 .

From (1) + (2) + (4) we have that γ1 + γ2 = γe
1 + γe

2 and from (3) − (4)
we get γ3,1 + γ3,2 = γe

1 + γe
2 . Then, γ3,1 + γ3,2 = γ1 + γ2.

Now, we study Δ(t1 + e1 + e2 + ej) for 4 ≤ j ≤ n and we obtain the
following equations:

(1) γ1 − β1 = γe
1 − βe

1 ,
(2) γ2 = γe

2 ,
(3) β1 = βe

1 ,
(4) (j − 2)γj,1 + γj,2 = (j − 2)γe

1 + γe
2 ,

From (j−2)×(1)+(2)+(j−2)×(3) we get (j−2)γe
1+γe

2 = (j−2)γ1+γ2
and from (4) we leads to (j − 2)γj,1 + γj,2 = (j − 2)γ1 + γ2.

We now consider the vectors t1 +e1 +en+1 +en+j for a fixed j verifying
2 ≤ j ≤ m. For j = 2, we have that

Δ(t1) + Δ(e1) + Δ(en+1) + Δ(en+2) = (γ1 − β1)e1 + γ3en+1 +
(γn+2,1 + γn+2,3 + β1)en+2 + β1en+3

on the other hand, we get

Re(t1) + Re(e1) + Re(en+1) + Re(en+2) = (γe
1 − βe

1)e1 + γe
3en+1

+(γe
1 + γe

3 + βe
1)en+2 + βe

1en+3,
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which leads to
(1) γ1 − β1 = γe

1 − βe
1 ,

(2) γ3 = γe
3 ,

(3) γn+2,1 + γn+2,2 + β1 = γe
1 + γe

2 + βe
1 ,

(4) β1 = βe
1.

From (1) + (2) + (3) we obtain γ1 + γ3 = γe
1 + γe

3 and from (3) − (4) we
get γn+2,1 + γn+2,3 = γ1 + γ3.

We repeat the calculations for the vectors t1 + e1 + en+1 + en+j with
3 ≤ j ≤ m and we derive the following equations:

(1) γ1 − β1 = γe
1 − βe

1,
(2) γ3 = γe

3 ,
(3) β1 = βe

1 ,
(4) (j − 1)γn+j,1 + γn+j,3 = (j − 1)γe

1 + γe
3 ,

From (j−1)×(1)+(2)+(j−1)×(3) we get (j−1)γe
1+γe

3 = (j−1)γ1+γ3
and from (4) we derive (j −1)γn+j,1 +γn+j,3 = (j −1)γ1 +γ3 with 3 ≤ j ≤ m
which completes the proof of the theorem. �

Let us consider now the complex maximal-dimensional solvable Leibniz
superalgebra with model nilpotent non-Lie nilradical [12]. We denote this
superalgebra by SNP (n1, · · · , nk, 1|m1, . . . ,mp) given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[xj , x1] = xj+1, 2 ≤ j ≤ n1;
[xn1+···+nj+i, x1] = xn1+···+nj+i+1, 1 ≤ j ≤ k − 1, 2 ≤ i ≤ nj+1;
[yj , x1] = yj+1, 1 ≤ j ≤ m1 − 1;
[ym1+···+mj+i, x1] = ym1+···+mj+i+1, 1 ≤ j ≤ p − 1, 1 ≤ i ≤ mj+1 − 1;
[t1, x1] = −x1,

[x1, t1] = x1,

[xi, t1] = (i − 2)xi, 3 ≤ i ≤ n1 + 1;
[xn1+···+nj+i, t1] = (i − 2)xn1+···+nj+i, 1 ≤ j ≤ k − 1, 3 ≤ i ≤ nj+1 + 1;
[yj , t1] = (i − 1)yj , 2 ≤ j ≤ m1;
[ym1+···+mj+i, t1] = (i − 1)ym1+···+mj+i, 1 ≤ j ≤ p − 1, 2 ≤ i ≤ mj+1,

[xi, t2] = xi, 2 ≤ i ≤ n1 + 1;
[xn1+···+nj+i, tj+2] = xn1+···+nj+i, 1 ≤ j ≤ k − 1, 2 ≤ i ≤ nj+1 + 1;
[yj , t′1] = yj , 1 ≤ j ≤ m1;
[ym1+···+mj+i, t

′
j+1] = ym1+···+mj+i, 1 ≤ j ≤ p − 1, 1 ≤ i ≤ mj+1;

with {x1, . . . , xn1+···nk+1, t1, . . . , tk+1, t′1, . . . , t
′
p} even basis vectors and {y1,

. . . , ym1+···+mp
} odd basis vectors.

In [12] it is proved that all superderivation are inner. Analogously to
Theorem 6.1, we have the following result.

Theorem 6.2. On the maximal-dimensional solvable Leibniz superalgebra with
model nilpotent non-Lie nilradical, SNP (n1, . . . , nk, 1|m1, . . . ,mp) every lo-
cal superderivation is a superderivation.
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Proof. The proof is carrying out by arguments that used in the previous
theorem. We omit the proof of this theorem because the computations are
rather cumbersome and do not contain any new idea. �
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