

P
a
(
t
u
m

c

Perses: A framework for the continuous evaluation of the QoS
of distributedmobile applications
Sergio Laso a,b,∗, Javier Berrocal a, Pablo Fernández c, Antonio Ruiz-Cortés c,
Juan M. Murillo a

a Universidad de Extremadura, Cáceres, Spain
b Current Affiliation: Global Process and Product Improvement S.L., Cáceres, Spain
c I3US Institute, SCORE Lab. University of Sevilla, Sevilla, Spain

a r t i c l e i n f o

Article history:
Received 28 March 2022
Received in revised form 3 June 2022
Accepted 6 June 2022
Available online 18 June 2022

Keywords:
Distributed Computing
Mobile applications
Quality of Service
Evaluation
Virtual scenarios

a b s t r a c t

The increasing capabilities of mobile devices have led to the emergence of new
paradigms exploiting them. These paradigms foster the onload and distribution of
functionalities on mobile devices, allowing the development of distributed mobile
applications. This distribution reduces the latency and the data traffic overhead and
improves privacy. As in any other mobile application, their success largely depends on
the quality of service (QoS) they offer. Nevertheless, the evaluation of distributed mobile
applications is particularly complex due to the number, heterogeneity, and interactions
between the devices involved. Current techniques allow developers to assess the quality
of a single device, but they are not designed for highly heterogeneous, distributed, and
collaborative environments. This paper presents a framework called Perses, which allows
the creation of virtual scenarios with multiple heterogeneous mobile devices to launch
end-to-end tests to evaluate not only each device but also the interactions among them.
The framework was evaluated against a real deployment, showing that the behavior and
the quality attributes measured are similar to those of the real deployment, allowing
developers to evaluate these applications before launching them. Finally, Perses was
integrated into a DevOps methodology to automate its execution and further facilitate
its adoption by software companies.

1. Introduction

We have witnessed a massive deployment of mobile applications since the arrival of the Apple App Store and Google
lay [1]. This has generated a proliferation of companies dedicated to the development of mobile applications, leading to
great economic impact [2]. The success or failure of mobile applications largely depends on the quality of experience

QoE) [3] they offer, i.e., the satisfaction of a user with the provided functionality. The QoE is usually considered a broad
erm evaluating both the quality of service (QoS) [4] – quantitative measures of the performance of a service – and the
ser experience (UX) — efficiency of the interaction between the end-user and the service. Many of the companies behind
obile applications are startups so that the success of an application is an omen of the future of the company.
To ensure their success, mobile applications usually follow a pure client–server architecture. All computing demanding

omponents (back end) are offloaded to cloud environments. Only the user interface and some basic components (front

∗ Corresponding author.
E-mail address: slasom@unex.es (S. Laso).

https://doi.org/10.1016/j.pmcj.2022.101627
http://www.elsevier.com/locate/pmc
http://www.elsevier.com/locate/pmc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pmcj.2022.101627&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:slasom@unex.es
https://doi.org/10.1016/j.pmcj.2022.101627
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

e
f

e
N
d
a
l
d
f

d
c

t
b
a
e
m
a

i
d
d
d
t
s
e

l
m
a
a
b

t

2

d
u
o
o

end) are deployed on mobile devices. This architectural style allows developers to reduce the resource consumption on
these devices; thus, allowing their deployment on almost any device with a minimum set of characteristics — limiting
the problems caused by the great heterogeneity of devices in this market.

To evaluate the required quality, developers can assess each side (back end and front end) independently, but also
nd-to-end (E2E) testing are also performed. E2E tests assess the correct integration of the two sides and the correct
unctioning of the main functionalities, replicating the behavior of the users [5].

Nevertheless, in recent years, mobile devices have considerably increased their computing and storage capabilities [6],
nabling the development of more computing-demanding applications in order to meet more stringent QoS requirements.
ew paradigms and architectural designs have emerged for developing them with distributed computing (in the following
istributed mobile applications), such as Human Microservices [7], the Internet of People [8] or mist computing [9]. In
ddition, these paradigms allows one to address some challenges such as privacy awareness [10] and distribute the
earning and intelligence among several nodes [11]. In these new paradigms, a functionality, or parts of it, may be
istributed among different devices (mobile devices, IoT devices, fog or edge nodes, etc.). To consume this distributed
unctionality, usually some of the involved devices should interact to get all the required data and complete its workflow.

Therefore, these paradigms allow developers to relegate more functionality and on-load some computationally
emanding components on mobile devices to further improve the QoS by reducing the latency caused by the network
ommunication and data traffic overhead, increasing the control of the user over their data, and improving their privacy.
However, the QoS of distributed mobile applications is complex to evaluate. End-to-end evaluation in such architec-

ures is not as trivial as in more traditional architectures. In a client–server architecture, it is only necessary to have the
ack end available and execute the end-to-end tests from a device. With these new paradigms, it is necessary to deploy
considerable set of heterogeneous devices close to real scenarios to properly evaluate the QoS — the latency and the
xecution time can vary greatly depending on the devices involved. This is especially relevant in today’s ecosystem of
obile devices, due to the market fragmentation. This makes it even more necessary to know the expected quality in
dvance.
The application that does not meet the expected QoS is more likely to be rejected by users, with the financial and

mage impact that this may cause to a company. Currently, some commercial tools allow the evaluation of applications on
ifferent devices. AWS Device Farm [12] or Azure App Center Test [13] are platforms that provide a farm of real mobile
evices. However, they do not allow the deployment of several mobile devices and the launch of E2E tests triggering
ifferent interactions among them, which is required to properly evaluate these distributed applications. Therefore, new
echniques and tools are needed to evaluate the QoS of distributed mobile applications with E2E testing, enabling large-
cale simultaneous evaluation of several highly interacting mobile devices and considering the heterogeneity of today’s
cosystem.
In this paper, we present a framework called Perses. This framework allows the creation of virtual scenarios for the

arge-scale simultaneous deployment of virtualized mobile devices. Developers can simulate the deployment of distributed
obile applications in these heterogeneous scenarios. To evaluate the QoS correctly, the framework launches E2E tests that
llow the whole system to be tested. In addition, this tool can be fully integrated into a software development process such
s DevOps, automating the entire process of creating, deploying, and launching E2E tests, which reduces the effort invested
y software companies to validate the QoS of their applications before deploying them into the production environment.
The main contributions of this works are as follows:

1. Perses allows to evaluate the QoS of distributed mobile applications through E2E tests in heterogeneous virtual
scenarios with large-scale mobile devices.

2. Integration into common software development practices. Different methods have been developed to ease the
integration of Perses into a DevOps methodology and in the Continuous Integration practices. This reduces the effort
invested by software companies to validate the QoS of their applications before deploying them in the production
environment.

3. The presented framework has been evaluated with a real application, comparing the real vs the virtual scenarios.
In addition, different scalability tests have been performed, identifying that Perses is highly scalable and that the
performance is maintained when the number of simulated devices increases.

The rest of the paper is structured as follows. Section 2 describes the motivations for this work. Section 3 explains
he Perses framework. Section 4 validates the framework through a case study. Section 5 presents several related works.
Finally, Section 6 details the conclusions.

. Motivation

The growth of the mobile applications market has generated a multitude and variety of applications. Among the
ifferent companies that develop applications, there is a fierce fight for their applications to be the most downloaded and
sed to obtain greater benefits through different forms of revenue. There are different dimensions, such as advertising,
riginality, and virality for an application to be more or less successful. This success also lies in end-user satisfaction by
ffering a good QoE [14].

e
i
s
a

b
h
s
p
b
b
d

a
o
s
d
Q
c
e

u
l
o
w
1
c
o
t
T
c

d
s

T
t
n
t
E

Fig. 1. COVID-Heatmaps app.

To achieve this QoE, it is necessary to apply software development methodologies and tools that allow developers to
valuate the system and to obtain rapid feedback. The QoE not only depends on the usability and accessibility that the
nterface consumes by end users but also depends on the QoS offered by the whole application and the infrastructure
upporting it, especially in the case of distributed mobile applications in which computing is not primarily performed in
single location (cloud environment in traditional architectures) but is performed on a set of distributed devices.
During the last few years, we have witnessed applications (or specific releases) that either failed or had poor acceptance

y users due to the QoS provided. For instance, Pokemon Go, a fairly successful mobile augmented reality game, may
ave failed in its early days. After an avalanche of downloads of the game in its presentation due to people’s interest, the
ervers where the game’s functionalities were hosted were saturated, causing the vast majority of users to be unable to
lay [15]. Another example is Auctionata — Online, which proposed live-streamed auctions of fine art and collectibles by
roadcasting bids via mobile devices. The early attempts at broadcasting events failed to meet the expected QoS, limited
y slow broadband speeds and delivery concerns [16]. In the latter case, the company was a start-up and had to close
own.
These problems can be avoided by evaluating the QoS of the whole system before deployment. In client–server

rchitectures, QoS is usually evaluated at the back-end, for example, by performing load tests simulating the connection
f multiple clients with tools such as Apache JMeter1 or Postman,2 as this is where most of the computation and
torage is located. Nevertheless, in distributed mobile applications, the computation and storage tasks are performed on
ifferent devices (smartphones, IoT devices, edge or cloud nodes, or any other device managing the system). Therefore,
oS evaluation must be performed jointly, involving all the different (or, at least, a good representation) devices that
ollaborate in the real deployment. This will allow developers to obtain results that can more accurately predict the
xpected behavior in a real production environment.
As a running example, let us present a distributed mobile application to detect close contacts of positive COVID-19

sers, called COVID-Heatmaps. This application is composed, on the one hand, of a mobile application that stores the
ocation of users on their devices and processes and generates heatmaps that are used to detect close contacts. On the
ther hand, a cloud node compares the heatmap generated by users with that of a COVID-19-positive user to detect
hether they are close contacts. Fig. 1 shows an overview of how this application works. First (step 1), when a COVID-
9-positive user is registered, the mobile application processes its heatmap with the stored traces and sends them to the
loud node. Second, the cloud node delimits the user’s movement areas according to the heatmap and sends them to the
ther mobile devices (step 2). These devices check with their location history to determine whether they have been in
he received areas. The devices that have been in these areas process and send their heatmap to the cloud node (step 3).
he cloud node compares the heatmaps of the users with one of the COVID-19 positive, and the users who are considered
lose contacts are notified (step 4).
A potential solution for evaluating the QoS in these distributed applications is to use a real device farm that allows

eploying the application on a large set of devices, and then, together with the cloud node, launch end-to-end tests,
imulating the behavior of any user and the QoS obtained.
Several platforms offer physical mobile device farms. Among them are the AWS Device Farm and Azure App Center

est, which allow us to create highly customized test runs, indicating different types of devices, OS versions, etc. One of
he disadvantages of these platforms is the number of devices that can be run simultaneously; they offer a very limited
umber and at a rather high cost. In addition, these platforms focus on launching UX tests, such as unit and adaptivity
ests of graphical elements, navigation through different screens, compatibility with different OS versions, etc. (Appium,3.
spresso,4 etc.).

1 https://jmeter.apache.org.
2 https://www.postman.com.
3 http://appium.io.
4 https://developer.android.com/training/testing/espresso.

https://jmeter.apache.org
https://www.postman.com
http://appium.io
https://developer.android.com/training/testing/espresso

t
a
f
a
e

t
s

t
d
a
t
m
i
a

g
d
m

e
t
e
w

a
i

m
a

3

e

v
e
f

a
f
p
v
a
i
a
a

s

Furthermore, in distributed mobile applications, all the distributed components (mobile devices and cloud nodes in
his case) must be fully available to execute E2E tests analyzing the QoS. For instance, to search for the close contacts of
 COVID-19-positive user in our running example, the positive user identifies his or her movement areas in the previous
ew days to the cloud, the cloud sends these areas to the other users, these users validate whether they have been in these
reas, and sends these evaluations to the cloud — which checks whether they are close contacts. This E2E test involves the
valuation of several components on different devices. Traditional testing platforms are not intended for testing scenarios

with multiple interacting devices. They are mainly focused on running isolated tests on each device.
Therefore, new techniques are needed to evaluate the QoS of distributed mobile applications simulating a near-reality

scenario. This will allow developers to launch E2E tests and measure the obtained QoS. These techniques will also be able
o be integrated into a software development process, such as DevOps, so that they can be widely adopted by enterprises,
aving the effort and cost required to perform these tests.

3. Perses: QoS evaluation in distributed applications

The estimation of QoS attributes in distributed architectures is particularly complex, and frameworks/tools are needed
o help developers measure them to increase the success likelihood. Perses is a framework that allows developers to easily
eploy a virtual scenario with multiple heterogeneous virtual mobile devices to evaluate the QoS of a distributed mobile
pplication. These applications are characterized by distributed computing, in which some or all of the main computation
hat significantly affects QoS is performed on the end devices (executing activities such as data processing, running an AI
odel, etc.). In addition, these applications seek to enhance user privacy by storing data on end devices locally. Given an

nitial file with the configuration of the virtual scenario (infrastructure, network, devices, tests, etc.), Perses deploys it in
cloud instance.
Perses is fully scalable, allowing the evaluation of virtual scenarios formed by a large number of virtualized hetero-

eneous devices. The heterogeneity of virtual mobile devices is characterized by the possibility of deploying them with
ifferent hardware, operating system and configurations, being able to simulate close-to-real scenarios where there is a
ultitude of devices with different hardware and software characteristics.
Once deployed, Perses launches the tests, collects the logs from the devices, and analyzes the results. To support the

valuation of different dimensions of the QoE, Perses allows the execution of QoS tests and UX tests. First, it allows
he configuration and definition of E2E tests evaluating different devices and the interactions among them, which are
ssential for evaluating QoS in distributed mobile applications. The UX tests are focused on evaluating the user interface
ith Espresso. Thus, Perses covers the most important dimensions evaluated by developers.
Finally, to save the time required for the manual execution of Perses, it is fully integrated into the DevOps methodology,

utomating the different steps during the evaluation process, and allowing software companies to easily integrate Perses
nto their continuous integration pipeline.

During the following subsections, first, the architecture of Perses is presented, detailing the characteristics of its
odules; second, the configuration file is showed, where the characteristics of the virtual scenario, tests, etc. are defined,
nd finally, the integration of Perses in the DevOps methodology and its execution flow are described.

.1. Architecture

Fig. 2 shows the architecture of Perses, formed by different modules focused on specific functionalities that complement
ach other. The most important modules are described below.
Setup: Perses requires a set of credentials and a configuration file as input. This file contains the characteristics of the

irtual scenario to be deployed, the tests to be launched and the desired QoS attributes to be evaluated during the test
xecution. This module checks both the credentials to connect to the cloud infrastructure provider and the configuration
ile with the different parameters defined in the virtual scenario.

Deployment: The deployment module creates and deploys the entire virtual scenario taking the configuration file
s input. To create and deploy the scenario, an abstraction layer is defined that encapsulates Terraform [17] — a
ramework with a high-level language that is used to define the deployment infrastructure of an application for cloud
roviders. Terraform has been extended so that in addition to deploying the cloud infrastructure, it also orchestrates the
irtual scenario by installing the necessary resources, creating virtual mobile devices, and deploying distributed mobile
pplications on those devices. To host and deploy the virtual scenario, Amazon Web Services (AWS) is used as the cloud
nfrastructure provider. For the creation and deployment of virtual mobile devices, Docker5 is used, where mobile devices
re deployed in containers [18]. The management of these devices and the installation and deployment of the distributed
pplication is performed through an Android Debug Bridge (ADB).6
Due to the network infrastructure provided by AWS, data is transmitted directly over the wired network. This is a

ignificant difference to real mobile-cloud communication via WIFI or LTE. Kathara [19], a framework that enables network

5 https://www.docker.com.
6 https://developer.android.com/studio/command-line/adb.

https://www.docker.com
https://developer.android.com/studio/command-line/adb

E

e
c

P
s
a

3

d
o

3

i
i
d
a

i
e

Fig. 2. General diagram of Perses.

emulation in Docker containers, has therefore been integrated. This allows us to emulate the network infrastructure of
the virtual devices with the cloud environment to replicate real mobile-cloud communications.

Tests Execution: this module executes the tests defined in the configuration file. Perses allows two different types of
tests to be run. E2E tests, these tests evaluate the QoS attributes of the application by executing the core functionalities that
trigger the interactions among different devices. For this, Perses integrates APIPecker [20] — a simple API performance
tester where different attributes (concurrent users, iterations and delay) can be defined to customize the tests, stress
the devices, and obtain more information about the QoS. In addition, user interface tests, Perses allows developers to run
spresso tests to evaluate the UX and specific traditional functionalities.
Logs Manager: after launching the tests, this module collects the results obtained by aggregating the system logs of

ach of the virtual devices. After this, it analyzes the results and determines whether the desired QoS defined in the
onfiguration file is achieved.
CI Manager: this module integrates with DevOps. This module autonomously manages the execution of the different

erses actions and modules. This makes it possible to automate the entire process of creating and deploying virtual
cenarios and all the management related to the launch and analysis of tests. This automation is carried out through
workflow defined with GitHub Actions [21].

.2. Defining virtual scenarios

Perses needs a configuration file (.yaml extension)7 where the characteristics of the virtual scenario, the tests, and the
esired QoS are defined. Fig. 3 shows a conceptual model with all the parameters in the configuration file. The explanation
f each of the parameters and the user guide is detailed on Github.8

.3. Integrating Perses in a DevOps methodology

One of the features of Perses is the full integration into the DevOps methodology. For this purpose, it is currently
ntegrated with GitHub Actions, which makes it easy to automate software workflows applying CI/CD. To perform this
ntegration, it is necessary to define a file with the different steps that the workflow must follow. This workflow has been
eveloped to run any application, i.e., it is not necessary to define a workflow file for each application. Listing 1 shows
n extract of the workflow, and the complete file is available on GitHub.9

Due to the integration of Perses in the DevOps methodology, the effort required by applying the defined framework
s reduced. In addition, by automating the entire execution flow, the effort for developers is minimal, and repeatability is
ncouraged.

7 https://github.com/slasom/COVID-Heatmaps/.
8 https://github.com/perses-org/perses.
9 https://github.com/perses-org/gha/blob/master/workflow/perses-workflow.yml.

https://github.com/slasom/COVID-Heatmaps/
https://github.com/perses-org/perses
https://github.com/perses-org/gha/blob/master/workflow/perses-workflow.yml

1
2
3
4
5
6
7
8
9

C

Fig. 3. Conceptual Model. Configuration File.

- name: "Build Android project"
uses: vgaidarji/android-github-actions-build@v1.0.1
with:
args: "./gradlew assembleDebug assembleAndroidTest"...
- name: "Perses Setup"
run: |
cd.perses_runner
node index -a setup -g../.perses-full.yml -c../.perses-credentials.yml
...

Listing 1: Perses Workflow

4. Experimental evaluation

Perses is a framework that allows the deployment of virtual scenarios to assess the QoS of distributed computing
applications. However, although it can configure scenarios with heterogeneous devices, these devices are not real; they
have virtualized images with limitations to consume a similar amount of resources as real devices. In this section, we
present the evaluation of a case study in a real scenario with physical devices and with Perses to study the feasibility of
the proposal and the accuracy of the results obtained.

In this section, first, the characteristics of both scenarios are presented (devices used, characteristics of the cloud
node, characteristics of the Perses’s virtual scenario, etc.). Second, the tests to be launched and the QoS parameters to
be measured are explained. Finally, the results obtained, the comparison of both scenarios in terms of executing time,
transfer time, etc., and their operational cost are analyzed and discussed.

The case study focuses on the evaluation of the viability of the proposal. For this purpose, the distributed computing
application mentioned in Section 2 will be used in which several QoS parameters will be evaluated.

4.1. Experiment set-up

The experiment was carried out with seven physical mobile devices for the real scenario and seven virtual mobile
devices for the virtual scenario. To make the test fair, each of the seven devices in each scenario was loaded with a
specific set of locations so that the same volume of data was processed and transferred in both scenarios in the different
tests.

The real scenario is composed of three Xiaomi Mi 9, two Mi 9T, OnePlus 6T, and Huawei Mate 20, which have similar
hardware characteristics. All have 6 GB of RAM, and the processors are very similar (Qualcomm 855, 845, and 730 and
Kirin 980). All of them have Android 9 as their OS.

The virtual scenario has been defined in the configuration file with all the features required to use Perses. More
information about the configuration file can be found in the link.10 To host and deploy the virtual scenario, we use a
5.metal EC2 instance of AWS. The set of virtual devices consists of seven devices, as in the real scenario. The hardware

10 https://github.com/slasom/Covid-Heatmaps/.

https://github.com/slasom/Covid-Heatmaps/

d

4

o

l
s
i
t
t

e
t
c

4

n
s
o

b
l
n

s
T
5
o
e
t
F
t
d
t

e
o
p

f
i
m
o
n
r

d
f
t
v

w
o
a

is limited to similar characteristics to those of real devices. Otherwise, as they are located in a fairly powerful instance,
they clearly outperform physical devices. Each of them is composed of three CPUs, 6 GB of RAM, and Android 9 as the OS.

The cloud node is the same for both scenarios. It has been deployed on a T2.large EC2 of AWS. For communication and
ata transfer with mobile devices, the MQTT [22] communication protocol was used.

.1.1. Scenario evaluation set-up
To evaluate the QoS parameters, a set of tests with different configurations is launched based on the main functionality

f the application, i.e., to search for close contacts after a COVID-19-positive user registration.
The different configurations in the tests are linked to the definition of different ‘positive users’ with the set of synthetic

ocations that has been created to obtain more varied results. When a positive user is registered, one, three, five and
even devices real/virtual respond to the request with a heatmap of 100, 1,000, 5,000 and 10,000 location points. These
ncrements are defined to evaluate Perses in the face of increased mobile device and data/computer complexity. Each of
he tests was repeated four times to obtain consistent results. To check the dispersion of the mean of the test repetitions,
he coefficient of variation was calculated, obtaining a maximum value of 0.078 among all the results.

Finally, three QoS parameters are measured that allow us to compare Perses with a real scenario. Mobile-Side
xecution time is the time it takes for mobile devices to process their heatmaps. Transfer time measures the time it
akes to send the data from the cloud side to the mobile side and vice versa. Aggregation time captures the time the
loud spends processing and comparing the heatmaps to detect possible close contacts.

.1.2. Results of the experiments
This last subsection presents the results obtained after the evaluation of the COVID-Heatmaps app in both scenarios.
Mobile-Side Execution time: Fig. 4(a) shows the computing time on real and virtual mobile devices for the different

umbers of devices involved and location points exchanged. It can be seen that they follow the same trend in both
cenarios. There is a small gap between both scenarios; this is due to the existing hardware inequality, and the processors
f real mobile devices are less powerful due to their size, architecture, etc.
To better analyze the differences between the two scenarios and the existing gap, Figs. 4(b) and 4(c) show the difference

etween the plane for the real scenario and the plane for the virtualized scenario. Fig. 4(b) shows a 2D graph with different
ines for the different data consumption as the number of devices increases. Fig. 4(c) shows different lines for the different
umber of mobile devices as the quantity of data to be processed increases.
The graph 4(b) shows that for 100 location points, the difference is approximately 28 ms on average for the whole

et of devices, as each device computes its heat map concurrently and therefore the computation time is very similar.
he same is true for the other sets of points sent; for 1,000 location points, the difference is slightly higher, 46 ms. For
,000 location points, the difference increases to 80 ms. Finally, for 10,000 location points sent, the difference is 134 ms
n average. This increase can be better seen in Fig. 4(c), showing that for every configuration (number of devices), the
xecution time increases with the same trend. However, the increase is the same with respect to the total time, and
he dashed pink line shows the percentage of the difference in the execution times between both scenarios. As seen in
igs. 4(b) and 4(c), percentage-wise, the difference is constant at approximately 34%. This gap cannot be reduced due to
he minimum hardware requirements for virtual devices to be deployed. If they are further constrained to match real
evices, they do not have sufficient capacity to deploy the docker container. However, as can be seen this gap constant,
herefore extrapolation can be applied in order to obtain results closer to the real devices.

Finally, Fig. 5(a) shows the results obtained with Perses after a test with different sets of virtual mobile devices to
valuate scalability, deploying up to 50 simultaneous devices. An increase in execution time can be observed as the number
f points increases. However, increasing the number of devices does not affect the performance because the execution is
erformed in parallel on each device.
Transfer time: Fig. 6(a) shows the results obtained on the data transfer time. As with Mobile-Side Execution time, they

ollow the same trend with the constant difference between the two scenarios. In this case, the difference is minimal, the
ntegration of Kathara with Perses allows emulating the communication of real mobile devices. In the real scenario, the
obile devices receive the request and transfer the data via WiFi technology plus the existing distance to the location
f the cloud node deployed on the AWS servers. In the virtual scenario, the data is transmitted directly over the wired
etwork. So without network emulation, the transfer time of virtual mobile devices would not come close to that of the
eal scenario.

As before, Figs. 6(b) and 6(c) show the difference between the real and virtualized scenario planes. Fig. 6(b) shows
ifferent lines for the different numbers of points. Fig. 6(c) shows different lines for each set of responding devices. Both
igures show a difference between ±25 ms. This means that in certain cases, the virtual scenario transfers data faster
han the real scenario and vice versa. The percentage of difference between both scenarios is between 3%–5%, a minimal
ariation. Therefore, Perses allows developer to simulate the network infrastructure and execute the tests over it.
Finally, Fig. 5(b) shows the results obtained with the scalability test. We can observe a growth of the transfer time both

hen increasing the number of points and the number of virtual devices. The growth due to the increase in the amount
f virtual devices is caused by the increase in the number of virtual devices and the increase in the coordination time of
ll the responses received by the cloud.

Fig. 4. Mobile-Side Execution time results.

Fig. 5. Large-scale test results.

Aggregation time: Fig. 7(a) shows the aggregation time in the cloud node of the heatmaps for the different numbers
of devices involved and location points sent. In this case, it can be seen that the planes obtained from both scenarios are
practically the same. The cloud node is the same for both scenarios, the number of devices involved and the volume of
data are the same. Figs. 7(b) and 7(c) show the differences in aggregation time between the two scenarios as a function
of the number of devices and the amount of information shared, respectively. A constant trend is observed horizontally,
and there is hardly any difference (between 0.01 and −0.01), as expected.

Operational costs: This last section shows the differences concerning the operational costs required for testing the
application in both scenarios.

The real scenario had a cost composed of the physical smartphones and the AWS infrastructure. The price of the
smartphones (launch price) gives a total amount of $2,804. With respect to the AWS infrastructure, a T2.large instance
was used in the Ireland region at a cost of $0.1008/hours. The duration of the tests in this scenario lasted 5 min or 0.083 h,
resulting in $0.009. Therefore, the real scenario had a cost of $2,804.01

Fig. 6. Transfer time results.

Fig. 7. Aggregation time results.

The virtual scenario had a cost composed of the AWS infrastructure used to host and use the scenario with the virtual
devices, the cloud node, and the MQTT communication protocol. The virtual scenario was hosted on a C5.metal instance in
the Ireland region for $4.608/hours. As before, the cloud node and the MQTT protocol were hosted on the same instance.
These tests took 20 min or 0.33 h. Therefore, a cost of $1.536 for the virtual scenario and $0.033 for the cloud node and
the MQTT protocol was obtained. Therefore, the virtual scenario had a cost of $1.569.

Fig. 8. Operational costs.

Fig. 8 shows the total costs for each of the scenarios. There is a large difference between testing in a real scenario
and testing with the Perses framework. For the cost of deploying the real scenario, we performed Perses’s evaluation on
applications with similar characteristics 1,787 times.

5. Related works

There are different frameworks and commercial platforms for testing mobile applications. In addition to the afore-
mentioned AWS Device Farm and Azure App Center Test, there are other tests, such as the Firebase Test Lab [23] and
Perfecto [24]. All of them offer different functionalities and features for testing mobile applications with real and virtual
devices (selection of different models and hardware characteristics, video reports of results, etc.). They are also easily
integrated into different development tools and in CI/CD pipelines of the software development cycle of companies.
However, they are focused on UI testing, i.e., they do not evaluate QoS parameters such as response time and latencies,
as they are designed for mobile applications with client–server architectures.

At the research level, there are some proposals detailing frameworks, tools, and techniques for evaluating distributed
applications focused on the IoT. In [25], the authors proposed a framework for developing and evaluating component-
based distributed systems for heterogeneous scenarios, considering mobile and fixed networks. It is an interesting proposal
and similar to our work focusing on distributed applications. However, it is not clear what the workflow of the platform
was and what the development and evaluation process was. Moreover, it is not possible to evaluate standard applications,
only those developed on the platform. The focus was specifically on the evaluation of applications developed with the
proposed framework. Therefore, approaches are needed that can also evaluate any applications that can be deployed on
the target devices.

In [26], the authors presented a framework for automated IoT application testing. The framework allows the automated
execution of user-defined experiments and can generate virtual testbeds with adjustable network properties. To do so,
they virtualize devices acting as fog and edge devices using the QEMU emulator. The authors developed a prototype of the
framework and, in the experiment, performed experiments with physical and emulated Raspberry Pi 3. The framework is
promising; however, it does not allow the creation of heterogeneous testbeds. All emulated devices run under the same
operating system and the same defined features. Finally, they do not integrate the defined framework in a development
cycle for companies.

In [27], the authors presented a simulator that enables the design and analysis of large-scale IoT systems for smart
city applications consisting of mobile devices. It supports the simulation of devices, gateways, and applications. It also
supports environment modeling (including movement, interference, etc.). They explain and simulate an IoT system that
is deployed in Leuven. Nevertheless, it is intended for specific case studies of smart city applications.

In [28], the authors proposed a system for testing the usability and performance of Android mobile applications with
virtual reality. This system simulates different network and mobility behaviors to evaluate applications in close-to-real
environments with different network configurations. However, they focused on manually testing the application using a
single device, which makes it impossible to evaluate distributed mobile applications. Furthermore, the tests performed
focused on the user experience, and no QoS-related parameters were collected.

6. Conclusion

The market for mobile applications has grown at a frenetic pace. Moreover, the capacities of mobile devices have
increased considerably. With this, new paradigms and distributed architectural designs have emerged for developing
mobile applications exploiting these capabilities to further improve the QoS. However, new tools are needed to easily
assess these distributed and highly heterogeneous environments and to ensure application quality.

In this paper, we presented a framework called Perses, which allows developers to create virtual scenarios and can
deploy a large number of virtual mobile devices to correctly evaluate the QoS. This framework was fully integrated into
a DevOps software development flow, which allows automating the tasks of creating and deploying the virtual scenario,

h
o
a
b

D

a

A

b
1
p
G
R

R

launching E2E tests, collecting results, etc., which reduces the effort required to perform these tests. This is a fundamental
aspect so that it can be better embraced by software development companies. Finally, the framework was evaluated with
a case study, and the results obtained were comparable to those obtained from a real scenario.

In future work, we are working on allowing the emulation of new devices (IoT devices). This will increase the
eterogeneity of the scenarios. We are also working on providing different network topologies with Kathara (distribution
f devices connected to different nodes simulating the connection to different WIFI or LTE connections). Finally, we are
lso working on automatically generating a cost analysis to allow developers to visualize the costs that will be generated
efore the deployment of the virtual scenario, being able to adjust it to the budget they have defined.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
ppeared to influence the work reported in this paper.

cknowledgments

This work has been partially funded by the DIN2020-011586 grant, funded by MCIN/AEI/10.13039/501100011033 and
y the European Union ‘‘NextGenerationEU/PRTR’’, by projects RTI2018-094591-B-I00 (MCI/AEI/FEDER,UE) and RTI2018-
01204-B-C21, the 4IE+ Project (0499-4IE-PLUS-4-E) funded by Interreg V-A España-Portugal (POCTEP) 2014–2020
rogram, by the RCIS network (TIN2016-81978-REDT), by the Department of Economy, Science and Digital Agenda of the
overnment of Extremadura (GR21133, IB18030), by the Government of Andalusian (US-1264651) and by the European
egional Development Fund.

eferences

[1] Statista Research Department, Number of apps available in leading app stores 2020, 2021, URL https://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-stores/. (Accessed April 13 2021).

[2] J. Parker, 10 Years of growth of mobile app market, 2018, https://www.knowband.com/blog/es/mobile-app-es/10-years-of-growth-of-mobile-
app-market/. (Accessed 13 February 2021).

[3] K. De Moor, I. Ketyko, W. Joseph, T. Deryckere, L. De Marez, L. Martens, G. Verleye, Proposed framework for evaluating quality of experience
in a mobile, testbed-oriented living lab setting, Mob. Netw. Appl. 15 (3) (2010) 378–391.

[4] H.J. Kim, D.H. Lee, J.M. Lee, K.H. Lee, W. Lyu, S.G. Choi, The QoE evaluation method through the qos-qoe correlation model, in: 2008 Fourth
International Conference on Networked Computing and Advanced Information Management, vol. 2, 2008, pp. 719–725, http://dx.doi.org/10.
1109/NCM.2008.202.

[5] B. Lima, Automated scenario-based integration testing of distributed systems, in: Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2018, pp. 956–958.

[6] J. Berrocal, J. Garcia-Alonso, C. Vicente-Chicote, J. Hernández, T. Mikkonen, C. Canal, J.M. Murillo, Early analysis of resource consumption
patterns in mobile applications, Pervasive Mob. Comput. (ISSN: 1574-1192) 35 (2017) 32–50, http://dx.doi.org/10.1016/j.pmcj.2016.06.011, URL
http://www.sciencedirect.com/science/article/pii/S1574119216300797.

[7] S. Laso, J. Berrocal, J. García-Alonso, C. Canal, J. Manuel Murillo, Human microservices: A framework for turning humans into service providers,
Softw. - Pract. Exp. (2021).

[8] J. Miranda, N. Mäkitalo, J. Garcia-Alonso, J. Berrocal, T. Mikkonen, C. Canal, J.M. Murillo, From the internet of things to the internet of people,
IEEE Internet Comput. 19 (2) (2015) 40–47.

[9] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong, J.P. Jue, All one needs to know about fog computing and related
edge computing paradigms: A complete survey, J. Syst. Archit. (2019).

[10] Y. Qian, L. Hu, J. Chen, X. Guan, M.M. Hassan, A. Alelaiwi, Privacy-aware service placement for mobile edge computing via federated learning,
Inform. Sci. 505 (2019) 562–570.

[11] K. Lin, C. Li, Y. Li, C. Savaglio, G. Fortino, Distributed learning for vehicle routing decision in software defined internet of vehicles, IEEE Trans.
Intell. Transp. Syst. 22 (6) (2020) 3730–3741.

[12] Amazon Web Service, AWS device farm, 2021, https://aws.amazon.com/device-farm/. (Accessed 23 March 2022).
[13] M. Azure, App center test, 2021, https://docs.microsoft.com/en-us/appcenter/test-cloud/. (Accessed 28 May 2021).
[14] W.N. Picoto, R. Duarte, I. Pinto, Uncovering top-ranking factors for mobile apps through a multimethod approach, J. Bus. Res. 101 (2019)

668–674.
[15] A.P. Gamerant, Pokemon go worldwide launch halted to fix server problems, 2016, https://gamerant.com/pokemon-go-server-launch-problems/.

(Accessed 28 October 2021).
[16] S. Insights, Top 7 biggest flops in the mobile app industry, 2019, https://www.smartinsights.com/mobile-marketing/top-7-biggest-flops-mobile-

app-industry/. (Accessed 28 January 2021).
[17] HashiCorp, Terraform, 2021, https://www.terraform.io/. (Accessed 22 April 2021).
[18] Budtmo, Docker android, 2021, https://github.com/budtmo/docker-android. (Accessed 23 March 2022).
[19] M. Scazzariello, L. Ariemma, T. Caiazzi, Kathará: A lightweight network emulation system, in: NOMS 2020-2020 IEEE/IFIP Network Operations

and Management Symposium, IEEE, 2020, pp. 1–2.
[20] P. Fernandez, API pecker, 2020, https://www.npmjs.com/package/apipecker. (Accessed 10 March 2022).
[21] Github, GitHub actions, 2021, https://github.com/features/actions. (Accessed 27 July 2021).
[22] MQTT, MQTT, 2021, URL http://mqtt.org/. (Accessed 22 March 2021).
[23] Firebase, Firebase test lab, 2021, https://firebase.google.com/products/test-lab. (Accessed 13 March 2022).
[24] Perforce Software, Perfecto, 2021, https://www.perfecto.io/. (Accessed 23 March 2022).
[25] B. Richerzhagen, D. Stingl, J. Ruckert, R. Steinmetz, Simonstrator: Simulation and prototyping platform for distributed mobile applications, in:

The 8th EAI International Conference on Simulation Tools and Techniques (ACM SIMUTOOLS 2015), IMDEA Networks Institute Publications
Repository, 2015.

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.knowband.com/blog/es/mobile-app-es/10-years-of-growth-of-mobile-app-market/
https://www.knowband.com/blog/es/mobile-app-es/10-years-of-growth-of-mobile-app-market/
https://www.knowband.com/blog/es/mobile-app-es/10-years-of-growth-of-mobile-app-market/
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb3
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb3
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb3
http://dx.doi.org/10.1109/NCM.2008.202
http://dx.doi.org/10.1109/NCM.2008.202
http://dx.doi.org/10.1109/NCM.2008.202
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb5
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb5
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb5
http://dx.doi.org/10.1016/j.pmcj.2016.06.011
http://www.sciencedirect.com/science/article/pii/S1574119216300797
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb7
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb7
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb7
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb8
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb8
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb8
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb9
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb9
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb9
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb10
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb10
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb10
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb11
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb11
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb11
https://aws.amazon.com/device-farm/
https://docs.microsoft.com/en-us/appcenter/test-cloud/
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb14
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb14
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb14
https://gamerant.com/pokemon-go-server-launch-problems/
https://www.smartinsights.com/mobile-marketing/top-7-biggest-flops-mobile-app-industry/
https://www.smartinsights.com/mobile-marketing/top-7-biggest-flops-mobile-app-industry/
https://www.smartinsights.com/mobile-marketing/top-7-biggest-flops-mobile-app-industry/
https://www.terraform.io/
https://github.com/budtmo/docker-android
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb19
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb19
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb19
https://www.npmjs.com/package/apipecker
https://github.com/features/actions
http://mqtt.org/
https://firebase.google.com/products/test-lab
https://www.perfecto.io/
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb25
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb25
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb25
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb25
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb25

[26] I. Behnke, L. Thamsen, O. Kao, Héctor: A framework for testing IoT applications across heterogeneous edge and cloud testbeds, in: Proceedings
of the 12th IEEE/ACM International Conference on Utility and Cloud Computing Companion, 2019, pp. 15–20.

[27] M. Provoost, D. Weyns, DingNet: A simulator for large-scale IoT systems with mobile devices, in: EWSN, 2019, pp. 267–269.
[28] T. Amano, S. Kajita, H. Yamaguchi, T. Higashino, M. Takai, Smartphone applications testbed using virtual reality, in: Proceedings of the 15th

EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, 2018, pp. 422–431.

http://refhub.elsevier.com/S1574-1192(22)00059-1/sb26
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb26
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb26
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb27
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb28
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb28
http://refhub.elsevier.com/S1574-1192(22)00059-1/sb28

	Perses: A framework for the continuous evaluation of the QoS of distributed mobile applications
	Introduction
	Motivation
	Perses: QoS evaluation in distributed applications
	Architecture
	Defining virtual scenarios
	Integrating Perses in a DevOps methodology

	Experimental evaluation
	Experiment set-up
	Scenario evaluation set-up
	Results of the experiments

	Related works
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

