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Model transformations are the key technique in Model-Driven Engineering (MDE) to manipulate and con-

struct models. As a consequence, the correctness of software systems built with MDE approaches relies mainly

on the correctness of model transformations, and thus, detecting and locating bugs in model transformations

have been popular research topics in recent years. This surge of work has led to a vast literature on model

transformation testing and debugging, which makes it challenging to gain a comprehensive view of the cur-

rent state-of-the-art. This is an obstacle for newcomers to this topic and MDE practitioners to apply these

approaches. This article presents a survey on testing and debugging model transformations based on the

analysis of 140 papers on the topics. We explore the trends, advances, and evolution over the years, bringing

together previously disparate streams of work and providing a comprehensive view of these thriving areas.

In addition, we present a conceptual framework to understand and categorize the different proposals. Finally,

we identify several open research challenges and propose specific action points for the model transformation

community.
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1 INTRODUCTION

In Model-Driven Engineering (MDE) [174], models are the central artifacts to represent complex
systems from various viewpoints and at multiple levels of abstraction using appropriate modeling
formalisms. Model transformations (MTs) are the cornerstone of MDE [189, 207, 225], as they
provide the essential mechanisms for manipulating and constructing models. They are considered
an excellent compromise between strong theoretical foundations and applicability to real-world
problems [207, 225]. Existing MT languages often provide dedicated language concepts to realize
MT rules. Each rule matches input elements from the source model and deals with either the
construction of part of the new target model—in the case of out-place MTs—or the evolution, i.e.,
modification, of the source model—in the case of in-place MTs [189].

The correctness of software systems built with MDE approaches largely depends on the correct-
ness of the operations executed using MTs. Therefore, it is critical in MDE to test and debug MTs
as it is done with source code in classical software engineering, but it has to be emphasized that
MTs also come with their own challenges in this respect [167]. MT testing aims to reveal failures
by executing the MT under test with a set of input models and checking whether it produces the
expected output; if it does not, then a bug has been detected. Once one or more unexpected outputs
are observed (i.e., bugs), MT debugging focuses on isolating the bug causing it and fixing it.

Selim et al. [244] reviewed the state-of-the-art in MT testing in 2012. They organized the papers
according to the phase of the testing process they belong to. They considered 29 works in their
study and concluded that more research is needed.

This article presents a comprehensive survey on testing and debugging MTs, providing a uni-
fied view and a classification of the vast literature on the topics. Testing and debugging are closely
related activities, as explained above, and thus we decided to cover both to make our survey more
thorough and helpful for readers—a similar approach is followed in other surveys, such as on
compiler testing [183]. Overall, the survey is based on the analysis of 140 papers published be-
tween 2004 and 2020. This represents a largely updated survey with respect to the survey by Selim
et al. [244] from 2012, since our study includes more than 100 additional papers. As a part of our
survey, we first propose a conceptual framework for classifying current and future contributions
on MT testing and debugging. Then, we report the trends, advances, and evolution of MT testing
and debugging over the years and some of the open research challenges and specific action points
to be addressed in the future. This article also aims to serve as a reference point for future contri-
butions, and thus, special emphasis is put on how the approaches are evaluated, pointing readers
to the most popular case studies and tools.

The remainder of this article is structured as follows: Section 2 briefly describes some concepts
related to MDE, presents an MT excerpt serving as a running example throughout the article,
and discusses previous surveys related to MT testing and debugging. Then, Section 3 presents
our conceptual framework for MT testing and debugging, while Section 4 formulates our research
questions and describes the review methodology followed in our survey. The state-of-the-art in MT
testing and debugging is described in Sections 5, 6, and 7, and the research challenges identified
are described in Section 8. Section 9 concludes the article, and the electronic appendix presents
some interesting statistics about the selected papers.

2 BACKGROUND

MDE [174, 190] advocates models as first-class entities throughout the system life-cycle. It is meant
to increase productivity by maximizing automation and interoperability, simplifying the design
process, and promoting communication between stakeholders. The use of MDE principles and
techniques is growing, being well established, for instance, in the development of embedded and
production systems. This section introduces MDE’s main building blocks, namely, (meta)models
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Fig. 1. Model transformation pattern (taken from [189]).

and MTs. It also presents a running example used throughout the article and describes the existing
surveys related to MT testing and debugging.

2.1 Models and Metamodels

A model is an abstraction of a system used to replace the system under study for a particular pur-
pose [222, 226]. This abstraction process allows to better manage, understand, study, and analyze
models in contrast to the full system under study. Of course, this also helps for communication and
discussion means. Thus, models are frequently used to share and communicate a common vision
among technical and non-technical stakeholders [190].

In MDE, it is common that a model must conform to its metamodel. A metamodel defines the
structure for a family of models [229]. Technically, metamodels are just a special type of mod-
els. Thus, they have to conform again to another model—the so-called meta-metamodel. Thus,
metamodels are written in the language defined by their meta-metamodel. A metamodel specifies
the concepts of a language, the relationships between these concepts, the structural rules that re-
strict the possible elements in the valid models, and those combinations between elements [174].
Metamodels are typically expressed with class diagrams, and they can be extended with textual
expressions that add further constraints, typically expressed using languages like OCL [181, 221].

2.2 Model Transformations

Model transformations play a key role in MDE [174, 207, 246]. They allow querying, synthesiz-
ing, and transforming models into other models or code. Thus, they are essential for building
systems with MDE approaches. A model transformation (MT) can be considered as a program
executed by a dedicated transformation engine that takes one or more source models and produces
one or more target models [174, 246], as illustrated by the model transformation pattern [189] in
Figure 1. As MTs are specified on the metamodel level, they are reusable for all models of the
source metamodel or at least for the subset of models that qualify for a transformation in case
the transformation has additional pre-conditions. OCL often plays an important role in MTs as
expression language [180].

Depending on the nature of the source and target artifacts, there are model-to-text (M2T), text-

to-model (T2M), and model-to-model (M2M) transformations [174]. M2T transformations are
typically used to implement code and documentation generators, model serialization, and model
visualization [237]. Among the frameworks and languages to define M2T transformations, we
can find Acceleo [170], EGL [238], MOFScript [233], and Xtend [172]. T2M transformations are
typically used for reverse engineering [134], e.g., transforming legacy applications to models for
model-driven software modernization. MoDisco [175] is currently the most popular tool for defin-
ing this kind of transformation. Most research on MTs is devoted to M2M transformations. There
are different classifications for M2M transformations [189, 230], such as out-place and in-place.
A transformation is considered out-place when it creates new models from scratch, e.g., trans-
forming a class diagram into a relational model [224]. We say a transformation is in-place if it
rewrites the source models to produce the target models, as it is, for instance, the case in model
refactoring. There is currently a plethora of frameworks and languages available to define M2M
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Fig. 2. Class metamodel (left) and Relational metamodel (right) of the Class2Relational MT (from Reference
[142]).

transformations, such as AGG [249], ATL [216], AToM3 [191], e-Motions [236], Henshin [165],
JTL [185], Kermeta [214], Maude [187], MOMoT [196, 197], QVT [203], and VIATRA [188].

Running example. Listing 1 displays an excerpt of the Class2Relational MT in the ATL lan-
guage available on the ATL Zoo [142], and its source and target metamodels are displayed in
Figure 2. The Class2Relational MT is a simple yet complete scenario traditionally used as a case
study to present new approaches or languages for the development of MTs. It was proposed as
the challenge of the Model Transformations in Practice workshop of 2005 [178] and has been used
as a benchmark for MT approaches ever since. According to rule 1, every object of type DataType
in the source model (line 5) is transformed to an object of type Type in the target model (line 6)
with the same name (line 7). As for the second rule, it receives as input objects of type Attribute
whose type reference points to an object of type DataType and whose multiValued attribute is set
to false (line 10), and it creates an object of type Column with the same name (line 12) and whose
type reference points to the Type object created from the attribute’s type (line 13).

Listing 1. Excerpt of Class2Relational MT [142].

1 module Class2Relation ;
2 create OUT : RelationalMM from IN :

ClassMM ;
3
4 rule DataType2Type{ -- Rule 1
5 from dt : Class!DataType
6 to t : Relational !Type(
7 name <-dt.name)
8 }

9 rule SingleValuedDataTypeAttribute2Column {
-- Rule 2

10 from at : Class!Attribute (at.type.
oclIsKindOf(Class!DataType) and not
at.multiValued)

11 to co : Relational !Column(
12 name <-at.name ,
13 type <-at.type)
14 }

An example of a source model and the target model created by this MT excerpt is shown in Figure 3.
Note that we have included a so-called trace model in the figure. MT engines typically create a trace
model and populate it during MT execution. A trace model basically registers which elements in the
target model are created from which elements in the source model and by which rule. Trace models
are specifically useful in some testing and debugging approaches, as we shall see throughout the
paper. Looking at the figure, please note that object c of type Class (in the left-most part of the
figure) has not been transformed, as we see no trace pointing to this object. The reason is that
there is no rule in our MT excerpt that takes objects of type Class as input in our MT excerpt.

2.3 Previous Surveys on MT Testing and Debugging

To the best of our knowledge, there is no paper presenting a study of the literature concerning
MT debugging. Regarding MT testing, Selim et al. [244] published a paper in 2012 reviewing the
state-of-the-art. They organized 29 primary studies according to the phases of the testing pro-
cess and concluded that more research into all testing phases would be useful. These phases are
also identified by Baudry et al. [168], and they are (i) model generation, (ii) oracle function, and
(iii) test adequacy criteria. These are the MT testing phases we consider in our survey, too.
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Fig. 3. Execution example of the Class2Relational MT excerpt.

Fig. 4. Model transformation pattern (from [189]) augmented for testing and debugging.

Although the scope is different from our survey (cf. Section 4.2), it is worth mentioning surveys
on MT verification. In 2013, Calegari and Szasz [182] performed a survey on the state-of-the-art
of MT verification. Their survey analyzes three components in MT verification: the MT itself, the
properties of interest, and the verification techniques used to establish the properties. Later, in
2015, Amrani et al. [164] explored the question of the formal verification of MT properties through
a three-dimensional approach that dealt with the same three components proposed in Reference
[182]; and Rahim and Whittle [235] published a survey of approaches for verifying MTs. They pre-
sented a coarse-grained classification based on the technical details of the approaches and a finer-
grained classification according to criteria such as MT languages supported or properties verified.

This article differs from the surveys about MT verification [164, 182, 235] in its scope: testing
and debugging. Also, our survey largely updates and complements the work of Selim et al. [244]
by also considering debugging and reviewing about 100 additional papers, most of them published
from 2012 onward.

3 TESTING AND DEBUGGING MODEL TRANSFORMATIONS

To survey the state-of-the-art in testing and debugging of MTs, we propose the conceptual frame-
work displayed in Figure 4, whose goal is to provide a way to understand the different proposals
and how they are connected, as well as to categorize current and future contributions. As illus-
trated, we have used the original model transformation pattern presented in Figure 1, and we have
augmented it to include testing and debugging concepts, highlighted with grey color in the figure.
The parts under study are described below and they are exemplified with our running example:

• Transformation Definition (SUT). This is the actual MT, typically implemented with MT lan-
guages. In the context of our survey, we will refer to this as the SUT (System Under Test).
An example is the MT implementation of our running example (cf. Listing 1).
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• Model Transformation Testing. This refers to the execution of the MT with the aim of reveal-
ing failures (i.e., unexpected outputs). Testing approaches are typically classified according
to the testing phase to which they contribute [168, 244], namely:
– Model Generation. This is referred to as the generation of so-called test models, which are

input models that conform to the input metamodels of the transformation. A test model
in our running example is shown on the left-hand side of Figure 3. Results of our survey
on model generation are provided in Section 5.1.

– Oracle Function. In software testing, a test oracle determines if the result of a test case is
correct [258] by obtaining Oracle Outputs. A test case includes source and target models.
There are different ways to construct a test oracle for a model transformation. It typi-
cally depends on the available artifacts. For instance, if the expected model is available, a
straightforward oracle compares the obtained target model with the expected model. In
our running example, the target model obtained from the model on the left-hand side of
Figure 3 is shown on the right-hand side of the same figure. If we do not have the expected
model, then an alternative oracle defines properties that the obtained model must satisfy.
For instance, in our running example, we can check that if the source model contains ob-
jects of type DataType, the target model must contain objects of type Type with the same
name. Results of our survey on oracle function are provided in Section 5.2.

– Test Adequacy Criteria. Test adequacy criteria measure the quality of a test suite with re-
spect to one or more objectives. They help define testing goals to be achieved as a result
of software testing, e.g., covering a certain percentage of code [168]. In the context of
MT testing, test adequacy criteria can be based, for example, on how well the input meta-
model is covered or on how effective the oracle functions are on identifying synthetic
bugs (so-called mutants) introduced in the MT under test. For example, to cover all the
transformation rules of our running example, the union of all test models should contain
at least one instance of each non-abstract class in the source metamodel (left-hand side of
Figure 2). Results of our survey on test adequacy criteria are provided in Section 5.3.

• Debugging. This consists in locating and fixing bugs in the model transformation specifi-
cation, typically starting from the failures observed during testing (Oracle Outputs in our
figure). For instance, if we observe that the target model does not contain an object of type
Type in the target model with the same name as one of the objects of type DataType in
the source model, then lines 5 and/or 6 in Listing 1 likely contain a bug that needs to be
identified and fixed. Debugging techniques can be classified as dynamic or static, depend-
ing on whether they require running the MT or not, respectively. Results of our survey on
debugging are provided in Section 6.

4 REVIEW METHOD

To collect the papers related to MT testing and debugging, we followed a structured method par-
tially inspired by the guidelines of Kitchenham [220] and Webster et al. [257]. In addition, we took
inspiration from existing surveys on related topics such as formal verification of static software
models [202], MT design patterns [223], UML model execution [186], and MT tools [217].

4.1 Research Questions

We aim to answer the following research questions (RQs):

• RQ1 - Testing. In which part of the testing process do the studies focus and what do they
propose? We aim to classify the papers according to the three phases devoted to testing
(cf. Section 3), namely, model generation, test oracle definition, and test adequacy crite-
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ria. These will be further categorized into subcategories within each phase. Answered in
Section 5.

• RQ2 - Debugging. What are the approaches for debugging MTs? We aim to identify the pa-
pers focusing on MT debugging, classifying them in subcategories of dynamic and static
approaches. Answered in Section 6.

• RQ3 - Experimental Evaluations. How are testing and debugging approaches on MTs evalu-
ated? We aim to provide insights on the current practices for evaluating research proposals
in the context of MT testing and debugging. To this end, we explore different dimensions
of the evaluations, such as tools proposed and MTs employed as case studies. Answered in
Section 7.

• RQ4 - Challenges. What are the research challenges for the future? Based on our survey re-
sults, we aim to identify and categorize open research challenges in the field of model trans-
formation testing and debugging and give concrete action points. Answered in Section 8.

Apart from these RQs, in the electronic appendix, we show the trends in testing and debugging of
MTs and some interesting statistics from the surveyed papers, such as the number of publications
per year and country, top co-authors, frequently used transformation languages, and so on.

4.2 Inclusion and Exclusion Criteria

We scrutinized the existing literature looking for papers focusing on MT testing or debugging
including methods, tools or guidelines. Specifically, we focus on the steps identified in Figure 4,
namely, (i) model generation, (ii) test adequacy criteria, (iii) oracle function, and (iv) debugging
(bug location and fix). Surveys and exploratory papers (e.g., References [162, 168, 244]) have not
been included as primary studies, but have been considered for setting the scope of this article, as
explained before.

As described in the proposed conceptual model, and inline with the widely adopted notion of
testing [198], we focus on testing approaches running the MT under test to identify failures, often
referred to as “dynamic testing” [211]. Formal and static (i.e., those not running the MT under test)
approaches for identifying bugs in MTs such as formal verification [194, 199, 231, 245, 255, 256] and
model checking [262] have been largely studied in related papers and surveys [164, 182, 235] and
are out of the scope of our work. We also excluded papers on model-based testing [208, 213, 218],
where MTs are often used as a means to test other programs. Regarding debugging, a topic not
studied in previous surveys to the best of our knowledge, we included both static and dynamic
approaches to provide a complete view of the topic. As we can see from Figure 4, we focus on
debugging approaches that read the output of the testing phase.

As models can be treated as graphs [246], we include approaches for testing and debugging
graph transformations, since they can be considered MTs in this setting. Besides, graph transfor-
mations are applied to the problem of instance generation [207]. Therefore, we include the term
“graph transformation” in the search (cf. Section 4.4). Note, however, that graph transformations
are often used as a suitable formalism for verification [207], and that is the reason why many pa-
pers on graph transformations are not considered in this survey. Finally, we excluded PhD theses,
papers not related to computer science, not written in English, or not accessible from the Web.

4.3 Data Sources

The search was performed in the online repositories1 of ACM, DBLP, Elsevier, IEEE Xplore, Scopus,
SpringerLink, and Web of Science. They all provide an advanced search engine, which fits our

1Throughout the article, we use the terms “repository,” “search engine,” and “digital library” indistinctly.
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Table 1. Search Engines and Number of Studies Retrieved

Digital Library ACM DBLP Elsevier IEEE Xplore Scopus SpringerLink Web of Science
# Studies 309 227 242 748 716 369 478

Fig. 5. Overview of selection process.

purpose very well, as explained later on. We also selected repositories supporting batch retrievals
of the bibliographical references. This allowed us to use reference managers for managing the
extracted references such as JabRef and Zotero. This drastically reduces the time for processing
the references and removing duplicated entries compared to using repositories in isolation.

4.4 Search Strategy and Paper Selection

Table 1 summarizes the number of publications retrieved from each digital library. We used differ-
ent engines for executing the conceptual query (“model transformation” OR “graph transformation”)
AND (“test*” OR “debug*” OR “validat*” OR “verificat*”) in title, abstract, and keywords. Testing
is considered one of the Verification & Validation (V&V) activities [210] and that is why we
included the terms “validat*” and “verificat*” in our searches. This way, we try to gather papers
focused on testing that might be referring to the terms “verification” or “validation” and not ex-
plicitly to “testing.” Also, our search query uses wildcards. Please note that not all search engines
support this type of queries. However, we aimed to match the concrete search terms for a partic-
ular search engine as closely as possible when queries containing wildcards were not supported.
In addition, not all engines allow searching in the title, abstract, and keywords of the papers. For
instance, SpringerLink only supports searching in the papers’ title and main text.

We did not add any time constraints on the search, since we did not know the exact point in
time when research on the survey topic began. Finally, selected papers were published between
2004 and 2020. Please note that this time frame is reasonable, since the first workshop on model
transformations was held in 2005 and this topic started to gain more attention ever since.

We generated one BibTeX file for each digital library by following the process reported in
Reference [253]. As SpringerLink only allows to produce CSV files, we performed a pre-processing
step using Zotero to obtain a BibTeX file. Subsequently, we collected all references of the individ-
ual files together in one single common BibTeX file. As illustrated in Figure 5, we started with an
initial set of 3,099 papers. Next, we employed JabRef and Zotero to remove duplicates, resulting in
2,099 papers.

Then, we read the title of all 2,099 publications to decide which ones to discard according to
the title. Two authors of the article were in charge of this process. We identified and removed
1,717 papers that were clearly not related to the survey topic according to their title, so we kept
a set of 382 publications. The next step was to read the abstract of the papers to keep discarding
unrelated papers, this meant 185 more works were dropped out. There were still some papers
whose adequacy to this survey was not apparent according to their title and abstract, so we needed
to glance at the text for reasoning about their inclusion. After this step, 26 more papers were
discarded, having a set of 171 papers. Every relevant step of the review process was followed by
meetings where all the authors discussed the doubts and minor disagreements until reaching a
consensus.
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Then, the 171 papers were distributed among the four authors of the article, who read them and
extracted information out of them, as explained in Section 4.5. In this process, 53 more papers were
discarded, having a total of 118 papers. This step also included performing a process of backward
snowballing [259] by considering the related works described in the papers selected. The rationale
of this process is to “rescue” papers that had either not been obtained by any search engine or
that were discarded by mistake in the filtering process. Seventeen papers were obtained after this
process.

Since most papers were in the context of M2M transformations, and considering that T2M and
M2T approaches can be referred to with the terms reverse engineering and code generator, respec-
tively, we repeated the complete search process, this time with the query (“reverse engineer*” OR
“code generat*”) AND (“test*” OR “debug*” OR “validat*” OR “verificat*”). Five more papers were
obtained, so the final set of publications is composed of 140 papers, henceforth referred to as
primary studies. The list of primary studies is publicly available on a companion website [254].

4.5 Data Extraction

All 140 primary studies were carefully analyzed to answer our RQs. For each work, we extracted:
the full reference, brief summary, type of contribution, context (model generation, oracle function,
test adequacy criteria, or debugging), testing dimension (functional vs. non-functional), type of
MT considered (M2M, M2T, T2M), MT language supported, tool support, characteristics of the ex-
perimental evaluation (including techniques, case studies, and availability of experimental assets),
and challenges reported. Primary studies were read at least twice by two authors to reduce misun-
derstandings or missing information. We recorded all the information collected in a spreadsheet.
The few disagreements that arose were handled in group discussions involving all the authors.

As a sanity check, we shared a preliminary and a final version of this article with the authors
of the primary studies to confirm that the information collected was correct. Some minor changes
were proposed and integrated.

4.6 Limitations

The main threat to validity of our work lies in the review method, which did not follow existing
systematic guidelines strictly. As a result, there is a chance that some of the reviewed papers do
not meet a minimal quality criteria or that we missed some papers. To mitigate this threat, we per-
formed a comprehensive review process, including searching in online repositories, snowballing,
and contacting the authors of the reviewed papers for inaccuracies or missing publications. A sim-
ilar procedure was followed in related popular surveys (e.g., References [166, 169, 215, 228, 260]).
This makes us confident in the correctness of the reported results. In any case, there may be addi-
tional approaches, such as commercial ones, which are not accompanied by publications available
in the used databases. Thus, finding these may require multivocal literature reviews [200].

5 MODEL TRANSFORMATION TESTING (RQ1)

This section answers RQ1 (cf. Section 4.1). As explained in Section 3, we classify the MT testing
process in three phases: input model generation, test oracle definition, and test adequacy criteria.
There are papers that target only one phase, and papers that target more than one, in which case
we include them in all phases they target. Next, we summarize the papers and their categorization.

5.1 Test Data Generation

Test data—test models in our domain—are generated to exercise the MT under test as thoroughly
as possible. The categorization we propose for the generation of test models, largely based on the
classification of testing techniques proposed by Fraser and Rojas [198], is shown in Figure 6; while
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Fig. 6. Categorization of test model generation.

the papers that fall under each category, together with some relevant features, are displayed in
Table 2. Regarding the table columns, category indicates the categorization of each study according
to Figure 6. Inputs comprises those inputs needed by the approaches (“*” means it is needed), where
seeds refer to initial models needed as input. Features collect some interesting properties of the
approaches. Nothing appears in MT type and MT language when nothing is mentioned in the
paper. Regarding generation, it indicates whether the studies construct the models with a proposed
algorithm or they rely on third-party model finders (such as SAT solvers)—in the latter case, a
proposed algorithm likely orchestrates the whole process. Finally, under output, we display the
model format in which the models are generated.

We have identified 60 primary studies that address the generation of test models—note that the
same study can fall under more than one subcategory, but we put each work in the one that best
represents it. For brevity, in the table as well as in the explanations below, we group papers of the
same authors that focus on the same line of work. The categories and the works falling under each
category are described below.

5.1.1 Black-box Approaches. In black-box approaches, only the specification of the system un-
der test is required, which in the context of MTs refers to the source/target metamodels and, in
some cases, a specification of the MT. However, some primary studies proposing a black-box ap-
proach focus on an MT language (cf. Table 2) for exemplary purposes. We further categorize black-
box studies in the following categories.

Metamodel (MM) partitioning. Approaches in this category—based on the well-known testing
technique equivalence partitioning [198]—split the input metamodel into different partitions, so
generated models must cover all these partitions and models that cover the same partitions are
considered equivalent. For instance, for the Class metamodel in Figure 2, a partition could con-
sider the DataType class, and another partition could include Class and Attribute classes. In the
works by Sen et al. [109, 110], metamodel partitions and constraints are both transformed into Al-
loy [212] to generate a Boolean CNF formula and solve it using a SAT solver to obtain the models.
Wu et al. [138, 139] propose an approach in the same line, considering metamodel partitions and
OCL constraints. Gogolla and Burgueño et al. apply metamodel partitioning by employing the so-
called classifying terms so models generated are classified into equivalent classes [20–22, 45, 61].
Classifying terms are represented as arbitrary OCL terms on a class model that calculate a char-
acteristic value for each object model [45, 61]. This approach is implemented in the context of
the UML-based Specification Environment (USE) tool [201]. Nguyen et al. [87] also propose
to use the classifying terms of Hilken et al. [61] for test models generation. Mottu et al. [82] aim
to discover new MT preconditions by generating a set of input models based on input domain
partitioning, for which the PRAMANA tool based on Alloy is used. Since some of these models
may be incorrect or incomplete, the execution of the transformation is analyzed to correct or com-
plete them. Finally, Jahanbin and Zamani [63] propose to enrich the Epsilon Model Generation

language (EMG) [90], which uses random operations for producing test models with equivalence
partitioning.
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Table 2. Approaches for Test Model Generation

Primary Study Inputs Features Output
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Burgueño et al. [20–22] B-MP * * * F M2M * MF USE
Gogolla et al. [45, 61] B-MP * * * F M2M * MF USE
Jahanbin et al. [63] B-MP * * F M2M * Al .model
Motu et al. [82] B-MP * * * F M2M Kermeta * MF
Nguyen et al. [87] B-MP * * * F M2M RTL * MF USE
Sen et al. [109, 110] B-MP * * * F M2M * MF EMF
Wu et al. [138, 139] B-MP * * * F * MF
Gogolla et al. [43] B-SD * * F M2M * MF USE
Guerra and Soeken [48, 52] B-SD * * * F M2M ATL * MF USE
Lamari et al. [73] B-SD * * * F M2M * Al
Popoola et al. [90] B-SD * F M2M Al
Runge et al. [94] B-SD * * F M2M Al
Sampath et al. [91, 96] B-SD * * F M2T ACG Al
Scheidgen et al. [101] B-SD * F M2M Al EMF
Almendros-Jiménez et al. [3] B-RG * * F M2M ATL * Al EMF
Ehrig et al. [36, 37] B-RG * F Al GGX
Fiorentini et al. [40] B-RG * * F M2M Al
He et al. [56–58, 140] B-RG * * NF M2M Al EMF
Nassar et al. [86] B-RG * NF M2M Henshin Al EMF
Gómez-Abajo et al. [46, 54] B-EM * * * F * Al EMF
Sen et al. [108] B-EM * * F * Al
Brottier et al. [17] B-EC * * F M2M Al
Min-Hue et al. [62] B-EC * * F M2M * MF TCSL
Semerath et al. [106, 107] B-EC * * * F M2M * MF EMF
Sen et al. [111] B-EC * * F M2M Any * MF EMF
Batot et al. [11] B-SB * * F * Al EMF
Rose and Poulding [93] B-SB * * F M2M ETL Al HUTN
Shelburg et al. [112] B-SB * * F M2M Al
Wang et al. [130] B-SB * * F M2M Al
Alsibahi et al. [1] W-SE * * * F M2M Any MF
Calegari and Delgado [23] W-SE * * F M2M QVT-R Al
Gonzalez and Cabot [47] W-SE * * * F M2M ATL * MF
Lengyel and Charaf [74] W-SE * * * F M2M GTL * Al
Mottu et al. [83] W-SE * * * F M2M Kermeta * MF
Nguyen et al. [88] W-SE * * * F M2M RTL * MF USE
Sánchez-Cuadrado [97] W-SE * * * * F M2M ATL * MF EMF
Schoenboeck et al. [103] W-SE * * * F M2M Any * MF
Stürmer et al. [113] W-SE * * F M2T TargetLink Al
Wang et al. [129] W-SE * * F M2M Tefkat Al EMF
Wieber et al. [131, 133] W-SE * * * F M2M GTL Al EMF
Aranega et al. [5] W-M * * * * F M2M Kermeta Al
Darabos et al. [32] W-SE * * F M2M GTL Al
Guerra et al. [53] W-M * * * F M2M ATL * MF EMF
Alkhazi et al. [2] W-SB * * * F M2M ATL * Al
Jilani et at. [65] W-SB * * * F M2M ATL * Al EMF
Sahin et al. [95] W-SB * * * F M2M ATL * Al EMF

(Testing Type => F: Functional; NF: Non-functional; MT Language => ACG: Auto-code Generator; GTL:

Graph Transformation Languages; Generation => Al: Algorithm; MF: Model Finder).

Specification-driven. Approaches in this category propose to generate models through specific
domain-specific languages (DSLs) or specifications. We find works that define the specification
of test models and others that define the specification of MTs. Gogolla et al. [43] propose to gener-
ate input models using ASSL (A Snapshot Sequence Language), which is built as an extension
of the USE tool [201]. Lamari [73] proposes a formal language for the specification of MTs (MT-

SpecL) and an accompanying tool. Guerra and Soeken [48, 52] extend the PAMOMO DSL [206]
for test model generation. Since a specification of the MT is used and not the MT itself, the
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Fig. 7. Mutation and Completion of existing models.

approach is classified by its authors as black-box. This specification is translated to OCL expres-
sions, which together with the metamodel are fed to a SAT solver. Runge et al. [94] also use as
input a specification of the MT, this time in the form of visual contracts. They obtain the depen-
dency graph for the contracts and propose an algorithm to generate test cases from the graph
based on maximizing coverage. Scheidgen [101] defines a DSL called rcore that drives the model
generation allowing to specify how to deal with concrete choices, such as concrete multiplicities
or chosen alternatives. Popoola et al. [90] present the DSL and framework EMG, aiming for a semi-
automated model generation approach. The validation of the generated models is left to the tester.
Finally, Sampath et al. [91, 96] focus on test model generation for testing auto-code generators

(ACG). They focus on covering not only the syntactic aspects of a translation, but its semantics,
too. The approach needs as input a syntactic and semantic metamodel of a modeling language
expressed using inference rules and a test specification in the form of a coverage criterion over the
metamodel and generates a test suite that can be used to test any code generator for this language.
In this context, a test case consists of a model, inputs to drive the model, and the corresponding
outputs from the model.

Random. This category includes works that generate models (pseudo-)randomly, a common test-
ing strategy [198]. Ehrig et al. [36, 37] propose instance-generating graph grammars for creating
metamodel instances. They implement an MT algorithm that obtains an operational description
of the language defined by the metamodel. This allows deriving instances of an arbitrary meta-
model in a systematic and random way. The approach by Fiorentini et al. [40] supports exhaustive
and random generation for generating small models. The works by He et al. [56–58, 140] propose
the opposite: the generation of large random models for performance testing. Inputs to their ap-
proaches are the metamodel and a configuration model that serves to specify structure-related
constraints, such as number of elements or constraints in the relationships. A similar performance
testing approach was proposed by Nassar et al. [86], where large EMF-conformant models are
generated applying transformation rules either randomly or following user preferences. Finally,
the model generator by Almendros-Jiménez and Becerra-Terón [3] generates models randomly
satisfying input OCL constraints, after the user indicates the number of elements to create in the
models.

Existing models - Mutation. This category groups those approaches where test models are created
by applying changes to existing models. This idea of creating test data by applying changes to
existing inputs is often called data perturbation [232] or data mutation [247]. Changes are driven
by so-called mutation operators, where each operator addresses a specific type of change to the
model, e.g., modifying attributes. An example is displayed in Figure 7, which shows in the left-hand
side a model conformig to the Class metamodel of Figure 2. In the top part of the right-hand side,
we can see a mutation of the model, where the name attribute of the DataType class has changed
from “String” to “Integer.” Sen and Baudry [108] synthesize a set of primitive mutation operators
from the metamodel as graph-grammar rules [195]. These rules are automatically obtained from
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any metamodel using a proposed MT, where only operations of addition of elements, relationships,
and attributes are considered. Further constraints on the metamodel are not considered in the rules.
Gómez-Abajo et al. [46, 54] present the domain-specific language WODEL for the specification and
generation of model mutants. WODEL provides dedicated language concepts for specifying model
mutation (such as deletion and addition of elements), item selection strategies (such as random),
and specific concepts for the composition of mutations.

Existing models - Completion. This category considers works where the model generation does
not start from scratch, but where existing models, typically called partial models, are completed or
extended to obtain new models. Please note that the concept of completing a model is very similar to
mutating it, where the mutations performed in the former are related to expanding the model size
and complexity. For instance, in the example shown in Figure 7, we can see in the bottom part of the
right-hand side how the model is completed by adding a new Class class, so the class whose name
is car now inherits from this one. Brottier et al. [17] propose an algorithm that takes an effective
metamodel and fragments of models as input and produces a set of test models. The effective
metamodel is the part of the input metamodel that is relevant to the MT. Sen et al. [111] provide
a methodology to generate effective test models from partial models with a semi-automated tool.
In this context, a partial model is a model conforming to a relaxed version of the original source
metamodel of the MT. Partial models are automatically completed. Minh-Hue et al. [62] propose to
generate models in a modeling language named Test Case Specification Language (TCSL). They
start with a UML class model and a use case specified in the Use Case Specification Language

(USL). Test models expressed in TCSL are obtained by means of MTs and the solver in USE, all
orchestrated in their USLTG tool. Finally, Semerath et al. [106, 107] integrate a structural graph
solver using partial models with the Z3 SMT-solver [192] to generate models that fulfill structural
and attribute constraints. The approach is implemented in the VIATRA framework.

Search-based. Some approaches rely on search-based algorithms for the generation of models
that optimize one or more objectives, a well-known general testing approach referred to as search-
based testing [198, 228]. Rose and Poulding [93] adapt Poulding’s search-based algorithm [234] for
obtaining an optimized probability distribution over the models on which the transformation acts.
The optimized distribution is then employed to generate test models by using sampling techniques.
Shelburg et al. [112] propose a multi-objective search-based approach to generate test models from
existing ones when the metamodel is modified. Objectives are maximizing the coverage of the
updated metamodel, minimizing the number of test model changes and minimizing the number
of test model elements that do not conform to the new metamodel. Wang et al. [130] propose
a genetic algorithm to generate test models with the objectives: (i) maximizing similarities with
given expected metrics’ values, (ii) maximizing metamodel coverage, and (iii) minimizing number
of test cases. It uses a mono-objective optimization algorithm. Finally, Batot et al. [11] apply search-
based multi-objective model generation. Input models are generated such that they target specific
parts of the metamodel tagged as mandatory, i.e., metamodel coverage is one objective. Several
minimality criteria are supported as additional optimization objectives in their approach.

5.1.2 White-box Approaches. In these approaches, access to the source code of the MT is re-
quired for testing. We further categorize white-box studies in the following categories:

Symbolic execution. This category, based on the standard testing technique symbolic execu-
tion [198], includes proposals that analyze the MT implementation for generating test models that
maximize a certain coverage criteria. For instance, if a proposal aims to generate models that trig-
ger all rules, then, for the MT excerpt of Listing 1, there should be at least a model containing an
object of type DataType, so rule 1 is triggered, and at least a model containing an object of type At-
tribute that is not multivalued and whose type is an object of type DataType, so rule 2 is triggered.
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There are two papers that explicitly mention symbolic execution. First, Schoenboeck et al. [103] pro-
pose TETRABox as a generic framework for execution-based white-box testing of MT languages.
The path constraints collected from the MT together with the source metamodel are used by the
UMLtoCSP constraint solver [179] to generate source models that fulfill all path constraints. The
other work is by Alsibahi et al. [1], who present a model finder that uses the relational constraint
solver KodKod [252] to check the existence of suitable models.

Some other related approaches are included in this category despite not explicitly mentioning
symbolic execution. Wang et al. [129] derive an effective metamodel by analyzing the MT rules.
They also identify representative values (classes, associations) from the MT rules based on the
effective metamodel. Furthermore, they generate so-called coverage items (combinations of repre-
sentative values). Based on this collected information, they finally generate test input models.

The approach by Gonzalez and Cabot [47] focuses on ATL. The MT is first analyzed and a de-
pendency graph is obtained. Then, this graph is traversed a number of times and, finally, test cases
are created using the EMFtoCSP tool [179]. Sánchez-Cuadrado [97] also focuses on ATL. He uses
static analysis, coverage analysis, and model finding to generate test models (pairs of input-output
models). His approach needs a seed test model, which can then be extended to cover the MT, for
which the USE Model Validator [159] is used. This approach is implemented as a new feature in
the AnATLyzer tool [141] and is also used for debugging the MT (cf. Section 6). Mottu et al. [83]
propose an approach to statically analyze the MT to obtain a metamodel footprint. This, plus other
inputs such as OCL invariants, pre-conditions, and the input metamodel, are transformed to Al-
loy [212]. Calegari and Delgado [23] propose to use the dependencies graph for generating test
models not covering the whole transformation, but the minimal sets of rules that satisfy every top
rule. Similarly, Wieber et al. [131, 133] systematically generate so-called requirement graph pat-
terns from the MT to support test case construction and present a framework for test generation
based on Triple Graph Grammars (TGG) [241]. Their test generator produces test cases consist-
ing of pairs of test input models and expected output models. In the work by Nguyen et al. [88],
TGG rule dependencies are extracted and test cases are created for covering all rule dependencies
of declarative TGG rules. Then, as oracle, patterns for input/output test conditions are transformed
into OCL classifying terms with the USE tool [201]. In the approach by Lengyel and Charaf [74],
generated test models cover all execution paths of the MT. To achieve it, the proposed algorithms
access the pre- and postconditions of the MT rules, so they predict whether the models to be gener-
ated exercise all MT rules. Finally, the work by Stürmer et al. [113] deals with M2T transformations,
and specifically with model-based code generators. Starting with the transformation, which is ex-
pressed as graph rules, they generate test models (they call them first-order test cases) and a set
of corresponding test vectors for the models (which they call second-order test cases), the latter
being time-dependent. To generate the models, they systematically partition the input space of the
graph transformation rules into equivalence classes.

Mutation. This category includes those approaches that propose creating buggy variants (i.e.,
mutants) of the MT by applying syntactic changes to the implementation of the transformation.
This is an application of the well-know testing technique for general-purpose programs mutation
testing [215]. The MT mutants play an important part in the model generation process. An example
of a mutation in rule 1 of the Class2Relational MT excerpt of Listing 1 is displayed in Listing 2,
where the value given to the name attribute of the Type object created by the rule has been modified.
Three studies fit in this category. Darabos et al. [32] generate models (they call them test graphs)
based on a set of mutation rules applied on the rule’s preconditions. Aranega et al. [5] propose to
apply mutation analysis to semi-automatically improve an initial set of test models. The purpose
of this approach is to mutate the MT under test to generate a set of mutants. The initial set of
test models serves as input for these mutants. Guerra et al. [53] present a framework for effective
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Fig. 8. Categorization of techniques for oracle function.

mutation testing for ATL. This framework allows to automatically generate mutants for any ATL
MT (cf. Section 5.3). Besides, it also allows to synthesize test models able to detect injected bugs
in ATL MTs.

Listing 2. Mutation in rule 1 of Class2Relational MT.

1 rule DataType2Type { -- Rule 1
2 from dt : Class!DataType
3 to t : Relational !Type (name <-'NewType ') -- Mutated; previously : (name <-dt.name)
4 }

Search-based. This category includes those papers proposing the use of search-based techniques
for test model generation. The approach by Jilani et al. [65] supports the generation of test input
models reflecting different coverage criteria such as statement coverage, branch coverage, and mul-
tiple condition/decision coverage. Sahin et al. [95] formulate the MT testing problem as a bi-level
optimization problem [239] to integrate test case generation with mutation testing and focus on
ATL MTs. The objective of the upper level is test case generation to provide a high coverage of
the source and target metamodels, and at the same time, to detect the bugs (i.e., mutants) in the
MT introduced by the lower level. Hence, the objective is maximizing the number of generated
mutants that cannot be detected by the test cases. Finally, Alkhazi et al. [2] present the first ap-
proach for test case selection in the context of MTs using multi-objective search. They employ the
non-dominated sorting genetic algorithm NSGA-II [193] to find the best trade-offs between two
conflicting objectives, namely, maximizing MT rule coverage and minimizing execution time.

5.2 Test Oracle

Test oracle approaches in the context of MTs depend on the available artefacts. For instance, if the
expected model is available, then a straightforward oracle is comparing the obtained target model
with the expected model. When it is not available, the most common solution is to come up with
a set of properties that the generated models must fulfill. These properties are normally called
contracts or assertions. Approaches that propose contracts or assertions vary depending on the
way these are obtained. The proposed categorization of test oracle approaches—partially based
on the classification of test oracles proposed by Barr et al. [166]—is shown in Figure 8. Table 3
displays the 43 primary studies that propose test oracle approaches. They are classified accord-
ing to the categories of Figure 8 and some relevant features are displayed. For instance, we show
whether approaches support OCL and propose any DSL. Oracle column displays the type of ora-
cle, mainly classified as contracts, expected model or traces; and whether these can be obtained
(semi)automatically by the approach or they have to be manually specified—see table caption. In
the following, we describe all categories and primary studies.

5.2.1 Contracts/Assertions. As mentioned before, the so-called contracts or assertions are prop-
erties that the models generated by an MT should satisfy. Otherwise, the MT must contain errors.
Typically, these assertions are expressed as OCL conditions, so it is straightforward to evaluate
them as true or false. Listing 3 displays a couple of OCL assertions for the MT excerpt of Listing 1.
We can see that classes of the source metamodel are prefixed by “Src,” while classes in the target
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Table 3. Approaches for Oracle Function

Primary Study
Category
(Figure 8)

MT Type MT Lang.
OCL

supported
DSL

proposed
Oracle

Jiang et al. [64] C-MT M2M ATL * C-M
Troya et al. [123, 124] C-MT M2M ATL * C-A
He et al. [55] C-MT M2M ATL * C-M
Du et al. [34] C-MT M2M ATL * C-M
Cariou et al. [25] C-OCL M2M Any * C-M
Braga et al. [15, 16] C-OCL M2M Any * C-M
Gogolla and Vallecillo (et al.) [44, 127] C-OCL M2M Any * C-M
Cariou et atl. [24, 72] C-OCL M2M ATL * C-SA
Guerra et al. [48, 49, 52] C-OCL M2M Any * C-A
Nguyen et al. [87, 88] C-OCL M2M RTL * C-A
Selim et al. [105] C-OCL M2M ATL * C-A
Cheng and Tisi [26, 27] C-OCL M2M ATL * C-A
Sánchez-Cuadrado et al. [116] C-OCL M2M ATL * C-A
Wimmer and Burgueño [134] C-OCL M2T/T2M Any * C-M
Guerra et al. [51] C-DSL M2M QVT-R * PAMOMO C-M
Ciancone et al. [28, 29] C-DSL M2M QVTO MANTra C-M
Rodriguez-Echeverria et al. [92] C-DSL M2M ATL MoTe C-M
Anastasakis et al. [4] C-DSL M2M Alloy * Alloy C-M
Narayan and Karsai [85] C-DSL M2M GReAT GReAT C-M
Tiso et al. [119] C-DSL M2T Acceleo * Unnamed C-M
Bonfanti et al. [14] C-DSL M2T Xtext AsmetaL C-M
Guerra et al. [50] C-EMT M2M ETL * transML C-M
Mazanek et al. [78] MC-E M2M Any E-M
Wieber et al. [131] MC-E M2M Any E-A
Lin et al. [76] MC-E M2M ECL E-M
Tiso et al. [117] MC-E M2T Acceleo E-M
Stürmer et al. [113] MC-S M2T TargetLink E-A
Finot et al. [38, 81] MC-S M2M Any E-M
Kolovos [71] MC-S M2M ECL E-M
Kessentini et al. [68, 69] BE/TB M2M Kermeta E-A
Matragkas et al. [77] BE/TB M2M ETL Tr-A
Jörges and Steffen [66] BE/TB M2T CG Tr-A

(Oracle => C-M: Contract Manual; C-A: Contract Automatic; C-SA: Contract Semiautomatic;

E-M: Expected output Manual; E-A: Expected output Automatic; Tr-A: Trace Automatic).

metamodel are prefixed by “Trg.” This is a common practice in some works [44, 122, 127]. There
are approaches that propose a language different than OCL for specifying such conditions, and the
way of obtaining the assertions or contracts can also differ depending on the proposal. Thus, we
categorize the approaches that propose the use of contracts or assertions as test oracles according
to the way in which these are defined or generated. We distinguish the following categories:

Listing 3. Sample OCL assertions for the Class2Relational MT.

1 --Assertion 1. For each DataType , a Type is created with the same name
2 SrcDataType.allInstances ()->forAll(d|TrgType.allInstances ()->exists(t|t.name=d.name))
3 --Assertion 2. For each single valued attribute whose type is a datatype , there must exist

a column with the same name
4 SrcAttribute.allInstances ()->collect(a|not(a.multiValued) and a.type.oclIsKindOf(

SrcDataType))->forAll(at|TrgColumn.allInstances ()->exists(c|c.name=at.name))

Metamorphic testing. This is a technique to alleviate the oracle problem [184, 242, 243]. It is based
on the idea that often it is simpler to reason about relations between two or more executions of the
program under test, than to fully formalize its input-output behavior [242]. In the context of MTs,
metamorphic testing has been applied to automatically infer assertions (so-called metamorphic
relations) that should hold between two or more executions of the MT under test. Let us explain
it with the example of Figure 9 for our running example of Listing 1. We have a source model

(SM) and we do a controlled modification in it, such as adding or deleting elements, to obtain
the so-called follow-up source model (fuSM). When the MT is executed taking as input SM, we
obtain the target model (TM), while when we execute it taking as input the fuSM, we obtain the
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Fig. 9. Application of metamorphic testing in the context of model transformations.

follow-up target model (fuTM). In this context, a metamorphic relation (MR) is defined as a
relation among the four parts: MR = R(SM, f uSM,TM, f uTM), such as the MR displayed in the
figure. In our example, we observe that the SM contains two DataTypes and an Attribute, and in
the fuSM one more DataType and one more Attribute have been added. When we execute the MT
shown in Listing 1 over the SM, we obtain the TM, which contains two Types and one Column.
When the input for the MT is the fuSM, it produces a fuTM that contains three Types and two
Columns. In the metamorphic relation shown in the figure, |Tm | indicates the number of elements
of type T that model m contains. Therefore, the MR in the figure can be read as “If two elements
of type DataType and one element of type Attribute are added in fuSM with respect to SM, then
fuTM must contain two more elements of type Type and one more element type Column than TM.”

The first work proposing to apply metamorphic testing for MTs is by Jiang et al. [64]. They em-
pirically demonstrated the feasible application of metamorphic testing for MTs, and metamorphic
relations were defined manually. Later, Troya et al. [123, 124] automated the generation of meta-
morphic relations, also expressed in OCL. This was possible by identifying a set of patterns in the
execution traces of MTs. He et al. [55] applied metamorphic testing to bidirectional MTs, but they
followed a different approach where testers must manually identify generic metamorphic relations
of the MT. Finally, Du et al. [34] proposed to combine metamorphic testing and bug localization
to debug MTs (cf. Section 6). For the metamporphic testing part, they rely on existing works such
as References [55, 124].

Object Constraint Language (OCL). Here, we describe papers that use or propose OCL con-
tracts (also called “assertions”) as test oracles. We first describe approaches that do not automate
their generation. The work by Cariou et al. [25] is the first that investigates and discusses the rele-
vance of OCL for defining MT contracts. Then, Braga et al. [15, 16] formalize the concept of contract
as transformation contract, which is essentially a transformation model. Similarly, Gogolla and Val-
lecillo et al. [44, 127] present the concept of Tract as a generalization of the concept of contract.
Tracts are OCL conditions that can be used to specify preconditions and postconditions on the
transformation as well as constraints that need to be satisfied by any pair of source/target models.
They propose the USE tool [201] to check the conformance of the tracts. This approach and tool
are used as oracle in some other works [22, 61, 134], where contracts need to be defined manually.
Finally, the work by Wimmer and Burgueño [134] proposes to test M2T/T2M transformations by
representing text within a generic metamodel.

Regarding works that propose a (semi-)automation in the generation of OCL contracts/asser-
tions, Cariou et al. [24, 72] propose a tool to help in the definition of the contracts, so these can
be semi-automatically built. Guerra et al. [48, 49, 52] generate assertions from MTs specified in
PAMOMO. To do this, they provide a script that traverses all invariants and postconditions in the
MT specification and generate the corresponding OCL assertions. Nguyen et al. [87, 88] follow a
similar approach for the generation of OCL assertions. They apply the same scripts, but this time
for MTs specified in RTL (Restricted Transformation Language). There are a number of works
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that implement approaches for ATL. Selim et al. [105] propose an approach to automatically gen-
erate OCL contracts. For this, ATL MTs are first translated to transformation models [177]. Cheng
and Tisi [26, 27] design sound natural deduction rules for ATL and apply these rules on the post-
conditions of the MT to generate further OCL contracts. The approach helps the user pinpoint the
bug. Finally, Sánchez-Cuadrado et al. [116] present and automate a method to translate target OCL
constraints (constraints defined on the target metamodel of an MT) to the source metamodel us-
ing information from ATL transformations. The method allows us to ensure that if a source model
satisfies the source constraints, then the transformed target model will satisfy the target ones.

Domain-specific languages (DSLs). There are works that propose domain-specific languages
to specify assertions/contracts. In Reference [51], PAMOMO is proposed to manually define visual
contracts specifying preconditions, postconditions, and invariants for the transformation. The vi-
sual contracts are tested by translating them into the QVT-Relations language and,subsequently,
using a QVT engine in check-only mode. Ciancone et al. [28, 29] focus on testing QVTO trans-
formations, for which they present the MANTra proposal and tool. Assertions have to be manu-
ally defined, for which MANTra provides an assertions API to define them. Rodriguez-Echeverria
et al. [92] present a DSL called MoTe for manually defining contracts with a semantics based on
graph transformations. The test oracle execution consists in the computation of precision and
recall metrics for every relation between input and output patterns defined by a contract. Anas-
tasakis et al. [4] propose to analyze MTs via Alloy. Assertions are manually defined using the
so-called Alloy statements. Narayan and Karsai [85] use the term correspondence rules for the con-
tracts, which are manually expressed as path expressions. In the context of M2T transformations,
Tiso et al. [119] formulate the oracles in terms of the properties of the generated text files, such as
the structure of text fragments or which files and folders must be present and how they are named.
They propose a DSL to manually define such oracles. Finally, Bonfanti et al. [14] present an M2T
transformation that implements a code generator from ASMs to C++, for which they use Xtext.
Along with the C++ generated code, they also obtain unit tests from the tests defined at model
level in the ASMs. The authors argue that these tests can validate the M2T transformation.

Embedded in MT. In this category, we consider approaches that inject the definition of assertions
into the model transformation code. We include here the work by Guerra et al. [50], which analyzes
a formal specification of the MT. Assertions generated from patterns specifying pre-conditions
on input models are included in a dedicated pre section of the MT definition, while assertions
generated from patterns specifying correctness properties of the MT or of the expected output
models (so to speak, post-conditions) are injected in a dedicated post section of the MT.

Model comparison. The most intuitive way to check the output of a system is to compare it with
the expected output. Some approaches aim for equality, while others for similarity.

Equality. In the MT context, there are several approaches that propose to compare the output
model(s) with expected ones. There are some works that rely on EMFCompare [163] or existing
comparison procedures, like hash comparison and link creation, for comparing models [78, 131],
while others propose specific algorithms or techniques. For instance, Lin et al. [76] propose an al-
gorithm that provides an output based on new elements, deleted elements, and changed elements
between the two models. Finally, Tiso et al. [117] present a testing framework for M2T transfor-
mations, where the oracle part is delegated to the developer, who needs to manually compare the
text generated with the expected text.

Similarity. Stürmer et al. [113] focus on M2T transformations by proposing the systematic test-
ing of model-based code generators. As oracle function, they propose to compare the test out-
puts of the model with the test outputs of the resulting code. The comparison yields correct if
a sufficiently similar behavior of the outputs is observed, for which a signal comparison algo-
rithm is proposed. Finot et al. [38, 81] propose an approach to compute the difference between the
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Fig. 10. Categorization of test adequacy criteria approaches.

output model and a partial expected model, returning a difference model. Kolovos [71] presents the
Epsilon Comparison Language (ECL), a task-specific model management language that allows
to develop language-specific algorithms for establishing matches between different models. The
result of comparing two models with ECL is a trace mainly consisting of a number of rule matches
that basically indicates if the elements found in a model are present in the other.

By example/trace-based. Approaches in this category need to either inspect the trace model gen-
erated by the MT execution—the concept of trace model is explained in Section 2 using our running
example—or the traces that the input and output may generate (such as in the case of code gen-
erators). We identify three types of approaches in this category. First, Kessentini et al. [68, 69]
present an oracle function based on the notion that the more an MT deviates from well-known
MT examples, the more likely it is to be faulty. They compare the output model not with a corre-
sponding expected output for the given input model, but with an already available set of examples
that contain good quality MT traces from past MTs. The main benefit of this work is that it is
not necessary to have an expected output model. Second, Matragkas et al. [77] propose to enrich
the execution traces after the MT execution with domain-specific semantics and check for con-
formance with respect to the MT specification. In this context, an MT generating non-conforming
traces is considered as erroneous and requires fixes. Finally, Jörges and Steffen [66] focus on testing
code generators. Since their input test models are executable, their approach proposes to obtain
execution traces from the input test models as well as execution traces from the source code gen-
erated from the input test models by the code generator under test. A matcher compares the two
execution traces to check whether the same atomic actions occurred in the exact same order.

5.3 Test Adequacy Criteria

As explained in Section 3, test adequacy criteria measure the quality of a test suite with respect
to one or more objectives. Test adequacy criteria help in defining testing goals to be achieved as
a result of software testing, e.g., covering a certain percentage of code [168]. In the context of MT
testing, test adequacy criteria can be based, for example, on how well the input metamodel is cov-
ered by the test models or on how effective the oracle functions are on identifying synthetic bugs
(so-called mutants) introduced in the MT under test (cf. Figure 4). Figure 10 depicts the proposed
categorization of test adequacy criteria for MT, mostly inspired on the seminal survey on test cov-
erage and adequacy by Zhu et al. [263]. The 19 primary studies that propose approaches for test
adequacy criteria are displayed in Table 4, where they are grouped by categories (cf. Figure 10). The
table also displays some relevant information of the studies, such as whether they support OCL,
the type of coverage proposed or the mutation activity—see table caption. The different categories
and the primary studies are explained in the following:

5.3.1 Mutation Analysis. Approaches in this category measure the effectiveness of test cases
according to their ability to detect bugs, for which they propose mutation analysis [215] as test
adequacy criteria. The idea is to generate buggy variants (i.e., mutants) of the model transformation
under test. These mutants contain one or more bugs. An example of mutation for rule 1 of the MT
shown in Listing 1 is displayed in Listing 2. The adequacy of the testing approach is measured
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Table 4. Approaches for Test Adequacy Criteria

Primary Study
Category
(Figure 10)

MT Type MT Language
OCL

supported
Mutation

Aranega et al. [5, 8, 9] MA M2M Kermeta M
Guerra et al. [53] MA M2M ATL * A
Kahn and Hassine [70] MA M2M ATL M
Mottu et al. [80] MA M2M Any M
Sánchez-Cuadrado et al. [99] MA M2M ATL * A
Troya et al. [120] MA M2M ATL PA

Coverage

Finot et al. [39] C-MM M2M Any * Out MM (Class, Asc, Attr)
Fleurey et al. [41] C-MM M2M Kermeta * In MM (Class, Asc, Attr)
Wang et al. [128] C-MM M2M Tefkat In-Out MM (Class, Asc, Attr)
Bauer et al. [12, 13] C-MTS M2M Any * MM (Class, Asc, Attr), Spc (contracts)
Tiso et al. [118] C-MTS M2T Acceleo * MM (Class, Asc, Attr), Spc (template)
Arifulina et al. [10] C-MTI M2M GTL Imp (rule, path)
Calegari and Delgado [23] C-MTI M2M QVT-R Imp (rule)
García et al. [42] C-MTI M2T MOFScript * Imp (rule)
Heckel et al. [59] C-MTI M2M GTL Imp (dataflow)
McQuillan and Power [79] C-MTI M2M ATL * Imp (rule, instruction, decision)
Wieber and Schürr [132] C-MTI M2M GTL Imp (pattern)

(Mutation => the approach proposes Manual (M), Partially Automated (PA) or Automated (A) mutation

of the MT; Coverage => the approach proposes the coverage of In/Out MM, Spc (MT Specification) or

Imp (MT Implementation)).

according to its ability to detect the mutants. It is noteworthy that some works apply mutation
analysis to evaluate their research contributions (such as [18, 39, 110, 122, 131, 133] and many
more)—in fact, mutation analysis is the most frequently used technique in the evaluations. These
works are not considered as primary studies in this category, since they do not advance the state-
of-the-art in mutation analysis of MT, but they use existing proposals. Here, we only include those
papers that present a contribution in the context of mutation analysis for MTs.

Mottu et al. [80] were the first authors to explore mutation analysis for MTs. They study potential
bugs that developers may introduce in MTs. They do not focus on a specific MT language, but
define a set of generic mutation operators for MTs based on model navigation, model’s elements
filtering, output model creation, and input model modification. They give detailed explanations
of the mutations proposed. Aranega et al. [5, 8, 9] focus on the mutation operators presented by
Mottu et al. [80] and describe a way to systematically and automatically generate them for the
Kermeta language.

The works by Kahn and Hassine [70], Troya et al. [120], Sánchez-Cuadrado et al. [99], and
Guerra et al. [53] focus on mutation operators for ATL MTs. Kahn and Hassine [70] propose a set
of 10 mutation operators that are mainly based on the operators presented by Mottu et al. [80].
They exemplify the operators in an ATL MT example but do not provide means to automate them.
Troya et al. [120] derive a systematic set of 18 ATL mutation operators by proposing a general
language-centric synthesis approach. They explain each of the mutation operators proposed and
the consequences they have in the generated output model(s). They also automate the generation
of MT mutants by realizing a framework that exploits the concept of Higher-order Transforma-
tions [250], but only describe the solution and implementation for a couple of mutants. Sánchez-
Cuadrado et al. [99] present a set of 27 mutation operators that they use to evaluate their AnAT-
Lyzer tool, and they automate the mutants generation. Finally, Guerra et al. [53] revise mutation
operators proposed in the literature and, in addition, propose a new set of operators emulating the
most frequent typing errors in ATL transformations. Regarding operators proposed in the litera-
ture, they integrate (i) the operators presented by Troya et al. [120], which they name syntactic
operators, (ii) the operators proposed by Mottu et al. [80], which they name semantic operators,
and (iii) the operators presented by Sánchez-Cuadrado et al. [99], which they call typing operators.
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Furthermore, they analyze the entire ATL zoo [142] to discover new mutation operators derived
from most common errors. For this, they use their AnATLyzer tool to discover errors in the MTs
available on the Zoo and extract a new set of mutation operators. This approach provides tool
support for the automated generation of a wide variety of ATL MT mutants.

5.3.2 Coverage-based. This category includes those papers that propose to measure the effec-
tiveness of a testing approach for MTs according to its ability to cover the input/output metamodels
and/or the MT under test. We collect papers in the following three categories:

Metamodel coverage. This includes the papers measuring test adequacy according to the portion
of the input/output metamodels covered. As an example of this kind of coverage, the model ob-
tained by completion in the bottom of the right-hand side of Figure 7 covers a larger part of the
metamodel than the model in the left-hand side because it additionally includes (i) a Class instance
whose isAbstract attribute is set to false and (ii) a relationship of type super. Wang et al. [128] study
how much the MT under test is covering the input and output metamodels. They measure coverage
from different perspectives, such as feature coverage, inheritance coverage, association coverage,
model element coverage, and metamodel coverage; and they propose an algorithm to compute
them. Fleurey et al. [41] propose to measure the quality of a set of test models by measuring how
much they cover the input metamodel, which they propose to measure in terms of class coverage,
attribute coverage, and association coverage. Finot et al. [39] propose to compute the coverage of
the output metamodel. They measure the elements of the output metamodel that are exercised by
the oracle. The metamodel coverage is measured as proposed by Fleurey et al. [41].

Model transformation specification coverage. Approaches in this category measure the adequacy
of the testing approach based on the portion of the MT specification covered. These approaches
are typically used to test the adequacy of test oracles. Bauer et al. [12, 13] present a coverage
analysis approach for measuring test suite quality for MT chains. They focus on the coverage of
the metamodel and a specification of the transformation chain expressed by contracts that spec-
ify conditions for the models used and created by the MT. To compute coverage, footprints are
extracted for the test cases, which contain the main characteristics of the test case execution. Tiso
et al. [118] discuss coverage in the context of M2T transformations. Despite not presenting any
specific approach, they describe a coverage criterion that checks that the various templates on the
preconditions of the rules are instantiated on the input models.

Model transformation implementation coverage. We include here those works that focus on cov-
erage of the MT under test. Wieber and Schürr [132] focus on the coverage of the pattern matching
in graph transformations. Their basic idea is to stimulate the pattern matching engine so combina-
tions of variable binding and unbinding steps do occur. Heckel et al. [59] and Arifulina et al. [10]
also deal with graph transformations. The former propose a data-flow coverage approach imple-
mented by generating a dependency graph between the rules that registers whether a rule cre-
ates/deletes/updates an element, while the latter produce an invocation graph representing all
possible sequences of rules that can result from executing every possible input model. McQuillan
and Power [79] define coverage measures for ATL MTs. For this, they first propose processing the
compiled ATL transformations (i.e., instructions for the ATL VM) to collect information such as op-
erations, branch locations, and so on. Then, they run the transformation and process the resulting
log file to estimate the actual coverage for the executed transformation. They present three types
of coverage metrics: rule coverage, instruction coverage, and decision coverage. Calegari and Del-
gado [23] focus on QVT-Relations transformations and define a test adequacy criteria based on the
coverage of every possible rule chain and, thus, the whole MT. Finally, García et al. [42] deal with
M2T transformations in the MOFScript language. They argue that the transformation coverage by
the test suite may be informed based on the executed transformation lines, so the approach builds
on trace models (cf. Section 2), and coverage is conducted at the rule level.
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Fig. 11. Classification of debugging techniques.

Table 5. Approaches for Model Transformation Debugging

Primary Study
Category
(Figure 11)

MT Type MT Lang.
OCL

supported
DSL

proposed
Contracts SbS Activity

Ege and Tichy [35] D-MB M2M Any graphical BL & BF
Jukss et al. [67] D-MB M2M Any * AToMPM * BL
Mészáros et al. [84] D-MB M2M GTL VMTS * BL
Schönböck et al. [103] D-MB M2M Any * PaMoMo * BL
Wimmer et al. [102, 104, 135–137] D-MB M2M QVT-R * TROPIC * * BL
Du et al. [34] D-SB M2M ATL * * BL
Li et al. [75] D-SB M2M ATL * * BL
Troya et al. [121, 122] D-SB M2M ATL * * BL
Aranega et al. [6, 7] D-TB M2M QVTO * BL
Corley et al. [30, 31] D-TB M2M MoTif * BL
Dhoolia et al. [33] D-TB M2T Any * BL
García et al. [42] D-TB M2T MOFScript * BL
Hibberd et al. [60] D-TB M2M Tefkat * BL
Ujhelyi et al. [125, 126] D-TB M2M VIATRA2 BL
Sánchez-Cuadrado et al. [97–100, 114, 115] S-TI M2M ATL * BL
Burgueño et al. [18, 19] S-F M2M ATL * * BL
Oakes et al. [89] S-SE M2M DSLTrans * BL

(Contracts: the approach proposes contracts to check the presence of errors; SbS: the approach allows step-by-step

debugging; Activity => BL: Bug Localization; BF: Bug Fix).

6 MODEL TRANSFORMATION DEBUGGING (RQ2)

This section aims to answer RQ2. As described in our conceptual model, debugging focuses on
locating and fixing bugs in the MT, often starting from the failures observed during testing.
Figure 11 depicts the proposed classification for approaches on MT debugging, partially inspired
on the survey on fault localization by Wong et al. [260]. Table 5 displays the 31 primary studies
that propose debugging approaches, classified by the categories of Figure 11. Some interesting
properties of the studies are also displayed—see table caption. The different categories as well as
the primary studies are summarized in the following:

6.1 Dynamic Approaches

This category includes approaches where the model transformation needs to be executed to debug
it. This means that a model transformation engine as well as a (set of) input model(s) need to be
available. We further classify these papers in the following categories:

Model-based. Approaches in this category typically propose a modeling notation to debug the
model transformation, claiming to perform debugging at model level. The works by Wimmer
et al. [135–137] and by Schönböck et al. [102, 104] propose a model-based debugger representing
QVT Relations on basis of TROPIC, a transformation language representing a variant of Colored

Petri Nets (CPNs). To provide a convenient debugging environment, TROPIC aims for a dedi-
cated view on all artifacts of a transformation, i.e., the metamodels, models, and transformation
logic. This is possible by having a dedicated runtime model that also enables the investigation of
each operational step of a MT. Later, Schönböck et al. [103] employ their Pattern-based Model-

ing Language for Model Transformations (PAMOMO) to compute failure traces that can be
mapped back to the MT implementation as an input for further debugging steps. Jukss et al. [67]
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describe a layered approach to debugging by mapping familiar debugging operations to different
formalisms to raise the abstraction for debugging to a similar level as the models being transformed.
Declarative queries can be performed during the debugging session. This approach is evaluated
by an implementation in AToMPM [227], a browser-based tool for Multi-paradigm Modeling.

A couple of approaches base their model-based debugging mechanisms on a graphical syntax.
Mészáros et al. [84] present a visual model transformation debugger realized in the Visual Modeling
and Transformation System. The solution facilitates the step-by-step execution of model transfor-
mations, the visualization of the overall state of the transformation, and also supports individual
matches. In addition, the transformations can be dynamically updated when being executed, which
allows for interesting debugging possibilities. Ege and Tichy [35] present an approach for debug-
ging visual declarative model transformation languages. It proposes to highlight the parts of the
MT that likely need a change. It also proposes changes to the models and MT for repair.

Spectrum-based Fault Localizatoin (SBFL). SBFL is a testing technique that uses the results
of test cases and their corresponding code coverage information to estimate the likelihood of each
program component of being faulty [260]. We have included it as a category, since several works
have applied it in the context of model transformation. The recent works by Troya et al. [121, 122]
were the first ones applying this technique in the context of MTs, obtaining promising results.
They propose to apply SBFL to MTs by using the model transformation rules as program compo-
nents under examination. By executing the MT under test with a number of input models, some
executions result in success and some other in failure according to an oracle composed of OCL
assertions that pairs of <input,output> models must satisfy. With the results given by the ora-
cle as well as the rules triggered when executing the transformation with different input models,
the so-called coverage matrix and error vector can be built. With different mathematical formulae
proposed in the literature [260], transformation rules are ranked according to their likelihood in
containing a bug [121, 122]. Later, Li et al. [75] present a similar approach, where they propose to
use weighted test models as well as weighted rule coverage to improve the performance of SBFL.
Finally, Du et al. [34] propose to apply SBFL without the need to count on an oracle. To achieve
this, the oracle is obtained by applying metamorphic testing techniques [242], similar as it is done
in Reference [124] (cf. Section 5.2).

Trace-based. We group in this category all dynamic approaches that make use of the trace model
in the debugging process (cf. Section 2 for the definition of trace models). Most dynamic approaches
for MT debugging make use of traces. For instance, approaches in the category of SBFL need to
check which rules were executed, for which they need to look into the traces. However, we include
in this trace-based category those approaches whose main contribution in MT debugging is the use
of traces or the way of constructing them.

Hibberd et al. [60] coin the term forensic debugging of MTs to refer to ad hoc debugging, i.e.,
debugging once the model transformation execution finishes. They do not propose an approach
to forensic debugging, but classify MT bugs and explore debugging approaches. In their study,
they highlight that the trace of a MT is a key-enabling factor. They argue that the information
provided by the traces of MTs can be leveraged for more effective post hoc debugging techniques
than it is possible with traditional languages. In the works by Aranega et al. [6, 7], local and global
traces are built during the MT execution. When there is an error in the output model, the traces are
inspected by an algorithm until a set of likely buggy rules is found. However, the exact localization
of the actual buggy rule is manually done. Ujhelyi et al. [125, 126] present a dynamic backward
slicing approach for MT implementations and their associated models by exploiting the generated
execution trace models of MT engines. Corley et al. [30, 31] apply omniscient debugging to MTs.
According to the authors, omniscient debugging is a natural extension of stepwise execution that
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enables reverse execution. The authors define a trace-based omniscient debugger that supports
basic omniscient debugging features such as backwards execution for MTs.

There are a couple of works that aim at debugging model-to-text (M2T) transformations.
García et al.’s work [42] heavily rests on trace models, which capture a ternary relationship be-
tween the source model elements, the elements of the MT, and the produced code (i.e., text). The
authors choose MOFScript as the M2T transformation language and complement MOFScript’s na-
tive trace model with an additional trace model that enables full fine-grained traceability between
MT elements and locations in generated text files. The other approach is by Dhoolia et al. [33],
who associate taint marks with input model element and propagate them using an instrumented
model transformer to generate a taint log, in which taint marks are associated with substrings of
the output. Any erroneous substring in the output, or the location of a missing output, may thus
be associated with a taint mark and projected back to the related input model element(s).

6.2 Static Approaches

This category includes approaches where the MT is not executed to debug it. We further classify
these papers in the following categories:

Type inference. This category groups the works by Sánchez-Cuadrado et al. [97–100, 114, 115].
They present a method for statically analysing ATL MTs, especially to find typing and other errors
such as unresolved bindings, uninitialized features, or conflicting rules. Their approach is based
on static analysis and type inference. Furthermore, by using a constraint solver, it can be checked
if there is actually a possible source model triggering the execution of a buggy statement. To eval-
uate the usefulness of the proposed method, the authors have implemented the approach in a tool
named AnATLyzer, which aims for a test-driven development of ATL MTs [97] and analyzed the
entire ATL zoo [142]. AnATLyzer identified a huge number of errors in the existing MTs, which
shows the need for such tool support for MTs and has been employed for the test-driven develop-
ment of MTs.

Footprints. The works by Burgueño et al. [18, 19] present a static approach for locating buggy
rules in MTs. Tracts [44, 127] are used to express conditions that the MT must satisfy. By extracting
the footprints, i.e., metamodel elements, used in the tracts and in the MT rules, matching functions
are constructed to automatically generate alignments between MT specifications and implemen-
tations. Such alignments are key for interpreting the testing results, i.e., the result of the tracts
evaluation.

Symbolic execution. There is only one work that applies symbolic execution for debugging
MTs [89]. The approach presented is integrated within the SyVOLT tool, which verifies DSLTrans
transformations. This is achieved by generating the full state space for a MT, i.e., reflecting all pos-
sible executions, which allows to prove structural contracts for the MT. SyVOLT allows to detect
and even localize errors in both artefact types: in the implementation and in the contracts of the
MT.

7 EXPERIMENTAL EVALUATIONS (RQ3)

To reply to RQ3, we have analyzed the evaluations performed in the primary studies, where we
specially focus on the case studies used. Besides, we have analyzed the tools proposed for MT
testing and debugging and those used in the experimental evaluations.

7.1 Tools

The available tool support is typically a good indicator of the maturity of a research field. To this
end, we studied the tools reported in the empirical evaluations of the primary studies. Specifically,
86 out of the 140 primary studies mentioned some kind of tool support, although many of them
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Table 6. Reported Tools

Name Description Studies Language Last update

AnATLyzer [141] Static analysis of ATL transformations [98–100, 114–116] Java 2020
AToMPM [227] Generation of modeling web-based tools [30, 67] JS/Python 2021
DSLTrans [143] Contract-based language verification [89] Java 2020
Eclipse Epsilon [144] Model generation and comparison [71, 90] Java
EMF Model Generator [145] Large EMF models generator [86] Java 2019
EMFtoCSP [146] Automatic verification of UML/EMF models [47] Java 2018
MDE Testing [148] Mutation testing tool for ATL [53] Java 2020
MRs4MTgenerator [149] Generation of metamorphic relations [124] Java 2017
PAMOMO [150] Pattern-based inter-modelling [49, 50, 52] Java 2010
PRAMANA [151] Generation of models using Alloy [82, 83, 111] Java
Not named [156] Generation of model transformation mutants [120] Java
Not named [157] Model constraint mutation (USE extension) [20] Java 2019
Not named [158] Automated generation of models [57, 140] Java 2018
RandomEMF [152] Random model generation [101] Java 2015
SBFL_MT [153] Spectrum-based fault localization [122] Java 2017
SymexTRON [154] White-box test case generation [1] Scala 2016
TracsTool [155] Black-box checking of M2M transformations [19, 134] Java
USE [159] UML/OCL System specification and validation [20–22, 43–45, 61] Java 2020
VIATRA Generator [160] Graph solver for consistent model generation [106, 107] Java 2021
WODEL [161] Automated generation of model mutants. [46, 54] Java 2020

were not publicly available at the time this survey was conducted (links to the available tools are
provided on the companion website [254]).

Table 6 shows the tools presented in the primary studies that are available at the time of writing
this survey. For each tool, the table shows its name (if any), brief description, primary studies
using them, and the year of the last update (if available). As illustrated, the most popular tools
are USE [159]—a modeling tool for system specification and validation using a subset of UML and
OCL—and AnATLyzer [141]—a static analysis tool for ATL transformations, referenced in seven
and six primary studies, respectively. Conversely, 10 tools were referenced only once. Interestingly,
only 2 tools, USE and Eclipse Epsilon, were used by different groups of authors. This suggests that
existing tool support is scattered and mostly exploited by the groups where they were developed.
A vast majority of the tools are written in Java, which places it as the dominant programming
language. We managed to access the source code of all the tools except of one. Only 7 tools had
been updated in the 18 months prior to writing this survey.

7.2 Case Studies

We have identified 153 different case studies, out of which 24 come from industry, 123 do not, and
we could not identify the nature of the remaining 6. For the 24 cases coming from industry, we
must remark that the study was always performed outside the industrial setting.

Table 7 presents the case studies that have been used in at least three different studies. For each
case study, we show the primary studies in which it has been used, the number of studies (col-
umn # Studies for readability purposes), and the languages in which it has been implemented. It is
worth noting that none of these frequently used case studies comes from industry, that all trans-
formation scenarios focus on out-place M2M transformations, and that most of them target the
ATL language. Several case studies address similar domains with slight differences. In particular,
the database domain is the most widely targeted, which includes the case studies: Class2RDBMS,
Class2Relational, UML2ER, SimplyUML2Rel, and JavaSource2Table.

Apart from the 13 case studies presented in Table 7, we identified another 13 case studies that are
each used in two papers (ER2ReL, Simplified StateChart MM, extlibrary MM, KM32EMF, Ant2Maven,
Maven2Ant, Gaspard transformation chain, SAMM2KLAPER, BPMN2PetriNets, UML2BPMN,
UML2Java, Class2Rel, and Ecore). The remaining case studies were used only in one paper.
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Table 7. Most-used Case Studies

Case study Studies # Studies Languages Size

BibTex2DocBook [2, 18, 21, 22, 45, 52, 61, 75, 87, 100, 122] 11 ATL 9 rules, 4 helpers
Class2RDBMS [5, 9, 41, 65, 80–83, 109, 110] 10 ATL, Kermeta 1 rule, 6 helpers (ATL)
Class2Relational [34, 49, 53, 64, 72, 100, 121, 123, 124] 9 ATL 7 rules
UML2ER [2, 18, 19, 34, 53, 75, 92, 102, 122] 9 ATL 8 rules
Families2Persons [3, 18, 19, 22, 44, 45, 61, 100, 127] 9 ATL 2 rules, 2 helpers
CPL2SPL [2, 18, 53, 98, 114, 122] 6 ATL 19 rules
HSM2FSM [26, 27, 53, 55, 116] 5 XMU 6 rules
PetriNet2PNML [34, 98, 120, 124] 4 ATL 4 rules
Ecore2Maude [2, 18, 75, 122] 4 ATL 39 rules
Book2Publication [3, 28, 29, 100] 4 ATL, QVT-O 1 rule, 3 helpers (ATL)
Families2Persons Extended [34, 89, 124] 3 ATL 10 rules
SimplyUML2Rel [128–130] 3 Tefkat 6 rules
JavaSource2Table [57, 100, 140] 3 ATL 4 rules, 2 helpers

With respect to industrial case studies, we observed that only 7 out of 140 primary studies
contain at least one industrial case study and only one (UML2Java) was re-used in two papers
[27, 134].

8 CHALLENGES (RQ4)

In this section, we derive several open research challenges in the field of MT testing and debugging
as synthesis from our survey results. For each challenge, we provide a name, a description of what
is currently missing, and potential directions with concrete action points to improve this situation.

Challenge 1: Exemplars for MT Testing and Debugging. Currently, there are several trans-
formations reused across different languages and studies—as those suggested at events such as Ref-
erence [171]—for performing research on MT testing and debugging (cf. previous section). How-
ever, the reused information mostly concerns the pure MT implementation itself. Most often, input
models, transformation specifications, and potential transformations errors are redeveloped from
scratch for each study, which is of course a major obstacle for comparison and future studies as
also reported in other specialized fields of testing, such as compiler testing [183].

Action Points. In addition to existing MT collections such as the ATL Transformation Zoo,
the community may establish additional repositories where transformation testing and debugging
packages are available. This is successfully done in related fields such as for general-purpose pro-
gramming languages, e.g., see Siemens Suite2 and Defects4j.3 These types of collections typically
include buggy programs with well-documented real-world bugs. Based on such collections, exist-
ing approaches may be more systematically compared according to their ability to detect and/or
locate these bugs. As a starting point, one may collect the cases used in the previous studies dis-
cussed in this survey and provide them in a consolidated way.

Challenge 2: Generalization of Existing Approaches to MT Testing and Debugging. Cur-
rent research conducted in this field is mostly language-specific. As we have seen in the results,
there are prominent MT languages in the previous studies for which dedicated support is devel-
oped. However, it is still unclear which concepts and techniques may be reused for other languages
as well and what their concrete performances are.

Action Points. Further secondary studies are required to reason about more general con-
cepts that may be applied for all MT languages or at least for a certain category of MTs such
as in-place or out-place transformations. While metamodel-based techniques such as black-box
test generation seem reusable out-of-the-box based on standardized languages for metamodeling,

2http://sir.csc.ncsu.edu/portal/bios/tcas.php#siemens.
3https://github.com/rjust/defects4j.
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transformation-based techniques such as white-box test generation seem more challenging to ab-
stract without having a common transformation formalism. Finally, at least guidelines would be
important for the community for making decisions about how to realize a testing and debugging
approach for a particular MT language. Our feature model for evaluating existing approaches may
be a first starting point, but a more explicit decision model with some reusable technologies would
be interesting to speed up the development of MT testing and debugging frameworks—see also
Challenge 10.

Challenge 3: Going beyond Functional Tests. Although the community is starting to pay at-
tention to issues beyond functionality (e.g., References [204, 205]), research on functional testing is
dominant. However, we also found five primary studies [56–58, 86, 140], four from the same group
of authors, which consider performance tests. Testing and debugging non-functional properties of
MTs may be of importance for future work, as the performance of MTs has been identified by the
community as one of the reasons preventing the adoption of MT languages [176]. Interestingly,
there is not a single work on testing other quality characteristics such as usability or interoper-
ability of MTs. Finally, it is also worth mentioning that although the parallel execution of model
transformations is supported by emerging approaches [240, 251], not a single work on testing and
debugging considers the parallel execution of MTs, which is in contrast to the general field of
software testing [198].

Action Points. Going beyond functional tests for sequential model transformation executions
requires novel approaches for MT testing and debugging potentially providing new test model
generators—or at least strategies—as well as new adequacy criteria and contract languages. The
same is true for locating issues in MTs, here enhanced and integrated tool support is needed, e.g.,
execution profilers for MT engines when it comes to performance testing.

Challenge 4: Going beyond M2M Transformations. Only 11 of our primary studies address
the testing of M2T transformations [14, 33, 42, 66, 91, 96, 113, 117–119, 134], and only one can be
applied for T2M transformations [134]. This must be partly due to the assumption that everything
is explicitly modeled, i.e., having injector/extractors between models and text-based artefacts—but
still, these components would have to be tested as well.

Action Points. The challenge here is not only to provide effective support to testing and de-
bugging M2T and T2M transformations, but also to improve the languages to write these MTs, as
they are often realized with imperative MT languages such as template-based languages that are
consuming or producing simple text. Moreover, more specific MT languages are used in model
management such as in the Epsilon language family [144], e.g., for model comparison or merging.
This is a clear application niche in which MTs are a piece of a wider and more ambitious archi-
tecture where, based on our survey results, testing and debugging is under-explored despite the
specific nature of domain-specific MTs may allow for dedicated support due to their specific scope.

Challenge 5: Test Case Generation and Test Process Optimization. Tools that generate
input models for MTs are of major importance. There are several approaches for input model gen-
eration that manage to cover major parts of the input metamodel and MT. Many of them also accept
invariants and pre-/postconditions. However, most of them apply constraint solvers to obtain the
models, which do not scale well. At the same time, approaches based on search-based techniques
mostly depart from already available models. Finally, many model generation approaches are gen-
eral techniques, even if they are discussed for particular MT types and languages. On the one hand,
this allows us to reuse them in many settings, but on the other hand, they are not deeply integrated
into the test process, e.g., to optimize the generated models for specific testing objectives.

Action Points. We believe that there is an opportunity for further research related to search-
based model generators. With the proliferation of many-objective algorithms [209], the genera-
tion of models may be driven by the optimization of many objectives. These could additionally
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overcome the performance limitations of constraint solvers, e.g., aiming for hybrid model gen-
eration approaches, and finally, also deal with test case selection, prioritization, and minimiza-
tion [198, 261] as known from the general field of software testing, which is also an important
future research line to better support regression testing of MTs. Finally, further research may be
needed on how to link test case generation with the test process such as generating only models
that find new issues in MTs or, at least, do not produce the same issues again and again.

Challenge 6: Usability and Expressiveness of Contract Languages. As already discussed
in a previous study [244], the contract languages used for MTs are of high importance. In our
study, we could identify the reuse of already-existing languages such as OCL or graph patterns—
for instance, 14 primary studies reuse OCL as the main language for defining oracle functions.

Action Points. While the reuse of existing approaches enables the use of expressive languages
that may be already supported by different tools, the question is if they provide the right level of
usability for testing and debugging of MTs. We could not find empirical studies about the usage
of these languages by transformation developers going beyond the research teams proposing the
dedicated approaches. Also, the combination of graph patterns and OCL seems important in the
future to allow developers to explicitly express certain model patterns as well as to define complex
constraints for the oracle functions, which may require the usage of a text-based language such as
OCL. Further comparison studies are needed to shed more light on these practical aspects.

Challenge 7: From Testing to Debugging and Back Again. Current approaches are either
focusing on MT testing or debugging, but the link between these two phases is mostly not explored.
How testing may further help locating a bug by generating more specific input models and how
debugging may help for regression testing has not been subject for extensive research concerning
MTs. For instance, we did not find a single approach for prioritizing bugs in MTs, a topic that
clearly falls in the intersection of testing and debugging.

Action Points. Dedicated interfaces between testing and debugging processes may be required
to stimulate the information exchange between these two phases. Especially, the combination of
spectrum-based approaches and test model generation strategies seem promising to be combined.
It may also stimulate further dedicated approaches that go into the direction of automated bug
fixing in MTs, which currently have been only sparsely considered in this area by one work [35].

Challenge 8: Reusable and Realistic Evaluation Methods. As concluded from Section 7, we
consider the evaluation of approaches for MT testing and debugging as another challenge that must
be addressed with appropriate methods. In this respect, we have seen that only a few case studies
(27 out of 159) come from industry, and most of them are small-scale. Besides, most approaches
use only one case study to validate their approach. We consider as an important challenge the use
of realistic case studies, instead of small-scale academic examples. Mutation seems to be the major
evaluation technique, since at least 17 primary studies apply it in their evaluation [5, 8, 9, 18, 26,
27, 34, 48, 55, 57, 64, 70, 83, 110, 111, 124, 131].

Action Points. We foresee more research on tools for automating the whole evaluation process,
i.e., generating mutants and calculating the mutation score of a set of test cases. The mutation oper-
ators proposed by Mottu et al. [80] have been used in the evaluation of several approaches. These
operators are generic and not described in the context of any particular MT language, so they
are often not automated. This means that mutants must be (manually) obtained for specific MT
languages. However, mutations may be again considered as MTs for automation purposes. This is
provided for ATL by the work of Sánchez-Cuadrado et al. [53, 98–100], which automate the gener-
ation of a large set of mutants by using several different mutation operators [70, 80, 120]. Having
dedicated guidelines how to conduct such mutations and their usage for evaluation purposes for
MT languages in general may be of high interest—especially combined with the availability of the
exemplars as discussed in Challenge 1.
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Challenge 9: Baseline Technology Infrastructure. The MT community benefits from stable
MDE baseline technologies, e.g., see USE and anATLyzer as two very positive examples that are
used in several research works. Such tools are of high relevance to bootstrap other techniques for
testing and debugging, as they provide base support that can be reused. Moreover, this challenge
also relates to baseline support in existing MT engines for testing and debugging. Currently, MT
engines are running the whole MTs at once to produce the output models from the input models,
which is not handy for fine-grained testing, e.g., for testing explicit rules for particular behavior.

Action Points. With our set of primary studies, we see that authors tend to use already avail-
able infrastructures. Indeed, some approaches can be helpful to evaluate some other approaches.
For instance, it is useful to use MT mutants for evaluating the efficiency of a test model generator.
Similarly, an input model generator is very important for evaluating test oracles. Therefore, mak-
ing mature tools available and sharing them with other researchers and practitioners of MT testing
and debugging is another challenge ahead. Furthermore, having open tools that employ some stan-
dards for representing input and output artefacts are beneficial, e.g., for building bridges between
different tools and formats required for covering larger portions of the testing and debugging pro-
cesses. Finally, extending existing MT engines with dedicated interfaces for testing and debugging
is a must to support more fine-grained capabilities in testing and debugging frameworks for MTs
in the future; see the following challenge.

Challenge 10: Comprehensive Testing and Debugging Frameworks. There is a lack of
actual automated testing and debugging frameworks for MT, as they are available for general-
purpose programming languages. Such frameworks should define a simple way to write test cases,
run them, and generate test results reports. For instance, JUnit can be easily integrated with any
approach for the generation of test cases or test oracles. It would be important to have similar
frameworks in the context of MTs, perhaps extending JUnit (as REST Assured4 in the context of
Web APIs).

Action Points. A future line that seems interesting to explore is to reuse ideas from executable
modeling language engineering that provide not only the execution engine for a given language
but also additional tools such as a debugger, logger, and so on. Based on such meta-frameworks,
MT languages may be recreated to provide out-of-the-box tool support for testing and debugging
as well as dedicated interfaces for additional tool support [147, 173, 219].

Challenge 11: MT Testing and Debugging Unit. Most of the existing approaches surveyed
in this article consider the full transformation as one unit when it comes to testing and debugging.
For instance, oracles are developed for the full transformation independently from the transfor-
mation implementation. As a consequence, additional approaches for finding the links between
oracles and transformation rules are required when it comes to debugging. We only found very
few approaches for testing transformations that deal with unit tests on the transformation rule
level. A few other approaches consider integration tests of full transformation units when run-
ning a chain of transformations, i.e., a sequence of different transformations that are feeding each
other, which is a more course-grained understanding of the unit concept.

Action Points. For the future, language extensions for developing more fine-grained unit tests
for MTs are a promising target. In addition, best practices to test rules in isolation and having inte-
gration tests for different rules up to systems tests considering transformation chains are needed.
Such best practices in combination with enhanced MT engines, cf. Challenge 9, allow for additional
testing strategies known from software testing going beyond testing for success, i.e., intended out-
put has been produced for valid input. For instance, testing for failure is currently only supported
by checking contracts before running a transformation as an additional step, but these contracts

4https://rest-assured.io/.
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may be injected to the transformation implementation as assertions to have them manifested in the
transformation. Moreover, ideas from bi-directional transformations [248] may be employed even
for uni-directional transformations to support testing for sanity. Currently, developing complete
bi-directional transformations is considered expensive, but for certain rules that are considered im-
portant, it may be affordable to define a bi-directional contract that can be used to check a forward
transformation rule as well as a backward transformation rule.

9 CONCLUSION

In this article, we have surveyed the state-of-the-art in MT testing and debugging. We have studied
140 primary studies, classified them, and investigated their experimental evaluation methods and
subjects. When revisiting the challenges outlined more than a decade ago [168], we can conclude
that there has been much progress on generating test input models, dedicated oracle languages for
MTs, and also some progress on test adequacy criteria. However, we also identified challenges that
still have to be tackled in the future, e.g., tool support in testing and debugging is still scattered
and mostly simplistic case studies are used for evaluations.

To reach the next generation of testing and debugging tools for MTs, we have identified several
promising research lines. For instance, we believe it is interesting to count on exemplars for MT
testing and debugging with dedicated packages available on open repositories. It is also important
to develop techniques applicable to different MT languages, to go beyond M2M transformations
and to consider non-functional properties. MT testing and debugging tools need to be more pow-
erful, i.e., they should allow developers to move from testing to debugging and back again, provide
more support for test case generation and prioritization, and be able to reuse realistic evaluation
methods. Finally, additional studies to contrast the state-of-the-art in testing and debugging of MTs
with the state-of-the-art in the general field of software testing is another interesting follow-up
study potentially based on the corpus provided by the study presented in this article.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed on the ACM Digital Library.
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