
ORIGINAL RESEARCH
published: 14 March 2022

doi: 10.3389/fnins.2022.819063

Frontiers in Neuroscience | www.frontiersin.org 1 March 2022 | Volume 16 | Article 819063

Edited by:

Lining Zhang,

Peking University, China

Reviewed by:

Guangyu Sun,

Peking University, China

Markus Diesmann,

Helmholtz Association of German

Research Centres (HZ), Germany

*Correspondence:

Bernabé Linares-Barranco

bernabe@imse-cnm.csic.es

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 20 November 2021

Accepted: 04 February 2022

Published: 14 March 2022

Citation:

Patiño-Saucedo A,

Rostro-González H,

Serrano-Gotarredona T and

Linares-Barranco B (2022) Liquid

State Machine on SpiNNaker for

Spatio-Temporal Classification Tasks.

Front. Neurosci. 16:819063.

doi: 10.3389/fnins.2022.819063

Liquid State Machine on SpiNNaker
for Spatio-Temporal Classification
Tasks
Alberto Patiño-Saucedo 1,2, Horacio Rostro-González 1,3, Teresa Serrano-Gotarredona 2

and Bernabé Linares-Barranco 2*

1Department of Electronics Engineering, University of Guanajuato, Salamanca, Mexico, 2 Instituto de Microelectrónica de

Sevilla (IMSE-CNM), Consejo Superior de Investigaciones Científicas (CSIC) and Univ. de Sevilla, Seville, Spain, 3Université

de Lorraine, BISCUIT - Laboratoire Lorraine de Recherche en Informatique et ses Applications (LORIA), UMR 7503, Nancy,

France

Liquid State Machines (LSMs) are computing reservoirs composed of recurrently

connected Spiking Neural Networks which have attracted research interest for their

modeling capacity of biological structures and as promising pattern recognition tools

suitable for their implementation in neuromorphic processors, benefited from the modest

use of computing resources in their training process. However, it has been difficult to

optimize LSMs for solving complex tasks such as event-based computer vision and few

implementations in large-scale neuromorphic processors have been attempted. In this

work, we show that offline-trained LSMs implemented in the SpiNNaker neuromorphic

processor are able to classify visual events, achieving state-of-the-art performance in

the event-based N-MNIST dataset. The training of the readout layer is performed using a

recent adaptation of back-propagation-through-time (BPTT) for SNNs, while the internal

weights of the reservoir are kept static. Results show that mapping our LSM from a Deep

Learning framework to SpiNNaker does not affect the performance of the classification

task. Additionally, we show that weight quantization, which substantially reduces the

memory footprint of the LSM, has a small impact on its performance.

Keywords: Liquid State Machine, N-MNIST, neuromorphic hardware, spiking neural network, SpiNNaker

1. INTRODUCTION

Neuromorphic computing research aims to enable the design of highly efficient devices capable of
processing multi-scale and event-driven dynamic data, inspired by the ability of nervous systems in
animals to coordinate actions with a vast stream of sensory information. At its core is the study of
Spiking Neural Networks (SNNs), models that describe the dynamics and interactions of biological
neurons, characterized by a spike time-encoding mechanism, event-based communication, and
high parallelism. SNNs are being investigated in pattern recognition applications, and recent results
show that they are able to match the performance of Deep Neural Networks in several computer
vision and signal processing tasks (Tavanaei et al., 2019). Concurrently, efforts to deploy their time-
encoding feature in hardware have resulted in the development of large-scale neuromorphic chips
such as TrueNorth (DeBole et al., 2019), Loihi (Davies et al., 2018), and SpiNNaker (Furber et al.,
2014).

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.819063
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.819063&domain=pdf&date_stamp=2022-03-14
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bernabe@imse-cnm.csic.es
https://doi.org/10.3389/fnins.2022.819063
https://www.frontiersin.org/articles/10.3389/fnins.2022.819063/full

Patiño-Saucedo et al. LSM on SpiNNaker for Spatio-Temporal Classification Tasks

Several works show a reduction in the power consumption
of neuromorphic computing systems as opposed to conventional
systems (CPU, GPU) for specific pattern recognition tasks (Diehl
et al., 2016a; Amir et al., 2017; Liu et al., 2018) and optimization
problems (Davies et al., 2021). This advantage would provide an
edge of SNNs and neuromorphic computing in applications that
require low power or high autonomy sensing and processing of
data such as robotics, autonomous driving, and edge computing.

In the spectrum of Deep Neural Network architectures,
Recurrent Neural Networks (RNNs) are among the most
used for sequential and temporal processing, showcasing a
high performance in machine translation (Sutskever et al.,
2014), image captioning (Karpathy and Fei-Fei, 2015), speech
recognition (Graves and Schmidhuber, 2005), time series
prediction (Sagheer and Kotb, 2019), etc. (Lipton et al., 2015).
Furthermore, recurrent connectivity is prevalent in biological
brain modules (Lukoševičius and Jaeger, 2009). This makes the
design of Recurrent Spiking Neural Networks (RSNNs) and
their implementation on neuromorphic hardware an interesting
area to explore for the development of more efficient machine
learning solutions.

The Liquid State Machine (LSM) is one type of recurrently
connected network of spiking neurons. Proposed by Maass
et al. (2002), LSMs are randomly generated recurrent spiking
neural networks whose internal connectivity parameters remain
static during the training process, acting as a reservoir. This
reservoir is excited by input signals and its state, a non-
linear transformation of the input’s history, is connected to a
linear readout unit. The state of the reservoir can be seen as
a mapping of the input data into a higher dimension where
the prediction or classification task is easier to solve, similar
to the kernel methods like Support Vector Machines. The
main hypothesis regarding this kind of network is that, if set
properly, they are able to represent spatiotemporal inputs in
a higher dimensional space where non-linear combinations of
frequencies resonate, providing useful information that makes
the characterization of the input simpler to infer, while requiring
a significantly less amount of computational resources compared
to an RSNN trained in a standard way (Cramer et al., 2020), as the
connectivity weights among layers of the network are not trained,
except for the output or classification layer.

While RSNNs seem an obvious design choice for
neuromorphic computing platforms, very few works have
attempted to implement large-scale Spiking RNNs in
neurosynaptic processors. Diehl et al. (2016b) implemented
an Elman RNN for question classification in the IBM’s
TrueNorth using a “train-and-constrain” methodology including
a 16-level weight quantization. The inputs were converted to
spikes through a simple rate encoding. Shrestha et al. (2018)
used a similar approach, that involves approximation techniques
such as activation discretization, weight quantization, scaling,
and rounding, to implement an LSTM for sequence classification
tasks.

In this article, we propose a method to train a Spiking
RNN in a deep learning framework (Paszke et al., 2019), and
to implement the trained model in a neuromorphic platform
(Furber et al., 2014) for event classification. The model of

choice is that of Liquid State Machines (LSMs). We use the
NeuromorphicMNIST (N-MNIST) (Orchard et al., 2015) dataset
to train and validate the results. The choice of an event-driven
dataset instead of sequential datasets eliminates the need for spike
conversion in our proposed method.

Related work includes that by Tian et al. (2021), who proposed
a method to train an LSM using a neural architecture search
which achieved a 92.5% accuracy for the N-MNIST without a
hardware implementation, and (Yang et al., 2020), who trained an
LSM for the N-MNIST dataset with 93.1% accuracy and deployed
it in a custom 32 nmASIC. The best-reported accuracy for the N-
MNIST dataset trained with a Deep SNN corresponds to the work
by Samadzadeh et al. (2020), who achieved 99.6% using a Spiking
CNNwith Residual blocks and spatio-temporal backpropagation.
For this and the aforementioned related works, the accuracy is
calculated as the percentage of correctly classified inputs on a test
set of 10,000 samples, which are not used in the training process.

The main contributions of this work are:

• The design and implementation of an LSM for the SpiNNaker,
a large-scale neuromorphic processor, which is widely used in
neuromorphic computing research.

• State of the art results by an LSM for the N-MNIST dataset.
• Analysis of the impact of size and weight precision in the

performance of the LSM in the SpiNNaker platform.

Results of this work show a 94.43% accuracy for the best LSM,
which outperforms the state-of-the-art.

2. MATERIALS AND METHODS

We propose an offline learning approach for implementing a
functional Liquid State Machine on SpiNNaker, consisting of a
two-stage pipeline. In the first stage, the LSM architecture is
implemented in PyTorch (Paszke et al., 2019), which is used
to train the hidden-to-readout weights, aided by the computing
power of GPUs. In the second stage, the trained LSM architecture
and parameters are mapped onto SpiNNaker, and comparisons
are made with the PyTorch implementation for a classification
task in an event-based dataset. In the subsequent sections, we will
describe the neuron and network models of the proposed LSM,
the training procedure, and the SpiNNaker implementation.

2.1. Neuron Model
The spiking neuron model used in this work is the Leaky
Integrate-and-Fire (LIF) (Gerstner and Kistler, 2002), suitable for
very efficient hardware implementations. The dynamics of the
membrane potential u(t) of a single neuron is given by:

du(t)

dt
=

urest − u(t)

τm
+

I(t)

cm
(1)

where urest is the resting potential, τm is the membrane’s time
constant, cm is themembrane capacitance, and I(t) is the neuron’s
input or stimulus.

A network of spiking neurons is formed by at least a
presynaptic and a postsynaptic neuron withmembrane potentials
upre(t) and upos(t), respectively. When the presynaptic neuron’s

Frontiers in Neuroscience | www.frontiersin.org 2 March 2022 | Volume 16 | Article 819063

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Patiño-Saucedo et al. LSM on SpiNNaker for Spatio-Temporal Classification Tasks

membrane potential reaches a threshold uth, the neuron fires, its
membrane potential is reset to ureset and the spike stimulates the
postsynaptic neuron through a current I(t), after a short synaptic
delay. To further simplify the dynamics, we make ureset and urest
both equal to zero in our simulations.

The behavior of the postsynaptic membrane potential in
discrete time, upos[k] corresponds to an exponentially decaying
function toward urest , with a time constant τm, perturbed by
the presence of a presynaptic input I[k]. Considering a time
resolution 1t and the effect of membrane reset due to firing, the
discrete update equation of themembrane potential in this model
is:

upos[k] =

{

ureset upos[k− 1] ≥ uth

upos[k− 1]e−
1t
τm + I[k−1]1t

cm
otherwise

(2)

2.2. Recurrent Network Model
The spiking neural network that we propose consists of an
input layer, a recurrent hidden layer, and a readout layer, also
known as Elman RNN (Elman, 1990). The input is a spiking
stream with N channels, fully connected to a hidden layer of M
neurons, with all-to-all recurrent connections among them (refer
to Figure 1). For each time-step k, the input current of a neuron
in the hidden layer is computed as the weighted summation
of the N input spikes plus the weighted summation of the
spikes coming from the neighboring neurons in the hidden layer
as follows:

I[k] =
N

∑

i=1

wiθi[k]+
M

∑

j=1

wjθj[k] (3)

In this equation, wi, wj are the synaptic strengths from the
i-th input channel and j-th lateral neuron, respectively. Each
synapse can be either excitatory (if the weight is positive)
or inhibitory (if the weight is negative). The weights are
arranged in two connectivity matrices for the input-to-hidden
connections Wih and the hidden-to-hidden connections Whh.
The weights are randomly initialized with a uniform distribution
from −1/

√
N to 1/

√
N. θi[k] and θj[k] denote the occurrence

of a spike on the i-th input channel and j-th lateral neuron,
respectively. The synaptic delay is set equal to the simulation
resolution. The spiking mechanism of the j-th recurrent
neuron is a non-linear function of its membrane potential and
is given by:

θj[k] =

{

1 uj[k− 1] ≥ uth

0 otherwise
(4)

In order to use the network for a pattern classification task, the
hidden layer is fully connected to a readout layer of size C, the
number of classes. This readout layer is composed of neurons
with the same internal dynamics as the hidden layer but without
lateral connectivity. The spike count of the readout is used to
compute the cost function of the classification task, as will be
addressed in the following section.

2.3. Event-Based Dataset
The input of this off-line approach system is the data from
a Dynamic Vision Sensor (DVS), which contrary to standard
cameras, asynchronously detects brightness changes in the scene.
The output of a DVS camera is an event stream, where each
event encodes the x,y location, the time, and the polarity
of the brightness change. This representation of the visual
information is known as Address Event Representation (Sivilotti,
1991; Mahowald, 1992) and provides low power, low latency,
and high dynamic range compared to conventional cameras, at
the cost of ignoring static information such as shape and color.
The sampling rate of this sensor is much higher than that of
conventional cameras, about 1MHz, whichmakes it ideal for real-
time dynamic vision applications with low-latency and power
system constraints (Linares-Barranco et al., 2019). However,
due to the restrictions of the LSM simulation in SpiNNaker, a
maximum sampling rate of 1KHz is supported, which is still
faster than conventional frame-based cameras.

For validation, in this work, we use the N-MNIST dataset
(Orchard et al., 2015), an event-based version of the MNIST
handwritten digit dataset (LeCun et al., 1998), with 60K samples,
divided into 50K for training and 10K for testing. The N-MNIST
was recorded with a DVS mounted in a motorized pan-tilt unit
performing a saccade movement. The spatial resolution of the
event stream is slightly higher than that of the MNIST dataset,
34 × 34 pixels. Each recording, with an average duration of 300
ms, is converted to 50 frames. For every input, we take both
positive and negative changes of illumination as two different
channels.

2.4. Offline Training With Deep Learning
Framework
The sampled event stream is fed to a model of the LSM, built on
top of the PyTorch neural network module, where the activation
functions and internal computations of the neurons in their
forward pass can be easily defined. The engine transforms the
customized definition (in this case, a network of neurons whose
states are their membrane potential with a common activation
function depending on the value of the membrane potential)
into a computational graph, tuned for highly efficient parallel
computations in the GPU. One additional advantage of PyTorch
is that it provides control over which parameters should be
trained and which should be kept untrained or “frozen”.

The memory update equation for the PyTorch
implementation is based on Equations (2) and (3). Note
that the reset mechanism is embedded in this equation as the
factor (1 − θj[k]). When a spike occurs, the term multiplied by
this factor is reset to zero.

u[k] = u[k− 1]e−
1

τm (1− θj[k])+ I[k] (5)

We consider a decay term d = e−
1t
τm with value 0.9. For a 1t =

1.0 ms, this corresponds to a τm of 9.4912 ms.
Using this approach, we were able to train an LSM by

connecting the input to a recurrently connected layer of SNNs
with Elman Connectivity, whose input-to-hidden and hidden-
to-hidden parameters are kept untrained. The bias parameter
for the whole network is set to zero. The output layer is

Frontiers in Neuroscience | www.frontiersin.org 3 March 2022 | Volume 16 | Article 819063

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Patiño-Saucedo et al. LSM on SpiNNaker for Spatio-Temporal Classification Tasks

FIGURE 1 | Overview of the LSM architecture for a 2-dimensional temporal input (visualized here as frames) mapped to a 1-dimensional spiketrain. Values of N input

neurons and M hidden neurons are smaller than those used in this work, for simplification. Gray shaded area indicates non-trainable synaptic weights and purple

shaded area indicates trainable weights.

FIGURE 2 | Left: 48-chip SpiNNaker 103 board. Center: View of a single chip, consisting of 18 cores, a shared RAM and a Network-On-Chip router. Right: View of a

single core, consisting of a tightly-coupled memory and an ARM processor.

a densely connected layer of SNNs with a size equal to
the number of classes (10 for N-MNIST). The objective is
to maximize the firing rate of the neuron corresponding to
the desired output. This is achieved by training the readout
layer using the Spatio Temporal Back Propagation (STBP)
(Wu et al., 2018) algorithm, a time-dependent generalization
of the ANN’s backpropagation algorithm. The loss function
ℓ across S training samples and a time window T is
defined as:

ℓ =
1

S

S
∑

s=1

∥

∥

∥

∥

∥

ys −
1

T

T
∑

t=1

θs,L

∥

∥

∥

∥

∥

2

2

(6)

where ys and θs,L are the label vector of the s-th training
sample and its corresponding spike activity vector in
the output layer (last layer L) after forward propagation,
respectively.

Afterward, the trained weights are used for implementation
on SpiNNaker.

2.5. SpiNNaker Implementation
SpiNNaker is a massively-parallel computer system optimized
for the simulation, in real-time, of very large networks of
spiking neurons (Plana et al., 2020). Both the system architecture
and the design of the SpiNNaker chip were developed by the

Frontiers in Neuroscience | www.frontiersin.org 4 March 2022 | Volume 16 | Article 819063

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Patiño-Saucedo et al. LSM on SpiNNaker for Spatio-Temporal Classification Tasks

FIGURE 3 | Scheme of the different stages of the neuromorphic LSM classification system proposed in this work. The LSM model is defined in PyTorch, and the

output layer is trained using STBP. The trained model parameters are used on an equivalent LSM model defined in sPyNNaker, a PyNN-based API for the SpiNNaker

neuromorphic platform. A rhythmic inhibitory population is added to the sPyNNaker model to avoid undesired mixing of responses caused by reverberating activity

while performing inference in real time.

Advanced Processor Technologies Research Group (APT) at the
University of Manchester. Each SpiNNaker chip consists of 18
fully programmable ARM cores.

In this work, a SpiNNaker 103 machine (Figure 2) was
used. This board comprises 48 SpiNNaker chips, totaling 864
ARM processor cores deployed as 48 monitor processors, 768
application cores, and 48 spare cores. Each application core
has two types of RAM: a 32 kB ITCM (instruction tightly
coupled memory) for storing instructions and a 64 kB DTCM
(data tightly coupled memory) for storing neuron states and
parameters. Additionally, each SpiNNaker chip contains a 128
MB SDRAM shared by the 18 cores for storing the synaptic
weights. The communication between cores is done through
a multicast packet-routing mechanism that mimics the high
connectivity found in biological brains. A 100 Mbps Ethernet
connection is used for controlling an I/O interface between the
computer and the SpiNNaker board. The neurons and synapses
are modeled with sPyNNaker (Rhodes et al., 2018), a software
package for simulating PyNN-defined spiking neural networks
on the SpiNNaker platform.

A scheme of the different stages of the neuromorphic LSM
classification system proposed in this work is shown in Figure 3.
After training the LSM model with PyTorch, the platform allows
the extraction of the final weights. These are used for reproducing
the results from PyTorch with the PyNN-defined SNN and the
subsequent implementation on SpiNNaker, provided the neuron
and synapse dynamics defined in sPyNNaker match those of
PyTorch. This way, the extracted weights are used as synaptic
weights in sPyNNaker with exact same values, and contrary

TABLE 1 | SpiNNaker simulation parameters for the proposed LSM.

Parameter Description Value

ureset (mV) Reset potential 0.0

urest (mV) Resting potential 0.0

uth (mV) Threshold 0.3

τm (ms) Membrane’s time constant 9.4912

cm (nF) Membrane’s capacitance 0.001

erev (mV) Reversal potential 10,000

Ibias (mA) Offset current 0.0

1t (ms) Simulation resolution 1.0

to methods that rely on weight conversion (Rueckauer et al.,
2017) or train-and-constrain methods (Shrestha et al., 2017), no
additional weight preprocessing or approximation is required.
The neuron and simulation parameters for the SpiNNaker are
given in Table 1. A comparison for single neuron dynamics in
both, PyTorch and SpiNNaker, is given in Figure 4. Note that the
behavior at the individual neuron level is almost exactly the same.

To perform inference on SpiNNaker for the whole test set
(10K samples), we loaded via Ethernet the network parameters
and the inputs. The whole network parameters were mapped
into the hardware through the high-level sPyNNaker toolbox and
each sample was fed to the input population sequentially, with
a relaxation of 25 ms after the onset of every sample, where
an activity inhibition mechanism (to be explained below) takes
place. The duration of the relaxation period is equal to that of

Frontiers in Neuroscience | www.frontiersin.org 5 March 2022 | Volume 16 | Article 819063

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Patiño-Saucedo et al. LSM on SpiNNaker for Spatio-Temporal Classification Tasks

FIGURE 4 | Neuron responses to a single spike train, represented with black vertical segments at the bottom of the figure, in SpiNNaker and PyTorch. Responses of

excitatory and inhibitory connections with weights of 0.2 are represented in blue and orange, respectively. The blue line segments above the threshold indicate the

occurrence of output spikes from the excited neurons.

FIGURE 5 | Dynamics of the rhythmic inhibitory neuron connected to the liquid population in SpiNNaker. The light blue stripes indicate the presence of an input

stimulus to the network. After the stimulus ends, the inhibitory neuron emits a spike which reduces the activity of the liquid population of the LSM, so it does not affect

the next stimulus.

Frontiers in Neuroscience | www.frontiersin.org 6 March 2022 | Volume 16 | Article 819063

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Patiño-Saucedo et al. LSM on SpiNNaker for Spatio-Temporal Classification Tasks

FIGURE 6 | Spiking response in SpiNNaker for five sequential inputs, corresponding to the digits 7, 3, 2, 1, 4. Top: Without a rhythmic inhibitory population. Bottom:

With a rhythmic inhibitory population attached to the liquid population. The red boxes in the readout indicate the expected response, and the green dashed lines mark

the start of new inputs.

the presence of the stimulus and was chosen empirically, as a
duration short enough that allowed the inhibition mechanism to
work properly.

As the spiking neural network preserves the effect of
past inputs in the membrane potential, there should be a
way to restore those potentials to their resting values, so
the past stimuli do not affect the future stimuli response.
Usually, for feed-forward networks, the solution is to let the
network’s membrane potential decay to the resting potential
(as given by the membrane time’s constant). However, in
recurrent spiking neural networks, as the firing activity persists
even after the stimulus is removed due to the recurrent
connectivity (see the top of Figure 6), it is necessary to
implement an activity reset mechanism. In SpiNNaker, this
mechanism exists via the high-level Python API SpyNNaker,
but it is costly to implement, as it resets not only the
membrane’s potential but the whole simulation parameters,
including the connectivity.

Given the above, an inhibitory population of 1 neuron
was added to the network, with one-to-all connectivity to

the hidden layer. This neuron fires at regular intervals to
coincide with the final time step of each sample as shown
in Figure 5. The bottom half of Figure 6 shows the effect of
this homeostatic population on the overall behavior of the
network. This inhibitory neuron is a technical solution to
the implementation of recurrent spiking neural networks in
SpiNNaker, so the partitioning and mapping occur only once
and the inference process is smooth. It does not have any
measurable effect on the accuracy of the LSM, as long as the
timing of the inhibitory neuron coincides with the end of
each stimulus.

2.6. Weight Quantization
Weight quantization is a method to reduce the memory
requirements of ANNs in order to enable faster andmore efficient
inference in hardware without significantly compromising
accuracy (Han et al., 2015). This method can also be useful
for neuromorphic computing as some of the available hardware
platforms, such as Neurogrid (Benjamin et al., 2014), BrainScales
(Schemmel et al., 2010), and TrueNorth (Merolla et al., 2014)

Frontiers in Neuroscience | www.frontiersin.org 7 March 2022 | Volume 16 | Article 819063

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Patiño-Saucedo et al. LSM on SpiNNaker for Spatio-Temporal Classification Tasks

FIGURE 7 | Top: Weight distribution of the liquid-to-liquid synapses for three different precisions. Bottom: 2D representation of the weight values for the three

quantization schemes. For this example, a liquid population of 128 was considered. Each resulting 128 × 128 image was cropped for better visualization.

operate with reduced precision in their synaptic weights: 13-,
4-, and 1-bit, respectively. Although SpiNNaker supports up to
32-bit fixed-point precision, we were interested in the behavior
of our proposed LSM with a more reduced weight precision,
considering the small size of the memory where synaptic weights
per chip are stored, 128MB. To this end, the input-to-hidden and
hidden-to-hidden weights were quantized following the rule:

wq = s · round(
w · 2b

s
) (7)

where wq is the quantized weight, w is the original weight,
b is the number of bits of the resulting weight distribution
and s is a normalization scale obtained from the original
weight distribution. Figure 7 shows the weight distribution of
the liquid-to-liquid synapses when quantization is applied for a
liquid population of 128 neurons.

The weight quantization is training-agnostic, because the
two sets of internal weights which are quantized, input-to-
hidden and hidden-to-hidden, are not involved in the training
process (as imposed by the Liquid State Machine model). The
only set of weights that is trained is the hidden-to-output,

Frontiers in Neuroscience | www.frontiersin.org 8 March 2022 | Volume 16 | Article 819063

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Patiño-Saucedo et al. LSM on SpiNNaker for Spatio-Temporal Classification Tasks

but these weights were not quantized. In our experiments,
we quantized the internal weights before and after training
(in PyTorch) yielding no significant differences in the final
classification accuracy.

3. RESULTS

We have trained LSM of sizes ranging from 128 to 4,096
neurons and implemented them in SpiNNaker. For measuring
the performance of the implementation, the whole test set of
the N-MNIST (10,000 samples) was propagated in both PyTorch
and SpiNNaker. An example of the spiking activity in the hidden
and readout layers is shown in Figure 6. These are raster plots
displaying the spike times of each neuron for the first ten
examples. An image is considered to have been classified correctly
if the neuron of the readout layer associated with its label displays
a higher firing rate than the other neurons while the stimulus is
on. The total simulation time for each input is 50 ms. A summary
of the results for different sizes of the hidden layer is given in

TABLE 2 | Results for different sizes of the hidden layer.

Size PyTorch SpiNNaker

128 74.7 75.24

256 82.79 82.26

512 87.96 88.12

1024 90.19 90.29

2048 92.88 92.36

4096 94.43 93.9

Table 2. The only work found in the literature that uses LSM for
this dataset is Tian et al. (2021). In their work, they report a 90.1%
accuracy for a single liquid of size 1,000 and amaximum accuracy
of 92.5% for an ensemble of liquids using neural architecture
search. Our work reaches a top accuracy of 94.43% for a liquid of
size 4,096. Additionally, this is the first reported use of LSM for a
complex spatio-temporal task in a neuromorphic platform. The
best accuracy for SpiNNaker is 93.9%. It can be seen that there is
a small variability in the performance of both platforms, due to
small differences in the precision of the models and the inherent
noise of the SpiNNaker implementations, possibly caused by
dropped packets due to congestion in its interconnect (Plana
et al., 2020).

Additionally, we performed tests with quantized weights,
whose results are summarized in Figure 8. It can be
observed that the use of weight quantization does not
have a significant impact on the accuracy of the LSM in
PyTorch. Regarding the SpiNNaker implementation, only
the two-level quantization (or weight binarization) has a
noticeable impact on the performance, especially with higher
network sizes.

4. DISCUSSION AND FUTURE OUTLOOK

In this article, we introduced a method to facilitate the inference
of Recurrent Spiking Neural Networks on the SpiNNaker
neuromorphic platform. This was validated by implementing
a Liquid State Machine for an event-driven classification task,
the N-MNIST, achieving the best-known accuracy results for
such architecture and dataset. Additionally, we showed that the
accuracy is not significantly affected when the simulated weights
are constrained by quantization.

FIGURE 8 | Accuracies per network size (number of neurons in the liquid population) for three different weight precisions implemented in PyTorch and SpiNNaker.

Frontiers in Neuroscience | www.frontiersin.org 9 March 2022 | Volume 16 | Article 819063

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Patiño-Saucedo et al. LSM on SpiNNaker for Spatio-Temporal Classification Tasks

Regarding the speed of this neuromorphic implementation,
the wall-clock time required for a single inference depends on
the time scale factor parameter used in SpiNNaker, which allows
slowing down the simulations for a more reliable operation.
Our simulations are designed so every inference takes 50 ms
(25 ms for classifying the input and 25 ms for the inhibition
period in preparation for the next input). However, in our best-
reported results, a time scale factor of 5 was used, meaning
a wall-clock time inference of 250 ms. This is far from ideal,
and we encourage the community to find ways to implement
recurrent connectivity in neuromorphic hardware which is
robust to packet loss, so the inference can approach real-
time.

Considering the size of the networks implemented in this
work, it is small for the potential of the SpiNNaker, which
can simulate 255 LIF neurons per core, approximately 195K
neurons in the 48-chip board. However, in our experiments we
observe that the accuracy starts dropping beyond 10 neurons per
core, limiting the maximum network sizes below 7,680 neurons.
We hope that future works aiming for fast, accurate inference
of large spiking neural networks in this platform build upon
our work.

Additionally, in future works, we would like to adapt
our methodology to perform on-chip training and validate
it in datasets with richer dynamical content. We will
favor the use of biologically-feasible time-coded instead
of rate-coded learning rules as it would reduce the
spiking activity in the readout layer. We believe this
work can be found valuable in the quest for building
and implementing highly performing Spiking RNNs in
neuromorphic processors which in turn would be a seed
for future developments of energy-efficient multi-scale
processing applications.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found here: https://www.garrickorchard.com/
datasets/n-mnist.

AUTHOR CONTRIBUTIONS

AP-S, HR-G, TS-G, and BL-B conceived and planned the
experiments, contributed to the interpretation of the results, and
contributed to document preparation. AP-S and HR-G carried
out the experiments. AP-S, TS-G, and BL-B planned and carried
out the simulations. AP-S took the lead in writing themanuscript.
All authors provided critical feedback and helped shape the
research, analysis, and manuscript. All authors contributed to the
article and approved the submitted version.

FUNDING

This work was supported by EU H2020 grant 871371 (MeM-
Scales), by Spanish grant from the Ministry of Science
and Innovation PID2019-105556GB-C31 (NANOMIND) with
support from the European Regional Development Fund), and
by CONACYT scholarship number 688116/578600.

ACKNOWLEDGMENTS

We are grateful to the Advanced Processor Technologies (APT)
Research Group at University of Manchester for enabling access
to SpiNNaker boards and support with related software. We
also acknowledge support of the publication fee by the CSIC
Open Access Publication Support Initiative through its Unit of
Information Resources for Research (URICI).

REFERENCES

Amir, A., Taba, B., Berg, D., Melano, T., Mckinstry, J., Di Nolfo, C., et al. (2017).

“A low power, fully event-based gesture recognition system,” in Proceedings -

30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017

(Honolulu, HI), 7388–7397. doi: 10.1109/CVPR.2017.781

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran,

A. R., Bussat, J.-M., et al. (2014). Neurogrid: a mixed-analog-digital

multichip system for large-scale neural simulations. Proc. IEEE 102, 699–716.

doi: 10.1109/JPROC.2014.2313565

Cramer, B., Stradmann, Y., Schemmel, J., and Zenke, F. (2020). “The Heidelberg

spiking data sets for the systematic evaluation of Spiking Neural Networks,” in

IEEE Transactions on Neural Networks and Learning Systems.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G. A., Joshi,

P., et al. (2021). Advancing neuromorphic computing with Loihi: a survey

of results and outlook. Proc. IEEE 109, 911–934. doi: 10.1109/JPROC.2021.

3067593

DeBole, M. V., Taba, B., Amir, A., Akopyan, F., Andreopoulos, A., Risk, W. P., et

al. (2019). Truenorth: accelerating from zero to 64 million neurons in 10 years.

Computer 52, 20–29. doi: 10.1109/MC.2019.2903009

Diehl, P. U., Pedroni, B. U., Cassidy, A., Merolla, P., Neftci, E., and

Zarrella, G. (2016a). “TrueHappiness: neuromorphic emotion recognition

on TrueNorth,” in Proceedings of the International Joint Conference on

Neural Networks (Vancouver, BC), 4278–4285. doi: 10.1109/IJCNN.2016.772

7758

Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U., and Neftci, E. (2016b).

“Conversion of artificial recurrent neural networks to spiking neural networks

for low-power neuromorphic hardware,” in 2016 IEEE International Conference

on Rebooting Computing, ICRC 2016 - Conference Proceedings (San Diego, CA).

doi: 10.1109/ICRC.2016.7738691

Elman, J. L. (1990). Finding structure in time. Cogn. Sci. 14, 179–211.

doi: 10.1207/s15516709cog1402_1

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models:

Single Neurons, Populations, Plasticity. Cambridge University Press.

doi: 10.1017/CBO9780511815706

Graves, A., and Schmidhuber, J. (2005). Framewise phoneme classification with

bidirectional lstm and other neural network architectures. Neural Netw. 18,

602–610. doi: 10.1016/j.neunet.2005.06.042

Han, S., Mao, H., and Dally, W. J. (2015). Deep compression: compressing deep

neural networks with pruning, trained quantization andHuffman coding. arXiv

preprint arXiv:1510.00149.

Karpathy, A., and Fei-Fei, L. (2015). “Deep visual-semantic alignments for

generating image descriptions,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (Boston, MA), 3128–3137.

doi: 10.1109/CVPR.2015.7298932

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-

based learning applied to document recognition (unread, the

Frontiers in Neuroscience | www.frontiersin.org 10 March 2022 | Volume 16 | Article 819063

https://www.garrickorchard.com/datasets/n-mnist
https://www.garrickorchard.com/datasets/n-mnist
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/MC.2019.2903009
https://doi.org/10.1109/IJCNN.2016.7727758
https://doi.org/10.1109/ICRC.2016.7738691
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1109/CVPR.2015.7298932
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Patiño-Saucedo et al. LSM on SpiNNaker for Spatio-Temporal Classification Tasks

MNIST reference). Proc. IEEE 86, 2278–2324. doi: 10.1109/5.

726791

Linares-Barranco, A., Perez-Pena, F., Moeys, D. P., Gomez-Rodriguez, F., Jimenez-

Moreno, G., Liu, S. C., et al. (2019). Low latency event-based filtering and

feature extraction for dynamic vision sensors in real-time FPGA applications.

IEEE Access 7, 134926–134942. doi: 10.1109/ACCESS.2019.2941282

Lipton, Z. C., Berkowitz, J., and Elkan, C. (2015). A critical review of recurrent

neural networks for sequence learning. arXiv preprint arXiv:1506.00019.

Liu, C., Bellec, G., Vogginger, B., Kappel, D., Partzsch, J., Neumärker, F., et al.

(2018). Memory-efficient deep learning on a SpiNNaker 2 prototype. Front.

Neurosci. 12, 840. doi: 10.3389/fnins.2018.00840

Lukoševičius, M., and Jaeger, H. (2009). Reservoir computing approaches

to recurrent neural network training. Comput. Sci. Rev. 3, 127–149.

doi: 10.1016/j.cosrev.2009.03.005

Maass,W., Natschläger, T., andMarkram, H. (2002). Real-time computing without

stable states: a new framework for neural computation based on perturbations.

Neural Comput. 14, 2531–2560. doi: 10.1162/089976602760407955

Mahowald, M. (1992). VLSI analogs of neuronal visual processing: a synthesis of

form and function. (Ph.D. thesis). California Institute of Technology, Pasadena,

CA, United States.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting

static image datasets to spiking neuromorphic datasets using saccades. Front.

Neurosci. 9, 437. doi: 10.3389/fnins.2015.00437

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al.

(2019). “Pytorch: an imperative style, high-performance deep learning library,”

in Advances in Neural Information Processing Systems 32 (Vancouver, BC),

8026–8037.

Plana, L. A., Garside, J., Heathcote, J., Pepper, J., Temple, S., Davidson, S., et al.

(2020). SpiNNlink: FPGA-based interconnect for the million-core SpiNNaker

system. IEEE Access 8, 84918–84928. doi: 10.1109/ACCESS.2020.2991038

Rhodes, O., Bogdan, P. A., Brenninkmeijer, C., Davidson, S., Fellows, D.,

Gait, A., et al. (2018). sPyNNaker: a software package for running PyNN

simulations on spinnaker. Front. Neurosci. 12, 816. doi: 10.3389/fnins.201

8.00816

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Front. Neurosci. 11, 682. doi: 10.3389/fnins.2017.00682

Sagheer, A., and Kotb, M. (2019). Time series forecasting of petroleum

production using deep LSTM recurrent networks. Neurocomputing 323,

203–213. doi: 10.1016/j.neucom.2018.09.082

Samadzadeh, A., Far, F. S. T., Javadi, A., Nickabadi, A., and Chehreghani, M.

H. (2020). Convolutional spiking neural networks for spatio-temporal feature

extraction. arXiv preprint arXiv:2003.12346. Available online at: https://arxiv.

org/pdf/2003.12346.pdf (accessed January 18, 2021).

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S.

(2010). “A wafer-scale neuromorphic hardware system for large-scale neural

modeling,” in 2010 IEEE International Symposium on Circuits and Systems

(ISCAS) (Paris: IEEE), 1947–1950. doi: 10.1109/ISCAS.2010.5536970

Shrestha, A., Ahmed, K., Wang, Y., Widemann, D. P., Moody, A. T., Van

Essen, B. C., et al. (2017). “A spike-based long short-term memory on a

neurosynaptic processor,” in IEEE/ACM International Conference on Computer-

Aided Design, Digest of Technical Papers, ICCAD 2017 (Irvine, CA), 631–637.

doi: 10.1109/ICCAD.2017.8203836

Shrestha, A., Ahmed, K., Wang, Y., Widemann, D. P., Moody, A. T., Van Essen, B.

C., et al. (2018). Modular spiking neural circuits for mapping long short-term

memory on a neurosynaptic processor. IEEE J. Emerg. Select. Top. Circ. Syst. 8,

782–795. doi: 10.1109/JETCAS.2018.2856117

Sivilotti, M. A. (1991). Wiring considerations in analog VLSI systems, with

application to field-programmable networks (Ph.D. thesis). California Institute

of Technology, Pasadena, CA, United States.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). “Sequence to sequence learning

with neural networks,” in Advances in Neural Information Processing Systems

(Montreal, QC), 3104–3112.

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida, A.

(2019). Deep learning in spiking neural networks. Neural Netw. 111, 47–63.

doi: 10.1016/j.neunet.2018.12.002

Tian, S., Qu, L., Wang, L., Hu, K., Li, N., and Xu, W. (2021). A neural architecture

search based framework for liquid state machine design. Neurocomputing 443,

174–182. doi: 10.1016/j.neucom.2021.02.076

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal

backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 12, 331. doi: 10.3389/fnins.2018.00331

Yang, Z., Gong, R., Qu, L., Kang, Z., Luo, L., Wang, L., et al. (2020).

“Compressedcache: enabling storage compression on neuromorphic

processor for liquid state machine,” in IFIP International Conference

on Network and Parallel Computing (Zhengzhou: Springer), 437–451.

doi: 10.1007/978-3-030-79478-1_37

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Patiño-Saucedo, Rostro-González, Serrano-Gotarredona and

Linares-Barranco. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 March 2022 | Volume 16 | Article 819063

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ACCESS.2019.2941282
https://doi.org/10.3389/fnins.2018.00840
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1109/ACCESS.2020.2991038
https://doi.org/10.3389/fnins.2018.00816
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1016/j.neucom.2018.09.082
https://arxiv.org/pdf/2003.12346.pdf
https://arxiv.org/pdf/2003.12346.pdf
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1109/ICCAD.2017.8203836
https://doi.org/10.1109/JETCAS.2018.2856117
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1016/j.neucom.2021.02.076
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1007/978-3-030-79478-1_37
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Liquid State Machine on SpiNNaker for Spatio-Temporal Classification Tasks
	1. Introduction
	2. Materials and Methods
	2.1. Neuron Model
	2.2. Recurrent Network Model
	2.3. Event-Based Dataset
	2.4. Offline Training With Deep Learning Framework
	2.5. SpiNNaker Implementation
	2.6. Weight Quantization

	3. Results
	4. Discussion and Future Outlook
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

