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Computational pathology targets the automatic analysis of Whole Slide Images (WSI). WSIs are high-resolution digi-
tized histopathology images, stained with chemical reagents to highlight specific tissue structures and scanned via
whole slide scanners. The application of different parameters duringWSI acquisition may lead to stain color heteroge-
neity, especially considering samples collected from several medical centers. Dealing with stain color heterogeneity
often limits the robustness of methods developed to analyze WSIs, in particular Convolutional Neural Networks
(CNN), the state-of-the-art algorithm for most computational pathology tasks. Stain color heterogeneity is still an un-
solved problem, although several methods have been developed to alleviate it, such as Hue-Saturation-Contrast (HSC)
color augmentation and stain augmentation methods. The goal of this paper is to present Data-Driven Color Augmen-
tation (DDCA), a method to improve the efficiency of color augmentation methods by increasing the reliability of the
samples used for training computational pathology models. During CNN training, a database including over 2 million
H&E color variations collected from private and public datasets is used as a reference to discard augmented data with
color distributions that do not correspond to realistic data. DDCA is applied to HSC color augmentation, stain augmen-
tation andH&E-adversarial networks in colon and prostate cancer classification tasks. DDCA is then comparedwith 11
state-of-the-art baseline methods to handle color heterogeneity, showing that it can substantially improve classifica-
tion performance on unseen data including heterogeneous color variations.
Introduction

Dealingwith stain color heterogeneity is still one of themain challenges
in the computational pathology domain.1–7

Stain color heterogeneity involves variations of colors within
whole slide images (WSI),3,6,8 high-resolution digitized histopathol-
ogy images.9 Histopathology is the gold-standard for the analysis of
tissue samples,10,11 aiming to identify particular structures that may
lead to the diagnosis of diseases, such as cancer. Stain color heteroge-
neity is a consequence of the inconsistencies of the procedures
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involved in the acquisition of WSIs.12–16 The acquisition of WSIs is
composed of a sequence of procedures, including tissue preparation,
tissue staining, and tissue scanning. Tissue preparation includes the
tissue cutting (splitting of tissue specimen, removed from the patient,
into slices or sections) and tissue fixation (a technique to apply
chemicals to preserve tissue components and structure). Samples are
usually cut with an automatic sectioning machine, but usually the
thickness may not be uniform17 (around 3–5 μm) across laboratories,
in particular when the tissue size is rather large; several fixatives in-
cluding different chemical solutions were developed for the fixation,
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each one reacting differently with tissue specimen18 and therefore in-
troducing inconsistent results across laboratories. Tissue staining in-
volves the application of chemicals reagents to the tissue sample19 to
highlight structures of the tissue that are transparent otherwise.20–22

The goal of stains is to absorb light, so that it is possible to observe
structures within the tissue that otherwise would be transparent
white.22 Usually, the reagents include concentrations of Hematoxylin
& Eosin (H&E). Hematoxylin is responsible for the blue shades of cel-
lular nuclei, while Eosin is responsible for the pink shades of extracel-
lular structures. Several formulations of both hematoxylin and eosin
are available,23,24 leading to concentrations of H&E that are not stan-
dardized and may be inconsistent across different laboratories. Fur-
thermore, the exposition to light, during tissue storing, may fade the
stains.22 Tissue scanning involves the capture of images at high-
resolution, creating a digital file.25 Whole slide scanners are the hard-
ware developed for tissue scanning. Currently, whole slide scanners
are developed with peculiar properties, raw materials, manufacturing
techniques, and setups that are not consistent across vendors.2,17,26,27

In particular, the temperature8 impacts the reagents used to stain and
to fix the tissue and the light acquired27 influences the scanner re-
sponse to the color. The color variation of a tissue depends on the
light absorbed by stains,22 that are influenced by all steps in the WSI
acquisition. Therefore, different acquisition parameters lead to differ-
ent color variations. While the acquisition parameters are usually con-
sistent within a single laboratory (despite small possible errors in the
tissue cutting, tissue fixation, tissue staining, and small variations in
the environmental conditions) they vary across medical centers.2,3

For example, a medical center usually prepares the reagents to stain
images with the same concentrations of H&E and can use a single
whole slide scanner to scan the images, leading usually to a small var-
iability in terms of acquisition procedures. Therefore, the inconsis-
tency in WSIs acquisition usually is a problem related to multi-center
data acquisition.6,7,28

Fig. 1 shows an example of heterogeneous stain colors.
Dealing with stain color heterogeneity is still a challenge for the devel-

opment of computational pathology algorithms.2,3,6,12,29

Computational pathology is a domain involving the development of au-
tomatic algorithms to analyze WSIs,1,11,30 such as the classification or seg-
mentation of images. Currently, several algorithms developed to analyze
WSIs are based on deep learning algorithms,1 such as convolutional neural
networks (CNN), which are the state-of-the-art algorithm formostWSI clas-
sification and segmentation tasks. Despite the high performance reached by
CNNs, stain color heterogeneity between train and test images still limits
the development of computational pathology algorithms, hindering their
Fig. 1. Examples of color inc

2

capability to generalize on heterogeneous data. CNNs trained on data ac-
quired with a defined set of acquisition parameters (i.e., the H&E concen-
trations and the whole slide scanner adopted in a medical center) usually
do not generalize well3 (i.e., they show poor performance) when tested
on new data acquired with very different conditions. This problem limits
the development of robust CNNs that can generalize well when tested on
data including unseen stain color variations. This challenge is one of the
limitations that prevent the adoption of computational pathology
algorithms in clinical practice.1,31

Several algorithms and techniques have been developed to increase the
robustness and the generalization of CNNs. The algorithms developed to al-
leviate the effects of stain heterogeneity on CNNs training mainly target
modifications of input data at pixel-level,3,22,27 such as data normalization
and color augmentation; or the application of training strategies aiming to
induce specific properties at the feature-level,2,6,7,12 such as the invariance
to the domain where the images are collected or to the image color
variations.

Color normalization and color augmentation are methods working at
pixel-level. In both cases, the methods modify the raw pixels of input data
during CNN training. Color normalization15,16,22,27,32,33 transforms the
original image to match the stain of an image used as a template. Tradi-
tional color normalization approaches22,27,34 match the stain matrix22 (or
stain vector) from input data with the RGB components from a template
sample. The stain matrix includes the RGB components of the light wave-
length absorbed during the scanning for each stain component (H&E), ac-
cording to Macenko et al.,22 that describes the color variation of the
tissue and that can vary according to several factors (such as the H&E
composition used to stain the image, the tissue thickness, the whole slide
scanner used). More recently, the normalization problem is tackled with
style-transfer methods based on deep learning approaches.32,33 Data aug-
mentation performs a random perturbation on the input-image,3,29,35

aiming to create a color variation in the data. Hue-Saturation-Contrast
(HSC) color augmentation includes techniques perturbing parameters re-
lated to color (i.e., hue, saturation, and contrast), while stain color augmen-
tation includes techniques perturbing parameters related to the stain
matrices. Color augmentation methods usually show higher performance
than color normalization ones.3

Adversarial CNN training strategies are usually adopted in feature-level
algorithms.2,6,7 These algorithms are multi-task algorithms: the CNN is
trained to optimize the main task (e.g., classification of images) and a sec-
ondary task related to desirable characteristics. Domain-adversarial
networks6,7,12 work under the assumption that images collected from the
same medical center (or domain) present the same staining characteristics,
being acquired with the same set of acquisition parameters. During the
onsistencies across WSIs.
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training of the CNN, the secondary task of the network is to predict the do-
main where the image was collected, allowing to learn domain-invariant
features. The domain-adversarial assumption is generalized by
H&E-adversarial CNNs2: the network is trained to directly predict the
stain matrices of input data as a secondary task. H&E-adversarial CNNs
relax the constraint related to domain-adversarial networks, in the case
where the definition of the domainmay be fuzzy (e.g., too strict if every sin-
gle patient is considered as a domain or too broad if a medical center is con-
sidered as a domain), forcing the network to directly learn features
invariant to the color variation (i.e., stain matrices).

Despite the variety of solutions, the domain still shows several limita-
tions linked to the tuning of algorithm parameters, especially in color aug-
mentation techniques: small color perturbations may link to augmented
data including similar stains to the original data, while large color perturba-
tions may lead to augmented data including color artifacts. In this context,
color artifacts include color variations that are not present in clinical prac-
tice, representing a problem for the training of CNNs. Fig. 2 shows some ex-
amples of the problems related to the tuning of color augmentation
algorithms. In the left part of Fig. 2, the color perturbation applied to
input data is too soft, leading to augmented samples that are very similar
to the original image in terms of stain variations. In the right part of
Fig. 2, the color perturbation is too strong, leading to augmented samples
that include artifacts in terms of stain variations (such as dark and yellow
shades).

This paper proposes Data-Driven Color Augmentation (DDCA), a novel
color augmentation method to train CNNs that avoids the generation of
color artifacts during data augmentation, removing the need for tuning
color augmentation algorithms.

DDCA aims to improve the efficiency of color augmentationmethods by
increasing the reliability of the samples used for training computational pa-
thology models. DDCA exploits the increasing amount of available WSIs
from private and public sources to build a database including millions of
stain matrices, representing color variations. During CNN training, the
method compares the stain matrix of augmented samples with the color
variations collected in the database, discarding the ones corresponding to
unrealistic color variations. DDCA is applied to HSC color augmentation,
Fig. 2. Problems related to color augmentation parameters: on the left, small color pertur
color perturbations lead to artifacts, such as yellowish or dark stains (strong augmentat
(from 2 different datasets, to show the stain heterogeneity); the red dot represents the
samples are projected in a bi-dimensional space via Principal Component Analysis (PCA

3

stain augmentation, and H&E-adversarial networks and compared with
over 10 baseline algorithms developed to target stain color heterogeneity.

The method is tested on the classification of colon and prostate images,
considering unseen data collected from heterogeneous medical sources.
Colon and prostate cancers are 2 of the most common cancers
worldwide.36,37 One of the most important findings related to colon cancer
is the presence of malignant glands and polyps (small agglomerations of
cells) within colon WSIs.38 The presence of malignant glands is also impor-
tant for the diagnosis of prostate cancers: the Gleason grading system as-
sesses the characteristics of glands to evaluate the aggressiveness of the
tumor.39 The rest of the paper is organized as follows: Section “Methods
and Material” describes the CCDA method, the data used to evaluate it, in-
cluding the datasets composition and the preprocessing, the description of
other baselines to handle stain color heterogeneity, and the training strat-
egy; Section “Results” presents a quantitative assessment of the method;
Section “Discussion” presents a qualitative evaluation of the results
obtained; “Conclusions” draws some conclusions.

Methods and materials

Data-driven color augmentation method

The paper proposes Data-Driven Color Augmentation (DDCA), a color
augmentation method to avoid the generation of color variations including
artifacts during the training of deep learning models.

Color variations are described by the composition of Hematoxylin and
Eosin used to stain an image. The stain matrix (representing the color vari-
ation) is a 2x3 matrix including the RGB components of the light wave-
length absorbed by Hematoxylin and Eosin stains, estimated using the
Macenko et al.22 method.

Fig. 3 summarizes the method operations. At training time, color aug-
mentation is applied to input data to generate augmented samples includ-
ing new color variations.

DDCA evaluates the quality of augmented color variations, labeling a
sample as admissible or inadmissible. Only admissible samples are used
to train the model, while inadmissible ones are discarded. The evaluation
bations lead to similar color variations (soft augmentation); while on the left, strong
ion). Blue and green dots represent color variations collected from clinical practice
sample to augment; black dots represent augmented versions of the sample. The
).
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compares the similarity of the color variation from the augmented samples
with color variations collected from clinical practice (private and public
WSIs) and collected in a database, under the assumption that data collected
from many medical sources are heterogeneous in terms of stain and allow
to describe the color variations included in clinical practice. The similarity
is evaluated considering 2 parameters: R (radius) and N (neighbors). R is
the Euclidean distance within which 2 samples are considered similar. N is
theminimumnumber of samples thatmust be locatednearer (i.e., at a distance
less than R) to the augmented sample to detect a similarity. The latter param-
eter is adopted to prevent potential outliers among admissible samples to have
an impact on data augmentation. Therefore, the color variation of an aug-
mented sample A is considered admissible only if it is near to more thanN ad-
missible samples. Furthermore, DDCA limits the need for the tuning of color
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Fig. 3. Overview of the Data-Driven Color Augmentation method. The collection of
heterogeneous database, representing the variability of stains in histopathology images
of the augmented image is compared with the color variations within the database. Th
than R for the sample. If the stain matrix is evaluated admissible (n > N), the augmente
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algorithms. The tuning aims to generate valuable augmented samples that
can describe the heterogenous stain variations in clinical practice. However,
as shown in Fig. 2, small perturbations of original data limit the artifacts but
lead to small variability in terms of color. In contrast, large perturbations
lead to high variability but create a large number of artifacts. DDCA can be ap-
plied to any method involving color augmentation of input data, such as HSC
color augmentation or stain augmentation, or in combination with training
strategies, such as domain-invariant and H&E-invariant CNNs.

Data

Two heterogeneous sets of data are used to develop and test the method
proposed in the paper.
creation
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stain matrices (color variations) from multiple sources allows the creation of a
. During the training, color augmentation is applied to input data: the stain matrix
e comparison involves the counting of the closest n neighbors with a radius lower
d version is used to train the CNN; otherwise (n < N), it is discarded.
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The first set includes heterogeneous samples collected for training and
testing a CNN. Data come from several medical sources, guaranteeing
high variability in terms of color to test the capability of the CNN to gener-
alize on heterogeneous unseen data. The CNN is trained to classify colon
and prostate images at patch-level. For both use cases, the images are paired
with pixel-wise annotations, donemanually by trained pathologists. In both
use cases, the training schema involves 3 partitions: training, validation,
and testing partition. Training and validation partitions include patches
from 2 medical sources, while the testing partition includes patches from
independent medical sources and from the same 2 medical sources used
during training. The colon data partition includes images collected from 7
medical sources: AOEC,2,40 Radboudumc.2,40 AIDA.41 GlaS42 (Gland Seg-
mentation in Colon Histology Images Challenge), CRC43 (ColoRectal Can-
cer Tissue Phenotyping), UNITOPATHO.44 and CAMEL45 datasets. The
images are WSIs (AOEC, Radboudumc, AIDA) and cropped sections of
WSIs (GlaS, CRC, UNITOPATHO, and CAMEL). Images from AOEC and
Radboudumc are used to train and evaluate algorithms (using separate
and independent subsets of data), while images from the other datasets
are only used to evaluate the capability of the method to generalize on
data collected from independent sources. The heterogeneity of medical
sources is reflected in the annotations including several classes, mapped
to cancer, dysplasia, and normal.

Table 1 summarizes the composition of the colon dataset.
The prostate data partition includes images collected from 6 medical

sources: TMAZ46 (Tissue MicroArray Zurich), SICAPv2,47 Gleason
challenge,48 Diagset,49 Valme,50,51 and PANDA challenge52 datasets. The
images are WSIs (SICAPv2, Diagset, Valme, and PANDA challenge) and tis-
sue microarray (TMAZ and Gleason). Images from TMAZ and SICAPv2 are
used to train and evaluate algorithms (using separate and independent sub-
sets of data), while images from the other datasets are only used to evaluate
the capability of the method to generalize on data collected from indepen-
dent sources. The classes chosen to train the CNN are benign, Gleason pat-
tern 3 (GP3), Gleason pattern 4 (GP4), and Gleason pattern 5 (GP5).

Table 2 summarizes the composition of the prostate cancer dataset.
The second set includes data collected to create the database of color

variations, from private and public sources.
The goal of this set is to describe the variability of colors in clinical

practice, therefore it includes data (H&E matrices) collected from
Table 1
Composition of the colon dataset. The colon dataset includes patches annotated as
Cancer, Dysplasia, or Normal. Patches from AOEC and Radboudumc are used to
train, validate, and test the method, while patches from AIDA, GlaS, CRC,
UNITOPATHO, and CAMEL are used as external sources to test the capability of
the method to generalize on data collected from independent sources.

Colon data

Source Cancer Dysplasia Normal Total

Training partition
AOEC 4059 13 170 3402 20 631
Radboudumc 2995 2498 1304 6797
Total training 7054 15 668 4706 27 428

Validation partition
AOEC 844 4005 78 4927
Radboudumc 643 707 365 1715
Total validation 1487 4714 443 6642

Internal testing partition
AOEC 1255 6137 373 7765
Radboudumc 792 337 329 1458
Total internal testing 2047 6474 702 9223

External testing partition
AIDA 7881 3296 31 859 43 036
GlaS 450 0 210 660
CRC 1507 0 1144 2651
UNITOPATHO 0 13 326 2182 21 551
CAMEL 0 12 083 7795 27 787
Total external testing 9838 28 705 43 190 81 733

5

heterogeneous sources: TCGA platform (datasets including several tissues,
from 123 centers), ExaMode colon data (AOEC and Radboudumc),
Camelyon53 (4 centers), Clinic, Puerta del Mar, and CAD64. Images col-
lected from TCGA platform are Formalin Fixed Paraffin Embedded (FFPE)
tissue samples. The database includes over 2 million H&E matrices evalu-
ated using Macenko et al. method.22 From each WSI, the patches are
densely extracted at magnification 10x, leading to over 8 million samples.
WSIs may vary in terms of tissue size, leading to a larger number of patches
extracted from larger images (such as TCGA) and therefore to a larger num-
ber of H&E matrices extracted from those images. Since patches from the
same imagemay share the samematrices, the databasemay include several
entries with the same values. Several entries may represent a problem dur-
ing the evaluation of augment sample neighbors, since the matrices will be
counted several times, even if they represent the same color variation, cre-
ating a bias. The problem becomes increasingly serious as the number of
matrices that share the same value increases. To avoid any kind of bias, in-
troduced by image size, the database is filtered: all double H&E matrix en-
tries are removed.

Table 3 summarizes the composition of the database.
Fig. 4 highlights the color variability of data, considering the colon data

(first row), the prostate data (second row) and the data included in the da-
tabase (third row). For each subfigure, the 6-dimensional H&E matrices
corresponding to the patches are projected on a bi-dimensional space
using the Principal Component Analysis (PCA).

Data pre-processing

WSIs are split into smaller sub-regions. Image splitting is required due to
hardware constraints1: WSIs may be very large in terms of size and modern
graphics processing units (GPU) may face difficulties to handle an
entire WSI.

Image splitting involves the generation of subregions, called patches, se-
lected from valuable regions. Patches must be consistent in terms of pixel
size and magnification (optical resolution); however, patch generation
strategy varies across different types of images (WSIs, cropped sections,
and TMAs). WSIs (AOEC, Radboudumc, AIDA, colon data; SICAPv2,
Diagset, Valme, PANDA, prostate data) are split in a grid, without any
stride, and densely sampled, using Multi_Scale_Tools python library.55
Table 2
Composition of the prostate dataset. The prostate dataset includes patches anno-
tated as Benign, Gleason Pattern 3 (GP3), Gleason Pattern 4 (GP4), and Gleason Pat-
tern 5 (GP5). Patches from TMAZ and SICAPv2 are used to train, validate, and test
the method, while patches fromGleason challenge, Diagset, Valme, and PANDA are
used as external sources to test the capability of the method to generalize on data
collected from independent sources.

Prostate data

Source Benign GP3 GP4 GP5 Total

Training partition
TMAZ 2010 5992 4472 2766 15 240
SICAPv2 9432 6499 2250 2011 20 192
Total training 11 442 12 491 6722 4777 35 432

Validation partition
TMAZ 1350 1352 831 457 4927
SICAPv2 604 819 302 210 1935
Total validation 1954 2171 1133 667 6862

Internal testing partition
TMAZ 127 1602 2121 387 4237
SICAPv2 1033 3466 427 546 5427
Total internal testing 1160 5068 2548 933 9709

External testing partition
Gleason challenge 1080 2431 3649 100 7260
Diagset 8783 1243 4334 696 15 056
Valme 13 652 3026 5510 800 22 988
PANDA 10 189 20 000 20 000 8014 58 203
Total external testing 33 704 26 700 33 493 9610 103 507



Table 3
Composition of the database including H&E color variations. Color variations are
collected from several heterogeneous sources to represent the variability in clinical
practice. From each center the variations are filtered, to avoid the possible introduc-
tion of biases due to the repetition of the same variation in the database.

Source Number
H&E
matrices

Number
WSIs

Number
patches

Number
medical
centers

TCGA 646 332 951 2 835 516 123
ExaMode40,54 985 147 5390 3 983 025 2
Camelyon53 219 743 454 520 660 4
Puerta del Mar 132 863 138 272 276 1
Clinic 50 871 225 114 725 1
CAD64 71 495 1085 350 407 1
Total 2 106 451 8243 8 076 609 132
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During the extraction, patches are resized to 224x224 pixels. The grid
building may vary according to setup parameters (such as the wanted mag-
nification), as follows:

ps : mw = ps’ : mh

where ps represents the wanted patch size,mw represents the wanted mag-
nification level, ps’ represents the size of the patches in the highest magni-
fication level available (mh). While the patch size is the same for both
tissues (224×224 pixels), the magnification is different between the
colon and prostate. Patches from colon images are extracted at magnifica-
tion 10x,40 so that a patch can include enough tissue with glands. On the
other hand, patches from prostate images are extracted with a size of
750×750 pixels46,56 at magnification 40×and resized to 224×224 pixels,
so that a patch can include both glands and stroma. The parameters are dif-
ferent among use cases. Colon image parameters are: ps equal to 224 (patch
size is 224×224 pixels) andmw equal to 10 (patches must be at magnifica-
tion 10×). Prostate image parameters are: ps equal to 224 (patch size is
224×224 pixels), ps’ and mh (patches must be extracted 750×750 pixels
in size from magnification 40×). Cropped sections (GlaS, CRC, UNITO
and CAMEL, colon data) are split in a grid and densely extracted, using
the same setup presented for WSIs. However, the grid is built with a few
pixels of variable stride (20 in CRC, 2 in GlaS, 5 in UNITO and CAMEL),
aiming to avoid high similarity between patches. Tissue Micro Arrays
(TMAs) (TMAZ and Gleason challenge, prostate data) are not split in a
grid. Due to the small size of TMAs (3’100 × 3’100 for TMAZ, 5000 ×
5000 for Gleason), 30 patches are randomly generated from each TMA
core, using the same setup hereby presented. Patches are selected from
valuable regions to discard uninformative tissue or image background. In
the case of data used to train and evaluate the method, patches are selected
from annotated regions. WSIs and TMAs are paired with a tissue mask in-
cluding pixel-wise annotations of different classes, made by pathologists.
Cropped sections come without any pixel-wise annotation. However,
cropped sections are very small in size, therefore the patches inherit the
label assigned to the whole cropped section. In the case of data used to cre-
ate the color variation database, patches are selected from regions includ-
ing tissue (generated using the HistoQC tool57).

Baselines

The paper presents a comparison between the proposed DDCA method
and other baseline algorithms developed to train robust CNNs on unseen
data including high color variations. The algorithms performance is evalu-
ated on the classification of histopathology patches, using Cohen’s κ-score58
as metric. Furthermore, the Wilcoxon Rank-Sum test59 is performed to ver-
ify that the difference in the performance reached by the methods is statis-
tically significant, setting the statistical level of significance P at .05.

DDCAmethod is applied to HSC color augmentation (HSC DDCA), stain
augmentation (Stain DDCA), and H&E-adversarial CNN methods (Data-
drivenHSC color augmentation andH&E-adversarial CNN). The algorithms
6

chosen as baselines include: no strategy to handle color variability, gray-
scale normalization, color normalization, HSC color augmentation, stain
augmentation, domain-adversarial CNNs, and H&E-invariant CNNs. Every
algorithm is evaluated on the internal test partition (including unseen
patches coming from the same sources used to train and validate the
CNN), on the external test partition (including data coming from indepen-
dent data sources than the ones used to train), and on the combination
of both. The method including no strategy to handle color variability does
not apply any color modification to input data. Grayscale normalization in-
volves the transformation of input data (both during training and testing) to
grayscale images, instead of RGB. Color normalization algorithms include
Macenko et al.22 method, StainGAN,33 and StainNet32. Macenko et al. is a
traditional approach to normalize color, while StainGAN and StainNet are
based on deep learning GANs (Generative Adversarial Networks). For
both the colon and prostate, the image used as a stain template is randomly
selected. StainGAN and StainNet are both pre-trained to normalize images
among different domains (in this case, only 2 domains). HSC color augmen-
tation algorithm3,29 involves the perturbation of input data modifying the
contrast, saturation, and hue of input images. Two setups are presented:
in the first one, the parameters related to the perturbations are tuned to
have meaningful color variations (Tuned HSC color augmentation), while
in the second one, strong perturbations are applied (Strong HSC color
augmentation).

Stain augmentation algorithm involves the perturbation of H&Ematrix,
using 2 parameters, σ1 and σ2. Both parameters identify a range within the
stain matrix can be perturbed: for each component of the vector, a float
value [-σ, σ] is randomly generated and summed to the original color vari-
ation. Also in this case, 2 setups are presented to show the effects of stain
augmentation with tuned parameters (tuned stain augmentation) and
with strong perturbations (strong stain augmentation). The domain-
adversarial CNN is a multitask network predicting the patches class (as
the main task) and the domain where they are collected (as a secondary
task), proposed by Otalora et al.,12 Ren et al.,6 Lafarge et al.7 In this case,
only 2 domains are used during the training (the 2 centers selected as the
training set). H&E-adversarial CNN is a multitask network predicting the
classes of input patches (main task) and regressing their stain matrices (as
a secondary task), proposed by Marini et al.2 The κ-score measures the
agreement (and reliability) between annotations. The metric is commonly
adopted in histopathology, to evaluate the performance of pathologists in
data annotation tasks. When κ-score is adopted in computation pathology
tasks, the prediction of a model is compared with the ground truth made
by pathologists. A κ-score equal to 1 shows a complete agreement between
the annotators, while a κ-score equal to -1 shows a complete disagreement.
The random agreement between annotators is a κ-score equal to 0, since the
metric is normalized to the agreement obtained by chance.

The Wilcoxon-Rank Sum is a statistical test to evaluate if 2 probabilistic
populations present the same distribution (the null hypothesis). If the hy-
pothesis is tested negative, the P-value obtained is lower than .05, while
the hypothesis is rejected to be tested negative if the P-value is greater
than .05. In this paper, the 10 repetitions of the CCDA methods are com-
paredwith the 10 repetitions of the baseline algorithm reaching the highest
performance, to test if the improvement obtained by CCDA methods is sta-
tistically significant.

Training strategy & parameters

The strategy adopted to train and set the hyperparameters is the
same for both the DDCA method and the baseline algorithms chosen for
comparison.

The CNN backbone chosen for the method and the baseline algorithms
is a DenseNet121 pre-trained on ImageNet.60 The Densenet backbone it is
chosen since it has proven to be effective in many histopathology tasks61

when compared with other architectures. For each patch (224×224×3
in size), the convolutional backbone outputs a vector with 1024 features.
Between the feature vector and the classifier, another fully connected
layer is introduced, including 128 features. All the parameters within the
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network are trainable. For each of the algorithms presented, the CNN is
trained 10 times, reporting the average and the standard deviation. This
procedure is necessary to alleviate the undesired effects introduced by the
stochastic gradient descent optimizer adopted during the model optimiza-
tion. For each method, the choice of the hyper-parameters is driven by
the grid search algorithm.62 The grid search finds the optimal configuration
(in this case, the one reaching the lowest loss function in the validation par-
tition) of the CNNhyperparameters. The grid search is used for both general
parameters (such as the learning rate) and for specific parameters related to
an algorithm (such as the σ in the stain augmentation). The general param-
eters involved in the grid search algorithm are the optimizer (Adam identi-
fied as optimal; Adam and SGD tested); the learning rate (10−3 identified as
optimal; 10−2, 10−3, 10−4, 10−5 tested); the decay rate (0 identified as op-
timal; 10−2, 10−3, 10−4, 10−4 tested); the number of epochs (after 15
epochs the CNN loss function no longer decreases), and the number of
nodes in the intermediate layer of the CNN (128 identified as optimal;
64,128, 256, 512 tested). The specific parameters of the algorithms in-
volved in the grid search algorithm are the σ1 and σ2 of stain augmentation
algorithm (for both parameters 0.2 is identified as optimal for the tuned im-
plementation for both parameters; for both parameters 0.7 is identified as
optimal for the strong implementation for both parameters); the shift values
for the hue of HSC color augmentation (between−15 and 8 for colon data;
between −9 and 9 for prostate data); the shift values for the saturation of
HSC color augmentation (between −20 and 10 for colon data; between
−25 and 25 for prostate data); the shift of brightness value for HSC color
augmentation (between −8 and 8 for colon data; between −10 and 10
for prostate data); the lambda parameter for the domain-adversarial CNN
(0.5 identified as optimal); the lambda parameter for the H&E-adversarial
CNN (0.5 identified as optimal); the radius R and the neighbors N for the
DDCA method presented in the paper (0.05 identified as optimal for R; 10
identified as optimal for N). The effects introduced by unbalanced classes
within datasets are alleviated using a class-wise data augmentation strategy
during the training. The operations applied are 90–180–270 degrees rota-
tions and flipping, implemented with Albumentations library.63
Results

The Data-Driven Color Augmentation methods improve the perfor-
mance of a CNN compared with other methods developed to handle stain
color variability, showing more robust performance on colon and prostate
image classification, in both internal and external test partitions.

Colon data include 7 heterogeneous datasets annotated with cancer,
dysplasia, and normal classes. Data are aggregated in the internal test par-
tition (AOEC and Radboudumc), external test partition (AIDA, GlaS, CRC,
UNITO, and CAMEL), and the test partition (including the combination of
internal and external partitions). DDCA is applied with 3 setups: HSC
DDCA (Data-Driven color augmentation applied to HSC color augmenta-
tion), Stain DDCA (Data-Driven color augmentation applied to stain aug-
mentation), and DDCA combined with H&E-adversarial CNN.

The performance of the methods on colon data are summarized in
Tables 4 and 5.

Specifically, Table 4 shows the performance of the methods for each
dataset. DDCA outperforms the baseline methods in all datasets, except in
GlaS. HSC DDCA combined with H&E-adversarial CNN reaches the highest
performance for all datasets, except for GlaS and CAMEL (whereHSCDDCA
Fig. 4.The color heterogeneity amongmedical sources. Thefigure shows the distribution
algorithm. In the first row, colon data are analyzed. The left part of the row (Colon data
part of the row shows the distribution of color variations across training, validation,
analyzed. The left part of the row (Prostate datasets) shows the distribution of colo
distribution of color variations across training, validation, and testing for prostate dat
database are analyzed. The left part of the row shows the distribution of data across d
the database compared with the distributions of colon and prostate use cases (Database
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reaches the highest performance). Furthermore, the difference in perfor-
mance is statistically significant on Radboudumc, CRC and UNITO datasets.
Table 5 shows the aggregated performance of the methods on internal, ex-
ternal, and test partitions. The performance is aggregated at dataset- and
sample-level. The dataset-level aggregation aims to alleviate the effect
that the size of datasets may have on the global results. For each method,
the average of the performance reached for each dataset is reported, com-
bined with the average of the standard deviations. HSC DDCA combined
with H&E-adversarial CNN allows reaching the highest performance in
the internal and the test partition (κ-score = 0.626 ± 0.018 and κ-score
= 0.515± 0.063, respectively), while HSC DDCA reaches the highest per-
formance in the external partition (κ-score= 0.410± 0.113). The sample-
level aggregation aims to show the performance of themethods on a dataset
including highly heterogeneous images collected from several sources. For
each partition, the DDCA method reaches the highest performance: in the
internal partition, HSC DDCA combined with H&E-adversarial CNN allows
to reach the highest performance (κ-score = 0.697 ± 0.024), while in the
external and the test partitions, HSC DDCA reaches the highest perfor-
mance (κ-score = 0.571 ± 0.033 and κ-score = 0.601 ± 0.030, respec-
tively). The difference in performance is statistically-significant respect to
all the partitions. Prostate data include 6 heterogeneous datasets annotated
with benign, GP3, GP4, andGP5 classes. Data are aggregated in the internal
test partition (TMAZ and SICAPv2), external test partition (Gleason,
Diagset, Valme, and PANDA), and the test partition (including the combina-
tion of internal and external partitions).

The performance of the methods on prostate data are summarized in
Tables 6 and 7.

Table 6 shows the performance of the methods for each dataset. DDCA
outperforms the baseline methods in all datasets, except in TMAZ. HSC
DDCA reaches the highest performance in Gleason, Diagset, and Valme;
stain DDCA reaches the highest performance in PANDA; HSC DDCA com-
bined with H&E-adversarial CNN reaches the highest performance in
SICAPv2. The difference in performance is statistically significant only on
Diagset dataset.

Table 7 shows the aggregated performance of the methods on internal,
external, and test partitions. At dataset-level, HSC DDCA reaches the
highest performance in external and test partitions (κ-score = 0.507 ±
0.062 and κ-score = 0.553 ± 0.056, respectively). At sample-level,
DDCA reaches the highest performance: in the internal partition, HSC
DDCA combined with H&E-adversarial CNN allows reaching the
highest performance (κ-score = 0.730 ± 0.033), while in the external
and the test partitions, HSC DDCA reaches the highest performance (re-
spectively κ-score = 0.508 ± 0.037 and κ-score = 0.524 ± 0.033).
The difference in performance is not statistically significant respect
to all the partitions.
Discussion

The DDCAmethod outperforms other state-of-the-art methods developed
to handle the stain color variability across histopathology images, showing
the capability to develop CNNs that generalize on heterogeneous data.

Currently, stain color variability may represent a problem for the train-
ing of convolutional neural networks (CNN): CNNs trained on data includ-
ing with a defined set of color variations usually do not generalize well (i.e.,
they show poor performance) when tested on new data including very
of the 6-dimensionalH&Ematrix, projected in a bi-dimensional space using the PCA
sets) shows the distribution of color variations across colon datasets, while the right
and testing for colon data (Colon partitions). In the second row, prostate data are
r variations across prostate datasets, while the right part of the row shows the
a (Prostate partitions). In the third row, data collected to build the color variation
ifferent sources (Database sources), while the right part shows the distribution of
and use cases data).



Table 4
Classification performance on the colon test partitions, considering 7 datasets. The performance is reported considering the κ-score (average and standard deviation) of every
method tested. Statistically significant results (considering the best method among DDCA and the best method among baselines) are marked with (*).

Dataset/Method AOEC Radboudumc AIDA GlaS CRC UNITO CAMEL

No strategy 0.551 ± 0.055 0.796 ± 0.021 0.523 ± 0.071 0.098 ± 0.126 0.527 ± 0.097 0.075 ± 0.102 0.108 ± 0.099
Grayscale normalization 0.582 ± 0.025 0.769 ± 0.033 0.601 ± 0.038 0.129 ± 0.083 0.320 ± 0.172 0.148 ± 0.064 0.276 ± 0.108
Macenko color normalization 0.578 ± 0.033 0.762 ± 0.057 0.557 ± 0.035 0.221 ± 0.101 0.602 ± 0.044 0.046 ± 0.081 0.229 ± 0.147
StainGAN 0.418 ± 0.101 0.579 ± 0.238 0.502 ± 0.060 0.187 ± 0.098 0.579 ± 0.071 0.175 ± 0.044 0.262 ± 0.091
StainNET 0.531 ± 0.054 0.566 ± 0.147 0.362 ± 0.118 0.238 ± 0.095 0.337 ± 0.107 0.073 ± 0.102 0.176 ± 0.148
Tuned HSC color augmentation 0.551 ± 0.057 0.768 ± 0.031 0.566 ± 0.042 0.198 ± 0.136 0.494 ± 0.156 0.130 ± 0.050 0.189 ± 0.163
Strong HSC color augmentation 0.337 ± 0.180 0.500 ± 0.272 0.416 ± 0.192 0.064 ± 0.105 0.132 ± 0.177 0.086± 0.075 0.157 ± 0.142
Tuned stain augmentation 0.588 ± 0.038 0.765 ± 0.032 0.521 ± 0.066 0.355 ± 0.110 0.510 ± 0.124 0.110 ± 0.077 0.281 ± 0.098
Strong stain augmentation 0.601 ± 0.037 0.772 ± 0.040 0.508 ± 0.109 0.236 ± 0.146 0.498 ± 0.139 0.179 ± 0.066 0.188 ± 0.089
Domain-adversarial CNN 0.553 ± 0.070 0.695 ± 0.060 0.566 ± 0.067 0.346 ± 0.174 0.331 ± 0.197 0.120 ± 0.089 0.279 ± 0.118
H&E-adversarial CNN 0.592 ± 0.035 0.776 ± 0.030 0.602 ± 0.041 0.343 ± 0.123 0.480 ± 0.160 0.123 ± 0.074 0.214 ± 0.111
HSC DDCA 0.601 ± 0.033 0.768 ± 0.032 0.625 ± 0.039 0.258 ± 0.138 0.558 ± 0.159 0.189 ± 0.091 0.417 ± 0.092*
Stain DDCA 0.580 ± 0.056 0.758 ± 0.047 0.584 ± 0.052 0.242 ± 0.108 0.539 ± 0.187 0.158 ± 0.063 0.296 ± 0.140
HSC DDCA combined with H&E-adversarial CNN 0.626 ± 0.018 0.821 ± 0.032* 0.630 ± 0.054 0.252 ± 0.127 0.662 ± 0.049* 0.208 ± 0.031 0.406 ± 0.065

Table 5
Aggregated results on colon data, considering the internal data partition (AOEC and Radboudumc), the external data (AIDA, GlaS, CRC, UNITO, and CAMEL) and the whole
test partition. The table reports the results as the average performance for the datasets included in a partition (Dataset aggregation) and as the performance on a partition
(Sample aggregation).

Dataset aggregation Sample aggregation

Dataset/Method Internal test partition External test partition Test partition Internal test partition External test partition Test partition

No strategy 0.674 ± 0.042 0.267 ± 0.101 0.382 ± 0.088 0.644 ± 0.036 0.424 ± 0.074 0.453 ± 0.075
Grayscale normalization 0.675 ± 0.029 0.294 ± 0.103 0.403 ± 0.089 0.663 ± 0.043 0.485 ± 0.040 0.518 ± 0.039
Macenko color normalization 0.670 ± 0.046 0.331 ± 0.091 0.428 ± 0.081 0.650 ± 0.036 0.493 ± 0.037 0.520 ± 0.034
StainGAN 0.530 ± 0.183 0.341 ± 0.075 0.395 ± 0.117 0.528 ± 0.115 0.464 ± 0.053 0.347 ± 0.106
StainNET 0.548 ± 0.111 0.238 ± 0.116 0.327 ± 0.051 0.558 ± 0.077 0.312 ± 0.105 0.487 ± 0.051
Tuned HSC color augmentation 0.660 ± 0.046 0.316 ± 0.122 0.414 ± 0.105 0.636 ± 0.031 0.488 ± 0.049 0.518 ± 0.046
Strong HSC color augmentation 0.419 ± 0.231 0.170 ± 0.145 0.241 ± 0.174 0.383 ± 0.199 0.288 ± 0.139 0.321 ± 0.142
Tuned stain augmentation 0.676 ± 0.035 0.356 ± 0.097 0.447 ± 0.084 0.656 ± 0.033 0.479 ± 0.061 0.509 ± 0.055
Strong stain augmentation 0.687 ± 0.039 0.322 ± 0.114 0.427 ± 0.099 0.667 ± 0.036 0.455 ± 0.096 0.483 ± 0.092
Domain-adversarial CNN 0.624 ± 0.065 0.328 ± 0.138 0.413 ± 0.122 0.608 ± 0.057 0.477 ± 0.048 0.507 ± 0.048
H&E-adversarial CNN 0.677 ± 0.038 0.353 ± 0.109 0.446 ± 0.094 0.655 ± 0.035 0.514 ± 0.066 0.542 ± 0.063
HSC DDCA 0.683 ± 0.033 0.410 ± 0.113 0.488 ± 0.097 0.661 ± 0.033 0.571 ± 0.033* 0.601± 0.030*
Stain DDCA 0.669 ± 0.051 0.364 ± 0.121 0.451± 0.106 0.648 ± 0.040 0.525 ± 0.040 0.553 ± 0.037
HSC DDCA combined with H&E-adversarial CNN 0.723 ± 0.027 0.432 ± 0.073 0.515± 0.063 0.697 ± 0.024* 0.560 ± 0.033 0.594 ± 0.032

Table 6
Classification performance on the prostate test partitions, considering 6 datasets. The performance is reported considering the κ -score (average and standard deviation) of
every method tested. Statistically significant results (considering the best method among DDCA and the best method among baselines) are marked with (*).

Dataset/Method TMAZ SICAPv2 Gleason Diagset Valme PANDA

No strategy 0.568 ± 0.044 0.715 ± 0.040 0.262± 0.149 0.122 ± 0.060 0.276 ± 0.098 0.263 ± 0.072
Grayscale normalization 0.526 ± 0.039 0.704 ± 0.051 0.509 ± 0.039 0.252 ± 0.074 0.326 ± 0.085 0.406 ± 0.038
Macenko color normalization 0.463 ± 0.079 0.738 ± 0.048 0.448 ± 0.070 0.266 ± 0.133 0.407 ± 0.065 0.444 ± 0.080
StainGAN 0.497 ± 0.088 0.630 ± 0.083 0.235 ± 0.145 0.358 ± 0.072 0.256 ± 0.109 0.341 ± 0.185
StainNET 0.489 ± 0.084 0.662 ± 0.097 0.350 ± 0.099 0.445 ± 0.079 0.374 ± 0.053 0.467 ± 0.063
Tuned HSC color augmentation 0.546 ± 0.034 0.736 ± 0.058 0.494 ± 0.039 0.439 ± 0.077 0.427 ± 0.091 0.414 ± 0.081
Strong HSC color augmentation 0.221 ± 0.147 0.571 ± 0.202 0.298 ± 0.198 0.260 ± 0.078 0.238 ± 0.071 0.327 ± 0.116
Tuned stain augmentation 0.528 ± 0.044 0.701 ± 0.076 0.304 ± 0.089 0.265 ± 0.074 0.305 ± 0.060 0.373 ± 0.047
Strong stain augmentation 0.550 ± 0.047 0.744 ± 0.045 0.295 ± 0.114 0.192 ± 0.072 0.297 ± 0.069 0.374 ± 0.085
Domain-adversarial CNN 0.451 ± 0.101 0.695 ± 0.060 0.409 ± 0.087 0.392 ± 0.101 0.392 ± 0.054 0.387 ± 0.127
H&E-adversarial CNN 0.581 ± 0.026 0.736 ± 0.054 0.516 ± 0.040 0.449 ± 0.072 0.442 ± 0.052 0.450 ± 0.067
Data-driven HSC color augmentation 0.572 ± 0.034 0.717 ± 0.048 0.563 ± 0.047* 0.505 ± 0.086 0.467 ± 0.043 0.492 ± 0.061
Data-driven stain augmentation 0.545 ± 0.068 0.734 ± 0.049 0.538 ± 0.051 0.367 ± 0.059 0.457 ± 0.067 0.500 ± 0.029
Data-driven HSC color augmentation and H&E-adversarial CNN 0.562 ± 0.045 0.744 ± 0.036 0.541 ± 0.043 0.480 ± 0.041 0.413 ± 0.036 0.476 ± 0.042
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different color variations. Among the methods developed to tackle this
problem, currently color augmentation and adversarial CNN represent the
state-of-the-art algorithm. However, color augmentation requires the user
to tune some parameters (i.e., the perturbation to apply) in order to avoid
any color artifacts. The parameter tuning is not trivial, therefore the color
augmentation algorithm may easily be ineffective, risking the model to
overfit on the only color variations seen during the training. The method
presented in the paper is built to limit the noise introduced by unacceptable
9

color variations during CNN training, which can hinder the learning pro-
cess of a data-driven algorithm. During augmentation, strong perturbations
are applied to the data, in order to cover the widest possible color variation
spectrum, discarding samples including unacceptable color variations. The
presented method, when applied to well-known approaches such as color
augmentation and domain-adversarial CNNs allows to obtain higher perfor-
mance on unseen heterogeneous data (considering both colon and prostate
data) compared to other state-of-the-art baselines. In both colon and



Table 7
Aggregated results on prostate data, considering the internal data partition (TMAZ and SICAPv2), the external data (Gleason, Diagset, Valme, and PANDA) and thewhole test
partition. The table reports the results as the average performance for the datasets included in a partition (Dataset aggregation) and as the performance on a partition (Sample
aggregation).

Dataset aggregation Sample aggregation

Dataset/Method Internal test
partition

External test
partition

Test partition Internal test
partition

External test
partition

Test partition

No strategy 0.641± 0.042 0.240 ± 0.116 0.374 ± 0.098 0.713 ± 0.026 0.233 ± 0.078 0.263 ± 0.072
Grayscale normalization 0.615 ± 0.046 0.374 ± 0.063 0.454 ± 0.057 0.694 ± 0.032 0.320 ± 0.050 0.348 ± 0.046
Macenko color normalization 0.597 ± 0.073 0.391 ± 0.091 0.460 ± 0.085 0.680 ± 0.066 0.392 ± 0.040 0.413 ± 0.040
StainGAN 0.554 ± 0.114 0.290 ± 0.137 0.378 ± 0.129 0.633 ± 0.065 0.303 ± 0.172 0.331 ± 0.156
StainNET 0.576 ± 0.090 0.409 ± 0.076 0.465 ± 0.081 0.650 ± 0.078 0.447 ± 0.058 0.463 ± 0.053
Tuned HSC color augmentation 0.641 ± 0.048 0.444 ± 0.075 0.510 ± 0.067 0.720 ± 0.041 0.446 ± 0.070 0.467 ± 0.066
Strong HSC color augmentation 0.397± 0.176 0.280 ± 0.126 0.319 ± 0.145 0.402 ± 0.200 0.262 ± 0.067 0.273 ± 0.074
Tuned stain augmentation 0.615 ± 0.062 0.312 ± 0.069 0.412 ± 0.067 0.690 ± 0.038 0.334 ± 0.055 0.361 ± 0.051
Strong stain augmentation 0.647 ± 0.046 0.290 ± 0.087 0.409 ± 0.076 0.721 ± 0.037 0.292 ± 0.087 0.324 ± 0.081
Domain-adversarial CNN 0.573 ± 0.083 0.395 ± 0.096 0.455 ± 0.092 0.650 ± 0.071 0.413 ± 0.118 0.432 ± 0.110
H&E-adversarial CNN 0.659 ± 0.035 0.464 ± 0.059 0.529 ± 0.054 0.725 ± 0.035 0.477 ± 0.045 0.496 ± 0.041
Data-driven HSC color augmentation 0.647 ± 0.041 0.507 ± 0.062 0.553 ± 0.056 0.714 ± 0.028 0.508 ± 0.037 0.524 ± 0.033
Data-driven stain augmentation 0.639 ± 0.059 0.465 ± 0.053 0.523 ± 0.055 0.714 ± 0.047 0.469 ± 0.042 0.487 ± 0.036
Data-driven HSC color augmentation and H&E-adversarial CNN 0.653 ± 0.041 0.477 ± 0.041 0.536 ± 0.041 0.730 ± 0.033 0.472 ± 0.027 0.491 ± 0.023
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prostate use cases, methods to handle WSI color variations are tested on
several heterogeneous datasets, aggregated (at database- and sample-
level) on 3 partitions: the internal test partition, including data collected
from the same sources used to train and validate the CNNs, the external
test partition, including data collected from independent external medical
sources, and the test partition, including both the internal and the external
partitions. While the performance obtained by the DDCAmethod on the in-
ternal partition is comparable (even if slightly higher) with the one ob-
tained by the baseline methods, the performance obtained by the DDCA
method on the external partition is higher than the one from the baseline
methods. On colon data, HSC DDCA and HSC DDCA combined with H&E-
adversarial CNNs reach the highest performance on the external partitions,
considering the aggregation at dataset-level. The result indicates that the
method is the one reaching the highest performance on most datasets.
The performance on single datasets confirms the hypothesis: DDCA reaches
the highest performance on 4 datasets out of 7 (in 2 other datasets the
highest performance is reached by Data-driven HSC color augmentation
method). On prostate data, DDCA reaches the highest performance on the
external partition, considering the aggregation at dataset-level. Also for
the prostate use case, results indicate that the method is the one reaching
the highest performance on most of datasets: the method reaches the
highest performance on 4 datasets out of 6 (in another datasets, the highest
performance is reached by HSC DDCA combined with H&E-adversarial
CNNs). The results reached on external datasets, for both colon and prostate
data, suggest that the method can generalize on unseen heterogeneous
data. The generalization of the DDCA method is confirmed considering
the performance on the external partition and on the whole test partition,
aggregated at sample-level. Sample-level aggregation allows to create a
dataset including patches collected frommultiple sources, simulating a sce-
nario where data are highly heterogeneous. In both the use cases, the
highest performance is reached by HSC DDCA, confirming the hypothesis
(the method generalizes on unseen heterogeneous data). The improved
generalization power can be explained by the data-driven augmentation
mechanism. DDCA aims to limit the generation of artifacts during data aug-
mentation, filtering the input-data noise introduced by artifacts on color
variations, allowing to only use augmented samples that are considered ad-
missible. The criterion of admissibility involves the comparison between
the stain matrix of augmented samples and a database of color variations,
collected from hundreds of medical sources. The criterion allows to gener-
ate only augmented samples with color variations included in clinical prac-
tice, under the hypothesis that these color variations included in the
database are acceptable. This aspect may also help to explain the similar
performance obtained on the internal partition: the color variations are usu-
ally homogeneous among the samemedical center, leading to training, val-
idation, and test partitions including similar color variations. Therefore, the
10
method does not allow to improve the performance, in contrast to what
happens on the external partition, where the DDCA method outperforms
other state-of-the-art baselines. The overhead introduced from the compar-
ison varies considering the algorithm parameters (the neighbors N and the
radius R) and the augmentation parameters. Large values of neighbors N
and small values of radius R leads to a higher number of discarded patches,
as well as the application of large perturbation. However, the overhead in-
troduced by the criterion does not affect the algorithm performance in
terms of time, since a single epoch lasts a fewminutes (around 7 and 10, re-
spectively without and with the DDCAmethod, considering the parameters
adopted in this paper). The nature of the method alleviates another prob-
lem related to augmentation methods: the tuning of parameters. Fig. 2
shows possible effects related to augmentation parameter tuning. Aug-
mented samples may include color variations that are very similar to the
original input data (small perturbations) or color artifacts (strong perturba-
tions). Since there are no deterministic solutions to tune the parameters,
usually the choice of the values is empirically made. On the other hand,
the DDCA method removes this problem: the augmentation will generate
only admissible stain matrices and therefore acceptable color variations,
discarding color artifacts. Therefore, it is possible to apply large ranges of
perturbations to the input images, that usually lead to artifacts, without
any drawback. This fact is particularly clear when comparing the perfor-
mance of HSC DDCA and stain DDCA with, respectively, tuned HSC color
augmentation and tuned stain augmentation. Considering both the perfor-
mance aggregated at sample-level (or even the single datasets), the
DDCA method reaches dramatically higher performance on both use
cases. On colon data, HSC DDCA reaches κ-score = 0.571 ± 0.033,
while tuned HSC color augmentation reaches κ-score = 0.488 ±
0.049; stain DDCA reaches κ-score = 0.525 ± 0.040, while tuned
stain augmentation reaches κ-score = 0.479 ± 0.061. On prostate
data, HSC DDCA reaches κ-score = 0.508 ± 0.037, while tuned HSC
color augmentation reaches κ-score = 0.446 ± 0.070; stain DDCA
reaches κ-score = 0.469 ± 0.042, while tuned stain augmentation
reaches κ-score = 0.334 ± 0.055. This difference in performance can
be identified also evaluating the performance on the single datasets
(Table 5 and Table 7). The method is designed to work on original
input data, even if it can be combined with methods working at
feature-level (as shown in HSC DDCA combined with H&E-adversarial
CNNs). Therefore, the method can be applied also in weakly supervised
contexts, where it is not always possible to apply feature-level methods
to handle color heterogeneity, such as Multiple Instance Learning or Vi-
sual Transformers, since usually the hardware does not have enough
GPU memory. This implication is not trivial: the method shows dramat-
ically higher performance when compared only with the pixel-level
baseline methods (both augmentations or normalization). Therefore,
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DDCA may help to increase the performance reached in weakly super-
vised contexts.
Conclusion

The paper presents Data-Driven Color Augmentation, a novel simple but
effective method that can be applied to color augmentation methods, help-
ing to build more accurate CNNs that better generalize on data including
heterogeneous color variations. The method is based on reasonable as-
sumptions about the realistic color variations of H&E images. The method
is used during data augmentation: the stainmatrix of an augmented sample
is compared with the color variations collected from heterogeneous
sources, discarding artifacts (color variations dissimilar from the ones avail-
able in clinical practice). The method is tested on 2 cases, colon and pros-
tate histopathology image classification, and compared with several
baselines, showing robust performance and outperforming other state-of-
the-art baselines with statistical significance when tested on unseen new
data. The code to implement the methods and the database including
color variations (with the methods to expand the database with new data)
is released on Github (https://github.com/ilmaro8/Data_Driven_Color_
Augmentation) acceptance.
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