
Expert Systems With Applications 205 (2022) 117599
Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Benchmarking Answer Set Programming systems for resource allocation in
business processes
Giray Havur a,b, Cristina Cabanillas c, Axel Polleres a,d,∗

a Vienna University of Economics and Business, Vienna, Austria
b Siemens AG Österreich, Technology, Vienna, Austria
c SCORE Lab & I3US Institute, Universidad de Sevilla, Seville, Spain
d Complexity Science Hub, Vienna, Austria

A R T I C L E I N F O

Keywords:
Resource allocation
Business process management
Answer set programming
Benchmark

A B S T R A C T

Declarative logic programming formalisms are well-suited to model various optimization and configuration
problems. In particular, Answer Set Programming (ASP) systems have gained popularity, for example, to
deal with scheduling problems present in several domains. The main goal of this paper is to devise a
benchmark for ASP systems to assess their performance when dealing with complex and realistic resource
allocation with objective optimization. To this end, we provide (i) a declarative and compact encoding of the
resource allocation problem in ASP (compliant with the ASP Core-2 standard), (ii) a configurable ASP systems
benchmark named BRANCH that is equipped with resource allocation instance generators that produce problem
instances of different sizes with adjustable parameters (e.g., in terms of process complexity, organizational and
temporal constraints), and (iii) an evaluation of four state-of-the-art ASP systems using BRANCH. This solid
application-oriented benchmark serves the ASP community with a tool that leads to potential optimizations and
improvements in encodings and further drives the development of ASP solvers. On the other hand, resource
allocation is an important problem that still lacks adequate automated tool support in the context of Business
Process Management (BPM). The ASP problem encoding, ready-to-use ASP systems and problem instance
generators benefit the BPM community to tackle the problem at scale and mitigate the lack of openly available
problem instance data.
1. Introduction

Business Process Management (BPM) is a discipline in operations
management that aims at improving corporate performance by properly
managing and optimizing a company’s business processes. A busi-
ness process is a collection of related events, activities and decisions
that involve a number of human and non-human resources and that
collectively lead to an outcome that is of value to an organization
or its customers (Dumas, Rosa, Mendling, & Reijers, 2018). As an
integral part of business processes, resources have to be considered
throughout all the stages of the BPM life cycle, which iterates from
process discovery and modeling to process execution and monitoring,
targeting continuous process improvement. At run time, a process exe-
cution engine creates business process instances and allocates specific
resources to the tasks to be completed according to predefined criteria.
Such criteria include, for example, constraints that comprise the char-
acteristics of resources needed for each process task. Regarding human
resources, these characteristics are usually reflected in organizational

∗ Corresponding author.
E-mail addresses: giray.havur@wu.ac.at (G. Havur), cristinacabanillas@us.es (C. Cabanillas), axel.polleres@wu.ac.at (A. Polleres).

1 The makespan is the distance in time that elapses from the start to the end of a process execution.

models that contain all the relevant data about the resources, such
as their roles, skills and any other valuable information. For instance,
Role-Based Access Control (RBAC) (Colantonio, Pietro, Ocello, & Verde,
2009) is very often used for assigning resources to process tasks based
on the organizational roles they are associated with. As a result, during
process execution, at the due time for each activity only the required
resource will be picked up from the set of candidates (i.e., among
suitable resources according to the resource assignment constraints)
and allocated to the task. Such a selection and scheduling of resource
assignments is addressed in Resource Allocation in Business Processes
(RABP).

An RABP problem comprises several components: a process model
that describes the control flow of activities (e.g., precedence and
concurrency relations), an organizational model that characterizes re-
sources and their roles to enable activity executions (Russell, van der
Aalst, ter Hofstede, & Edmond, 2005), and a temporal model that
designates activity duration estimations. Moreover, process-oriented

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:giray.havur@wu.ac.at
mailto:cristinacabanillas@us.es
mailto:axel.polleres@wu.ac.at
https://doi.org/10.1016/j.eswa.2022.117599
https://doi.org/10.1016/j.eswa.2022.117599
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.117599&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Expert Systems With Applications 205 (2022) 117599G. Havur et al.
organizations are also concerned with carrying out RABP under opti-
mization objectives so that one or many process performance measures
(e.g., execution time and cost) are optimized (Dumas et al., 2018),
which adds to the complexity of RABP. One way of approaching this
problem is by encoding it using a declarative programming formal-
ism. Answer Set Programming (ASP), a declarative logic programming
dialect particularly suitable to model combinatorial search problems,
appears to be a good candidate for this purpose as it has been used to
solve various hard computational problems and proved to maintain a
balance between expressiveness, ease of use and computational effec-
tiveness (Gebser, Kaminski, Kaufmann, & Schaub, 2012). ASP programs
consist of clauses that look similar to Prolog rules (Colmerauer &
Roussel, 1993) but the underlying computational mechanisms, which
are based on the stable model semantics (Gelfond & Lifschitz, 1988),
are different (Lifschitz, 2008): rather than via resolution-based proofs,
an ASP program is first grounded to a finite set of clauses where each
rule with variables is instantiated as equivalent propositional rules
without variables. Afterward, a solver searches for answer sets (i.e., so-
lutions) of the ground program. This is typically done by relying on
advanced conflict-driven, heuristic search procedures developed in the
area of propositional satisfiability checking (SAT) (Drescher, Gebser,
Kaufmann, & Schaub, 2010). Moreover, apart from rules and hard
constraints, in the absence of complete information, default behaviors
related to an allocated resource (e.g., assumed/default duration of a
generic activity, potentially overridden by a known different duration
for a specific resource/role) can be elegantly represented in ASP by so-
called negation-as-failure (Gelfond & Lifschitz, 1988; Lifschitz, 2008).
Due to its flexible modeling constructs, in prior research efforts (Havur,
Cabanillas, Mendling, & Polleres, 2015, 2016) we could demonstrate
the suitability of ASP as a flexible tool to encode RABP with makespan1

minimization, including relatively complex constraints. This allowed us
to identify the RABP problem as a challenging task for state-of-the-art
ASP systems (i.e., combinations of an ASP grounder and an ASP solver);
however, so far, a comprehensive set of realistic benchmark instances
is missing to stress-test the performance of ASP systems in practice on
RABP.

The ASP community has collected benchmarks to test ASP systems
by organizing regular competitions. These competitions have both been
successful in driving research on more efficient grounders and solvers
and optimizing and comparing problem encodings to evaluate the
different performance of otherwise equivalent encodings in different
ASP systems. Most closely related to our problem, earlier such ASP
competitions (Denecker, Vennekens, Bond, Gebser, & Truszczynski,
2009; Gebser, Maratea, & Ricca, 2020) have led to the development of
two scheduling-related benchmark entries called disjunctive schedul-
ing (Denecker et al., 2009) and incremental scheduling (Gebser et al.,
2020). Unlike these two problems that were addressed in two earlier
ASP competitions, the RABP problem has a makespan optimization
criteria and a more elaborate and expressive input/output setting that is
tailored for real-world applicability, for which a benchmark to compare
the performance of existing ASP solvers and grounders is still missing.
In the case of RABP, this is also due to the lack of openly available real-
world data describing various scenarios in which resource allocation
is required (i.e., the lack of ready-to-use datasets), as companies typi-
cally consider information about their resources or business processes
sensitive.

In this paper, we aim at narrowing this gap by extending former
contributions on ASP-based RABP towards a common challenge bench-
mark for ASP solvers, driven by and parameterizable to mimic realistic
scenarios from BPM. In particular, our contribution is three-fold:

• We define a formalization of the RABP problem and provide a baseline
problem encoding in ASP.

• We develop a ready-to-use, configurable benchmark named BRANCH
that generates RABP instances with respect to given parameters
to adapt the instance sizes, solves the generated RABP instances
using the configured ASP systems by the users, and reports on the
2

performance of the ASP systems.
• Lastly, by using BRANCH, we present a detailed evaluation that com-
pares four ASP systems comprising combinations of state-of-the-art
ASP grounders GRINGO (Gebser, Kaminski, König, & Schaub, 2011)
and I-DLV (Calimeri, Fuscà, Perri, & Zangari, 2017), and solvers
CLASP (Gebser, Kaminski, Kaufmann, Romero, & Schaub, 2015) and
WASP (Alviano, Dodaro, Leone, & Ricca, 2015).

Interestingly, the results of our evaluation demonstrate that real-
world instance sizes pose a considerable challenge on state-of-the-art
ASP systems, which opens further opportunities for specific perfor-
mance improvements in these systems. While this might be a valuable
insight for the ASP research community, the BPM community will
also benefit from a new, declarative encoding of the RABP problem,
available systems to solve it, and a generator to produce instance
datasets for testing purposes.

The remainder of this paper is structured as follows. Section 2 for-
mally defines the RABP problem, providing the necessary background.
Based on that, Section 3 presents our baseline problem encoding,
preceded by a detailed background on ASP. Section 4 describes the
functionalities of BRANCH. Section 5 evaluates the performance of
different ASP systems using our baseline ASP encoding with BRANCH.
Section 6 highlights the limitations of BRANCH. Finally, Section 7
concludes the paper, summarizing insights and giving pointers for
future work.

2. Formalization of the problem

In this section, we first describe the elements involved in RABP, such
as business process models, organizational models, and the modeling of
temporal aspects. Afterward, we formalize the RABP problem.

2.1. Business process models

A business process is a finite set of structured activities where a
specific sequence of activities serves a particular business goal. The
execution of each activity in the process generally requires one human
resource and produces an output that is of benefit for a customer, such
as a service or a product (Burattin, 2015). Process models are defined to
represent the different aspects of a business process, especially the func-
tional (process activities) and the behavioral (control flow or execution
order) perspectives. As for formal descriptions of business processes, in
practice, Business Process Model and Notation (BPMN) (OMG, 2014)
diagrams are widely used to describe business processes due to their
visual understandability.

Book Publishing (BPub) Example 1. Fig. 1 depicts the model of a
process for publishing a book from the point of view of a publishing
house, represented as a BPMN diagram. In this process, when the
publishing entity receives a new textbook manuscript from an author,
it must be proofread and revised. The improved manuscript is then sent
back to the author (press release) for double-checking.

High-level, visual process modeling notations like BPMN can be
automatically mapped to Petri nets (Dijkman, Dumas, & Ouyang, 2008;
Peterson, 1981), which have the advantage of an exact mathematical
definition of their execution semantics and their well-developed theory
for process analysis.

Definition 1 (Petri Net). A Petri net is a 3-tuple 𝑃𝑁 = (𝑃 , 𝑇 , 𝐹) where:
• 𝑃 = {𝑝1, 𝑝2,… , 𝑝𝑛} is a set of places, represented graphically as circles;
• 𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑛} is a set of transitions, represented graphically as

rectangles; and
• 𝐹 ⊆ (𝑃 × 𝑇)

⋃

(𝑇 × 𝑃) is a set of arcs (flow relations), represented as
arrows and describing a bipartite graph.

Expert Systems With Applications 205 (2022) 117599G. Havur et al.
Fig. 1. BPMN model of the book publishing process.
Fig. 2. Petri net model of the book publishing process.
Table 1
Behavioral relation matrix of the activities in Fig. 1.

𝑅𝑀 𝑃𝑀 𝑅𝑇 𝑅𝑉 𝑆𝑃𝑅

𝑅𝑀 ≻,→ ≻,→ ≻,→ ≻,→
𝑃𝑀 ≻,→ ≻,→ ≻,→
𝑅𝑇 ≻, || ≻,→
𝑅𝑉 ≻, || ≻,→
𝑆𝑃𝑅

The input places and the output places of each transition 𝑡 ∈ 𝑇 are
defined as ∙𝑡 = {𝑝 ∈ 𝑃 ∣ (𝑝, 𝑡) ∈ 𝐹 } and 𝑡∙ = {𝑝 ∈ 𝑃 ∣ (𝑡, 𝑝) ∈ 𝐹 },
respectively. Similarly, the input transitions and the output transitions
of each place 𝑝 ∈ 𝑃 are defined as ∙𝑝 = {𝑡 ∈ 𝑇 ∣ (𝑡, 𝑝) ∈ 𝐹 } and
𝑝∙ = {𝑡 ∈ 𝑇 ∣ (𝑝, 𝑡) ∈ 𝐹 }, respectively. 𝜇 ∶ 𝑃 → N0 is a marking of 𝑃𝑁
representing the initial distribution of tokens and 𝜇(𝑝) maps a place 𝑝 to
its number of tokens. Pictorially, tokens are represented as black dots in
places (e.g., 𝜇(𝑝𝑠𝑡𝑎𝑟𝑡) = 1 in Fig. 2). A transition 𝑡 is enabled in 𝜇, denoted
by (𝑃𝑁, 𝜇)[𝑡⟩, when there is at least one token in each input place of
𝑡 where 𝑝 ∈ ∙𝑡. An enabled transition can therefore fire. The firing of
a transition 𝑡 changes the current marking 𝜇 to 𝜇′ by removing one
token from each 𝑝 ∈ ∙𝑡 and adding one token to each 𝑝 ∈ 𝑡∙, denoted
by (𝑃𝑁, 𝜇)[𝑡⟩(𝑃𝑁, 𝜇′). A firing sequence of transitions 𝜎 = 𝑡1, 𝑡2,… , 𝑡𝑛
changes the initial marking of the Petri net 𝜇0 at each firing. If there
exists a firing sequence 𝜎 leading to 𝜇′, then 𝜇′ is reachable from 𝜇0,
denoted by 𝜇′ ∈ [𝑃𝑁, 𝜇0⟩. A Petri net system is a pair (𝑃𝑁, 𝜇0).

BPub Example 2. Fig. 2 illustrates the Petri net representation of the
book publishing process described above, corresponding to the BPMN
diagram in Fig. 1. Activities 𝐴 ⊆ 𝑇 are transitions that are graphically
represented by empty squares.

Among the behavioral relations that are described in Weidlich,
Mendling, and Weske (2011), between two different transitions 𝑡𝑥 and
𝑡𝑦 of a Petri net system (𝑃𝑁, 𝜇0):

• 𝑡𝑥 ≻ 𝑡𝑦 reads as 𝑡𝑥 is in the weak order relation with 𝑡𝑦 if there exists a
firing sequence 𝜎 = 𝑡1, 𝑡2,… , 𝑡𝑛 such that (𝑃𝑁, 𝜇0)[𝜎⟩, 𝑥 ∈ {1,… , 𝑛−1}
and 𝑥 < 𝑦 ≤ 𝑛;

• 𝑡𝑥 → 𝑡𝑦 reads as 𝑡𝑥 is in the precedence relation with (i.e., precedes) 𝑡𝑦
• 𝑡𝑥 ∥ 𝑡𝑦 reads as 𝑡𝑥 is in the concurrency relation with 𝑡𝑦 if there is

a reachable marking 𝜇′ ∈ [𝑃𝑁, 𝜇0⟩ that enables both transitions
concurrently.
3

BPub Example 3. The behavioral relations between the activities in
Fig. 1 are derived from the equivalent Petri net in Fig. 2. These relations
are summarized in Table 1. For example, 𝑃𝑀 ≻ 𝑅𝑇 , 𝑃𝑀 → 𝑅𝑇 , and
𝑅𝑇 ∥ 𝑅𝑉 .

2.2. Organizational model

Different types of organizational structures give rise to different
organizational models (Horling & Lesser, 2004). In most cases, the
employees of the organization (i.e., its human resources) have one or
more organizational roles according to their skills and characteristics,
which allow them to perform certain tasks and activities. One of the
most widely known models for capturing such organizational structures
based on roles is the Role-Based Access Control (RBAC) model (Colan-
tonio et al., 2009). It describes resources, roles, and who can execute
which activity based on the roles.

Definition 2 (RBAC Model). An RBAC Model is a 6-tuple 𝑂 =
(𝐴,𝑅,𝐿, 𝑆𝐴𝐿, 𝑆𝑅𝐿, 𝑆𝐿𝐿), where:
• 𝐴 is a set of activities,
• 𝑅 is a set of resources,
• 𝐿 is a set of roles,
• 𝑆𝐴𝐿 ⊆ 2(𝐴×𝐿) is a set of activity-to-role assignments specifying

which activity can be executed by which role(s) (i.e., the resources
associated with these roles), commonly known as resource assignment
in BPM (Cabanillas, Resinas, del-Río-Ortega, & Cortés, 2015),

• 𝑆𝑅𝐿 ⊆ 2(𝑅×𝐿) is the corresponding set of resource-to-role assignment
tuples identifying the roles per resource,

• 𝑆𝐿𝐿 ⊆ 2(𝐿×𝐿) is a set of role-to-role assignments that form a hier-
archical (sub-role) structure. The symbol ≥ indicates the ordering
operator. If 𝑙1 ≥ 𝑙2, then 𝑙1 is referred to as the senior of 𝑙2.
Conversely, 𝑙2 is the junior of 𝑙1 with the intuitive meaning that
each senior role may also execute all activities that the junior role
is allowed to execute.

BPub Example 4. Let us assume that the book publishing process (cf.
Figs. 1 and 2) is executed within an organization composed of six re-
sources 𝑅 = {𝐴𝑚𝑦, 𝐺𝑙𝑒𝑛, 𝐷𝑟𝑒𝑤, 𝐸𝑚𝑖𝑙𝑦, 𝑂𝑙𝑖𝑣𝑒𝑟, 𝐸𝑣𝑎𝑛} that are assigned
to four distinct roles 𝐿 = {𝑃𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟, 𝐶𝑜𝑝𝑦 𝐸𝑑𝑖𝑡𝑜𝑟, 𝐺𝑟𝑎𝑝ℎ𝑖𝑐 𝐴𝑟𝑡𝑖𝑠𝑡,
𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒 𝐴𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡}. Table 2 shows a possible RBAC model of such
a publishing entity. For instance, within the activity-to-role relation, the
first entry means that the activity Receive Manuscript can be executed by
the members of the role Publisher ; within the resource-to-role relation,

Expert Systems With Applications 205 (2022) 117599G. Havur et al.

w
P

2

d
o
p

D

m
r
f
2
s
i
D
a
r
t
t
a
r

D
a
m
l

D

d

a

a
u



Table 2
RBAC model of the publishing entity.

activity-to-role assignments
Receive Manuscript Publisher
Proofread Manuscript Copy Editor
Revise Text Copy Editor
Revise Visual Graphic Artist
Send Press Release Administrative Assistant

resource-to-role assignments
Amy Publisher
Glen Copy Editor
Drew Copy Editor
Emily Copy Editor
Oliver Graphic Artist
Evan Administrative Assistant

role-to-role assignments
Publisher Copy Editor

the first entry means that the resource Amy has the role Publisher ; and
within the role-to-role relation, the first entry means that the resources
with the role Publisher can execute all the activities of the resources

ith the role Copy Editor but not the other way around (specifically,
ublisher ≥ Copy Editor).

.3. Temporal model

In a typical real-world BPM scenario, temporal constraints like
urations of activities and the tentative deadline for the completion
f process instances (i.e., makespan upper bound) are estimated by
rocess managers.

efinition 3 (Default Duration Function). The default duration function
𝛥 ∶ 𝐴 → N0 defines the activity duration in a use-case specific time unit
(TU) (e.g., in minutes, hours or days) for each activity 𝑎 ∈ 𝐴.

We may assume the temporal model is typically created by process
anagers.2 However, to increase the robustness of resource allocation,
esource-activity, and role-activity specific durations can be estimated
rom an event log using process mining techniques (van der Aalst,
016). Process execution data from past process instances is typically
tored in event logs or audit trails by BPM Systems (BPMS) and other
nformation systems used in the organization (van der Aalst & van
ongen, 2013). An event log usually stores for each event related to an
ctivity the type of event (e.g., start or end of an activity execution),
esource-related properties (at least who executed an activity3), and
emporal information (when the event took place). All the events related
o a process instance constitute a trace. Each event and each trace in
n event log are typically identified by a unique event id and trace id,
espectively.

efinition 4 (Resource-Activity Duration Partial Function). The resource-
ctivity duration partial function 𝛿𝑟 ∶ ( × 𝑅 × 𝐴) ↛ N0 estimates the
ean duration for executing an activity a by a resource r from an event

og .

efinition 5 (Role-Activity Duration Partial Function). The role-activity
duration partial function 𝛿𝑙 ∶ ( × 𝐿 × 𝐴) ↛ N0 estimates the mean
uration for executing an activity a by a role l from an event log 

where (𝑟, 𝑙) ∈ 𝑆𝑅𝐿 and (𝑎, 𝑙) ∈ 𝑆𝐴𝐿.

2 Process managers design processes and implement improvements in them
s needed.

3 Within an organizational context, the resources that appear in the log are
mong those available according to the organizational model of the functional
nit (e.g., an RBAC model).
4

BPub Example 5. Table 3 shows an excerpt ′

BPub of the event log
BPub from the execution of the book publishing process depicted in

Fig. 2. For example, the second row (with the event id e57) is logged at
the start of the execution of the activity Proofread Manuscript by Glen on
2021-10-15 at 09:16. An example of role-activity duration estimation
from an event log is as follows: given the partial event log ′

BPub in
Table 3, 𝜋(′

BPub, 𝐶𝑜𝑝𝑦 𝐸𝑑𝑖𝑡𝑜𝑟, 𝑃 𝑟𝑜𝑜𝑓𝑟𝑒𝑎𝑑 𝑀𝑎𝑛𝑢𝑠𝑐𝑟𝑖𝑝𝑡) is estimated by
calculating the mean of the two time intervals e57 to e64 and e59
to e60 (i.e., the copy editors Glen and Drew’s execution intervals of
Proofread Manuscript). The first time interval is from 09:16 to 13:26
(250 min), and the second one is from 09:35 to 12:45 (190 min).
Therefore, the mean of the two durations is estimated to be 220 min.
Resource-activity duration estimations are calculated in a similar fash-
ion. Associated with our running example, Table 4 shows the temporal
model including the resource-activity and role-activity durations that
are assumed to be extracted from the complete event log BPub, and
the default activity durations that are assumed to be estimated by the
process manager while designing the process.

The selection of the duration to be considered in the allocation for a
resource 𝑟’s execution of an activity 𝑎 is defined by the resource-activity
duration preference function.

Definition 6 (Resource-Activity Duration Preference Function). The
resource-activity duration preference function 𝜋 ∶ ( × 𝑅 × 𝐴) → N0
handles the preference among the resource-activity duration 𝛿𝑟(, 𝑟, 𝑎),
role-activity duration 𝛿𝑙(, 𝑙, 𝑎), and default duration of an activity 𝛥(𝑎).

𝜋(, 𝑟, 𝑎) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛿𝑟(, 𝑟, 𝑎) if 𝛿𝑟(, 𝑟, 𝑎) is defined,
𝛿𝑙(, 𝑙, 𝑎) if 𝛿𝑟(, 𝑟, 𝑎) is not defined and

(𝑟, 𝑙) ∈ 𝑆𝑅𝐿,
𝛥(𝑎) otherwise.

𝜋(, 𝑟, 𝑎) returns the resource-activity duration if 𝛿𝑟(, 𝑟, 𝑎) has a
value for the given parameters , 𝑟, and 𝑎. Otherwise, it returns the
role-activity duration provided that 𝛿𝑙(, 𝑙, 𝑎) has a value for the given
parameters , 𝑙, and 𝑎 where there is an activity-to-role assignment (𝑟, 𝑙)
in the RBAC model. When neither of the functions can be resolved,
𝜋(, 𝑟, 𝑎) returns the default activity duration 𝛥(𝑎), i.e., the estimated
duration by the process manager while designing the process.

BPub Example 6. 𝜋(BPub, 𝐸𝑚𝑖𝑙𝑦, 𝑃𝑀) returns 208 time units since
Emily has never executed Proofread Manuscript herself in the past
(i.e., there is no resource-activity duration for (Emily, Proofread
Manuscript) in Table 4), but there is a role-activity duration for (Copy
Editor, Proofread Manuscript) where (Emily, Copy Editor) ∈ 𝑆𝑅𝐿.

2.4. Resource Allocation in Business Processes (RABP)

RABP aims at finding a feasible allocation consisting of a set of
quadruples 𝐼 ⊆ 2(𝑅×𝐴×𝑈×𝑈) such that (𝑟𝑖, 𝑎𝑖, 𝑠𝑖, 𝑐𝑖) ∈ 𝐼 where each
activity 𝑎𝑖 ∈ 𝐴 is assigned a resource 𝑟𝑖 ∈ 𝑅, a start time 𝑠𝑖 ∈ 𝑈 , and
a completion time 𝑐𝑖 = 𝑠𝑖 + 𝜋(, 𝑟, 𝑎). It is assumed that each activity,
once started, is planned to be completed without interruptions in the
schedule (i.e. activities are non-preemptive). The following constraints
(c.1-c.4) hold for RABP:

(c.1) Only one resource is allocated to each activity.
∀𝑎𝑖 ∈ 𝐴 ∶ |{(𝑟𝑖, 𝑎𝑖, 𝑠𝑖, 𝑐𝑖) ∈ 𝐼}| = 1

(c.2) Each activity has only one start time.
∀𝑖1, 𝑖2 ∈ 𝐼 ∶ 𝑎𝑖1 = 𝑎𝑖2 ⇒ 𝑠𝑖1 = 𝑠𝑖2

(c.3) The start time of any activity is greater than or equal to the
completion time of its preceding activities.

∀𝑖1, 𝑖2 ∈ 𝐼 ∶ 𝑎𝑖1 → 𝑎𝑖2 ⇒ 𝑠𝑖2 ≥ 𝑐𝑖1

Expert Systems With Applications 205 (2022) 117599G. Havur et al.
Table 3
The excerpt ′

BPub of the event log BPub from the execution of the book publishing process in Fig. 2 executed by resources defined in the
RBAC model in Table 2.
event id trace id event type activity resource time stamp

...
e56 7 start Receive Manuscript (RM) Amy 2021-10-15T08:2508:25:27
e57 6 start Proofread Manuscript (PM) Glen 2021-10-15T09:1609:16:54
e58 7 end Receive Manuscript (RM) Amy 2021-10-15T09:2109:21:20
e59 7 start Proofread Manuscript (PM) Drew 2021-10-15T09:3509:35:13
e60 7 end Proofread Manuscript (PM) Drew 2021-10-15T12:4512:45:35
e61 7 start Revise Visual (RV) Oliver 2021-10-15T12:5512:55:01
e62 7 start Revise Text (RT) Drew 2021-10-15T13:0713:07:08
e63 8 start Receive Manuscript (RM) Amy 2021-10-15T13:1513:15:42
e64 6 end Proofread Manuscript (PM) Glen 2021-10-15T13:2613:26:23
e65 6 start Revise Text (RT) Glen 2021-10-15T14:4714:47:07
...
Table 4
Default activity durations, resource-activity durations derived from the
event log BPub and role-activity durations derived from the event log
BPub.

default activity durations
Receive Manuscript 20
Proofread Manuscript 180
Revise Text 240
Revise Visual 240
Send Press Release 30

resource-activity durations
(Amy, Receive Manuscript) 45
(Drew, Proofread Manuscript) 247
(Glen, Proofread Manuscript) 182
(Drew, Revise Text) 186
(Glen, Revise Text) 150
(Oliver, Revise Visual) 221
(Evan, Send Press Release) 55

role-activity durations
(Publisher, Receive Manuscript) 45
(Copy Editor, Proofread Manuscript) 208
(Copy Editor, Revise Text) 171
(Graphic Artist, Revise Visual) 221
(Administrative Asst., Send Press Release) 55

(c.4) Same resource must not be allocated to any concurrent pair of
activities that have overlapping execution periods.
∀𝑖1, 𝑖2 ∈ 𝐼 ∶ (𝑎𝑖1 ∥ 𝑎𝑖2 ∧ 𝑠𝑖2 ≤ 𝑠𝑖1 < 𝑐𝑖2) ⇒ 𝑟𝑖1 ≠ 𝑟𝑖2
∀𝑖1, 𝑖2 ∈ 𝐼 ∶ (𝑎𝑖1 ∥ 𝑎𝑖2 ∧ 𝑠𝑖2 < 𝑐𝑖1 ≤ 𝑐𝑖2) ⇒ 𝑟𝑖1 ≠ 𝑟𝑖2
∀𝑖1, 𝑖2 ∈ 𝐼 ∶ (𝑎𝑖1 ∥ 𝑎𝑖2 ∧ 𝑠𝑖2 > 𝑠𝑖1 ∧ 𝑐𝑖2 < 𝑐𝑖1) ⇒ 𝑟𝑖1 ≠ 𝑟𝑖2

3. Baseline ASP encoding of the problem

Before we delve into the details of the encoding of RABP in ASP
(Section 3.3), let us introduce fundamentals of ASP (Section 3.1) and
some theoretical motivation of why RBAP is particularly suitable to be
encoded and solved with ASP (Section 3.2).

3.1. Fundamentals of ASP

ASP (Brewka, Eiter, & Truszczyński, 2011) is a declarative (logic-
programming-style) formalism for solving combinatorial search prob-
lems. An ASP program 𝛱 is a finite set of logic programming rules of
the form
𝑎0 ∶ − 𝑎1,… , 𝑎𝑚, 𝑛𝑜𝑡 𝑎𝑚+1,… , 𝑛𝑜𝑡 𝑎𝑛. (1)

where 𝑛≥𝑚≥ 0 and each 𝑎𝑖 is a function-free first-order atom. The
symbol ‘‘:-’’ is read as if : The left-hand side (e.g., 𝑎0) is called the head
of the rule and the right-hand side (e.g., 𝑎1,… , 𝑎𝑚, 𝑛𝑜𝑡 𝑎𝑚+1,… , 𝑛𝑜𝑡 𝑎𝑛)
is called the body of the rule. Semantically, if the body holds then the
head is derived. When the body is empty, the symbol ‘‘:-’’ is dropped
and the rule is called a fact (e.g., 𝑎0.). ‘‘𝑛𝑜𝑡’’ is called negation as failure:
5

𝑛𝑜𝑡 𝑎𝑖 is derived from failure to derive 𝑎𝑖. In rule (1), if 𝑎1,… , 𝑎𝑚
are true and none of 𝑛𝑜𝑡 𝑎𝑚+1, … , 𝑛𝑜𝑡 𝑎𝑛 can be proven to be true
then 𝑎0 must be true. When the ℎ𝑒𝑎𝑑 is empty in a rule, we call it
a constraint. Constraints rule out models satisfying their body atoms,
which eliminates unwanted solution candidates.

Whenever 𝑎𝑖 is a first-order predicate with variables within a rule
𝑟 of the form (1), this rule is considered a shortcut for its ‘‘grounding’’
𝑔(𝑟) (i.e., the set of its instantiations obtained by replacing the variables
with all possible constants occurring in 𝛱). Likewise, we denote by
𝑔(𝛱) the set of rules obtained from grounding all rules in 𝛱 .

As a syntactic extension, the ASP Core-2 standard (Calimeri et al.,
2020) allows set-like choice expressions of the form

𝑥 ≤ {𝑎1,… , 𝑎𝑚} ≤ 𝑦 ∶ − 𝑎𝑛,… , 𝑎𝑘, 𝑛𝑜𝑡 𝑎𝑘+1,… , 𝑛𝑜𝑡 𝑎𝑙 .

that is, if the body holds then an arbitrary subset of {𝑎1,… , 𝑎𝑚} of
minimum size of 𝑥 and maximum size of 𝑦 is derived.

Example 3.1. The following ASP program describes a simplified
resource allocation setting for exemplifying the concepts in ASP. In this
resource allocation setting, the activities have no behavioral relation
(i.e., precedence and concurrency relations) in contrast to RABP.

1resource(r1). resource(r2). resource(r3).
2activity(a1;a2).

31<={allocation(R,A) : resource(R)}<=1
4:- activity(A).

5:- allocation(R,A1), allocation(R,A2), A1!=A2.

6:- allocation(r1,a2).
7:- allocation(r2,a1).

Lines (1,2) are facts stating that r1, r2 and r3 are resources;
and a1 and a2 are activities – ‘‘activity(a1;a2).’’ is a syntactic
shortcut for ‘‘activity(a1). activity(a2).’’. Line (3) is a choice
expression that generates the allocation predicates. This line can be
read as follows: for each activity a ∈ {a1,a2}, derive minimum 1 and
maximum 1 (i.e., only one) allocation(r’,a’) where a’ is equal
to a and R is selected from the domain of the predicate resource
(i.e., r’ ∈ {r1,r2,r3}). Lines (4–6) are constraints. Line (4) omits the
answers in which a resource is allocated to more than one activity. Line
(5) prohibits the resource r1 to be allocated to the activity a2, and line
(6) prohibits the resource r2 to be allocated to the activity a1. The
three different answers (i.e., solutions) of this program are as follows:
A 1: allocation(r1,a1) allocation(r2,a2)
A 2: allocation(r3,a1) allocation(r2,a2)
A 3: allocation(r1,a1) allocation(r3,a2)

Aggregates (Gebser, Kaminski, Ostrowski, Schaub, & Thiele, 2009)
are arithmetic operations over a set of elements and they occur
in aggregate atoms in rule bodies that have the form #𝑎𝑔𝑔𝑟{𝑤1 ∶
𝑎1,… , 𝑤𝑛 ∶ 𝑎𝑛} ⊕ 𝑣, where 𝑤𝑖 is the weight assigned to 𝑎𝑖; the oper-
ation 𝑎𝑔𝑔𝑟 ∈{‘‘𝚌𝚘𝚞𝚗𝚝’’ ,‘‘𝚜𝚞𝚖’’,‘‘𝚖𝚒𝚗’’, ‘‘𝚖𝚊𝚡’’}; the comparison operator
⊕ ∈{‘‘<’’,‘‘≤’’,‘‘=’’,‘‘≠’’, ‘‘>’’,‘‘≥’’}; and 𝑣 is a bound value. For instance,

Expert Systems With Applications 205 (2022) 117599G. Havur et al.

d

the aggregate #𝚜𝚞𝚖{𝑤1 ∶ 𝑎1,… , 𝑤𝑛 ∶ 𝑎𝑛} ⊕ 𝑣 is interpreted as 𝑡𝑟𝑢𝑒 if
∑𝑛
𝑖=1𝑤𝑖 ⊕ 𝑣 holds, and 𝑓𝑎𝑙𝑠𝑒 otherwise. In addition, an aggregate on

the right-hand side of the assignment operator ‘‘=’’ may also be used
for assigning the result obtained from the aggregate’s evaluated value
to a variable.

Example 3.2. Following Example 3.1, we add the following lines in
our program for taking into account the execution times required for
each resource to execute an activity.

7execTime(r1,a1,10). execTime(r1,a2,10).
8execTime(r2,a1,20). execTime(r2,a2,20).
9execTime(r3,a1,30). execTime(r3,a2,30).

totalTime(T) :-
10T=#sum{E, A : allocation(R,A), execTime(R,A,E)}.

Lines (7–9) represent the execution times of activities by specific re-
sources. For example, execTime(r1,a1,10) means that the resource
r1 executes the activity a1 in 10 min. Line (10) sums the total execu-
tion time of all activities with respect to the allocated resources. The
program described in lines (1–10) returns the following three answers:
A 1: allocation(r1,a1) allocation(r2,a2) totalTime(30)
A 2: allocation(r1,a1) allocation(r3,a2) totalTime(40)
A 3: allocation(r3,a1) allocation(r2,a2) totalTime(50)

Weak constraints (Leone et al., 2006) allow us to formalize optimiza-
tion problems in an easy and natural way. In such problems we use
weak constraints to indicate preferences between possible answer sets:

∶∼ 𝑎1,… , 𝑎𝑚. [𝑤, 𝑡1,… , 𝑡𝑛]

where 𝑡1,… , 𝑡𝑛 are terms (e.g., atoms), and 𝑤 is a weight. The sum of
weights 𝑤 over all occurrences of weighted atoms that are satisfied by
a stable model are therefore minimized.

Example 3.3. We add a weak constraint to our example as follows:
11:˜ totalTime(T). [T, T]

Line (11) asks the solver to minimize the variable T of totalTime in
the answer. The program described in lines (1–11) returns the following
optimum answer:
OPT: allocation(r1,a1) allocation(r2,a2) totalTime(30)

Therefore, the optimum answer with the minimum value of the
totalTime variable T is returned as an answer (cf. Example 3.2).

Sets of rules are evaluated in ASP under the stable-model seman-
tics (Gelfond & Lifschitz, 1988), which allows several models (so-called
answer sets) . The ASP systems typically first compute a 𝑔(𝛱) via a
grounder, and then use a Davis–Putnam–Logemann–Loveland- (DPLL)-
like branch-and-bound algorithm to find answer sets for this ground
program via a solver. There are various grounders and solvers for solving
problems encoded in ASP (Gebser, Maratea, & Ricca, 2017). They vary
in terms of the meta-heuristics and extensions incorporated in their
implementations. We refer to Brewka et al. (2011) and references
therein for details.

3.2. Theoretical motivation: Why to solve RABP with ASP?

In order to motivate why the RABP problem as introduced in this
paper is amenable to be solved with ASP, let us argue by comparing
RABP to related problems from the literature.

A couple of scheduling-related benchmarks have been presented
and executed in the earlier ASP competitions (Denecker et al., 2009;
Gebser et al., 2020). The first entry is called disjunctive schedul-
ing (Denecker et al., 2009) and assumes generalized activity precedence
relations (i.e., any activity can be preceded by any other activities
without further limitations, such as those imposed in RABP due to
the need of having well-formed business process structures), uniform
6

p

activity durations (i.e., all activities have the same execution time),
and an overall deadline to be met without additional resource-related
constraints. The other related entry is called incremental schedul-
ing (Gebser et al., 2020) and addresses a problem with one renewable
resource4 set, fixed activity durations (i.e., each activity has only
one possible execution time) and deadlines imposed on activities.
Unlike the problems involved in these two ASP competition entries,
the RABP problem has different numbers of resource sets (i.e., roles),
resource- and resource-set-specific time requirements and – as the
overall optimization criterion – minimization of the total makespan.

Allocation of resources with starting times to the activities
(i.e., RABP) is a far-from-trivial task with strong implications on the
quality of the final allocation, and it is incredibly challenging from
a computational perspective (Lombardi & Milano, 2012). As for
complexity, RABP with makespan optimization is NP-Hard: the Job
Shop Scheduling Problem (JSSP), known to be NP-Complete for its
variants with two or more machines (Garey, Johnson, & Sethi, 1976),
is polynomial-time reducible to a RABP problem. A JSSP instance can
simply be translated into a RABP problem instance where (i) the tasks
of different jobs that require the same machine would be represented
as activities in concurrency relation, (ii) the order of tasks in jobs
maps to precedence relations of activities, (iii) machines map to roles
with only one resource, and (iv) task durations for specific machines
are represented as default activity durations. Since we provide an
encoding of RABP in ASP with weak constraints, which captures the
class of 𝛥𝑃2 that is typically used for computing optimal solutions
among such NP-complete problems with a given upper bound 𝑢 to be
minimized (Buccafurri, Leone, & Rullo, 1997), we also show that RABP
is in 𝛥𝑃2 .

Moreover, ASP provides a simple and elegant representation to
define and handle the preferences/priorities of resource-bound activity
durations and also default activity durations in absence of complete
information. For these reasons, therefore, the RABP problem seems to
be an ideal candidate for benchmarking ASP systems supporting weak
constraints.

3.3. ASP encoding of RABP

Our encoding is shown in Fig. 3. It encapsulates the formalization in
Section 2.4 in a straightforward, declarative manner (i.e., no encoding
‘‘tricks’’ that optimize for a specific ASP grounder or solver have been
applied).

Input Format. The input is divided into three groups of predicates as
follows.

Behavioral relations of activities in a business process  as described in
Section 2.1:

• activity(𝑎): 𝑎 is an activity in  ;
• prec(𝑎1, 𝑎2): the activity 𝑎1 precedes the activity 𝑎2;
• conc(𝑎1, 𝑎2): the activity 𝑎1 is concurrency with the activity 𝑎2.

An RBAC organizational model 𝑂 = (𝐴,𝑅,𝐿, 𝑆𝐴𝐿, 𝑆𝑅𝐿, 𝑆𝐿𝐿) as
escribed in Section 2.2:

• alAC(𝑎, 𝑙): the resources with role 𝑙 can execute activity 𝑎
(i.e., (𝑎, 𝑙) ∈ 𝑆𝐴𝐿);

• rlAC(𝑟, 𝑙): resource 𝑟 has role 𝑙 (i.e., (𝑟, 𝑙) ∈ 𝑆𝑅𝐿);
• llAC(𝑙1, 𝑙2): the resources with role 𝑙1 can execute the same

activities as the resources with role 𝑙2 (i.e., (𝑙1, 𝑙2) ∈ 𝑆𝐿𝐿).

A temporal model as described in Section 2.3:

• defActDuration(𝑎, 𝑑): the default duration of activity 𝑎 is
estimated as 𝑑 (i.e., 𝛥(𝑎) = 𝑑);

4 Renewable resources are available with a constant amount in each time
eriod, e.g., human resources.

Expert Systems With Applications 205 (2022) 117599G. Havur et al.

a
m
o
(
m
2
i

O
p

Fig. 3. ASP encoding for the RABP problem.
Fig. 4. Optimal solution of the book publishing example in Section 2.
• raDuration(𝑟, 𝑎, 𝑑): the duration of activity 𝑎 is estimated as 𝑑
when it is executed by resource 𝑟 from  (i.e., 𝛿𝑟( , 𝑟, 𝑎) = 𝑑);

• laDuration(𝑙, 𝑎, 𝑑): the duration of activity 𝑎 is estimated as
𝑑 when it is executed by a resource that has role 𝑙 from 
(i.e., 𝛿𝑙( , 𝑙, 𝑎) = 𝑑);

• upperBound(𝑢): makespan is bounded at 𝑢 time units.

The code reads as follows. Rules (12–14) select a makespan for the
llocation. Rules (15, 16) generate the time domain from the selected
akespan. Rule (17) propagates the permissions of activity executions

f a junior role to a senior role (i.e., role-to-role RBAC relations). Rules
18–20) implement the resource-activity duration preference handling
echanism described in Definition 6. Rules (21), (22), (23), and (24–
6) correspond to the constraints (c.1), (c.2), (c.3), and (c.4) described
n Section 2.4, respectively. Finally, Rule (27) minimizes the makespan.

utput Format. For the allocation output we use the following
redicate as described in Section 2.4:

• allocation(𝑟, 𝑎, 𝑠, 𝑐): a resource 𝑟 is allocated to activity 𝑎 at
the start time 𝑠 until the completion time 𝑐 (i.e., (𝑟, 𝑎, 𝑠, 𝑐) ∈ 𝐼).

BPub Example 7. The book publishing example described in Section 2
7

(the process model from Fig. 1 and Table 1, the organizational model
Table 5
ASP encoding of the book publishing example described in Section 2.

process model
activity (rm; pm; rt; rv; spr)
prec (rm,pm; rm,rt; rm,rv; rm,spr; pm,rt; pm,rv;

pm,spr; rt,spr; rv,spr)
conc (rt,rv; rv,rt)

organizational model
alAC (rm,publ; pm,copyEd; rt,copyEd;

rv,graphAr; spr,adAsst)
rlAC (amy,publ; glen,copyEd; drew,copyEd;

emily,copyEd; oliver,graphAr; evan,adAsst)
llAC (publ,copyEd)

temporal model
defActDuration (rm,20; pm,180; rt,240; rv,240; spr,30)
raDuration (amy,rm,40; drew,pm,247;

glen,pm,182; drew,rt,186;
glen,rt,150; oliver,rv,221;
evan,spr,55)

laDuration (publ,rm,45; copyEd,pm,208;
copyEd,rt,171; graphAr,rv,221;
adAsst,spr,55)

upperBound (350)

Expert Systems With Applications 205 (2022) 117599G. Havur et al.
Fig. 5. Screenshots of the benchmark.
Table 6
Parameters for generating one RABP problem instance.
Petri net generator RBAC generator Temporal knowledge generator

Number of activities 𝑛𝐴 Number of resources 𝑛𝑅 Upper bound 𝑢
Degree of concurrency 𝜓𝑐𝑜𝑛𝑐 Number of roles 𝑛𝐿 Number of resource-activity durations 𝑛𝑑𝑅𝐴

Number of role-activity durations 𝑛𝑑𝐿𝐴
from Table 2, and the temporal model from Table 4) is encoded in ASP
as depicted in Table 5. Its optimal solution computed by an ASP system
using the RABP encoding in Fig. 3 is shown in Fig. 4. The solution can
be read as the following: Amy is allocated to Receive Manuscript at time
0 and it is planned in the resultant allocation that Amy takes 40 min
to execute this activity. Then, Amy is allocated to Proofread Manuscript
with a starting time of 40 min, and she takes 180 min to execute the
activity, and so on.

4. Implementation of the ASP systems benchmark for RABP

The lack of datasets for benchmarking ASP systems for RABP, unlike
other related scheduling domains (Elloumi, Loukil, & Fortemps, 2021;
Li & Dong, 2018; Paraskevopoulos, Tarantilis, & Ioannou, 2012), led us
to design and implement a ready-to-use benchmark BRANCH that gener-
ates RABP problem instances and solves them via user-configured ASP
Systems (Havur, Cabanillas, & Polleres, 2021). BRANCH is implemented
in a user-friendly fashion with a simple User Interface (UI)5. Fig. 5(a)
shows the main menu of BRANCH. The functionalities provided within
BRANCH are further described below.

Problem (Multi-)Instance Generator: This component involves a
process model, an organizational model and a temporal knowledge
generator, as depicted in Fig. 5(c). An overview of required parameters
for generating one RABP problem instance is summarized in Table 6.
The inputs of the process model generator are the number of activ-
ities and the degree of concurrency of the generated process model.
BRANCH uses the stochastic Petri net plug-in of the process mining

5 The UI is implemented via the Python appJar module.
8

tool ProM (Rogge-Solti, 2014) for generating Petri nets. This plug-
in performs a series of random structured insertions of control-flow
constructs resulting in a random Petri net that is sound, free-choice
and block-structured (van der Aalst, 1996). For example, Fig. 6 shows
three generated Petri nets with different degree of concurrency. After
a Petri net is generated, the behavioral relations of its activities are
derived for RABP. An organizational model is then generated using
the RBAC model (Colantonio et al., 2009) by entering a number of
resources and a number of roles that are necessary to create the model.
The RBAC model consists of a resource set, a role set, activity-to-role
assignment tuples specifying which activity can be executed by the
resources associated with which role(s), and tuples of resource-to-role
assignments identifying the roles of a resource. Finally, the temporal
knowledge is generated given an upper bound for the execution of the
process, resource-activity specific durations, and role-activity specific
durations (apart from default activity durations). Users can generate
multiple problem instances at once via the multi-instance generator.
Each of the previously described numeric inputs are parameterized by
three values (lower limit, mode, and upper limit). Therefore, their re-
spective triangular random variables are sampled to generate multiple
RABP instances.

Problem Instance (resp. Benchmark) Viewer: Generated problem
instances (resp. benchmarks) are listed in a table including the pa-
rameters used for their generation. The user can also remove the
instances.

ASP System Component Configurator: The components of the
ASP systems are added by naming the component, its type and
the executable path. We include the state-of-the-art ASP grounders
GRINGO (Gebser et al., 2011) and I-DLV (Calimeri et al., 2017); and

Expert Systems With Applications 205 (2022) 117599G. Havur et al.

A
i
g
p
2

B
u
s
l
F
i
m

B
e
t

R
a
p
r

d
a
e

a
~

5

A
t
a

Fig. 6. Three generated Petri nets with 6 activities.
SP solvers CLASP (Gebser et al., 2015) and WASP (Alviano et al., 2015)
n BRANCH for the sake of convenience of the benchmark user. These
rounders and solvers are selected mainly due to being among the top-
erforming tools in the latest ASP Competitions (Gebser et al., 2017,
020).

enchmark Configurator: To set up a new benchmark instance the
ser can select problem instances to include as well as add new ASP
ystems to be used by selecting and customizing (e.g., adding command
ine options) grounder+solver configurations with the UI shown in
ig. 5(b). A custom problem encoding for RABP can also be selected
f desired and the execution details of the benchmark (e.g., time and
emory limitations) can be further constrained.

enchmark Executor: The user can select one benchmark instance to
xecute. The grounding and solving instances are dynamically listed in
he monitored interface.

esult Viewer: The time and memory usage statistics of ASP grounders
nd solvers can be exported in csv format. We also implemented box
lots and cactus plots for an easier interpretation of the benchmark
esults.

BRANCH follows the applicable basic principles of experimental
esign by providing (i) randomization via the multi-instance generator,
nd (ii) replication via the benchmark configurator and benchmark
xecutor.

The benchmark software, a video that screencasts the tool usage and
separate tutorial document are available at https://urban.ai.wu.ac.at/
havur/eswa2022/.

. BRANCH in use

As aforementioned, BRANCH is configurable in the sense that any
SP grounder and ASP solver can be added and their optional parame-

ers are textually given for purposes like activating their meta-heuristics
nd ensuring the compatibility between grounders and solvers, when
9

possible. We demonstrate the functionalities of BRANCH via configuring
four different ASP systems using out-of-the-box grounders and solvers:
GRINGO+CLASP (i.e., CLINGO; Gebser, Kaminski, Kaufmann, & Schaub,
2014), GRINGO+WASP, I-DLV+CLASP, and I-DLV+WASP (i.e., DLV 2.0; Al-
viano et al., 2017). We use the most up-to-date versions of these
grounders and solvers: GRINGO 5.5.0, I-DLV 1.1.6, CLASP 3.3.6, WASP 2.0.
These tools are executed on their default meta-heuristic options (i.e., no
extra parameter is given) in this benchmark except for the combina-
tion of the grounder GRINGO and the solver WASP. While configuring
the ASP system GRINGO+WASP, we set the output format of GRINGO to
smodels (Syrjänen, 2000) by simply adding ‘‘-o smodels’’ parameter
for GRINGO using the +Option button in Fig. 5(b) because GRINGO’s
default output format aspif (Gebser et al., 2016) is not compatible with
WASP.

Platform: The benchmark has been run on an Ubuntu Linux server
(64 bit), equipped with a 16 Core 2.40 GHz Intel Xeon Processor and
128 GB RAM. Time and memory for each run were limited to 2 h CPU
clock time and 20 GB, respectively.

Problem Instances: We generated 70 problem instances using
BRANCH’s instance generator. The details of these instances are pro-
vided in Table 7. In the table, id is the unique identifier of each
instance, 𝑛𝐴 is the number of activities to which resources are going to
be allocated, 𝜓𝑐𝑜𝑛𝑐 is the degree of concurrency of the generated Petri
net, 𝑛𝑅 is the number of resources, and 𝑛𝐿 is the number of roles. The
𝑆𝐴𝑇 column indicates if there exists a feasible solution for the problem
instance in the given upper bound 𝑢.

We ran the benchmark and summarized the results in Tables 8 and
9. Table 8 shows the performance statistics of two grounders while
grounding the problem instances. In the table, time is the CPU time
in seconds, mem is the memory used in MB, and |𝑔(𝛱)| is the size of
the ground program in MB. Table 9 presents the performance statistics
of only the ASP solvers. CLASP(GRINGO) indicates the performance of
the solver CLASP using the ground program from the grounder GRINGO.

https://urban.ai.wu.ac.at/~havur/eswa2022/
https://urban.ai.wu.ac.at/~havur/eswa2022/
https://urban.ai.wu.ac.at/~havur/eswa2022/

Expert Systems With Applications 205 (2022) 117599G. Havur et al.

c
W
c
b
o

Table 7
Properties of problem instances.
id 𝑛𝐴 𝛿𝑐𝑜𝑛𝑐 𝑛𝑅 𝑛𝐿 𝑆𝐴𝑇 𝑢 id 𝑛𝐴 𝛿𝑐𝑜𝑛𝑐 𝑛𝑅 𝑛𝐿 𝑆𝐴𝑇 𝑢 id 𝑛𝐴 𝛿𝑐𝑜𝑛𝑐 𝑛𝑅 𝑛𝐿 𝑆𝐴𝑇 𝑢

1 8 50 2 1 𝑌 𝑒𝑠 90 24 16 30 16 4 𝑌 𝑒𝑠 90 47 32 90 16 8 𝑌 𝑒𝑠 330
2 8 75 4 1 𝑌 𝑒𝑠 70 25 16 30 16 4 𝑌 𝑒𝑠 85 48 32 80 16 8 𝑌 𝑒𝑠 260
3 8 100 4 1 𝑌 𝑒𝑠 105 26 16 90 16 4 𝑌 𝑒𝑠 140 49 32 90 16 8 𝑌 𝑒𝑠 310
4 8 100 8 2 𝑌 𝑒𝑠 70 27 16 30 37 8 𝑌 𝑒𝑠 65 50 32 90 16 8 𝑌 𝑒𝑠 360
5 16 90 2 1 𝑌 𝑒𝑠 200 28 16 50 35 8 𝑌 𝑒𝑠 75 51 32 50 17 4 𝑌 𝑒𝑠 145
6 16 50 4 1 𝑌 𝑒𝑠 75 29 16 75 35 8 𝑌 𝑒𝑠 130 52 32 50 17 4 𝑌 𝑒𝑠 145
7 16 90 8 4 𝑌 𝑒𝑠 175 30 16 90 34 8 𝑌 𝑒𝑠 190 53 32 50 32 16 𝑌 𝑒𝑠 160
8 16 50 4 1 𝑌 𝑒𝑠 120 31 32 90 2 1 𝑌 𝑒𝑠 330 54 32 80 16 4 𝑌 𝑒𝑠 330
9 16 90 4 1 𝑌 𝑒𝑠 185 32 32 95 2 1 𝑌 𝑒𝑠 360 55 32 50 33 8 𝑌 𝑒𝑠 380
10 16 75 4 1 𝑌 𝑒𝑠 145 33 32 30 4 1 𝑌 𝑒𝑠 100 56 32 90 32 16 𝑌 𝑒𝑠 345
11 16 90 4 1 𝑌 𝑒𝑠 210 34 32 60 4 1 𝑌 𝑒𝑠 210 57 32 90 17 4 𝑌 𝑒𝑠 350
12 16 90 9 2 𝑌 𝑒𝑠 205 35 32 75 8 4 𝑁𝑜 210 58 32 50 32 16 𝑌 𝑒𝑠 235
13 16 50 8 2 𝑌 𝑒𝑠 130 36 32 60 4 1 𝑌 𝑒𝑠 275 59 32 50 16 4 𝑌 𝑒𝑠 360
14 16 75 8 2 𝑌 𝑒𝑠 75 37 32 30 4 1 𝑌 𝑒𝑠 270 60 32 80 32 16 𝑌 𝑒𝑠 290
15 16 40 16 8 𝑌 𝑒𝑠 85 38 32 85 4 1 𝑌 𝑒𝑠 270 61 32 60 32 16 𝑌 𝑒𝑠 520
16 16 40 8 2 𝑌 𝑒𝑠 75 39 32 85 4 1 𝑌 𝑒𝑠 300 62 32 50 33 8 𝑌 𝑒𝑠 150
17 16 90 16 8 𝑌 𝑒𝑠 190 40 32 90 4 1 𝑌 𝑒𝑠 145 63 32 80 34 8 𝑌 𝑒𝑠 317
18 16 90 8 2 𝑌 𝑒𝑠 210 41 32 90 8 4 𝑌 𝑒𝑠 355 64 32 90 33 8 𝑌 𝑒𝑠 340
19 16 75 8 2 𝑌 𝑒𝑠 115 42 32 90 8 4 𝑌 𝑒𝑠 360 65 64 90 8 4 𝑁𝑜 305
20 16 75 16 8 𝑌 𝑒𝑠 120 43 32 30 8 2 𝑌 𝑒𝑠 200 66 64 90 8 4 𝑁𝑜 310
21 16 90 16 8 𝑌 𝑒𝑠 165 44 32 75 16 8 𝑌 𝑒𝑠 280 67 64 60 16 8 𝑌 𝑒𝑠 295
22 16 90 9 2 𝑌 𝑒𝑠 200 45 32 90 8 2 𝑌 𝑒𝑠 315 68 64 90 16 8 𝑌 𝑒𝑠 710
23 16 30 17 4 𝑌 𝑒𝑠 75 46 32 50 16 8 𝑌 𝑒𝑠 170 69 64 60 64 32 𝑌 𝑒𝑠 320

70 64 90 64 32 𝑌 𝑒𝑠 620
Table 8
Grounder statistics.
id GRINGO I-DLV id GRINGO I-DLV

tim
e

m
em

|
g(
𝛱
)|

tim
e

m
em

|
g(
𝛱
)|

tim
e

m
em

|
g(
𝛱
)|

tim
e

m
em

|
g(
𝛱
)|

1 3 7 29 3 74 20 36 1689 22 16323 960 4403 4526
2 7 8 74 4 86 25 37 1572 23 15544 1049 4272 4347
3 19 8 163 11 174 56 38 1459 18 15766 855 4284 4363
4 7 7 85 3 129 28 39 1860 20 19515 1107 5158 5422
5 68 9 527 76 598 330 40 460 15 4465 265 1300 1218
6 30 9 316 15 193 91 41 672 15 6743 1176 8736 3818
7 30 9 287 52 737 188 42 445 15 6939 925 8969 3927
8 77 9 752 46 439 239 43 513 18 8369 491 3552 2376
9 192 10 1858 116 1024 570 44 233 16 4192 26 150 292
10 112 10 1129 66 643 350 45 1245 24 21315 1307 8285 6056
11 222 11 2301 137 1226 700 46 94 11 1519 10 92 115
12 291 13 2977 252 2003 809 47 356 15 5810 37 174 394
13 95 11 972 87 821 311 48 205 15 3593 23 142 252
14 29 9 297 5 179 46 49 291 14 5129 31 164 350
15 8 8 97 1 30 14 50 463 18 6912 44 187 465
16 27 9 307 5 180 46 51 290 13 5130 20 96 182
17 43 10 456 6 54 67 52 309 16 5530 21 97 191
18 259 11 2449 227 1870 751 53 78 11 1334 8 141 111
19 75 9 684 65 595 222 54 1283 25 23428 2266 14761 6651
20 21 8 184 3 39 27 55 2011 28 32896 120 373 1073
21 31 9 344 4 49 49 56 374 17 6341 35 293 447
22 242 11 2817 151 1869 735 57 1724 21 29670 1508 18263 8335
23 37 8 345 3 32 25 58 154 12 2900 16 207 217
24 45 9 438 3 34 32 59 1643 27 27747 1431 18011 8234
25 40 8 398 3 33 29 60 253 16 4495 25 251 325
26 87 10 1025 17 567 157 61 807 19 14386 83 456 993
27 29 9 308 2 42 26 62 282 13 5158 20 154 201
28 32 9 351 3 45 30 63 1461 26 24932 85 325 800
29 109 10 1161 8 74 84 64 1624 26 26446 102 335 871
30 244 11 2214 17 96 148 65 1120 26 19233 93 198 726
31 591 14 6122 489 3151 3320 66 1268 59 20685 114 204 768
32 814 15 6860 776 3688 3744 67 1094 26 18091 86 308 678
33 246 12 2278 159 717 638 68 – 37 93938 512 737 3847
34 1092 15 9483 669 2598 2582 69 1242 22 21228 78 981 925
35 232 12 2199 21 72 161 70 5118 45 80788 279 1907 3130
𝑐𝑚𝑎𝑥 is the makespan (i.e., maximum of the activity completion times)
omputed by the system, which is minimized by the weak constraint.
ithin this column, bold and italic numbers are the confirmed optima

ases; and other values are the instances for which a solution is found
ut the solution is not proven to be the optimal one (e.g., when the time
10

r the memory limit is reached). For both tables ‘‘–’’ within the 𝑡𝑖𝑚𝑒
column means ‘‘out-of-time’’ and ‘‘–’’ within the 𝑚𝑒𝑚 column means
‘‘out-of-memory’’.

The box plots in Fig. 7 visually summarize Tables 8 and 9. We
logarithmically scaled the 𝑦-axis of the plots for the sake of readability.
90% of the samples are in between the upper and lower whiskers.

The solid green line represents the median, and the dashed green line

Expert Systems With Applications 205 (2022) 117599G. Havur et al.
Table 9
Solver statistics.

CLASP(GRINGO) WASP(GRINGO) CLASP(I-DLV) WASP(I-DLV)
id 𝑢 time mem 𝑐𝑚𝑎𝑥 time mem 𝑐𝑚𝑎𝑥 time mem 𝑐𝑚𝑎𝑥 time mem 𝑐𝑚𝑎𝑥
1 90 315 279 69 533 680 69 345 169 69 465 415 69
2 70 73 581 54 107 1487 54 12 200 54 37 485 54
3 105 720 1426 79 1535 3588 79 498 439 79 415 855 79
4 70 97 733 55 371 1875 55 21 257 55 50 702 55
5 200 – 5964 200 – 14000 192 3923 1865 149 – 3639 179
6 75 – 2947 68 – 7220 68 – 543 68 3037 1109 68
7 175 2305 3360 133 4788 7821 133 1217 1449 133 2971 3459 133
8 120 – 7912 98 – 18600 101 – 1302 92 – 2650 92
9 185 5302 – 192 19007 – 3196 – 6245 176
10 145 7146 12026 106 – 5279 1941 108 5014 3908 108
11 210 6646 – 207 – – 3876 – 7567
12 205 – 11788 315 – – 5156 192 – 10920
13 130 – 10487 134 96 – 2025 2042 104 2084 4368 104
14 75 1785 3190 59 2278 7411 59 84 467 59 133 983 59
15 85 115 951 64 148 2317 64 3 116 64 17 234 64
16 75 935 2985 56 432 6962 56 34 456 56 56 1003 56
17 190 5134 5547 144 7157 12500 160 68 432 144 279 418 144
18 210 – 10295 267 – – 4825 206 – 10081
19 115 – 8690 109 – 18098 100 377 1482 86 929 3162 86
20 120 479 2067 92 889 4860 92 13 205 92 33 279 92
21 165 1739 4026 124 4562 9450 124 37 344 124 111 373 124
22 200 – 11283 253 – – 4753 160 – 9817 195
23 75 1766 3395 64 1730 8062 64 10 202 64 25 283 64
24 90 4032 4319 64 2545 10498 64 25 234 64 57 299 64
25 85 1785 3793 67 2171 9018 67 14 217 67 30 289 67
26 140 – 11780 83 – 599 1571 106 1609 2888 106
27 65 1060 2995 48 388 7016 48 9 242 48 16 433 48
28 75 1433 3664 56 1013 8255 56 17 260 56 83 449 56
29 130 – 12586 122 101 – 91 609 99 183 803 99
30 190 – 9359 260 – 650 1026 143 933 1082 143
31 330 621 – 1010 – – 11872 284 –
32 360 670 – 1168 – – 13344 297 –
33 100 – 10537 258 – – 2467 – 5751
34 210 635 – 1006 – – 9483 287 –
35 210 5856 – 234 – 271 919 411 553
36 275 605 – 928 – – 16237 312 –
37 270 553 – 938 – – 15679 145 272 –
38 270 582 – 869 – – 15746 243 –
39 300 635 – 1070 – 997 – 221 –
40 145 618 – 555 – – 4612 – 10675
41 355 634 – 1017 – 796 – 161 –
42 360 406 – 795 – 565 – 145 –
43 200 366 – 628 – – 10440 76 170 –
44 280 – 17891 396 – 545 1770 210 1119 1258 210
45 315 366 – 660 – 803 – 124 –
46 170 – 17411 87 – 57 769 125 170 701 125
47 330 414 – 793 – 2194 2289 250 3650 2063 250
48 260 – 14796 307 – 499 1559 197 1034 1079 197
49 310 386 – 573 – 1241 2069 233 2896 1824 233
50 360 391 – 786 – 1998 2818 271 4946 2654 271
51 145 356 – 450 – 197 1142 110 288 954 110
52 145 347 – 506 – 469 1194 118 666 1017 118
53 160 – 15506 150 94 – 58 846 122 204 1076 122
54 330 414 – 757 – 790 – 132 –
55 380 397 – 755 – 2286 6601 163 2644 4370 163
56 345 415 – 723 – 1975 2953 258 4291 2695 258
57 350 369 – 672 – 456 – 47 –
58 235 6300 – 183 – 102 1522 132 553 1580 132
59 360 384 – 770 – 465 – 48 –
60 290 352 – 448 – 655 2120 215 1622 1962 215
61 520 399 – 812 – 677 5929 123 2685 3665 123
62 150 357 – 479 – 266 1437 126 366 1631 126
63 317 394 – 769 – 5339 4903 238 5881 4326 238
64 340 412 – 769 – – 5619 313 – 4394 274
65 305 414 – 783 – 1640 3865 2002 1933
66 310 396 – 713 – 2072 4057 2397 2091
67 295 416 – 769 – 2424 3908 221 3945 2545 221
68 710 481 – – 7885
69 320 395 – 760 – 5794 6307 238 – 7863 313
70 620 378 – 838 – 7152 – – 16188
11

Expert Systems With Applications 205 (2022) 117599G. Havur et al.

m
m
a
m
s
&
D
b
R
s
t
t
h
p

Fig. 7. Box plots regarding the performance statistics of grounders and solvers.
Fig. 8. Sorted cactus plots.
a

represents the mean of the sample. Fig. 7(a) and Fig. 7(b) compare the
CPU execution times of grounders and solvers. Fig. 7(c) and Fig. 7(d)
compare the memory usage of grounders and solvers. Fig. 7(e) reports
on the ground program sizes of the instances. By looking at Fig. 7(a)
and Fig. 7(c), we find out that I-DLV grounds the problem instances
much faster than GRINGO, although it has a larger memory footprint.
The program rewriting (i.e., intelligent projections) feature of I-DLV is
a vital optimization for this problem as the ground programs that are
generated by I-DLV are much smaller than those generated by GRINGO
(cf. Table 8 and Fig. 7(e)).

The cactus plots in Fig. 8 separately compare the grounder
and solver performances. Less steep curves (cf. Fig. 8(b)) and smaller
memory footprint (cf. Fig. 7(d)) of CLASP(GRINGO) and CLASP(I-DLV) –
in comparison to those of WASP(GRINGO) and WASP(I-DLV) – illustrate
that the ASP solver CLASP performs better than WASP. To address the

akespan minimization, both solvers contain several solving methods:
odel-guided methods aim to produce models with descending costs,

nd core-guided methods identify and relax unsatisfiable cores until a
odel is found (Alviano et al., 2015; Gebser et al., 2015). In the default

etting, CLASP uses its branch-and-bound algorithm (Gebser, Kaufmann,
Schaub, 2012), while WASP utilizes a core-guided algorithm (Saikko,

odaro, Alviano, & Järvisalo, 2018). Results suggest that both solvers
ehave non-optimally, mainly because the given ASP encoding for the
ABP problem is rather tailored towards a declarative and readable
et of rules than for a performance gain of particular underlying solver
echniques. Therefore, we see room for improvement not only in solver
echniques but also in bespoke problem encoding optimizations, as they
ave been successfully applied to other ASP benchmark problems in the
ast (Gebser et al., 2020).
12
Overall, I-DLV+CLASP completes 41 instances within the given time
nd memory constraints whereas I-DLV+WASP, GRINGO+CLASP, and

GRINGO+WASP complete 40, 16, and 15 instances, respectively. This
result shows that I-DLV+CLASP is the most performant ASP system of
our baseline benchmark for RABP.

6. Limitations

The RABP problem is characterized by the essential ideas behind
designing and managing business processes and organizational mod-
els (Dumas et al., 2018; Rosemann & vom Brocke, 2015; Rummler &
Ramias, 2015). Problems similar to RABP have been widely acknowl-
edged in research areas other than Logic Programming (LP), such as
Constraint Programming (CP), Machine Learning (ML) and Operations
Research (OR) (Bouajaja & Dridi, 2017; Lombardi & Milano, 2012).
The survey conducted in (Pufahl, Ihde, Stiehle, Weske, & Weber, 2021)
presents that automatic resource allocation in business processes has a
wide variety of implementations encompassing a subset of capabilities
for:

• allocation mode (one resource to one activity, one resource
to many activities, many resources to one activity, and many
resources to many activities),

• optimization goal (finding best-fitting resource, makespan min-
imization, cost minimization, balancing workload among the
resources, etc.),

• resource taxonomies and attributes (previous performance,
workload, role, expertise, etc.), and

Expert Systems With Applications 205 (2022) 117599G. Havur et al.
Fig. 9. BPMN model of the book publishing process with decision nodes.
• type of evaluation (simulation experiments, experiments with
real-world data, case study, etc.).

This survey also shows the statistics of the studies that focus on
these capabilities. To find the right balance in the complexity of the
problem definition and to keep the focus on the ASP system benchmark
BRANCH, we implemented the most studied capabilities: allocation
of one resource to one activity, finding best-fitting resource, makespan
minimization, role-based resource taxonomy (i.e., RBAC model), and
performance-based resource attributes (resource- and role-based resource-
activity durations) as described in Section 2. In our previous work, we
also addressed resource allocation with extended capabilities, namely,
a Petri net firing semantics-based resource allocation (Havur et al.,
2015) that simulates the behavior of the Petri net, and an extended
encoding that includes further requirements (Havur et al., 2016), such
as allocation of many resources to one activity, allocation of non-human
resources, expertise levels of resources, and cost minimization. Such ca-
pabilities could also be included in BRANCH with a reasonable degree
of effort, provided that ASP encodings are already available.

Fig. 9 depicts the BPMN model of the book publishing process
including decision points. The main difference between the running
example model in Fig. 1 and this model is that, in this process
model, after proofreading the manuscript, if changes are required the
modifications suggested must be applied on text and figures. This
review-and-improvement loop is repeated until there are no more
changes to apply. In real-world scenarios, such decision points are
crucial for describing the processes. However, this kind of uncertainty
in the execution time of processes causally divides the search space for
RABP (i.e., the complete set of activities to execute RABP cannot be
known before execution). To address this issue, first, a decision-node-
free process fragment (i.e., partial-run) needs to be generated under
a number of assumptions on these decision nodes. For example, given
the book publishing process including the two decision points in Fig. 9,
when it is assumed that changes required at the first decision node (the
branch labeled with yes) is taken, and no more changes are required
at the second decision node (the branch labeled with no) is taken,
the decision-node-free process fragment in Fig. 1 is generated. In case
an assumption does not hold at run time, a new decision-node-free
process fragment (only from the decision point onward) is generated,
and a new RABP instance is triggered (i.e., resource reallocation).
Our previous work investigated the most effective and robust way of
generating decision-node-free process fragments from process models
with decision nodes for RABP (Havur & Cabanillas, 2019). As RABP
cannot be performed when there is a decision node in the process, we
omit the decision nodes in the formalization of RABP in Section 2, and
also in the problem instance generator in Section 4.

7. Conclusions

We have formalized the RABP problem and provided a new bench-
mark for ASP systems. The results of the illustrative benchmark run
show that RABP is a challenging problem for the ASP systems that are
among the most performant in the previous ASP Competitions (Gebser
et al., 2017, 2020). This application-oriented benchmark would be
beneficial to the ASP community by helping assess advances in the
13
formalism (e.g., the ease of encoding – i.e., the compactness, readabil-
ity, modularity and maintainability of the problem encoding) and the
computational performance of the solvers; and further, encourage the
BPM community to integrate and test RABP in the process execution
environments.

Future work will involve optimizing the ASP encoding of RABP
to improve its computational efficiency to operate in large-scale real-
world scenarios. It is also on our agenda to extend BRANCH towards
more flexible grounding and solving paradigms such as multi-shot ASP
solving (Gebser, Kaminski, Kaufmann, & Schaub, 2019) (e.g., to support
the use of an incremental encoding of RABP) and formalisms other than
ASP. Moreover, devising an interface to existing BPMSs from BRANCH
might prove useful in building and deploying tailored solutions for
resource allocation needs in BPM.

CRediT authorship contribution statement

Giray Havur: Conceptualization, Methodology, Software, Valida-
tion, Visualization, Writing – original draft. Cristina Cabanillas:
Conceptualization, Methodology, Supervision, Writing – review &
editing. Axel Polleres: Conceptualization, Methodology, Supervision,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work has been partially supported by: (i) European Re-
gional Development Fund (ERDF)-A way of making Europe, (ii)
CONFLEX project (grant number RTI2018-100763-J-I00) funded by
Ministerio de Ciencia e Innovación – Agencia Estatal de Investi-
gación (MCIN/AEI/10.13039/501100011033), and (iii) MEMENTO
project (grant number US-1381595) funded by Programa Operativo
FEDER 2014-2020 and Junta de Andalucía (Consejería de Economía,
Conocimiento, Empresas y Universidad). Axel Polleres’ work is sup-
ported by TEAMING.AI project (grant number 957402) funded by the
European Union’s Horizon 2020 research and innovation program.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eswa.2022.117599.

References

Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., et al. (2017).
The ASP system DLV2. In M. Balduccini, T. Janhunen (Eds.), Lecture notes in
computer science: vol. 10377, Proceedings of the 14th international conference on logic
programming and nonmonotonic reasoning (pp. 215–221). Springer, http://dx.doi.org/
10.1007/978-3-319-61660-5_19.

https://doi.org/10.1016/j.eswa.2022.117599
http://dx.doi.org/10.1007/978-3-319-61660-5_19
http://dx.doi.org/10.1007/978-3-319-61660-5_19
http://dx.doi.org/10.1007/978-3-319-61660-5_19

Expert Systems With Applications 205 (2022) 117599G. Havur et al.

B

B

B

B

C

C

C

C

C

D

D

D

G

G

G

H

H

H

H

H

L

L

L

L

O

P

P

R

Alviano, M., Dodaro, C., Leone, N., & Ricca, F. (2015). Advances in WASP. In
F. Calimeri, G. Ianni, & M. Truszczynski (Eds.), Lecture notes in computer science:
vol. 9345, Proceedings of the 13th international conference on logic programming and
nonmonotonic reasoning (pp. 40–54). Springer, http://dx.doi.org/10.1007/978-3-
319-23264-5_5.

ouajaja, S., & Dridi, N. (2017). A survey on human resource allocation problem and
its applications. Operational Research, 17(2), 339–369. http://dx.doi.org/10.1007/
s12351-016-0247-8.

rewka, G., Eiter, T., & Truszczyński, M. (2011). Answer set programming at a glance.
Communications of the ACM, 54(12), 92–103. http://dx.doi.org/10.1145/2043174.
2043195.

uccafurri, F., Leone, N., & Rullo, P. (1997). Adding weak constraints to disjunctive
datalog. In M. Falaschi, M. Navarro, & A. Policriti (Eds.), Proceedings of the joint
conference on declarative programming (pp. 557–568).

urattin, A. (2015). Introduction to business processes, BPM, and BPM systems. In
Process mining techniques in business environments: Theoretical aspects, algorithms,
techniques and open challenges in process mining (pp. 11–21). Cham: Springer
International Publishing, http://dx.doi.org/10.1007/978-3-319-17482-2_2.

abanillas, C., Resinas, M., del-Río-Ortega, A., & Cortés, A. R. (2015). Specification and
automated design-time analysis of the business process human resource perspective.
Information Systems, 52, 55–82. http://dx.doi.org/10.1016/j.is.2015.03.002.

alimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., et al.
(2020). ASP-Core-2 input language format. Theory and Practice of Logic Programming,
20(2), 294–309. http://dx.doi.org/10.1017/S1471068419000450.

alimeri, F., Fuscà, D., Perri, S., & Zangari, J. (2017). I-DLV: The new intelligent
grounder of DLV. Intelligenza Artificiale, 11(1), 5–20. http://dx.doi.org/10.3233/IA-
170104.

olantonio, A., Pietro, R. D., Ocello, A., & Verde, N. V. (2009). A formal framework
to elicit roles with business meaning in RBAC systems. In B. Carminati, &
J. Joshi (Eds.), Proceedings of the 14th ACM symposium on access control models
and technologies (pp. 85–94). ACM, http://dx.doi.org/10.1145/1542207.1542223.

olmerauer, A., & Roussel, P. (1993). The birth of Prolog. In J. A. N. Lee, & J.
E. Sammet (Eds.), Preprints of the 2nd ACM SIGPLAN conference on History of
programming languages conference (pp. 37–52). ACM, http://dx.doi.org/10.1145/
154766.155362.

enecker, M., Vennekens, J., Bond, S., Gebser, M., & Truszczynski, M. (2009). The
second answer set programming competition. In E. Erdem, F. Lin, & T. Schaub
(Eds.), Proceedings of the 10th international conference on logic programming and
nonmonotonic reasoning (pp. 637–654). Springer, http://dx.doi.org/10.1007/978-3-
642-04238-6_75.

ijkman, R. M., Dumas, M., & Ouyang, C. (2008). Semantics and analysis of business
process models in BPMN. Information and Software Technology, 50(12), 1281–1294.
http://dx.doi.org/10.1016/j.infsof.2008.02.006.

rescher, C., Gebser, M., Kaufmann, B., & Schaub, T. (2010). Heuristics in conflict
resolution. The Computing Research Repository, http://dx.doi.org/10.48550/arXiv.
1005.1716, (CoRR), arXiv.

Dumas, M., Rosa, M. L., Mendling, J., & Reijers, H. A. (2018). Fundamentals of
business process management (2nd ed.). Springer, http://dx.doi.org/10.1007/978-3-
662-56509-4.

Elloumi, S., Loukil, T., & Fortemps, P. (2021). Reactive heuristics for disrupted
multi-mode resource-constrained project scheduling problem. Expert Systems with
Applications, 167, Article 114132. http://dx.doi.org/10.1016/j.eswa.2020.114132.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and
jobshop scheduling. Mathematics of Operations Research, 1(2), 117–129. http://dx.
doi.org/10.1287/moor.1.2.117.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., & Wanko, P. (2016).
Theory solving made easy with clingo 5. In M. Carro, A. King, N. Saeedloei, & M.
D. Vos (Eds.), OASIcs: vol. 52, Technical communications of the 32nd international
conference on logic programming (pp. 2:1–2:15). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, http://dx.doi.org/10.4230/OASIcs.ICLP.2016.2.

Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., & Schaub, T. (2015). Progress
in clasp series 3. In F. Calimeri, G. Ianni, & M. Truszczynski (Eds.), Lecture
notes in computer science: vol. 9345, Proceedings of the 13th international conference
on logic programming and nonmonotonic reasoning (pp. 368–383). Springer, http:
//dx.doi.org/10.1007/978-3-319-23264-5_31.

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012). Answer set
solving in practice. Morgan & Claypool Publishers, http://dx.doi.org/10.2200/
S00457ED1V01Y201211AIM019.

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2014). Clingo = ASP + Control:
Preliminary report. The Computing Research Repository, http://dx.doi.org/10.48550/
arxiv.1405.3694, (CoRR), arXiv.

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2019). Multi-shot ASP solving
with clingo. Theory Practice of Logic Programming, 19(1), 27–82. http://dx.doi.org/
10.1017/S1471068418000054.

Gebser, M., Kaminski, R., König, A., & Schaub, T. (2011). Advances in gringo series
3. In J. P. Delgrande, & W. Faber (Eds.), Lecture notes in computer science: vol.
6645, Proceedings of the 11th international conference on logic programming and
nonmonotonic reasoning LPNMR 2011, (pp. 345–351). Springer, http://dx.doi.org/
10.1007/978-3-642-20895-9_39.
14
Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T., & Thiele, S. (2009). On the
input language of ASP grounder gringo. In E. Erdem, F. Lin, & T. Schaub
(Eds.), Proceedings of the 10th international conference on logic programming and
nonmonotonic reasoning (pp. 502–508). Springer, http://dx.doi.org/10.1007/978-3-
642-04238-6_49.

Gebser, M., Kaufmann, B., & Schaub, T. (2012). Conflict-driven answer set solving:
From theory to practice. Artificial Intelligence, 187, 52–89. http://dx.doi.org/10.
1016/j.artint.2012.04.001.

ebser, M., Maratea, M., & Ricca, F. (2017). The sixth answer set programming
competition. Journal of Artificial Intelligence Research, 60, 41–95. http://dx.doi.org/
10.1613/jair.5373.

ebser, M., Maratea, M., & Ricca, F. (2020). The seventh answer set programming
competition: Design and results. Theory and Practice of Logic Programming, 20(2),
176–204. http://dx.doi.org/10.1017/S1471068419000061.

elfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming.
In R. A. Kowalski, & K. A. Bowen (Eds.), Proceedings of the 5th international
conference and symposium on logic programming (pp. 1070–1080). MIT Press.

avur, G., & Cabanillas, C. (2019). History-aware dynamic process fragmentation for
risk-aware resource allocation. In H. Panetto, C. Debruyne, M. Hepp, D. Lewis,
C. A. Ardagna, & R. Meersman (Eds.), Proceedings of OTM 2019 conferences -
confederated international conferences: CoopIS, ODBASE, C&TC 2019 (pp. 533–551).
http://dx.doi.org/10.1007/978-3-030-33246-4_33.

avur, G., Cabanillas, C., Mendling, J., & Polleres, A. (2015). Automated resource
allocation in business processes with answer set programming. In M. Reichert, & H.
A. Reijers (Eds.), Revised papers of the 13th international business process management
workshops (pp. 191–203). Springer, http://dx.doi.org/10.1007/978-3-319-42887-
1_16.

avur, G., Cabanillas, C., Mendling, J., & Polleres, A. (2016). Resource allocation with
dependencies in business process management systems. In M. L. Rosa, P. Loos, &
O. Pastor (Eds.), Lecture notes in business information processing: vol. 260, Proceedings
of the business process management Forum BPM Forum 2016, (pp. 3–19). Springer,
http://dx.doi.org/10.1007/978-3-319-45468-9_1.

avur, G., Cabanillas, C., & Polleres, A. (2021). BRANCH: An ASP systems benchmark
for resource allocation in business processes. In W. M. P. van der Aalst, R.
M. Dijkman, A. Kumar, F. Leotta, F. M. Maggi, J. Mendling, B. T. Pentland,
A. Senderovich, M. Sepúlveda, E. S. Asensio, & M. Weske (Eds.), CEUR workshop
proceedings: vol. 2973, Proceedings of the best dissertation award, doctoral consortium,
and demonstration & resources track at BPM 2021 (pp. 176–180). CEUR-WS.org, URL
http://ceur-ws.org/Vol-2973/paper_285.pdf.

orling, B., & Lesser, V. R. (2004). A survey of multi-agent organizational
paradigms. Knowledge Engineering Review, 19(4), 281–316. http://dx.doi.org/10.
1017/S0269888905000317.

eone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., et al. (2006). The
DLV system for knowledge representation and reasoning. ACM Transactions on
Computational Logic, 7(3), 499–562. http://dx.doi.org/10.1145/1149114.1149117.

i, H., & Dong, X. (2018). Multi-mode resource leveling in projects with mode-
dependent generalized precedence relations. Expert Systems with Applications, 97,
193–204. http://dx.doi.org/10.1016/j.eswa.2017.12.030.

ifschitz, V. (2008). What is answer set programming? In D. Fox, & C. P. Gomes (Eds.),
Proceedings of the 23rd AAAI conference on artificial intelligence (pp. 1594–1597).
AAAI Press, URL http://www.aaai.org/Library/AAAI/2008/aaai08-270.php.

ombardi, M., & Milano, M. (2012). Optimal methods for resource allocation and
scheduling: A cross-disciplinary survey. Constraints, 17(1), 51–85. http://dx.doi.org/
10.1007/s10601-011-9115-6.

MG (2014). Business process model and notation (BPMN). [Specification], https:
//www.omg.org/spec/BPMN/2.0.2/PDF.

araskevopoulos, D. C., Tarantilis, C. D., & Ioannou, G. (2012). Solving project
scheduling problems with resource constraints via an event list-based evolutionary
algorithm. Expert Systems with Applications, 39(4), 3983–3994. http://dx.doi.org/
10.1016/j.eswa.2011.09.062.

eterson, J. L. (1981). Petri net theory and the modeling of systems. Englewood Cliffs,
N.J., Prentice-hall.

Pufahl, L., Ihde, S., Stiehle, F., Weske, M., & Weber, I. (2021). Automatic resource
allocation in business processes: A systematic literature survey. The Computing
Research Repository, (CoRR), arXiv https://arxiv.org/abs/2107.07264.

Rogge-Solti, A. (2014). Stochastic petri net plug-in of the process mining framework
prom. [Computer Software], http://www.promtools.org/.

Rosemann, M., & vom Brocke, J. (2015). The six core elements of business process
management. In J. vom Brocke, & M. Rosemann (Eds.), International handbooks
on information systems, Handbook on business process management 1: Introduction,
methods, and information systems (2nd ed.). (pp. 105–122). Springer, http://dx.doi.
org/10.1007/978-3-642-45100-3_5.

ummler, G. A., & Ramias, A. J. (2015). A framework for defining and designing
the structure of work. In J. vom Brocke, & M. Rosemann (Eds.), International
handbooks on information systems, Handbook on business process management 1:
Introduction, methods, and information systems (2nd ed.). (pp. 81–104). Springer,
http://dx.doi.org/10.1007/978-3-642-45100-3_4.

http://dx.doi.org/10.1007/978-3-319-23264-5_5
http://dx.doi.org/10.1007/978-3-319-23264-5_5
http://dx.doi.org/10.1007/978-3-319-23264-5_5
http://dx.doi.org/10.1007/s12351-016-0247-8
http://dx.doi.org/10.1007/s12351-016-0247-8
http://dx.doi.org/10.1007/s12351-016-0247-8
http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1145/2043174.2043195
http://refhub.elsevier.com/S0957-4174(22)00910-1/sb5
http://refhub.elsevier.com/S0957-4174(22)00910-1/sb5
http://refhub.elsevier.com/S0957-4174(22)00910-1/sb5
http://refhub.elsevier.com/S0957-4174(22)00910-1/sb5
http://refhub.elsevier.com/S0957-4174(22)00910-1/sb5
http://dx.doi.org/10.1007/978-3-319-17482-2_2
http://dx.doi.org/10.1016/j.is.2015.03.002
http://dx.doi.org/10.1017/S1471068419000450
http://dx.doi.org/10.3233/IA-170104
http://dx.doi.org/10.3233/IA-170104
http://dx.doi.org/10.3233/IA-170104
http://dx.doi.org/10.1145/1542207.1542223
http://dx.doi.org/10.1145/154766.155362
http://dx.doi.org/10.1145/154766.155362
http://dx.doi.org/10.1145/154766.155362
http://dx.doi.org/10.1007/978-3-642-04238-6_75
http://dx.doi.org/10.1007/978-3-642-04238-6_75
http://dx.doi.org/10.1007/978-3-642-04238-6_75
http://dx.doi.org/10.1016/j.infsof.2008.02.006
http://dx.doi.org/10.48550/arXiv.1005.1716
http://dx.doi.org/10.48550/arXiv.1005.1716
http://dx.doi.org/10.48550/arXiv.1005.1716
http://dx.doi.org/10.1007/978-3-662-56509-4
http://dx.doi.org/10.1007/978-3-662-56509-4
http://dx.doi.org/10.1007/978-3-662-56509-4
http://dx.doi.org/10.1016/j.eswa.2020.114132
http://dx.doi.org/10.1287/moor.1.2.117
http://dx.doi.org/10.1287/moor.1.2.117
http://dx.doi.org/10.1287/moor.1.2.117
http://dx.doi.org/10.4230/OASIcs.ICLP.2016.2
http://dx.doi.org/10.1007/978-3-319-23264-5_31
http://dx.doi.org/10.1007/978-3-319-23264-5_31
http://dx.doi.org/10.1007/978-3-319-23264-5_31
http://dx.doi.org/10.2200/S00457ED1V01Y201211AIM019
http://dx.doi.org/10.2200/S00457ED1V01Y201211AIM019
http://dx.doi.org/10.2200/S00457ED1V01Y201211AIM019
http://dx.doi.org/10.48550/arxiv.1405.3694
http://dx.doi.org/10.48550/arxiv.1405.3694
http://dx.doi.org/10.48550/arxiv.1405.3694
http://dx.doi.org/10.1017/S1471068418000054
http://dx.doi.org/10.1017/S1471068418000054
http://dx.doi.org/10.1017/S1471068418000054
http://dx.doi.org/10.1007/978-3-642-20895-9_39
http://dx.doi.org/10.1007/978-3-642-20895-9_39
http://dx.doi.org/10.1007/978-3-642-20895-9_39
http://dx.doi.org/10.1007/978-3-642-04238-6_49
http://dx.doi.org/10.1007/978-3-642-04238-6_49
http://dx.doi.org/10.1007/978-3-642-04238-6_49
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1613/jair.5373
http://dx.doi.org/10.1613/jair.5373
http://dx.doi.org/10.1613/jair.5373
http://dx.doi.org/10.1017/S1471068419000061
http://refhub.elsevier.com/S0957-4174(22)00910-1/sb28
http://refhub.elsevier.com/S0957-4174(22)00910-1/sb28
http://refhub.elsevier.com/S0957-4174(22)00910-1/sb28
http://refhub.elsevier.com/S0957-4174(22)00910-1/sb28
http://refhub.elsevier.com/S0957-4174(22)00910-1/sb28
http://dx.doi.org/10.1007/978-3-030-33246-4_33
http://dx.doi.org/10.1007/978-3-319-42887-1_16
http://dx.doi.org/10.1007/978-3-319-42887-1_16
http://dx.doi.org/10.1007/978-3-319-42887-1_16
http://dx.doi.org/10.1007/978-3-319-45468-9_1
http://ceur-ws.org/Vol-2973/paper_285.pdf
http://dx.doi.org/10.1017/S0269888905000317
http://dx.doi.org/10.1017/S0269888905000317
http://dx.doi.org/10.1017/S0269888905000317
http://dx.doi.org/10.1145/1149114.1149117
http://dx.doi.org/10.1016/j.eswa.2017.12.030
http://www.aaai.org/Library/AAAI/2008/aaai08-270.php
http://dx.doi.org/10.1007/s10601-011-9115-6
http://dx.doi.org/10.1007/s10601-011-9115-6
http://dx.doi.org/10.1007/s10601-011-9115-6
https://www.omg.org/spec/BPMN/2.0.2/PDF
https://www.omg.org/spec/BPMN/2.0.2/PDF
https://www.omg.org/spec/BPMN/2.0.2/PDF
http://dx.doi.org/10.1016/j.eswa.2011.09.062
http://dx.doi.org/10.1016/j.eswa.2011.09.062
http://dx.doi.org/10.1016/j.eswa.2011.09.062
http://refhub.elsevier.com/S0957-4174(22)00910-1/sb40
http://refhub.elsevier.com/S0957-4174(22)00910-1/sb40
http://refhub.elsevier.com/S0957-4174(22)00910-1/sb40
https://arxiv.org/abs/2107.07264
http://www.promtools.org/
http://dx.doi.org/10.1007/978-3-642-45100-3_5
http://dx.doi.org/10.1007/978-3-642-45100-3_5
http://dx.doi.org/10.1007/978-3-642-45100-3_5
http://dx.doi.org/10.1007/978-3-642-45100-3_4

Expert Systems With Applications 205 (2022) 117599G. Havur et al.
Russell, N., van der Aalst, W. M. P., ter Hofstede, A. H. M., & Edmond, D. (2005).
Workflow resource patterns: Identification, representation and tool support. In
O. Pastor, & J. F. e Cunha (Eds.), Lecture notes in computer science: vol. 3520,
Proceedings of the 17th international conference on advanced information systems
engineering (pp. 216–232). Springer, http://dx.doi.org/10.1007/11431855_16.

Saikko, P., Dodaro, C., Alviano, M., & Järvisalo, M. (2018). A hybrid approach to
optimization in answer set programming. In M. Thielscher, F. Toni, & F. Wolter
(Eds.), Proceedings of the 16th international conference on principles of knowledge
representation and reasoning (pp. 32–41). AAAI Press, URL https://aaai.org/ocs/
index.php/KR/KR18/paper/view/18021.

Syrjänen, T. (2000). Lparse 1.0 user’s manual. URL http://www.tcs.hut.fi/Software/
smodels/lparse.ps.gz.
15
van der Aalst, W. M. P. (1996). Structural characterizations of sound workflow nets:
Computing science reports, Vol. 9623, Technische Universiteit Eindhoven, https:
//pure.tue.nl/ws/files/2454992/9712195.pdf.

van der Aalst, W. M. P. (2016). Process mining - Data science in action (2nd ed.). Springer,
http://dx.doi.org/10.1007/978-3-662-49851-4.

van der Aalst, W. M. P., & van Dongen, B. F. (2013). Discovering Petri nets from
event logs. Transactions on Petri Nets and Other Models of Concurrency, 7, 372–422.
http://dx.doi.org/10.1007/978-3-642-38143-0_10.

Weidlich, M., Mendling, J., & Weske, M. (2011). Efficient consistency measurement
based on behavioral profiles of process models. IEEE Transactions on Software
Engineering, 37(3), 410–429. http://dx.doi.org/10.1109/TSE.2010.96.

http://dx.doi.org/10.1007/11431855_16
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18021
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18021
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18021
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
https://pure.tue.nl/ws/files/2454992/9712195.pdf
https://pure.tue.nl/ws/files/2454992/9712195.pdf
https://pure.tue.nl/ws/files/2454992/9712195.pdf
http://dx.doi.org/10.1007/978-3-662-49851-4
http://dx.doi.org/10.1007/978-3-642-38143-0_10
http://dx.doi.org/10.1109/TSE.2010.96

	Benchmarking Answer Set Programming systems for resource allocation in business processes
	Introduction
	Formalization of the problem
	Business process models
	Organizational model
	Temporal model
	Resource Allocation in Business Processes (RABP)

	Baseline ASP encoding of the problem
	Fundamentals of ASP
	Theoretical motivation: Why to solve RABP with ASP?
	ASP encoding of RABP

	Implementation of the ASP systems benchmark for RABP
	BRANCH in use
	Limitations
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References

