
Linear Algebra and its Applications 656 (2023) 63–91
Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Central extensions of some solvable Leibniz 

superalgebras ✩

L.M. Camacho a,∗, R.M. Navarro b, B.A. Omirov c

a Dpto. Matemática Aplicada I, Universidad de Sevilla, Sevilla, Spain
b Dpto. de Matemáticas, Universidad de Extremadura, Cáceres, Spain
c National University of Uzbekistan, Tashkent, Uzbekistan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 June 2022
Accepted 13 September 2022
Available online 22 September 2022
Submitted by M. Bresar

MSC:
17A05
17B30
17B56

Keywords:
Lie (Leibniz) superalgebras
Central extensions

This work is devoted to the study of central extensions of 
some solvable Leibniz superalgebras. We show that a solvable 
Leibniz superalgebra with non-null center can be obtained by 
central extension of other solvable ones of lower dimensions. 
Moreover, we describe the central extensions for the maximal 
solvable Lie superalgebras with nilradical which neither char-
acteristically nilpotent in non-split case nor do not involve 
characteristically nilpotent ones as a term in split case.
Additionally, we apply two different procedures to the null-
filiform Leibniz superalgebra and the model filiform Lie su-
peralgebra. On the first one, we compute its central exten-
sions and then study the maximal solvable extension of the 
superalgebras obtained. However, on the second procedure, 
we consider first its maximal solvable superalgebra and then 
study its central extensions. Finally, we compare the results 
obtained at the end of the two procedures.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

✩ This work has been supported by Ministerio de Economía y Competitividad (Spain), grant PID2020-
115155GB-I00 (European FEDER support included, EU) and by the Department of Economy, Knowledge, 
Business and University of the Regional Government of Andalusia. Project reference: FEDER-UCA18-
107643.
* Corresponding author.

E-mail addresses: lcamacho@us.es (L.M. Camacho), rnavarro@unex.es (R.M. Navarro), 
omirovb@mail.ru (B.A. Omirov).
https://doi.org/10.1016/j.laa.2022.09.013
0024-3795/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.laa.2022.09.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2022.09.013&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lcamacho@us.es
mailto:rnavarro@unex.es
mailto:omirovb@mail.ru
https://doi.org/10.1016/j.laa.2022.09.013
http://creativecommons.org/licenses/by-nc-nd/4.0/


64 L.M. Camacho et al. / Linear Algebra and its Applications 656 (2023) 63–91
1. Introduction

Currently the theory of Lie superalgebras is one of the most actively studying branches
of the modern algebra and theoretical physics. The basic results on Lie superalgebras 
theory can be found in [17]. It is well known that Lie superalgebras are a generaliza-
tion of Lie algebras. In the same way, the notion of Leibniz algebra can be generalized 
to Leibniz superalgebras. Many works have been devoted to the study of these topics, 
but unfortunately most of them do not deal with nilpotent Lie and Leibniz superalge-
bras.

It is a very well-known result that all the nilpotent Lie algebras of a specific dimen-
sion can be obtained by central extensions of nilpotent Lie algebras of lower dimensions. 
Thus, in [11] the author used the Skjelbred-Sund method [24] for classifying all the 
6-dimensional nilpotent Lie algebras over any field of characteristic not 2. The use of 
central extensions was extended to Leibniz algebras [3] and moreover can be also applied 
to superalgebras, Lie and Leibniz [12,13,19]. The crucial idea of central extensions con-
sists of the fact that any nilpotent Leibniz (super)algebra of a fixed finite-dimension is 
a central extension of nilpotent (super)algebras of less dimensions. So, theoretically all 
finite-dimensional (super)algebras can be obtained by applying central extension method. 
Unfortunately, practically it is boundless problem to describe all finite-dimensional 
(super)algebras. For instance, up to now it is known a complete list of nilpotent Lie 
algebras of dimension not greater than 7.

The main purpose of the present work is studying central extensions for the class of 
some solvable Leibniz superalgebras from two different perspectives. In particular, we 
show that all the solvable Leibniz superalgebras with non-null center can be obtained by 
central extensions of other solvable ones of lower dimensions.

Moreover, we select two very important nilpotent superalgebras N , the null-filiform 
Leibniz superalgebra [4,18] and the model filiform Lie superalgebra [6]. For each of them 
we follow two different procedures. On the first one, we compute its central extensions 
(denoted by extnil(N)) and then study the maximal solvable extension of the superal-
gebras obtained by R(extnil(N)) (here by R(N) we denote a solvable Lie superalgebra 
with nilradical N). However, on the second procedure, we consider first the maximal 
solvable superalgebra R(N) and then we studied its central extensions extsol(R(N)). 
Finally, we compare the results obtained at the end of the two procedures. Let us note 
also, that along this study we compute central extensions of centerless superalgebras -
the maximal solvable considered - obtaining a common pattern for them which has been 
proved for algebras and expressed in a conjecture for superalgebras.

2. Basic concepts and preliminaries

Recall that a vector space V is said to be Z2-graded if it admits a decomposition in 
direct sum, V = V0̄ ⊕ V1̄, where 0̄, ̄1 ∈ Z2. An element x ∈ V is called homogeneous of 
degree ī if it is an element of Vī, ̄i ∈ Z2. In particular, the elements of V0̄ (resp. V1̄) are 
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also called even (resp. odd). For a homogeneous element x ∈ V we denote |x| the degree 
of x (either 0̄ or 1̄).

A Lie superalgebra (see [17]) is a Z2-graded vector space g = g0̄ ⊕ g1̄ together with 
an even bilinear mapping [·, ·] : g × g −→ g which is agreed with Z2-graduation (that is, 
[g0̄, g0̄] ⊂ g0̄, [g0̄, g1̄] ⊂ g1̄ and [g1̄, g1̄] ⊂ g0̄) and for any arbitrary homogeneous elements 
x, y, z satisfies the conditions

1. [x, y] = −(−1)|x||y|[y, x],
2. (−1)|z||x|[x, [y, z]] +(−1)|x||y|[y, [z, x]] +(−1)|y||z|[z, [x, y]] = 0 – super Jacobi identity.

Clearly, g0̄ is an ordinary Lie algebra and g1̄ is a module over g0̄. In addition, the Lie 
superalgebra structure also contains the symmetric pairing S2g1̄ −→ g0̄.

Let us now recall the notion of Leibniz superalgebras. A Z2-graded vector space 
L = L0̄ ⊕ L1̄ is called a Leibniz superalgebra if it is equipped with a product [·, ·] which 
for an arbitrary element x and homogeneous elements y, z satisfies the condition

[x, [y, z]] = [[x, y], z] − (−1)|y||z|[[x, z], y] – super Leibniz identity.

Note that if a Leibniz superalgebra L satisfies the identity [x, y] = −(−1)|x||y|[y, x]
for any homogeneous elements x, y ∈ L, then the super Leibniz identity becomes the 
super Jacobi identity. Consequently, Leibniz superalgebras are a generalization of Lie 
superalgebras.

Taking into account that the following concepts and results that are valid for the Lie 
superalgebra are true verbatim for the Leibniz superalgebras, we will give an exposition 
for the Leibniz superalgebras.

Recall that the descending central sequence of a Leibniz superalgebra L = L0̄ ⊕ L1̄
is defined in the same way as for Lie algebras: C0(L) := L, Ck+1(L) := [Ck(L), L] for 
all k ≥ 0. Consequently, if Ck(L) = {0} for some k, then the Leibniz superalgebra L
is called nilpotent. Then, the smallest integer k such that Ck(L) = {0} is called the 
nilindex of the Leibniz superalgebra L. Analogously, the derived sequence of L is defined 
by D0(L) := L, Dk+1(L) := [Dk(L), Dk(L)] for all k ≥ 0. If this sequence is stabilized 
in zero, then the Leibniz superalgebra is said to be solvable. Then, the smallest integer 
k such that Dk(L) = {0} is called the index of solvability of the Leibniz superalgebra L
(denoted by index(L)). Evidently, all nilpotent Lie superalgebras are solvable ones.

At the same time, there are also defined two other crucial sequences denoted by Ck(L0̄)
and Ck(L1̄) which will play an important role in our study. They are defined as follows:

C0(Lī) := Lī, Ck+1(Lī) := [Ck(Lī), L0̄], k ≥ 0, ī ∈ Z2.

We say that L has super-nilindex or s-nilindex (p, q) if satisfies

Cp−1(L0̄) �= 0, Cq−1(L1̄) �= 0, Cp(L0̄) = Cq(L1̄) = 0.
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These last sequences allow us to introduce filiform Leibniz superalgebras. Therefore, a 
Leibniz superalgebra L = L0̄ ⊕L1̄ is said to be filiform if L0̄ is a filiform Leibniz algebra 
(those algebras with nilindex equal to dim(L0̄) −1) and the action of L0̄ over L1̄ has the 
structure of filiform L0̄-module, i.e., dim

(
Ci−1(L1̄)/Ci(L1̄)

)
= 1 for 1 ≤ i ≤ dim(L1̄).

Let us now denote by Rx the right multiplication operator, i.e., Rx : L → L given as 
Rx(y) := [y, x] for y ∈ L, then the super Leibniz identity can be expressed as R[x,y] =
RyRx − (−1)|x||y|RxRy.

If we denote by R(L) the set of all right multiplication operators, then R(L) with 
respect to the following multiplication

< Ra, Rb >:= RaRb − (−1)īj̄RbRa (2.1)

for Ra ∈ R(L)ī, Rb ∈ R(L)j̄ , forms a Lie superalgebra. Note that Ra is a deriva-
tion. In fact, the condition for being a derivation of a Leibniz superalgebra (for more 
details see [18]) is d([x, y]) = (−1)|d||y|[d(x), y] + [x, d(y)]. Since the degree of Rz as 
homomorphism between Z2-graded vector spaces is the same as the degree of the ho-
mogeneous element z, that is |Rz| = |z|, then the condition for Rz to be a derivation is 
exactly Rz([x, y]) = (−1)|z||y|[Rz(x), y] + [x, Rz(y)]. This last condition can be rewritten 
[[x, y], z] = (−1)|z||y|[[x, z], y] + [x, [y, z]] which is nothing but the super Leibniz identity.

Engel’s theorem and its direct consequences remained valid for Leibniz superalgebras. 
In particular, a Leibniz superalgebra L is nilpotent if and only if Rx is nilpotent for every 
homogeneous element x of L. Furthermore, for solvable Leibniz superalgebras we have 
that a Leibniz superalgebra L is solvable if and only if its Leibniz algebra L0 is solvable. 
However, we do not have the analog of Lie’s Theorem and neither its corollaries even for 
solvable Lie superalgebras.

We denote the set of Leibniz superalgebras with dimensions of even and add parts 
equal to n and m, respectively, by Leibn,m. Then Leibn,m forms the variety of Leib-
niz superalgebras. Let G(V ) be the group of the invertible linear mappings of the 
form f = f0̄ + f1̄, such that f0̄ ∈ GL(n, C) and f1̄ ∈ GL(m, C) (then G(V ) =
GL(n, C) ⊕GL(m, C)). The action of G(V ) on Leibn,m induces an action on the Leibniz 
superalgebras variety: two laws λ1, λ2 are isomorphic if there exists a linear mapping 
f = f0̄ + f1̄ ∈ G(V ), such that

λ2(x, y) = f−1
ī+j̄

(λ1(fī(x), fj̄(y))), for any x ∈ Vī, y ∈ Vj̄ .

Furthermore, the description of the variety of any class of algebras or superalgebras 
is a difficult problem. Different papers (for example, [5,7,15,16]) are dealt with the ap-
plications of algebraic groups theory to the description of the variety of Lie and Leibniz 
algebras.

For a Leibniz superalgebra L = L0̄⊕L1̄ the set Ann(L) := {x ∈ L : [L, x] = 0} is called 
right annihilator of L. It is easy to see that Ann(L) is a two-sided ideal of L and [x, x] ∈
Ann(L) for any x ∈ L0̄. If we consider the ideal I := ideal < [x, y] + (−1)|x||y|[y, x] >, 
then I ⊂ Ann(L).



L.M. Camacho et al. / Linear Algebra and its Applications 656 (2023) 63–91 67
The set Center(L) = {x ∈ L | [x, L] = [L, x] = 0} is called the center of a superalge-
bra L.

2.1. Central extensions of Leibniz superalgebras

We recall some definitions regarding central extensions of Lie superalgebras (see for 
instance [21] and references therein) and we extend these results to the case of Leibniz 
superalgebras.

Thus, a Leibniz superalgebra epimorphism π : L −→ L (or simply L if there is no 
confusion) is called a central extension of the Leibniz superalgebra L if the kernel of π is a 
subset of the center of L. Central extensions of a given Leibniz superalgebra L = L0⊕L1
are in correspondence with even 2-cocycles defined in the following way:

A bilinear map ω : L ×L −→ V is called a 2-cocycle with coefficients in a linear space 
V = V0 ⊕ V1 if

ω(x, [y, z]) = ω([x, y], z) − (−1)|y||z|ω([x, z], y)

for all x, y, z ∈ L. Additionally, if this 2-cocycle verifies the skew-supersymmetry condi-
tion, that is, ω(x, y) = −(−1)|x||y|ω(y, x), then we get a Lie 2-cocycle.

The 2-cocycle ω is said to be even if ω(Li, Lj) ⊆ Vi+j for i, j ∈ {0, 1} = Z2 and it is 
said to be a 2-coboundary if there is a linear map f : L −→ V verifying ω(x, y) = f([x, y])
for all x, y ∈ L. We denote by Z2

0(L; V ) the set of all even 2-cocycles from L to V and by 
B2

0(L; V ) the set of all even 2-coboundaries from L to V . Therefore the quotient space 
H2

0 (L; V ) := Z2
0 (L; V )/B2

0(L; V ) is called the even 2-nd group of cohomology.

If L is a Leibniz superalgebra and ω is an even 2-cocycle of L with coefficients in a 
superspace V , we define the superspace L̂ω := L ⊕ V endowed with the bracket

[·, ·]ω : L̂ω ⊕ L̂ω −→ L̂ω, (x⊕ v, x′ ⊕ v′) 
→ [x, x′] ⊕ ω(x, x′)

for x, x′ ∈ L and v, v′ ∈ V . This bracket provides L̂ω with Leibniz superalgebra structure 
and the canonical projective map πω : L̂ω −→ L is a central extension; conversely all 
central extensions of L are obtained in this manner.

Two even 2-cocycles ω1 : L ×L −→ V and ω2 : L ×L −→ V are cohomologous if and 
only if ω := ω2 − ω1 is an even 2-coboundary, that is, if there exists an even linear map 
f : L −→ V verifying ω(x, y) = f([x, y]) for all x, y ∈ L. In this case, the assignment 
ϕ : x ⊕ v 
→ x ⊕ (f(x) + v) is an isomorphism from L̂ω1 to L̂ω2 with πω2 ◦ ϕ = πω1 .

Note that, in particular, if the superspace V = V0 ⊕ V1 verifies V1 = {0}, then in 
the corresponding central extension we are adding even elements, so we will refer to it 
as even central extension. Analogously if V0 = {0}, then in the corresponding central 
extension we are adding odd elements, so we will refer to it as odd central extension.
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3. Central extensions of some solvable Leibniz superalgebras

One of the differences between nilpotent and solvable (super)algebras is that for solv-
able ones we do not have the guarantee of the existence of a non-null center. Let us note 
that the existence of a non-null center is crucial for considering central extensions. How-
ever, for a fixed nilradical if we consider all its solvable extensions, in general we obtain 
infinitely many (super)algebras but only few of them are centerless. In some cases of 
centerless (super)algebras are the solvable extension of maximal rank which are unique 
(up to isomorphism). For instance, the uniqueness of the solvable extension of maximal 
rank was shown for Lie and Leibniz algebras [2] and also holds for all the Lie and Leibniz 
superalgebras studied up to now [8,9]. In any case, there is a huge amount of solvable 
Leibniz superalgebras with non-null center and therefore it makes perfect sense the study 
of them in terms of theirs central extensions.

Theorem 3.1. Let L be a solvable Leibniz superalgebra with non-null center. Then L is a 
one-dimensional central extension of another solvable Leibniz superalgebra whose index 
of solvability is either equal to index(L) or equal to index(L) − 1.

Proof. Consider {e1, e2, . . . , en} a homogeneous basis of L. Since Center(L) �= {0} there 
is no loss of generality in supposing en ∈ Center(L). Let us define L as the quotient 
superalgebra by the ideal Ken, i.e. L := L�(Ken) and the set Δ as follows

Δ = {(i, j) / [ei, ej ] =
n∑

k=1

Ck
ijek with Cn

ij �= 0}

being [ , ] the bracket product of the Leibniz superalgebra L. Consider, then, the central 
2-cocycle over L defined by

θ(ei, ej) :=

⎧⎨⎩Cn
ijen, if (i, j) ∈ Δ

0, otherwise.

It can be checked that the condition for θ to be a Leibniz 2-cocycle derives from 
the Leibniz superidentity in L. Thus, L can be regarded as the central extension L =
Lθ + en.

Only rest to check that L is also a solvable Leibniz superalgebra whose index of 
solvability, index(L), is either equal to index(L) or equal to index(L) − 1. Since L is 
solvable, name by s its index of solvability, that is, Ds(L) = 0. With regard to L as vector 
space we have D0(L) = L = spanK{e1, . . . en−1} and dim(D0(L)) = dim(D0(L)) − 1. 
For the next, D1(L) = [D0(L), D0(L)] and since en ∈ L1 = [L, L], then dim(D1(L)) =
dim(D1(L)) − 1. However, from the second one for k ≥ 2 we have
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dim(Dk(L)) =

⎧⎨⎩ dim(Dk(L)), if en /∈ [Dk−1(L),Dk−1(L)]

dim(Dk(L)) − 1, if en ∈ [Dk−1(L),Dk−1(L)].

Therefore, clearly L is solvable and either index(L) = s or index(L) = s − 1. �
Next, we are going to illustrate the above Theorem in two important Leibniz superal-

gebras: one of them is Lie superalgebra, which is a particular case of Leibniz superalgebra, 
and the other one is composed by non-Lie Leibniz superalgebra.

Let us remark first, that studying solvable Lie/Leibniz superalgebras represents more 
difficulties than studying solvable Lie/Leibniz algebras, see [23]. Note that for a solvable 
Leibniz superalgebra L, the first ideal of the descending central sequence D1(L) can 
not be nilpotent, see [22]. However, in [8] the authors proved that under the condition of 
D1(L) being nilpotent, any solvable Lie and Leibniz superalgebra over the real or complex 
field can be obtained by means of outer non-nilpotent derivations of the nilradical in the 
same way as it occurs for Lie and Leibniz algebras.

Thus, in our next result we are going to consider all the solvable extensions with 
nilradical one of the most important nilpotent Lie superalgebras, i.e. K2,m, the only one 
Lie superalgebra with maximal nilindex (for more details see Theorem 4.17 of [14]). This 
Lie superalgebra can be expressed in an adapted basis {x0, x1, y1, . . . , ym} as follows

K2,m :
{

[x0, yi] = −[yi, x0] = yi+1, 1 ≤ i ≤ m− 1,
[yi, ym+1−i] = [ym+1−i, yi] = (−1)i+1x1, 1 ≤ i ≤ 1

2 (m + 1),

where the omitted products are equal to zero and m is an odd positive integer greater 
than 1.

Proposition 3.1. Let L be a solvable centerless non-nilpotent Lie superalgebra with nil-
radical isomorphic to K2,m. Then L can be expressed as a one-dimensional central 
extension: L = Lθ + x1, where Lθ is solvable non-nilpotent and index of solvability 
equal to 3 = index(L) − 1 and θ is a Lie central 2-cocycle non-coboundary.

Proof. Note that dim(K2,m) = 2 +m and K2,m has two generators. Then the dimension 
of solvable extensions equals either dim(K2,m) + 1 = 3 + m or dim(K2,m) + 2 = 4 + m. 
The latter corresponds with the maximal solvable case which is centerless. Therefore, we 
focus on (m + 3)-dimensional case. Thanks to Proposition 4.2 of [8] we conclude that 
if L is an (m + 3)-dimensional solvable Lie superalgebra over the real or complex field, 
with L2 nilpotent and nilradical isomorphic to K2,m, then there exists a basis, namely 
{x0, x1, z, y1, . . . , ym} with {x0, x1, z} as a basis of L0 and {y1, . . . , ym} as a basis of L1, 
in which L can be expressed by the only non-null bracket products that follow
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[x0, yi] = −[yi, x0] = yi+1, 1 ≤ i ≤ m− 1,
[yi, ym+1−i] = [ym+1−i, yi] = (−1)i+1x1, 1 ≤ i ≤ 1

2 (m + 1),
[z, x0] = −[x0, z] = α1x0 + β1x1

[z, x1] = −[x1, z] = ((m− 1)α1 + 2α2)x1

[z, y1] = −[y1, z] = α2y1 +
m−2∑
k=3

βky1+k, k odd

[z, yi] = −[yi, z] = ((i− 1)α1 + α2)yi +
m−2∑
k=3

βkyi+k, 2 ≤ i ≤ m, k odd

where either α1 �= 0 or α2 �= 0 and yi+k vanishes whenever i + k /∈ {1, . . . , m}. It can be 
checked that the only basis vector candidate to be in Center(L) is x1, moreover we have

Center(L) �= 0 ⇐⇒ (m− 1)α1 + 2α2 = 0.

Thus, there is no loss of generality in supposing for the case of α2 = (1−m)α1
2 and α1 �= 0. 

Note, on the other hand, that β1 can be always supposed to be 0. In fact, by the following 
change of basis

x′
0 = x0 + β1

α1
x1, x′

1 = x1, z′ = z, y′i = yi for all i, 1 ≤ i ≤ m− 1

one can assume that β1 = 0.
Let us consider L as the quotient superalgebra by the ideal Kx1, i.e. L := L�(Kx1)

and θ the central Lie 2-cocycle non-coboundary of L defined by the only non-null values 
that follow:

θ(yi, ym+1−i) = θ(ym+1−i, yi) = (−1)i+1x1, 1 ≤ i ≤ 1
2(m + 1).

Therefore, L can be regarded as the central extension L = Lθ + x1. Only rest to 
check the index of solvability of both L and L. A straightforward computation leads to 
index(L) = 4 and index(L) = 3 which concludes the proof of the statement. �

Next, we study an important class of solvable Leibniz non-Lie superalgebras. We 
consider then, Leibniz superalgebras with non-null center whose nilradical is isomorphic 
to the filiform non-Lie Leibniz superalgebra. Note that the maximal solvable extension, 
which is centerless, was determined in [9]. Let us recall that the aforementioned filiform 
non-Lie Leibniz superalgebra (denoted by LPn,m) can be expressed by the only non-null 
bracket products that follow:{

[xi, x1] = xi+1, 2 ≤ i ≤ n− 1
[y , x ] = y , 1 ≤ j ≤ m− 1
j 1 j+1
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Proposition 3.2. Let S1LP
n,m and S2LP

n,m be the complex solvable Leibniz superalgebras 
with nilradical LPn,m - described below with xi and ti even basis vectors and yj odd ones. 
Both S1LP

n,m and S2LP
n,m are central extensions of solvable Leibniz superalgebras with 

the same index of solvability as SiLP
n,m, which is 2

S1LP
n,m : S2LP

n,m :⎧⎪⎨⎪⎩
[xi, x1] = xi+1, 2 ≤ i ≤ n− 1;
[yj , x1] = yj+1, 1 ≤ j ≤ m− 1;
[xi, t2] = xi, 2 ≤ i ≤ n;

⎧⎪⎨⎪⎩
[xi, x1] = xi+1, 2 ≤ i ≤ n− 1;
[yj , x1] = yj+1, 1 ≤ j ≤ m− 1;
[yj , t3] = yj , 1 ≤ j ≤ m;

where the omitted products are zero.

Proof. For L = S1LP
n,m, since Center(L) = Kym, we consider L := L�(Kym) and 

θ as the central Leibniz 2-cocycle non-coboundary over L defined by the only non-null 
value θ(ym−1, x1) = ym. Thus, L = Lθ + ym. Only rest to check the index of solvability 
of both L and L. A straightforward computation leads to index(L) = index(L) = 2
which concludes the proof of the statement for S1LP

n,m. Analogously, it can be done for 
L = S2LP

n,m by considering L := L�(Kxn) and θ the central Leibniz 2-cocycle defined 
by θ(xn−1, x1) = xn. �

Next, on the other hand, we study the structure of the central extensions of maximal 
solvable Lie and Leibniz algebras which are, in particular, centerless. Let us recall that 
we have from [1] and [2] the explicit expression for the maximal solvable Lie and Leibniz 
algebras, respectively. Note that both algebras were obtained by adapting Mubarakz-
janov’s method [20]. Later in [10] the authors extended this expression for superalgebras 
N = N0 ⊕N1 such that [N1, N1] = 0.

For simplicity we start with Lie algebras, then from [1] we have the following structure 
the maximal solvable extension, R = t

−→⊕N , being N a nilpotent Lie algebra, under the 
condition dim(t) = dim(N/N2) = k. Note that k is exactly the number of generators of 
the nilradical N . Thus, with respect to the basis {z1, z2, . . . zk, x1, . . . , xk, . . . , xn}, being 
{x1, . . . , xn} a basis of N and {x1, . . . , xk} a set of generators, we have

R :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[xi, xj ] = −[xj , xi] =

n∑
t=k1+1

γt
i,jxt, 1 ≤ i < j ≤ n,

[xi, zi] = −[zi, xi] = xi, 1 ≤ i ≤ k,

[xi, zj ] = −[zj , xi] = αi,jxi, k + 1 ≤ i ≤ n, 1 ≤ j ≤ k,

where the omitted products are zero and αi,j is the number of entries of a generator 
basis element xj involved in forming non generator basis element xi.

If we call by ω a generic central 2-cocycle over R, we have the following two lemmas.
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Lemma 3.1. If [xi, xj ] = 0, then ω(xi, xj) = 0.

Proof. Since xi is either a generator, i.e. 1 ≤ i ≤ k, or it is generated, i.e. k + 1 ≤ i ≤ n, 
there is no loss of generality in supposing that exists l, 1 ≤ l ≤ k such that

[xi, zl] = −[zl, xi] = αi,lxi with αi,l �= 0.

Now, from the condition of 2-cocycle

ω(zl, [xi, xj ]) = ω([zl, xi], xj) − ω([zl, xj ], xi)

we get

0 = −(αi,l + αj,l)ω(xi, xj).

As αi,l is a positive integer by definition and αj,l is either zero or a positive integer, 
then we get ω(xi, xj) = 0. �
Lemma 3.2. If [xi, zj ] = 0, then ω(xi, zj) = 0.

Proof. Analogously as in the previous Lemma, there is no loss of generality in supposing 
that there exists l, 1 ≤ l ≤ k such that

[xi, zl] = −[zl, xi] = αi,lxi with αi,l �= 0.

Now, from the condition of 2-cocycle

ω(zl, [xi, zj ]) = ω([zl, xi], zj) − ω([zl, zj ], xi)

we get αi,lω(xi, zj) = 0 and then ω(xi, zj) = 0. �
Theorem 3.2. Let R = t

−→⊕N be the maximal solvable extension of a nilpotent Lie al-
gebra N , under the condition dim(t) = dim(N/N2) = k. Then, there exists a basis of 
R, {x1, . . . , xn, z1, z2, . . . , zk}, where {x1, . . . , xn} is a basis of N in which all the non-
split central extensions of R will be determined only by the 2-cocycles non-coboundaries 
ω(zi, zj).

Proof. On account of the explicit expression for R obtained in [1] together with 
Lemma 3.1 and Lemma 3.2, we have that the only central 2-cocycles non-coboundaries, 
i.e. elements in H2

0 (R; V ) = Z2
0 (R; V )/B2

0(R; V ) are exactly ω(zi, zj).
In fact, for all the remaining non-null central 2-cocycles, i.e. elements in Z2

0(R; V ), 
ω(xi, xj) and ω(xi, zj) it is verified that the corresponding bracket products [xi, xj ]
and [xi, zj ] are also non-null and therefore these 2-cocycles are also 2-coboundaries. i.e. 
elements in B2

0(R; V ). Therefore they do not determine any element in H2
0 (R; V ) =

Z2
0 (R; V )/B2

0(R; V ) which concludes the proof of the statement. �
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Remark 3.1. The above Theorem also holds for Lie superalgebras R such that [R1, R1] =
0. In fact, in [10] the authors extended the expression for maximal solvable extension of 
such type of superalgebras R = t

−→⊕N with dim(t) = dim(N/N2). In particular R admits 
a basis

{z1, z2, . . . zk1 , z
′
1, . . . , z

′
k2
, x1, . . . , xk1 , . . ., xn, y1, . . . , yk2 , . . ., ym}

where {x1, . . . , xk1 , y1, . . . , yk2} are generators of N being k = k1 + k2 and such that the 
table of multiplications of R has the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[xi, xj ] = −[xj , xi] =
n∑

t=k1+1

γt
i,jxt, 1 ≤ i < j ≤ n,

[xi, yj ] = −[yj , xi] =
m∑

t=k2+1

δti,jyt, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

[xi, zi] = −[zi, xi] = xi, 1 ≤ i ≤ k1,

[yj , z′j ] = −[z′j , yj ] = yj , 1 ≤ j ≤ k2,

[xi, zj ] = −[zj , xi] = αi,jxi, k1 + 1 ≤ i ≤ n, 1 ≤ j ≤ k1,

[xi, z
′
j ] = −[z′j , xi] = α′

i,jxi, k1 + 1 ≤ i ≤ n, 1 ≤ j ≤ k2,

[yi, zj ] = −[zj , yi] = βi,jyi, k2 + 1 ≤ i ≤ m, 1 ≤ j ≤ k1,

[yi, z′j ] = −[z′j , yi] = β′
i,jyi, k2 + 1 ≤ i ≤ m, 1 ≤ j ≤ k2,

where the omitted products are zero and

• αi,j is the number of entries of a generator basis element xj involved in forming non 
generator basis element xi,

• α′
i,j is the number of entries of a generator basis element yj involved in forming non 

generator basis element xi,
• βi,j is the number of entries of a generator basis element xj involved in forming non 

generator basis element yi,
• β′

i,j is the number of entries of a generator basis element yj involved in forming non 
generator basis element yi.

Analogously as it was obtained for Lie algebras we have that all the non-split central 
extensions of R will be determined only by the 2-cocycles non-coboundaries

ω(zi, zj), ω(zi, z′j), ω(z′i, z′j).

Remark 3.2. It should be noted that the above remark is also extendable for Leibniz 
algebras and superalgebras having been described the corresponding multiplication table 
in [1].



74 L.M. Camacho et al. / Linear Algebra and its Applications 656 (2023) 63–91
On the second part of the present paper let us consider first a very important class of 
nilpotent Leibniz superalgebra, i.e. the null-filiform Leibniz superalgebra [4,18], we call 
it N . We follow now two different procedures:

PROCEDURE 1. On the first one, we compute its central extensions extnil(N) (see 
Section 4) and then study the maximal solvable extension of the superalgebras obtained 
R(extnil(N)) (see Section 6).

PROCEDURE 2. However, on the second procedure, we consider first the maximal 
solvable superalgebra with nilradical N , R(N) and then study its central extensions 
extsol(R(N)) (see Section 5).

Finally, along Section 6 we compare the results obtained at the end of the two proce-
dures.

4. Classification of central extensions of null-filiform Leibniz superalgebras

Along this section, we focus on k-dimensional central extensions of null-filiform Leibniz 
superalgebra, NFn,m, which can be expressed by the law:

NFn,m :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[yi, y1] = xi, 1 ≤ i ≤ n,

[xi, y1] = 1
2yi+1, 1 ≤ i ≤ m− 1,

[yj , x1] = yj+1, 1 ≤ j ≤ m− 1,
[xi, x1] = xi+1, 1 ≤ i ≤ n− 1,

where {x1, x2, . . . , xn} and {y1, y2, . . . , ym} are bases of the even and odd parts respec-
tively. Moreover, in order to have a non-trivial odd part we have only two possibilities 
for m (m = n or m = n +1). For more details it can be consulted [4]. Firstly, we consider 
even and odd central extensions.

4.1. Even central extensions of null-filiform Leibniz superalgebras

Lemma 4.1. Let V = V0 ⊕ V1 be a vector superspace with V0 = span{v1, v2, . . . , vk} and 
V1 = {0}. Then:

(i) The even 2-cocycles Z2
0(NFn,m; V ) are given by the following expression

ω(xi, x1) = ai1v1 + ai2v2 + · · · + aikvk, 1 ≤ i ≤ n

ω(y1, y1) = b1v1 + b2v2 + · · · + bkvk

ω(yi, y1) = ai−1,1v1 + ai−1,2v2 + · · · + ai−1,kvk, 2 ≤ i ≤ m

with aij , bj ∈ C for 1 ≤ i ≤ n and 1 ≤ j ≤ k.
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(ii) The even 2-coboundaries B2
0(NFn,m; V ) are given by the following expression

ω(xi, x1) = ai1v1 + ai2v2 + · · · + aikvk, 1 ≤ i ≤ n− 1

ω(y1, y1) = b1v1 + b2v2 + · · · + bkvk

ω(yi, y1) = ai−1,1v1 + ai−1,2v2 + · · · + ai−1,kvk, 2 ≤ i ≤ n

with aij , bj ∈ C for 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ k.

(iii) The even 2-cocycles belonging to H2
0(NFn,m; V ) are given by the following expres-

sion

• If m = n,

ω(xn, x1) = an1v1 + an2v2 + · · · + ankvk, anj ∈ C, 1 ≤ j ≤ k.

• If m = n + 1,

ω(xn, x1) = an1v1 + an2v2 + · · · + ankvk,

ω(ym, y1) = an1v1 + an2v2 + · · · + ankvk, anj ∈ C, 1 ≤ j ≤ k.

Proof. The result derives from the definition of even 2-cocycles and coboundaries. �
Proposition 4.1. A k-dimensional even central extension of null-filiform Leibniz super-
algebra NFn,m is isomorphic to one of the following non-isomorphic superalgebras:

NFn,m ⊕Ck, NFn+1,n+1 ⊕Ck−1 (if m = n + 1), Mn+1,n ⊕Ck−1 (if m = n)

with Mn+1,n being the Leibniz superalgebra expressed by the law:

Mn+1,n :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[yi, y1] = xi, 1 ≤ i ≤ n,

[xi, y1] = 1
2yi+1, 1 ≤ i ≤ n− 1,

[yj , x1] = yj+1, 1 ≤ j ≤ n− 1,
[xi, x1] = xi+1, 1 ≤ i ≤ n,

where {x1, x2, . . . , xn, xn+1} and {y1, y2, . . . , yn} are bases of the even and odd parts, 
respectively.

Proof. By applying Lemma 4.1 we obtain the following multiplication table for the k-
dimensional even central extension of NFn,m:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[yi, y1] = xi, 1 ≤ i ≤ n,

[xi, y1] = 1
2yi+1, 1 ≤ i ≤ m− 1,

[yj , x1] = yj+1, 1 ≤ j ≤ m− 1,
[xi, x1] = xi+1, 1 ≤ i ≤ n− 1,
[xn, x1] = an1v1 + an2v2 + · · · + ankvk,

[ym, y1] = an1v1 + an2v2 + · · · + ankvk, if m = n + 1,

with anj ∈ C, 1 ≤ j ≤ k. Note that if anj = 0 for all j, 1 ≤ j ≤ k, then we clearly obtain 
the superalgebra NFn,m ⊕ Ck. On the contrary, i.e., if there exists anj �= 0 for some j, 
then after setting xn+1 = an1v1 + an2v2 + · · · + ankvk we get either NFn+1,n+1 ⊕Ck−1

(if m = n + 1) or Mn+1,n ⊕Ck−1 (if m = n). �
4.2. Odd central extensions of null-filiform Leibniz superalgebras

Lemma 4.2. Let V = V0 ⊕ V1 be a vector superspace with V0 = {0} and V1 =
span{v1, v2, . . . , vk}. Then:

(i) The even 2-cocycles Z2
0(NFn,m; V ) are given by the following expression

ω(xi, y1) = 1
2 (ai1v1 + ai2v2 + · · · + aikvk), 1 ≤ i ≤ n

ω(yi, x1) = ai1v1 + ai2v2 + · · · + aikvk, 1 ≤ i ≤ n

with aij ∈ C for 1 ≤ i ≤ n and 1 ≤ j ≤ k.

(ii) The even 2-coboundaries B2
0(NFn,m; V ) are given by the following expression

ω(xi, y1) = 1
2 (ai1v1 + ai2v2 + · · · + aikvk), 1 ≤ i ≤ m− 1

ω(yi, x1) = ai1v1 + ai2v2 + · · · + aikvk, 1 ≤ i ≤ m− 1

with aij ∈ C for 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ k.

(iii) The even 2-cocycles belonging to H2
0(NFn,m; V ) are given by the following expres-

sion

• If m = n + 1,

dim(H2
0 (NFn,m;V )) = 0

• If m = n,

ω(xn, y1) = 1
2 (an1v1 + an2v2 + · · · + ankvk),

ω(y , y ) = a v + a v + · · · + a v , a ∈ C, 1 ≤ j ≤ k
n 1 n1 1 n2 2 nk k nj
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Proof. The result derives from the definition of even 2-cocycles and coboundaries. �
Proposition 4.2. A k-dimensional odd central extension of null-filiform Leibniz superal-
gebra NFn,m is isomorphic to one of the following non-isomorphic superalgebras:

NFn,m ⊕Ck, NFn,n+1 ⊕Ck−1 (if m = n).

Proof. By applying Lemma 4.2 we obtain the following multiplication table for the k-
dimensional odd central extension of NFn,m:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[yi, y1] = xi, 1 ≤ i ≤ n,

[xi, y1] = 1
2yi+1, 1 ≤ i ≤ m− 1,

[yj , x1] = yj+1, 1 ≤ j ≤ m− 1,
[xi, x1] = xi+1, 1 ≤ i ≤ n− 1,
[xn, y1] = 1

2 (an1v1 + an2v2 + · · · + ankvk), if m = n,

[yn, x1] = an1v1 + an2v2 + · · · + ankvk, if m = n,

with anj ∈ C, 1 ≤ j ≤ k. Note that if anj = 0 for all j, 1 ≤ j ≤ k, then we clearly 
obtain the superalgebra NFn,m ⊕ Ck. On the contrary, i.e., if there exists anj �= 0 for 
some j, then after setting yn+1 = an1v1 + an2v2 + · · · + ankvk we get NFn,n+1 ⊕ Ck−1

which occurs if m = n. �
4.3. General central extensions of null-filiform Leibniz superalgebras

Throughout this section we deal with general central extensions, that is, which are 
neither even nor odd.

Lemma 4.3. Let V = V0 ⊕ V1 be a vector superspace with V0 = span{v1, v2, . . . , vk} and 
V1 = span{u1, u2, . . . , ul}. Then:

(i) The even 2-cocycles Z2
0(NFn,m; V ) are given by the following expression

ω(xi, x1) = ai1v1 + ai2v2 + · · · + aikvk, 1 ≤ i ≤ n

ω(y1, y1) = b1v1 + b2v2 + · · · + bkvk

ω(yi, y1) = ai−1,1v1 + ai−1,2v2 + · · · + ai−1,kvk, 2 ≤ i ≤ m

ω(xi, y1) = 1
2 (ci1u1 + ci2u2 + · · · + cilul), 1 ≤ i ≤ n

ω(yi, x1) = ci1u1 + ci2u2 + · · · + cilul, 1 ≤ i ≤ n

with aij , bj , cit ∈ C for 1 ≤ i ≤ n and 1 ≤ j ≤ k, 1 ≤ t ≤ l.



78 L.M. Camacho et al. / Linear Algebra and its Applications 656 (2023) 63–91
(ii) The even 2-coboundaries B2
0(NFn,m; V ) are given by the following expression

ω(xi, x1) = ai1v1 + ai2v2 + · · · + aikvk, 1 ≤ i ≤ n− 1

ω(y1, y1) = b1v1 + b2v2 + · · · + bkvk

ω(yi, y1) = ai−1,1v1 + ai−1,2v2 + · · · + ai−1,kvk, 2 ≤ i ≤ n

ω(xi, y1) = 1
2 (ci1u1 + ci2u2 + · · · + cilul), 1 ≤ i ≤ m− 1

ω(yi, x1) = ci1u1 + ci2u2 + · · · + cilul, 1 ≤ i ≤ m− 1

with aij , bj , cpt ∈ C for 1 ≤ i ≤ n, 1 ≤ p ≤ m − 1 and 1 ≤ j ≤ k, 1 ≤ t ≤ l.

(iii) The even 2-cocycles belonging to H2
0(NFn,m; V ) are given by the following expres-

sion

• If m = n,

ω(xn, x1) = an1v1 + an2v2 + · · · + ankvk, anj ∈ C, 1 ≤ j ≤ k

ω(xn, y1) = 1
2 (cn1u1 + cn2u2 + · · · + cnlul),

ω(yn, x1) = cn1u1 + cn2u2 + · · · + cnlul, cnt ∈ C, 1 ≤ t ≤ l.

• If m = n + 1,

ω(xn, x1) = an1v1 + an2v2 + · · · + ankvk,

ω(ym, y1) = an1v1 + an2v2 + · · · + ankvk, anj ∈ C, 1 ≤ j ≤ k.

Proof. The result derives from the definition of even 2-cocycles and coboundaries. �
Proposition 4.3. A (k + l)-dimensional general central extension (neither even nor odd) 
of null-filiform Leibniz superalgebra NFn,m is isomorphic to one of the following non-
isomorphic superalgebras:

NFn,m ⊕Ck+l and

• If m = n + 1: NFn+1,n+1 ⊕Ck+l−1

• If m = n: Mn+1,n ⊕Ck+l−1, NFn,n+1 ⊕Ck+l−1, Rn+1,n+1 ⊕Ck+l−2

with Mn+1,n as described in Proposition 4.1 and Rn+1,n+1 the Leibniz superalgebra ex-
pressed by the law:

Rn+1,n+1 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[yi, y1] = xi, 1 ≤ i ≤ n,

[xi, y1] = 1
2yi+1, 1 ≤ i ≤ n,

[yj , x1] = yj+1, 1 ≤ j ≤ n,

[x , x ] = x , 1 ≤ i ≤ n,
i 1 i+1
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where {x1, x2, . . . , xn, xn+1} and {y1, y2, . . . , yn+1} are bases of the even and odd parts 
respectively.

Proof. By applying Lemma 4.3 we obtain the following multiplication table for the (k+l)-
dimensional general central extension of NFn,m:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[yi, y1] = xi, 1 ≤ i ≤ n,

[xi, y1] = 1
2yi+1, 1 ≤ i ≤ m− 1,

[yj , x1] = yj+1, 1 ≤ j ≤ m− 1,
[xi, x1] = xi+1, 1 ≤ i ≤ n− 1,
[xn, x1] = an1v1 + an2v2 + · · · + ankvk,

[ym, y1] = an1v1 + an2v2 + · · · + ankvk, if m = n + 1
[xn, y1] = 1

2 (cn1u1 + cn2u2 + · · · + cnlul), if m = n

[yn, x1] = cn1u1 + cn2u2 + · · · + cnlul, if m = n

with anj , cnt ∈ C, 1 ≤ j ≤ k, 1 ≤ t ≤ l. Note that if anj = cnt = 0 for all j, t, 
1 ≤ j ≤ k, 1 ≤ t ≤ l, then we clearly obtain the superalgebra NFn,m ⊕Ck+l. Next, for 
studying the remaining possibilities we distinguish separately two cases depending on if 
m = n or m = n + 1.

Thus, if m = n and cnt = 0 for all t, then anj �= 0 for some j. In this case after setting 
xn+1 = an1v1 +an2v2 + · · ·+ankvk, we get Mn+1,n⊕Ck+l−1. On the contrary, if anj = 0
for all j, then cnt �= 0 for some t. After stabilizing yn+1 = cn1u1 + cn2u2 + · · · + cnlul, 
we get NFn,n+1 ⊕ Ck+l−1. Finally if anj �= 0 for some j and cnt �= 0 for some t, after 
setting xn+1 and yn+1 as before we obtain Rn+1,n+1 ⊕Ck+l−2.

For the case of m = n + 1, the only remaining possibility is anj �= 0 for some j. In 
this case after setting xn+1 = an1v1 + an2v2 + · · ·+ ankvk, we get NFn+1,n+1 ⊕Ck+l−1

which concludes the proof. �
Thus, we get the following general result.

Theorem 4.1.

(I) A k-dimensional even central extension of null-filiform Leibniz superalgebra NFn,m

is isomorphic to one of the following non-isomorphic superalgebras:

NFn,m ⊕Ck, NFn+1,n+1 ⊕Ck−1 (if m = n+ 1), Mn+1,n ⊕Ck−1 (if m = n).

(II) A k-dimensional odd central extension of null-filiform Leibniz superalgebra NFn,m

is isomorphic to one of the following non-isomorphic superalgebras:

NFn,m ⊕Ck, NFn,n+1 ⊕Ck−1 (if m = n).
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(III) A (k + l)-dimensional general central extension (neither even nor odd) of null-
filiform Leibniz superalgebra NFn,m is isomorphic to one of the following non-
isomorphic superalgebras:

NFn,m ⊕Ck+l and

• If m = n + 1: NFn+1,n+1 ⊕Ck+l−1

• If m = n: Mn+1,n ⊕Ck+l−1, NFn,n+1 ⊕Ck+l−1, Rn+1,n+1 ⊕Ck+l−2

with Mn+1,n and Rn+1,n+1 as described in Proposition 4.1 and Proposition 4.3, respec-
tively.

Remark 4.1. We will refer to the superalgebras obtained in Theorem 4.1 as
extnil(NFn,m).

5. Central extension of maximal solvable superalgebras with nilradical NFn,m

Throughout this section we obtain all central extensions of the maximal solvable 
superalgebra with nilradical NFn,m named R(NFn,m). This Leibniz superalgebra, 
which is unique, was obtained in [8] and can be expressed by the following multipli-
cation table

R(NFn,m) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[yi, y1] = xi, 1 ≤ i ≤ n, [yj , x1] = yj+1, 1 ≤ j ≤ m− 1,
[xi, y1] = 1

2yi+1, 1 ≤ i ≤ m− 1, [xi, x1] = xi+1, 1 ≤ i ≤ n− 1,
[xi, z] = 2ixi, 1 ≤ i ≤ n, [z, x1] = −2x1,

[yj , z] = (2j − 1)yj , 1 ≤ j ≤ m, [z, y1] = −y1,

where the omitted brackets are equal to zero, being {x1, . . . , xn, z} even basis vectors 
and {y1, . . . , ym} odd ones. We distinguish between even and odd central extensions.

5.1. Even central extensions of R(NFn,m)

Lemma 5.1. Let V = V0 ⊕ V1 be a vector superspace with V0 = span{v1, v2, . . . , vk} and 
V1 = {0}. Then

(i) The even 2-cocycles Z2
0(R(NFn,m); V ) are given by the following expression

ω(xi, x1) = ai1v1 + ai2v2 + · · · + aikvk, 1 ≤ i ≤ n− 1

ω(z, x1) = b1v1 + b2v2 + · · · + bkvk

ω(x1, z) = −b1v1 − b2v2 − · · · − bkvk

ω(xi+1, z) = (2i + 2)(ai1v1 + ai2v2 + · · · + aikvk), 1 ≤ i ≤ n− 1
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ω(z, z) = c1v1 + c2v2 + · · · + ckvk

ω(y1, y1) = 1
2(−b1v1 − b2v2 − · · · − bkvk)

ω(yi+1, y1) = ai,1v1 + ai,2v2 + · · · + ai,kvk, 1 ≤ i ≤ n− 1

with aij , bj , cj ∈ C for 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ k.

(ii) The even 2-coboundaries B2
0(R(NFn,m); V ) are given by the following expression

ω(xi, x1) = ai1v1 + ai2v2 + · · · + aikvk, 1 ≤ i ≤ n− 1

ω(z, x1) = b1v1 + b2v2 + · · · + bkvk

ω(x1, z) = −b1v1 − b2v2 − · · · − bkvk

ω(xi+1, z) = (2i + 2)(ai1v1 + ai2v2 + · · · + aikvk), 1 ≤ i ≤ n− 1

ω(y1, y1) = 1
2 (−b1v1 − b2v2 − · · · − bkvk)

ω(yi+1, y1) = ai,1v1 + ai,2v2 + · · · + ai,kvk, 1 ≤ i ≤ n− 1

with aij , bj ∈ C for 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ k.

(iii) The even 2-cocycles belonging to H2
0 (R(NFn,m); V ) are given by the following ex-

pression

ω(z, z) = c1v1 + c2v2 + · · · + ckvk, cj ∈ C, 1 ≤ j ≤ k.

Proof. Since R(NFn,m) contains, in particular, the bracket products of NFn,m we obtain 
first the following restrictions for the 2-cocycles

ω(xi, x1) = ai1v1 + ai2v2 + · · · + aikvk, 1 ≤ i ≤ n

ω(y1, y1) = b1v1 + b2v2 + · · · + bkvk

ω(yi, y1) = ai−1,1v1 + ai−1,2v2 + · · · + ai−1,kvk, 2 ≤ i ≤ m

Now, by applying the 2-cocycle condition, ω(x, [y, z]) = ω([x, y], z) − (−1)|y||z|ω([x, z], y)
for the ordered triple {x, y, z} we get the relationships given in the table:

2-cocycle condition Relationship

{xn, z, x1} ω(xn, x1) = 0
{xi, z, x1}, 1 ≤ i ≤ n − 1 (2i + 2)ω(xi, x1) = ω(xi+1, z), 1 ≤ i ≤ n − 1
{z, xi, x1}, 1 ≤ i ≤ n − 1 ω(z, xi+1) = 0, 1 ≤ i ≤ n − 1
{z, x1, z} ω(z, x1) = −ω(x1, z)
{z, y1, y1} ω(y1, y1) = − 1

2ω(z, x1)
{yn+1, z, y1}, if m = n + 1 ω(yn+1, y1) = 0, if m = n + 1
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Thus, we obtain the expression for the 2-cocycles of the statement. The rest derives 
from the definition of 2-coboundary and the expression of the superalgebra. �
Proposition 5.1. A k-dimensional even central extension of R(NFn,m), the maximal 
solvable Leibniz superalgebra with nilradical null-filiform, is isomorphic to one of the 
following non-isomorphic superalgebras:

R(NFn,m) ⊕Ck, ext1R(NFn,m) ⊕Ck−1

with ext1R(NFn,m) being the Leibniz superalgebra expressed by the law:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[yi, y1] = xi, 1 ≤ i ≤ n, [yj , x1] = yj+1, 1 ≤ j ≤ m− 1,
[xi, y1] = 1

2yi+1, 1 ≤ i ≤ m− 1, [xi, x1] = xi+1, 1 ≤ i ≤ n− 1,
[xi, z] = 2ixi, 1 ≤ i ≤ n, [z, x1] = −2x1,

[yj , z] = (2j − 1)yj , 1 ≤ j ≤ m, [z, y1] = −y1,

[z, z] = v

where {x1, x2, . . . , xn, z, v} and {y1, y2, . . . , ym} are bases of the even and odd parts re-
spectively.

Proof. By applying Lemma 5.1 we obtain as multiplication table for the k-dimensional 
even central extension of R(NFn,m) the one composed by the multiplication table of 
R(NFn,m) together with the product

[z, z] = c1v1 + c2v2 + · · · + ckvk

with cj ∈ C, 1 ≤ j ≤ k. Note that if cj = 0 for all j, 1 ≤ j ≤ k, then we clearly obtain 
the superalgebra R(NFn,m) ⊕ Ck. Contrariwise, i.e., if there exists cj �= 0 for some j, 
then after setting v := c1v1 + c2v2 + · · · + ckvk we get ext1R(NFn,m) ⊕Ck−1. �
Remark 5.1. We will refer to the superalgebras obtained in Proposition 5.1 as 
extsolR(NFn,m).

5.2. Odd central extensions of R(NFn,m)

Theorem 5.1. Any odd central extension of R(NFn,m) is a split Leibniz superalgebra.

Proof. Suppose we have V = V0 ⊕ V1 a vector superspace with V0 = {0} and 
V1 = span{v1, v2, . . . , vk}. First, from the bracket products of NFn,m we obtain first 
the following restrictions for the 2-cocycles

ω(xi, y1) = 1
2 (ai1v1 + ai2v2 + · · · + aikvk), 1 ≤ i ≤ n

ω(y , x ) = a v + a v + · · · + a v , 1 ≤ i ≤ n
i 1 i1 1 i2 2 ik k
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with aij ∈ C for 1 ≤ i ≤ n and 1 ≤ j ≤ k. Now, by applying the 2-cocycle condition for 
the ordered triple {x, y, z} we get the following relationships given in the table:

2-cocycle condition Relationship
{yj , z, x1}, 1 ≤ j ≤ m − 1 ω(yj+1, z) = (2j + 1)ω(yj , x1), 1 ≤ j ≤ m − 1
{z, y1, z} ω(z, y1) = −ω(y1, z)
{z, yj , z}, 2 ≤ j ≤ m ω(z, yj) = 0, 2 ≤ j ≤ m
{xi, y1, z}, 1 ≤ i ≤ m − 1 (2i + 1)ω(xi, y1) = 1

2ω(yi+1, z), 1 ≤ i ≤ m − 1
{xn, z, y1}, if m = n ω(xn, y1) = 0, if m = n
{yn, z, x1}, if m = n ω(yn, x1) = 0, if m = n

Thus, it is not difficult to check that all the 2-cocycles are also 2-coboundaries and 
then dim(H2

0 (NFn,m; V )) = 0, which proves the statement of the Theorem. �
Corollary 5.1. Any k-dimensional odd central extension of R(NFn,m) is isomorphic to

R(NFn,m) ⊕Ck

6. The maximal solvable Leibniz superalgebra with nilradical extnil(NFn,m)

Along this section we compute R(extnil(NFn,m)), i.e., the solvable Leibniz superal-
gebras with nilradical extnil(NFn,m). These superalgebras occur to be unique and they 
are the maximal solvable. We consider the central extensions of null-filiform Leibniz 
superalgebras non-split, that is Mn+1,n and Rn+1,n+1.

6.1. The maximal solvable Leibniz superalgebras with nilradical Mn+1,n

The procedure to obtain the maximal solvable superalgebra is described in [8].

Proposition 6.1. Any non-nilpotent outer derivation d of Mn+1,n is of the form

d(yj) = (2j − 1)a1yj +
n−j+1∑
i=3

aiyi+j−1, 1 ≤ j ≤ n,

d(xi) = 2ia1xi +
n−i+2∑
k=3

akxk+i−1, 1 ≤ j ≤ n− 1,

d(xn) = 2na1xn,

d(xn+1) = 2(n + 1)a1xn+1.

Proof. We compute all derivations. It is easy to check that the odd derivations are nilpo-
tent. Moreover, among the even basis derivations there is only non-vanishing parameter 
a1. Note also that we have eliminated the inner derivation Rx1 which corresponds exactly 
with the only non-null parameter a2 = 1. �

The next corollary gives the dimension of the solvable Leibniz superalgebra.
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Corollary 6.1. Any solvable non-nilpotent Leibniz superalgebra L over the complex field, 
with L2 nilpotent and nilradical a central extension of nulfiliform Leibniz superalgebra, 
that is, isomorphic to Mn+1,n, has dimension dim(Mn+1,n) + 1.

Proof. The dimension of the solvable Leibniz superalgebra is bounded by the maximal 
number of nil-independent derivations of the nilradical. �

We have the following result using the similar arguments that in Section 5 of the 
paper [8].

Theorem 6.1. Let L be an (2n +2)-dimensional solvable non-nilpotent Leibniz superalge-
bra over C with L2 nilpotent and nilradical isomorphic to Mn+1,n. Then L is isomorphic 
to the following superalgebra

R(Mn+1,n) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[yi, y1] = xi, 1 ≤ i ≤ n,

[xi, y1] = 1
2yi+1, 1 ≤ i ≤ n− 1,

[yj , x1] = yj+1, 1 ≤ j ≤ n− 1,
[xi, x1] = xi+1, 1 ≤ i ≤ n,

[xi, z] = 2ixi, 1 ≤ i ≤ n + 1,
[yi, z] = (2i− 1)yi, 1 ≤ i ≤ n,

[z, x1] = −2x1,

[z, y1] = −y1.

Proof. In this theorem we use the same techniques as in the Section 5 of the paper 
[8]. �
6.2. The maximal solvable Leibniz superalgebras with nilradical Rn+1,n+1

The procedure to obtain the maximal solvable superalgebra is described in [8] and it 
is similar as the above subsection.

Proposition 6.2. Any non-nilpotent outer derivation d of Rn+1,n+1 is of the form

d(yj) = (2j − 1)a1yj +
n−j+2∑
i=3

aiyi+j−1, 1 ≤ j ≤ n,

d(xi) = 2ia1xi +
n−i+2∑
k=3

akxk+i−1, 1 ≤ j ≤ n− 1,

d(xn) = 2na1xn,

d(xn+1) = 2(n + 1)a1xn+1.

Proof. We compute all derivations. It is easy to check that the odd derivations are nilpo-
tent. Moreover, among the even basis derivations there is only non-vanishing parameter 



L.M. Camacho et al. / Linear Algebra and its Applications 656 (2023) 63–91 85
a1. Note also that we have eliminated the inner derivation Rx1 which corresponds exactly 
with the only non-null parameter a2 = 1. �

The next corollary gives the dimension of the solvable Leibniz superalgebra.

Corollary 6.2. Any complex solvable non-nilpotent Leibniz superalgebra L such that L2

nilpotent and its nilradical is a central extension of nulfiliform Leibniz superalgebra, that 
is, isomorphic to Rn+1,n+1, has dimension dim(Rn+1,n+1) + 1.

Proof. The dimension of the solvable Leibniz superalgebra is bounded by the maximal 
number of nil-independent derivations of the nilradical. �

We have the following result using the similar arguments that in Section 5 of the 
paper [8].

Theorem 6.2. Let L be a complex (2n + 3)-dimensional solvable non-nilpotent Leibniz 
superalgebra such that L2 nilpotent and its nilradical is isomorphic to Rn+1,n+1. Then L
is isomorphic to the following superalgebra:

RRn+1,n :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[yi, y1] = xi, 1 ≤ i ≤ n,

[xi, y1] = 1
2yi+1, 1 ≤ i ≤ n,

[yj , x1] = yj+1, 1 ≤ j ≤ n,

[xi, x1] = xi+1, 1 ≤ i ≤ n,

[xi, z] = 2ixi, 1 ≤ i ≤ n + 1,
[yi, z] = (2i− 1)yi, 1 ≤ i ≤ n + 1,
[z, x1] = −2x1,

[z, y1] = −y1.

Proof. In this theorem we use the same techniques as in the Section 5 of the paper 
[8]. �
6.3. Comparison of extsolR(NFn,m) with R(extnil(NFn,m))

All the Leibniz superalgebras R(extnil(NFn,m)) obtained along this section occur to 
be unique and centerless and that fact does not correspond with any central extensions 
extsol(R(N)).

We repeat now the two different procedures but for a very important class of filiform 
Lie superalgebras [6], i.e. the model filiform Lie superalgebra N = Ln,m. Thus:

PROCEDURE 1. On one hand, first obtain the one-dimensional central extensions of 
N , (denote it by extnil(N), see Section 7).

PROCEDURE 2. On the other hand, consider maximal solvable Lie superalgebra, 
R(N), with nilradical N . And then describe its central extensions, extsol(R(N)). We 
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compare extsol(R(N)) and R(extnil(N)). On that occasion we do not compute explicitly 
R(extnil(N)), we do the comparison in a more theoretical way.

7. One-dimensional central extensions of model filiform Lie superalgebras

In this section we deal with the description of the one-dimensional central extensions 
of the model filiform Lie superalgebra, Ln,m, which is defined by the only non-zero 
products

Ln,m :
{

[x1, xi] = −[xi, x1] = xi+1, 2 ≤ i ≤ n− 1
[x1, yj ] = −[yj , x1] = yj+1, 1 ≤ j ≤ m− 1

where {x1, . . . , xn} is a basis of (Ln,m)0̄ and {y1, . . . , ym} is a basis of (Ln,m)1̄. Note that 
Ln,m is the most important filiform Lie superalgebra, in complete analogy to Lie algebras, 
since all the other filiform Lie superalgebras can be obtained from it by deformations 
[6]. In particular, we will describe the one-dimensional central extensions by means of 
Lie 2-cocycles.

Recall that Lie 2-cocycles and Lie superalgebras are particular cases of Leibniz 2-
cocycles and Leibniz superalgebras, respectively. Due to the difficulty of the problem we 
consider only one-dimensional central extensions and therefore, we will have either even 
central extensions or odd central extensions.

Proposition 7.1. Any one-dimensional even Lie central extension of the model filiform 
Lie superalgebra Ln,m can be expressed with respect to the basis {x1, . . . , xn, v, y1, . . . , ym}
by the following multiplication table, where the omitted products are equal to zero:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[x1, xi] = −[xi, x1] = xi+1, 2 ≤ i ≤ n− 1
[x1, yj ] = −[yj , x1] = yj+1, 1 ≤ j ≤ m− 1
[x1, xn] = −[xn, x1] = a1nv,

[xi, xj ] = −[xj , xi] = (−1)ia2,i+j−2v, 2 ≤ i < j ≤ n, i + j odd, 5 ≤ i + j ≤ n + 2
[yi, yj ] = [yj , yi] = (−1)i+1b1,i+j−1v, 1 ≤ i ≤ j ≤ m, i + j even, 2 ≤ i + j ≤ m + 1

being (a1n, a23, a25, . . . , b11, b13, . . . ) ∈ C1+�n−1
2 �+�m+1

2 �.

Proof. From the definition of even Lie 2-cocycles and coboundaries and on account 
of V = V0 ⊕ V1 =< v > ⊕{0}, we obtain that the even Lie 2-cocycles belonging to 
Z2

0 (Ln,m; V ) are given by the following expression

ω(x1, xi) = −ω(xi, x1) = a1iv, 2 ≤ i ≤ n

ω(xi, xj) = −ω(xj , xi) = (−1)ia2,i+j−2v, 2 ≤ i < j ≤ n, i + j odd, 5 ≤ i + j ≤ n + 2
ω(yi, yj) = ω(yj , yi) = (−1)i+1b1,i+j−1v, 1 ≤ i ≤ j ≤ m, i + j even, 2 ≤ i + j ≤ m + 1
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being (a12, . . . , a1n, a23, a25, . . . , b11, b13, . . . ) ∈ Cn+�n−1
2 �+�m+1

2 �. Likewise, we obtain 
that the even Lie 2-coboundaries B2

0(Ln,m; V ) are given by the following expression

ω(x1, xi) = −ω(xi, x1) = a1iv, 2 ≤ i ≤ n− 1

being (a12, . . . , a1,n−1) ∈ Cn−2. Therefore, the even Lie 2-cocycles belonging to 
H2

0 (Ln,m; V ) are given by

ω(x1, xn) = −ω(xn, x1) = a1nv,

ω(xi, xj) = −ω(xj , xi) = (−1)ia2,i+j−2v, 2 ≤ i < j ≤ n, i + j odd, 5 ≤ i + j ≤ n + 2
ω(yi, yj) = ω(yj , yi) = (−1)i+1b1,i+j−1v, 1 ≤ i ≤ j ≤ m, i + j even, 2 ≤ i + j ≤ m + 1

being (a1n, a23, a25, . . . , b11, b13, . . . ) ∈ C1+�n−1
2 �+�m+1

2 �, which proves the result of the 
statement. �
Proposition 7.2. Any one-dimensional odd Lie central extension of the model filiform Lie 
superalgebra Ln,m can be expressed with respect to the basis {x1, . . . , xn, y1, . . . , ym, v} by 
the following multiplication table, where the omitted products are equal to zero:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[x1, xi] = −[xi, x1] = xi+1, 2 ≤ i ≤ n− 1
[x1, yj ] = −[yj , x1] = yj+1, 1 ≤ j ≤ m− 1
[x1, ym] = −[ym, x1] = c1mv,

[x2, yj ] = −[yj , x2] = c2jv, 1 ≤ j ≤ m

[xi, yj ] = −[yj , xi] = (−1)ic2,i+j−2v, 3 ≤ i ≤ n, 4 ≤ i + j ≤ m + 2

being (c1m, c21, . . . , c2m) ∈ Cm+1.

Proof. From the definition of even Lie 2-cocycles and coboundaries and on account of 
V = V0 ⊕ V1 = {0}⊕ < v >, we obtain that the even Lie 2-cocycles belonging to 
Z2

0 (Ln,m; V ) are given by the following expression

ω(x1, yj) = −ω(yj , x1) = c1jv, 1 ≤ j ≤ m

ω(x2, yj) = −ω(yj , x2) = c2jv, 1 ≤ j ≤ m

ω(xi, yj) = −ω(yj , xi) = (−1)ic2,i+j−2v, 3 ≤ i ≤ n, 4 ≤ i + j ≤ m + 2

with cij ∈ C for all 1 ≤ i ≤ 2, 1 ≤ j ≤ m. Likewise, we obtain that the even Lie 
2-coboundaries B2

0(Ln,m; V ) are given by the following expression

ω(x1, yj) = −ω(yj , x1) = c1jv, 1 ≤ j ≤ m− 1

with c1j ∈ C for all 1 ≤ j ≤ m −1. Thus, we get the following expression for H2
0 (Ln,m; V )
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ω(x1, ym) = −ω(ym, x1) = c1mv,

ω(x2, yj) = −ω(yj , x2) = c2jv, 1 ≤ j ≤ m

ω(xi, yj) = −ω(yj , xi) = (−1)ic2,i+j−2v, 3 ≤ i ≤ n, 4 ≤ i + j ≤ m + 2

being (c1m, c21, . . . , c2m) ∈ Cm+1, which proves the result of the statement. �
Remark 7.1. All the one-dimensional central extensions of Ln,m we will denote by 
extnil(Ln,m).

8. One-dimensional central extensions of maximal solvable Lie superalgebra with 
model filiform nilradical

Along this section we obtain all one-dimensional central extensions of the maximal 
solvable Lie superalgebra with nilradical Ln,m named R(Ln,m). This Lie superalgebra, 
which is unique, was obtained in [8] and can be expressed by the following multiplication 
table

R(Ln,m) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x1, xi] = −[xi, x1] = xi+1, 2 ≤ i ≤ n− 1;
[x1, yj ] = −[yj , x1] = yj+1, 1 ≤ j ≤ m− 1;
[z1, x1] = −[x1, z1] = x1,

[z1, xi] = −[xi, z] = (i− 2)xi, 3 ≤ i ≤ n;
[z1, yj ] = −[yj , z1] = (j − 1)yj , 2 ≤ j ≤ m;
[z2, xi] = −[xi, z2] = xi, 2 ≤ i ≤ n;
[z3, yj ] = −[yj , z3] = yj , 1 ≤ j ≤ m;

where the omitted brackets are equal to zero, being {x1, . . . , xn, z1, z2, z3} even basis vec-
tors and {y1, . . . , ym} odd ones. We distinguish between even and odd central extensions.

Proposition 8.1. Any one-dimensional even Lie central extension of the maximal solvable 
Lie superalgebra R(Ln,m) can be expressed with respect to the basis {x1, . . . , xn, z1, z2, z3,

v, y1, . . . , ym} by the following multiplication table, where the omitted products are equal 
to zero: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x1, xi] = −[xi, x1] = xi+1, 2 ≤ i ≤ n− 1;
[x1, yj ] = −[yj , x1] = yj+1, 1 ≤ j ≤ m− 1;
[z1, x1] = −[x1, z1] = x1,

[z1, xi] = −[xi, z] = (i− 2)xi, 3 ≤ i ≤ n;
[z1, yj ] = −[yj , z1] = (j − 1)yj , 2 ≤ j ≤ m;
[z2, xi] = −[xi, z2] = xi, 2 ≤ i ≤ n;
[z3, yj ] = −[yj , z3] = yj , 1 ≤ j ≤ m;
[z , z ] = −[z , z ] = c v, 1 ≤ i < j ≤ 3;
i j j i ij
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with (c12, c13, c23) ∈ C3.

Proof. From the definition of even Lie 2-cocycles and coboundaries and on account 
of V = V0 ⊕ V1 =< v > ⊕{0}, we obtain that the even Lie 2-cocycles belonging to 
Z2

0 (R(Ln,m); V ) are given by the following expression

ω(x1, xi) = −ω(xi, x1) = a1iv, 2 ≤ i ≤ n− 1
ω(z1, x1) = −ω(x1, z1) = b11v,

ω(z1, xi) = −ω(xi, z) = (i− 2)a1,i−1v, 3 ≤ i ≤ n;
ω(z2, x2) = −ω(x2, z2) = b22v, 3 ≤ i ≤ n;
ω(z2, xi) = −ω(xi, z2) = a1,i−1v, 3 ≤ i ≤ n;
ω(zi, zj) = −ω(zj , zi) = cijv, 1 ≤ i < j ≤ 3

Likewise, we obtain that the even Lie 2-coboundaries B2
0(R(Ln,m); V ) are given by the 

following expression

ω(x1, xi) = −ω(xi, x1) = a1iv, 2 ≤ i ≤ n− 1
ω(z1, x1) = −ω(x1, z1) = b11v,

ω(z1, xi) = −ω(xi, z) = (i− 2)a1,i−1v, 3 ≤ i ≤ n;
ω(z2, x2) = −ω(x2, z2) = b22v, 3 ≤ i ≤ n;
ω(z2, xi) = −ω(xi, z2) = a1,i−1v, 3 ≤ i ≤ n.

Therefore, the even Lie 2-cocycles belonging to H2
0 (R(Ln,m); V ) are given by

ω(zi, zj) = −ω(zj , zi) = cijv, 1 ≤ i < j ≤ 3

which proves the result of the statement. �
A straightforward computation leads to the following result:

Proposition 8.2. Any one-dimensional odd Lie central extension of the maximal solvable 
Lie superalgebra R(Ln,m) is isomorphic to R(Ln,m) ⊕C.

Remark 8.1. We will call all the one-dimensional central extensions of R(Ln,m) by 
extsol(R(Ln,m)).

8.1. Comparison of extsolR(Ln,m) with R(extnil(Ln,m)) and Conjecture

In [8] the authors proved that under the condition of r2 being nilpotent, any solv-
able Lie superalgebra over the real or complex field can be obtained by means of outer 
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non-nilpotent derivations of the nilradical in the same way as it occurs for Lie alge-
bras. Moreover, these outer non-nilpotent derivations are even superderivation, see [10]. 
Therefore, for any solvable Lie superalgebra r with r2 nilpotent, we have a decomposition 
into semidirect sum: r = t

−→⊕n such that

[t, n] ⊂ n, [n, n] ⊂ n, [t, t] ⊂ n.

Therefore, for obtaining the maximal solvable Lie superalgebra with nilradical each 
family of extnil(Ln,m), i.e. R(extnil(Ln,m)), we consider for each family of extnil(Ln,m) 
its maximal torus composed by even derivations, t = Span{T1, T2, T3}. Note that the 
dimension of the torus is the same as the number of generator basis vectors of the 
family of superalgebras, which is always three. Then t is Abelian (i.e., [t, t] = 0) and 
the operators adT (T ∈ t) are diagonal. By calling ti the new even basis vectors which 
derive from the action of the maximal torus we obtain for R(extnil(Ln,m)) the basis 
{x1, . . . , xn, t1, t2, t3, v, y1, . . . , ym}. Thus, R(extnil(Ln,m)) is non-split verifying [ti, tj ] =
0 for all i, j and this does not correspond with any non-split Lie superalgebra obtained 
in extsol(R(Ln,m)).

Analyzing the results obtained throughout the paper one can suppose the following 
conjecture:

Conjecture. Let R(N) = t
−→⊕N be the maximal solvable extension of a nilpotent Leibniz 

superalgebra N , under the condition dim(t) = dim(N/N2) = k. Then, there exists a 
basis of R(N), {x1, . . . , xn, t1, t2, . . . , tk}, where {x1, . . . , xn} is a basis of N in which 
all the non-split central extensions of R(N) will be determined only by the 2-cocycles 
non-coboundaries ω(ti, tj).
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