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A B S T R A C T   

The number of representative samples to build a calibration model plays a major role in the success of che-
mometric models for class discrimination; therefore, knowing which samples should be used for the calibration of 
prediction models is essential. The aim of this work is to design a basic guideline for the training of partial least 
squares discriminant analysis (PLS-DA) models to classify complex samples analysed by Gas Chromatography 
(GC) coupled to Ion Mobility Spectrometry (IMS) using dry-cured Iberian ham as an example. The effect of the 
number, proportion and class of samples for training and validation and the use of two data types (spectral 
fingerprint or pre-selected markers) has been assessed by analysing with GC-IMS nearly 1000 dry-cured Iberian 
ham samples obtained from 7 different curing plants. Subsequently, these were classified with PLS-DA according 
to the pig’s feeding regime (acorn-fed vs. feed-fed) and it has been demonstrated that 450 out of 997 samples are 
enough for model training to achieve a maximum average prediction accuracy rate. Furthermore, the use of pre- 
selected GC-IMS markers provides slightly better prediction results than the use of the complete spectral 
fingerprint. In summary, these results represent a tentative guide for the classification of samples in an industrial 
setting using GC-IMS and PLS-DA. This methodology would allow authorities and producers to ensure the quality 
of the agri-food products put on the market as is proven in this study.   

1. Introduction 

Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) is a suit-
able technique for the analysis of complex matrices using the informa-
tion of volatile organic compounds (VOCs). The potential of GC-IMS has 
been widely explored in different fields, food analysis being one of the 
main ones in which it is being used. Due to the huge amount of data that 
is contained in GC-IMS spectral plots, non-targeted approaches such as 
fingerprinting are required when volatilome analysis is used for classi-
fication purposes. Several authors have developed analytical methods 
for the characterisation and classification of food products using non- 
targeted GC-IMS data analysis of VOCs [1]. These products include 
fresh [2], cooked [3] smoked [4] and cured [5–7] meat, cheese [8], 
honey [9,10], olive oil and other vegetal oils [11,12], fish [13,14], 
vegetables and cultivars [15,16] and drinks [17,18]. The use of 

chemometrics plays a major role in the success of sample discrimination. 
Partial Least Squares Discriminant Analysis (PLS-DA) is one of the most 
widely employed chemometric techniques. The research group of the 
authors of this article was pioneer in the use of GC-IMS data combined 
with PLS-DA for the classification of food samples, whose usefulness for 
the classification of samples has been demonstrated in previous studies 
with Iberian ham [5,19,20] and olive oil [11,21,22]. Subsequently, 
many authors have developed similar methodologies [1,23,24]. Never-
theless, no case has described the minimum number of samples required 
to build a qualitative calibration model in order to classify them and 
draw conclusions, while guidelines for quantitative models have been 
indeed developed for infrared (IR) data [25] PLS-DA may construct 
overly complex models that force a separation between samples based 
on class membership [26,27] and therefore require external validation 
to ensure reliability [28,29]. In addition, the class and number of 
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training samples employed has a fundamental impact on the prediction 
power of PLS-DA models [30]. 

In the present work, guidelines for the best sample selection 
approach for PLS-DA calibration with GC-IMS data are discussed. As an 
example, nearly 1000 dry-cured Iberian ham samples obtained by non- 
destructive means in different curing plants have been used to build PLS- 
DA models in order to classify them according to the pig’s feeding 
regime (acorn-fed vs. feed-fed). The main objective of this work is to 
perform a tentative assessment of how many samples are needed to 
calibrate a PLS-DA model for the classification of blind samples. The best 
training samples selection approach is also determined, which has never 
been attempted before with GC-IMS data. The consecution of this 
objective will serve as a tentative guide to build a basic database for the 
classification of blind samples. The second objective is to discuss the 
advantages and disadvantages of each data type (the complete spectral 
fingerprint or the intensity of pre-selected features) for classification 
purposes. 

2. Materials and method 

2.1. Samples and standards 

997 subcutaneous fat samples were extracted from Iberian pig dry- 
cured hams with two feeding regimes during the finishing phase (500 
from acorn-fed pigs and 497 from feed-fed pigs). The sampling pro-
cedure was non-destructive and consisted of punching a disposable 
stainless-steel 2.1 × 60 mm sterile needle (Bovivet-Kruuse, Langeskov, 
Denmark) in the rump of the ham to be impregnated with cured fat, as 
described in a previous study [19]. The metallic part of the impregnated 
needle was cut off with pliers and placed in a 20 mL glass vial closed 
with a silicone septum. Sampling was carried out in 7 different curing 
plants of 2 different regions of Spain and all samples had full trace-
ability. In summary, the following list of samples was used:  

- Region A:  
○ Curing plant 1: 220 samples (175 acorn-fed and 45 feed-fed pigs).  
○ Curing plant 2: 103 samples (31 acorn-fed and 72 feed-fed pigs).  
○ Curing plant 3: 46 samples from feed-fed pigs.  
○ Curing plant 4: 326 samples (165 acorn-fed and 161 feed-fed pigs).  

- Region B:  
○ Curing plant 5: 75 samples (50 acorn-fed and 25 feed-fed pigs).  
○ Curing plant 6: 94 samples (44 acorn-fed and 50 feed-fed pigs).  
○ Curing plant 7: 133 samples (34 acorn-fed and 99 feed-fed pigs). 

In addition, 65 individual standards of 1 mg/L were prepared in 
refined oil supplied by Sovena S.A. (Brenes, Spain). The selection of 
standards was based on lists of VOCs of dry-cured ham described by a 
previous review [31]. The list included 18 alcohols: (E)‑hex-2-en-1-ol, 
(Z)‑pent-2-en-1-ol, 1-penten-3-ol, 2-methylbutan-1-ol, 2-phenyletha-
n-1-ol, 3,3-dimethylbutan-1-ol, 3-methylbutan-1-ol, butan-1-ol, 
butane-1,3-diol, ethanol, heptan-1-ol, heptan-2-ol, hexan-1-ol, oct‑1-e-
n-3-ol, octan-1-ol, pentan-1-ol, phenylmethanol and propan-2-ol; 16 
aldehydes: (E)-decen-2-al, (2E)-hepten-2-al, (E)-hexen-1-al, (E)-none-
n-2-al, (E)-octen-2-al, 2-methylbutyraldehyde, 2-methylpropanal, 
3-methylbutyraldehyde, benzaldehyde, butyraldehyde, decanal, hepta-
nal, hexanal, nonanal, octanal and pentanal: 8 ketones: 6-methyl-5-hep-
ten-2-one, butan-2-one, cyclohexanone, heptan-2-one, hexan-2-one, 
nonan-2-one, oct‑1-en-3-one and pentan-2-one; 5 acids: 3-methylbuta-
noic, acetic, butanoic, pentanoic and propionic: esters, ethyl esters: 
2-methylbutyrate, 2-methylpropanoate, 3-methylbutyrate, acetate, 
heptanoate, hexanoate, octanoate, pentanoate and propanoate: aro-
matics: p-xylene, m-xylene, 2,6-dimethylpyrazine and 2-methylpyra-
zine: terpenes: (R)-limonene and α-pinene: and others: dimethyl 
disulfide, octane and γ-caprolactone. 

A quality control mixture was prepared dissolving six high purity (≥
99%) ketones (nonan-2-one, octan-2-one, heptan-2-one, hexan-2-one, 

pentan-2-one and butan-2-one) at 0.5 mg⋅L − 1 in ultrapure water 
(Milli-Q Plus, Millipore Bedford, MA, USA). This working solution was 
analysed along with every sample batch for quality control of the ana-
lyses performed with the GC-IMS instrument. 

2.2. Instrumental method 

The GC-IMS device used had an integrated Agilent 7697A headspace 
sampler connected by a transfer line to an Agilent 8860 gas chromato-
graph (Agilent, Santa Clara, CA, US) and a standalone ion mobility 
spectrometer (G.A.S. Gesellschaft für analytische Sensorsysteme mbH, 
Dortmund, Germany) with a 3H ionisation source and a 10 cm drift tube. 
The analysis method was similar to that of a previous paper [32], which 
consisted of a sample incubation of 15 min at 60 ◦C. Subsequently, the 
vial was pressurised at 14 psi and 1 mL (loop) of headspace volume was 
injected in split mode 1:5. The loop and transfer line were heated at 100 
and 110 ◦C, respectively. GC separation was performed on a 30 m HP-5 
(5%-phenyl)-methylpolysiloxane non-polar column with an internal 
diameter of 0.32 mm and a 0.5 µm film (Agilent, Santa Clara, CA, US). 
Helium (Abelló Linde, Sevilla, Spain) was used as the carrier gas at a 
constant flow rate of 1 mL/min. The temperature ramp consisted of 3 
min at 40 ◦C from the start of the analysis, an increase to 100 ◦C at a rate 
of 5 ◦C/min, an increase to 130 ◦C at a rate of 15 ◦C/min, and a 130 ◦C 
plateau until the end of the analysis at 27 min. After separation in the GC 
column, VOCs entered the ionisation chamber of the IMS module, whose 
detector was working at positive polarity. Nitrogen was used as drift gas 
at a flow of 150 mL/min. IMS parameters were 150 µs of injection pulse 
width, 45 ◦C drift tube temperature, signal averaging each 32 spectra, a 
repetition rate of 30 ms, and drift, blocking and injection voltages of 
237 V, 40 V and 2500 V, respectively. 

The 997 fat samples and the 65 individual standards of VOCs were 
analysed with the GC-IMS method described. 

2.3. Data treatment and chemometrics 

After sample analysis, GC-IMS data was exported with VOCal 1.0.0. 
software (G.A.S. Gesellschaft für analytische Sensorsysteme mbH, Dort-
mund, Germany). Then two different data treatment approaches were 
carried out: approach A, using the intensities (mV) of pre-selected 
markers, and approach B, using all data available (spectral finger-
print). For approach A, the intensity (mV) of the individual peak of 279 
pre-selected features (61 of them corresponding to tentatively identified 
VOCs and 218 unidentified) were extracted from the GC-IMS spectral 
plot. Thus, each one of the 279 features had a unique retention time (s) 
in the GC column and a drift time (ms) in the IMS drift tube. The 61 
tentatively identified VOCs were identified comparing their retention 
and drift times with that of the standards described in Section 2.1.; in 
order to be completely sure that the feature corresponds to a VOC, 
analysis with a high-resolution MS would be required. Subsequently, 
data was imported into Matlab R2016a software (Mathworks) with PLS 
Toolbox plug-in (Eigenvector) for pre-treatment, which consisted of 
normalization with the RIP intensity and autoscaling (mean-centring 
and scaling to unit variance). For approach B, the complete GC-IMS 
spectral fingerprint was extracted as a matrix. Subsequently, data was 
imported into Matlab for pre-treatment and in this case the pre- 
treatment consisted of normalization with the RIP and a trans-
formation of the data matrix into a single data row with 27,178 vari-
ables, constituted by the concatenated spectra. In addition, a mean- 
centring of the concatenated spectra was applied. The difference be-
tween data types in approaches A and B can be seen in Supplementary 
Figure 1. 

Next, and in order to detect possible sample outliers, a detection 
process was carried out. Outliers are those observations that differ 
strongly from the other data points within sampled population. The 
methodologies described in the literature for outlier detection are based 
on determining certain thresholds of closeness between samples and 
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then establishing a value to act as a reference. In this case the method 
used was a Principal Components Analysis (PCA) followed by a classi-
fication of samples in two classes (acorn-fed vs. feed-fed Iberian ham) 
carried out through PLS-DA. The first step for PLS-DA multivariate 
analysis was the selection of samples to constitute the calibration and 
validation sets. In the present case, an automatic random selection of 
samples was performed taking into account the distribution of classes: In 
each random calibration and validation subset the proportion between 
classes was always maintained as the original set (≈50%), unless 
otherwise stated. Several PLS-DA models were built with different 
number and types of samples for training and validation. For compari-
son purposes, each model was built with its optimum number of latent 
variables (LVs) or sets of components made from linear combinations of 
variables. The selection of the optimal number of LVs for PLS-DA models 
was performed automatically considering the average cross-validation 
classification error (CVCE) [33]. In this procedure, the number of LVs 
is increased until the CVCE reaches a plateau. 

The PLS-DA models were trained and cross-validated using training 
sets with a specific number of samples while the rest were used to 
validate the performance of our proposal. In all cases, cross-validation 
was performed employing randomly-selected training samples with 5 
data splits (20% of the calibration samples each) and 20 iterations; in 
order to detect a possible overfitting, permutation tests were performed 
on all the developed PLS models. The tests involved repeatedly and 
randomly reordering the validation set and rebuilding the model after 
each iteration while assigning samples to wrong classes. Then, the test 
searches for a chance correlation between the calibration and validation 
blocks. After each permutation, the predictions for each sample from 
cross-validation, RMSEC (root-mean-standard error for calibration) and 
RMSECV are recorded. The shuffling of classes is repeated multiple 
times. The cross-validated and self-prediction values should be rela-
tively close to each other, but should be significantly less than the results 
for the non-permuted validation block. The further away the unper-
muted results are from the mean, the more unlikely it is the original 
model is over-fit. In the present case, all the models developed were 
suitable for prediction. 

Prediction was performed with the samples of the validation set. The 
evaluation of the prediction ability of the models was done through two 
parameters: the accuracy (number of samples correctly classified, or true 
positives plus true negatives vs. the number of total samples) and the 
Area Under the Receiver Operating Characteristic (AUROC). Accuracy 
and AUROC are the most suitable parameters to assess the quality of 
PLS-DA models that discriminate between two classes [33], such as in 
the present case. If minimizing false negative or false positive errors was 
a priority, an optimization based on sensitivity and specificity is also 
recommended. Furthermore, in approach A, based on the intensity of 
preselected markers as data, the Variable Importance for the Projection 
(VIP) of each variable was calculated. 

3. Results and discussion 

3.1. Univariate analysis 

After a visual study of the GC-IMS spectral plots of 500 acorn-fed and 
497 feed-fed Iberian ham samples, 279 markers were located, of which 
61 were identified, corresponding to 36 VOCs. The main criteria for 
feature selection were that their intensity was be over the baseline and 
the absence of overlapping between them. The features that correspond 
to identified VOCs were located after the analysis of standards, if the 
position of the features of these standards matched with that of the 
features of the samples. In approach A, the markers’ intensity was used 
to classify the samples according to their class, as described in Section 
2.3. Furthermore, a univariate sample classification through analysis of 
variance (ANOVA) was attempted using these markers, whose aim was 
to identify relevant markers (identified or unidentified) of each feeding 
class for sample discrimination. 

23 markers of the 279 originally selected from the GC-IMS spectral 
plot, were considered the most relevant for acorn-fed vs. feed-fed 
discrimination after a point-biserial correlation test, showing an abso-
lute value of Pearson correlation coefficient (PCC) >0.25 with the 
feeding regime and a p-value <0.001. Of those 23 features, 4 were 
tentatively identified: the protonated monomer of hexan-2-one and the 
proton-bound dimers of nonan-2-one, 3-methylbutan-1-ol and octan-2- 
one. As an example, the signal of the branched alcohol 3-methylbutanol 
showed higher intensity in acorn-fed samples, which is in accordance 
with previous studies [32,34,35]. The intensity of the 6 features with the 
highest PCC (“247′′, the protonated monomer of hexan-2-one, the 
proton-bound dimer of nonan-2-one, “118′′, “267′′ and “49′′) is repre-
sented as violin plots in Fig. 1. As can be seen in this figure, upper in-
tensity limits could be determined for these 6 features. The upper part of 
the rectangle represents the third quartile (Q3): 75% of the intensity 
values (mV) are equal or lower than this value. As an example, marker 
“247′′ showed an intensity >75 mV in 25% of acorn-fed samples, while 
this only happened with 1.4% of feed-fed samples (see Fig. 1a). On the 
contrary, the marker “207′′ (protonated monomer of hexan-2-one) 
showed an intensity >263 mV in 25% of feed-fed samples, while this 
only happened in 7.6% of acorn-fed samples (see Fig. 1b). Even so, in 
some cases the differences between classes might be more related to the 
curing plant of origin rather than the feeding regime itself. As can be 
seen in Supplementary Figure 2, the differentiation between acorn-fed 
and feed-fed classes was mostly determined by the unusually high in-
tensity of marker “247′′ in feed-fed samples of curing plant 7, which 
could be due to the differences and evolution of the yeast population of 
the curing plant during manufacturing and ripening of dry-cured hams 
[36,37]. This might give a false impression of a high correlation of that 
marker with an acorn-fed regime, which proves that univariate analysis 
is not suitable in the case of dry-cured Iberian ham discrimination. 

3.2. Multivariate analysis 

Due to the unfeasibility of obtaining a feeding regime differentiation 
using individual markers (univariate analysis), multivariate PLS-DA was 
employed to classify the 997 samples. The evaluation of the prediction 
ability of the models was done through two parameters: Accuracy and 
AUROC. In the present approach, several experiments were carried out 
to assess the influence of the following factors in the prediction results:  

1) Use of discrepant samples as a validation set.  
2) Proportion of samples used for training and validation.  
3) Minimum number of training samples required.  
4) Proportion of samples of each class in training and validation sets.  
5) Use of the whole spectral fingerprint vs. the intensity of pre-selected 

features. 

3.2.1. Use of discrepant samples as a validation set 
The objective of this experiment was to assess the influence of the 

variability of samples within each class in the accuracy. For this purpose, 
two PCAs of the samples of each class (499 acorn-fed and 498 feed-fed, 
997 in total) were performed. The scores of 36 acorn-fed and 38 feed-fed 
samples (74 in total) that were outside the Hotelling’s T2 ellipse were 
considered discrepant. In this case, 39% of the 74 discrepant samples 
came from the same curing plant. These might have been just different 
from the rest of the samples due to their processing conditions or su-
perficial fungi [36], amongst other factors, not necessarily being out-
liers. After a careful study, none were considered outliers: the discrepant 
samples were correctly labelled and analysed according to quality con-
trol procedure (described in Section 2.1.), and their GC-IMS spectral 
plots were not so different compared to the other samples. 

Subsequently, the influence of the uniformity of the calibration set 
on the results was studied using three different calibration sets: a ho-
mogeneous set, a heterogeneous set and a combination of both. The 
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homogeneous set was constituted by very similar samples whose scores 
had low Hotelling’s T2 values in the PCAs. Therefore, the samples used 
for training were from acorn-fed and feed-fed classes located in the 
middle of PCA, whereas the heterogeneous set was constituted by 
samples that were very different within each class and whose scores 
showed high T2 values, which were segregated in the score plot. The 
mixed calibration set, used as a reference, consisted of a mix of the 
homogeneous and heterogeneous sets; all three training sets contained 
100 samples each; this number was selected so that the effect of the 
different types of samples would be more apparent. The 74 discrepant 
samples previously detected were included in the heterogeneous set. A 
single validation set was used in all cases, which also consisted of 100 
samples. The results of this experiment are shown in Table 1, and as can 
be seen, the best results were obtained training the model with a mixed 
approach that includes very different samples that covered the 
maximum space within a PCA score plot. In fact, training with similar 
samples within each class or outliers implied a poorer prediction result. 

Therefore, trying to predict the natural feeding regime of free-range 
Iberian pigs [38], which give rise to dry-cured hams with slight differ-
ences in the curing process, requires flexibility when training the 
PLS-DA model. Thus, the analysis of a wide range of pieces of each class 
is recommended for model training, in order to capture those natural 
differences. 

Fig. 1. Violin plots of the signal intensity (mV) of features a) 247, b) protonated monomer of hexan-2-one, c) proton-bound dimer of nonan-2-one, d) 118, e) 267 and 
f) 49 in acorn-fed samples and feed-fed samples. AF: Acorn-fed, FF: Feed-fed, Q3: Third quartile. 

Table 1 
Results of PLS-DA models using, within each class, very similar samples (lowest 
T2 value), very different samples (highest T2 value) and mixed samples for 
training while predicting a single set of 100 blind samples.  

Training set (n ¼ 100) % Success AUROC 

Using very similar samples (homogeneous set) 76 0.87 
Using very different samples (heterogeneous set) 52 0.76 
Mixed approach 80 0.88 

AUROC: Area Under the Receiver Operating Characteristic. 
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3.2.2. Proportion of samples used for training and validation 
Since the multivariate approach can be sensitive to the proportion of 

samples used in calibration and validation sets, in this experiment 
different proportions of samples were used for PLS-DA model training 
and validation (from a training/validation samples proportion of 0.3 to 
6.5), which was done to assess the need to increase the size of the 
training set, depending on the number of blind samples whose class 
needed to be predicted. For this aim, a regression was performed using 
the proportion of calibration samples vs. the accuracy (shown in Fig. 2) 
and a significant positive correlation was found (p<0.001). In the pre-
sent case, an average accuracy of ≥85% was obtained in a PLS-DA model 
with a minimum proportion of training samples 1.8 times higher than 
the number of blind samples. Thus, the number of training samples 
should be adapted to the number of blind samples following this sug-
gestion. The complete results are shown in Supplementary Table 1. 

3.2.3. Minimum number of training samples required 
For this experiment, three validation sets were fixed with 100, 200 

and 300 samples (10%, 20% and 30% of the total samples, respectively). 
Subsequently, the number of samples in the corresponding training sets 
was progressively and randomly decreased from 650 to 100 samples. 
The training and validation sets contained a similar proportion of acorn- 
fed and feed-fed samples (≈50%). The objective of this approach was to 
assess how many known samples are necessary to train a PLS-DA model 
in order to predict the class of blind samples from several curing plants, 
or just from a single one. An average accuracy of 85%, which repre-
sented a maximum, was obtained using 450 samples for calibration (see 
Fig. 3). The complete obtained results are shown in Supplementary 
Table 2:  a calibration set with ≈450 samples from several origins was 
enough to achieve a PLS-DA classification model for the prediction of the 
class of 100, 200 or 300 blind samples from different curing plants. 

The same approach was applied to study the results using samples of 
individual curing plants. The objective was to assess the lowest number 
of training samples necessary to train a PLS-DA classification model for a 

single company, which would be useful for producers that want to 
ensure the quality of their own products. As can be drawn from Sup-
plementary Tables 3 and 4, curing plants 4 and 6 reached a maximum 
average prediction accuracy when the proportion of training samples vs. 
blind samples was at least ≈1.2. Nevertheless, with that same propor-
tion, the accuracy was different depending on the curing plant. Predic-
tion accuracy in curing plant 4, with 326 samples, was ≥0.95 and in 
curing plant 6, with 94 samples, was ≥0.85, which can be explained by 
the different homogeneity of the pieces in each curing plant. PLS-DA 
models of plants where the cured pieces sampled show more differ-
ences might need a more exhaustive training. 

3.2.4. Proportion of samples of each class in training and validation sets 
For this experiment, whose objective was to verify if the number of 

samples of each class should be equilibrated in the training set, three 
training sets with 400 samples were used to predict the class of a single 
validation set with 200 samples. The training sets were constituted by A) 
50% acorn-fed and 50% feed-fed samples, B) 75% acorn-fed and 25% 
feed-fed samples, and C) 25% acorn-fed and 75% feed-fed samples. The 
results are shown in Table 2, in which the general accuracy in the 
classification using the training sets A, B and C (82±3%, 77±0% and 82 
±2%, respectively) was similar. However, the accuracy obtained with 
sets B and C was severely biased depending on the class of the training 
samples. As can be seen in Table 2, the best prediction results of acorn- 
fed and feed-fed samples took place when a higher proportion of samples 
of those classes was used for training the PLS-DA model. Likewise, an 
equal proportion of samples of both classes (50/50) provided a global 
result that is equal or better than that with the use of biased training sets, 
preventing low accuracy rates for one of the classes. 

Therefore, according to the results of experiments previously 
described in Sections 3.2.1. and 3.2.4., the classes in the training set 
must be balanced (approximately half of them must belong to each class) 
and, within both classes, samples should be diverse. Under the “acorn- 
fed” class a high variability of feed intake may exist, as the feeding 

Fig. 2. Polynomic regression of the proportion of training/blind samples for PLS-DA model (X) vs the accuracy of the prediction (Y). p<0.001. R2 = 0.26. Equation: y 
= 0.783 + 0.021x – 0.002×2. 
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regime is mainly based on a free-range grazing of pasture and acorns 
[38]. Furthermore, it has been demonstrated that microbial populations 
on the surface of Iberian hams produce differences in their volatile 
profile [36]. Similarly, a previous study with olive oil [11] demonstrated 
that a mix of training samples of different campaigns (different years) 
improved the accuracy in the prediction, while when training samples 
from a single campaign were used to predict blind samples from another 
campaign, the results were much poorer [11]. 

In addition, the training samples should belong to different in-
dustries (curing plants) to capture as much variability as possible. In 
order to demonstrate this hypothesis several PLS-DA models were built 
excluding the samples from each curing plant from the training set and 
at the same time these samples were used as the validation set. This 
greatly lowered the accuracy of their classification by feeding regime, 
which on average fell to nearly 51±22%. Therefore, an already trained 
PLS-DA model must be retrained if samples of a new origin need to be 
predicted. 

3.2.5. Marker selection for PLS-DA models 
In addition, in order to simplify the data treatment of samples, a 

marker selection for PLS-DA models was attempted. A model built with 
650 known samples for training and 200 blind samples for prediction 
was selected as a starting point, after which new models with progres-
sively less variables were built and their discrimination power was 
assessed. The procedure was performed by the evaluation of VIP scores 
and on each iteration, markers with the highest VIP (at least over the 
significancy threshold, which had a value of 1) were selected for sub-
sequent models, while the rest of the variables (markers) were dis-
carded. The classification results with different number of variables are 
shown in Fig. 4. As can be seen, the accuracy in the classification and the 
AUROC reached a maximum with 35 variables (equivalent to an 87% 
reduction of variables). Therefore, the reduction of variables when using 
the intensity of pre-selected markers as data implies the improvement of 
classification accuracy, although in this case reducing more variables 
would imply a decline of the prediction accuracy, that falls below a 75% 
rate. 

3.2.6. Use of the whole spectral fingerprint vs. pre-selected features 
For chemometric treatments, the use of the whole spectral finger-

print might appear faster than the use of pre-selected features due to its 
complete untargeted nature. However, the use of the whole fingerprint 
implies that features of contaminants have a much higher impact in the 
classification results. In addition, the much larger amount of data re-
quires considerable computation power thus data treatment is more 
time-consuming, whereas the use of pre-selected features requires a vi-
sual selection of signals present in the GC-IMS spectral plot. Despite this 
step of feature selection being time consuming at the beginning, once it 
is finished the features’ template can be saved and transferred as needed. 
In addition, the lower amount of data implies that modest computers are 
able to carry out its processing. Furthermore, variable selection is 
possible using VIP scores or other techniques when the intensity of pre- 
selected features is used as data, thus simplifying subsequent targeted 

Fig. 3. Box-plot of the accuracy of PLS-DA models predicting the class (acorn-fed or feed-fed) of fixed sets of 100, 200 and 300 blind samples using trainings sets of 
different size. 

Table 2 
Results of PLS-DA models using different proportions of samples of each class for 
the prediction of a single set of 200 blind samples using 400 training samples. 
AF: Acorn-fed, FF: Feed-fed.  

Proportion AF/FF in 
training set (n ¼ 400) 

Total% 
Success 

Acorn-fed% 
Success 

Feed-fed% 
Success 

AUROC 

50/50 82±3ab 89±5a 75±9b 0.93 
±0.01a 

75/25 77±0b 98±0a 56±0c 0.91 
±0.00a 

25/75 82±2a 73±6b 92±2a 0.92 
±0.01a  

a and b represent different groups of classification according to Tukey test. 
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analysis if required. 
In order to assess the performance of the approaches based on pre- 

selected markers (approach A) and the whole spectral fingerprint 
(approach B), PLS-DA models were built with the same training and 
validation sets for both data types. Subsequently, the classification re-
sults were compared, which are shown in Fig. 5. The difference of ac-
curacy using both approaches was statistically significant (p<0.03) 
although the values were similar: average accuracy values were 0.85 

and 0.86 using the whole spectral fingerprint and pre-selected markers, 
respectively. On the other hand, the median of the prediction accuracy 
was also higher using markers vs the spectral fingerprint (0.87 vs 0.85). 
Therefore, the use of markers provides more slightly better prediction 
results than the use of the fingerprint. Therefore, the first approach may 
be more advantageous. The complete results are included in Supple-
mentary Table 5. 

In summary, the high validated classification rates obtained in both 

Fig. 4. Results of PLS-DA models that include different number of variables with a fixed size of calibration (n = 650) and validation (n = 300) sets.  

Fig. 5. Comparison of accuracy of PLS-DA models using GC-IMS pre-selected markers or the complete spectral fingerprint with different proportion of samples for 
training and prediction. 
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approaches (using the spectral fingerprint or pre-selected markers) 
demonstrate the suitability of PLS-DA for the classification of complex 
agri-food matrices, such as dry-cured Iberian ham fat. The influence of 
the geographical origin and curing time in the capability of the model to 
discriminate the samples by feeding regime is yet to be assessed. 

3.3. Issues found during the analysis period using GC-IMS 

Analysing samples for a prolonged period of time is required to build 
classification models that can be applied in an industrial context [39]. 
However, dealignment of the plots and reactant ion peak (RIP) value 
fluctuations might take place when analysing ≈1000 samples during a 
year with GC-IMS [40]. The impact of the dealignments is greater when 
using the whole spectral fingerprint approach because a smaller amount 
of data is discarded, thus weakening the results of classification. In the 
present case, these changes were assessed through the periodic analysis 
of a mix of ketones acting as external standards (ES). If required, a 
manual alignment of the samples was carried out following the pro-
cedure described in a previous study [40]. The results obtained show an 
adequate robustness of the method for a period of 12 months (see 
Table 3). The GC column used was able to withstand the analysis of 
≈1000 samples using the previously described method, and so for the 
purpose of a similar study a change of GC column should not be needed, 
at least within that period of time. Besides that, VOCs might naturally 
degrade inside of vials. This evolution is caused by the equilibrium be-
tween the headspace and the solid sample inside the vial as it has been 
demonstrated that fat deteriorates due to lipolytic enzymes that remain 
active at freezing temperatures [41]. In the present case, this can happen 
after freezing due to lipid oxidation and so samples should be analysed 
within 1–2 weeks after being frozen at − 18 ◦C. 

The variety, quality and traceability of the samples used for the 
training of chemometric models is more important for the accuracy of 
classification than their number [39]. This was demonstrated by 
Jurado-Campos et al. [11], who attempted an olive oil classification in 
three categories and whose prediction results improved using a training 
set based on a mix of two seasons instead of a set with samples of a single 
season. Therefore, knowing the origin and season of those samples was 
equally important than knowing just their category: increasing the 
number of samples with limited information about their traceability 
does not necessarily mean a better accuracy of classification. In any case, 
outliers can appear due to experimental errors or due to an incorrect 
labelling of the samples. In the present case, the 997 samples analysed 
were directly obtained in the cellars of each company while the 
dry-curing process of the hams was taking place. Each piece was un-
equivocally identified by a unique code fitted to it from the start of its 
processing, ensuring traceability, and when experimental errors took 
place e.g., the analysis of vials with badly fitted caps, the samples 
involved were discarded. 

4. Conclusion 

In the case of dry-cured Iberian ham fat, classifying samples with 
univariate methods is not possible. As described in Section 3.1., only 
limits of intensity of individual markers can be obtained, which 
constrain the ability to discriminate samples through targeted analysis. 
In order to calibrate a PLS-DA model based on GC-IMS data to assign the 
correct category to an unknown sample, the following guidelines should 
be followed:  

- The influence of the geographical origin and curing time in the 
capability of PLS-DA models to discriminate Iberian ham samples by 
the pig’s feeding regime is yet to be assessed.  

- A statistically reliable number of samples representative of the 
problem under study is required. In the present case, it was 
confirmed that for the classification of 100, 200 or 300 blind samples 
of 7 different origins, 450 samples for PLS-DA model training were 
enough to achieve an average prediction accuracy rate of 85%.  

- If the samples whose class will be predicted come from the same 
curing plant, a proportion of ≈1.2 between training and validation 
samples is enough to reach a maximum in the average prediction 
accuracy rate. However, the value of this maximum could be 
different depending on the heterogeneity of the samples in the curing 
plant.  

- Training samples must have good traceability: Fewer well-identified 
samples are preferable over many samples if some of them are 
erroneously labelled, because a previous lack of traceability may 
imply prediction mistakes. Samples certified are very useful for this 
purpose (for instance, certified by a Denomination of Protected 
Origin, such as the samples studied).  

- Analysing the same number of known samples of each class in order 
to equilibrate the training set is recommended. In addition, sampling 
a wide range of samples within each class improves prediction re-
sults. The samples of the present study were obtained in several 
curing plants, ensuring variability in order to enrich the training sets. 
The periodic enrichment of the model with enough variety of sam-
ples within each class is desirable. Any classification attempt using 
GC-IMS should take this into account.  

- In the present case, a reduction of 87% of the original number of 
variables slightly improved classification results.  

- During a 12-month analysis period, no significant problems were 
detected with the GC-IMS device using the method described. 

In summary, it has been demonstrated that GC-IMS combined with 
PLS-DA is a useful tool for the ham industry to perform a control of their 
products. The use of the intensity of pre-selected GC-IMS markers is 
recommended as data for chemometric treatment over the complete 
spectral fingerprint. Nevertheless, the accuracy in the classification of 
blind samples still depends on the curing plant of origin where cali-
bration samples are obtained, and therefore individual calibration 
models should be built for each curing plant. 
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Table 3 
Values of% RSD of retention and drift times of the proton-bound dimers of the 
500 mg/L ketone mix after the analysis of 56 aliquots during a period of 6 
months.  

Proton- 
bound 
dimer 

Average 
Retention time 
(s) 

Retention 
time RSD (%) 

Average Drift 
time (ms) 

Drift 
time RSD 
(%) 

butan-2-one 108.89±1.20 1.10 10.24±0.06 0.58 
pentan-2- 

one 
164.29±1.51 0.92 11.26±0.06 0.54 

hexan-2- 
one 

297.93±2.12 0.71 12.34±0.07 0.53 

heptan-2- 
one 

488.05±2.80 0.57 13.39±0.07 0.52 

octan-2-one 694.07±3.49 0.50 14.41±0.07 0.51 
nonan-2- 

one 
899.89±8.16 0.91 15.44±0.18 1.15  
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the work reported in this paper. 
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I. López-García, M. Hernández-Córdoba, Untargeted headspace gas 
chromatography - Ion mobility spectrometry analysis for detection of adulterated 
honey, Talanta 205 (2019), 120123. 

[10] X. Wang, K.M. Rogers, Y. Li, S. Yang, L. Chen, J. Zhou, Untargeted and Targeted 
Discrimination of Honey Collected by Apis cerana and Apis mellifera Based on 
Volatiles Using HS-GC-IMS and HS-SPME-GC–MS, J. Agric. Food Chem. 67 (2019) 
12144–12152. 

[11] M.M. Contreras, N. Jurado-Campos, L. Arce, N. Arroyo-Manzanares, A robustness 
study of calibration models for olive oil classification: targeted and non-targeted 
fingerprint approaches based on GC–IMS, Food Chem. 288 (2019) 315–324. 

[12] A. Tata, A. Massaro, T. Damiani, R. Piro, C. Dall’Asta, M. Suman, Detection of soft- 
refined oils in extra virgin olive oil using data fusion approaches for LC-MS, GC- 
IMS and FGC-Enose techniques: The winning synergy of GC-IMS and FGC-Enose, 
Food Control 133 (2021), 108645. 

[13] J. Chen, L. Tao, T. Zhang, J. Zhang, T. Wu, D. Luan, L. Ni, X. Wang, J. Zhong, Effect 
of four types of thermal processing methods on the aroma profiles of acidity 
regulator-treated tilapia muscles using E-nose, HS-SPME-GC-MS, and HS-GC-IMS, 
LWT - Food Sci. Tech. 147 (2021), 111585. 

[14] S. Jia, Y. Li, S. Zhuang, X. Sun, L. Zhang, J. Shi, H. Hong, Y. Luo, Biochemical 
changes induced by dominant bacteria in chill-stored silver carp 
(Hypophthalmichthys molitrix) and GC-IMS identification of volatile organic 
compounds, Food Microbiol. 84 (2019), 103248. 

[15] Y. Yang, B. Wang, Y. Fu, Y.-g. Shi, F.-l. Chen, H.-n. Guan, L.-l. Liu, C.-y. Zhang, P.- 
y. Zhu, Y. Liu, N. Zhang, HS-GC-IMS with PCA to analyze volatile flavor 
compounds across different production stages of fermented soybean whey tofu, 
Food Chem. 346 (2020), 128880. 

[16] X. Fan, X. Jiao, J. Liu, M. Jia, C. Blanchard, Z. Zhou, Characterizing the Volatile 
Compounds of Different Sorghum Cultivars by Both GC-MS and HS-GC-IMS, Food 
Res. Int. 140 (2020), 109975. 

[17] R. Brendel, S. Schwolow, S. Rohn, P. Weller, Volatilomic Profiling of Citrus Juices 
by Dual-Detection HS-GC-MS-IMS and Machine Learning-An Alternative 
Authentication Approach, J. Agric. Food Chem. 69 (2021) 1727–1738. 

[18] R. Zhou, X. Chen, Y. Xia, M. Chen, Y. Zhang, Q. Li, D. Zhen, S. Fang, Research on 
the application of liquid-liquid extraction-gas chromatography-mass spectrometry 
(LLE-GC-MS) and headspace-gas chromatography-ion mobility spectrometry (HS- 
GC-IMS) in distinguishing the Baiyunbian aged liquors, Int. J. Food Eng. 17 (2020) 
83–96. 
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