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Abstract— Low-latency, low-power portable recurrent neural
network (RNN) accelerators offer powerful inference capabilities
for real-time applications such as IoT, robotics, and human-
machine interaction. We propose a lightweight Gated Recurrent
Unit (GRU)-based RNN accelerator called EdgeDRNN that is
optimized for low-latency edge RNN inference with batch size of
1. EdgeDRNN adopts the spiking neural network inspired delta
network algorithm to exploit temporal sparsity in RNNs. Weights
are stored in inexpensive DRAM which enables EdgeDRNN to
compute large multi-layer RNNs on the most inexpensive FPGA.
The sparse updates reduce DRAM weight memory access by a
factor of up to 10x and the delta can be varied dynamically
to trade-off between latency and accuracy. EdgeDRNN updates
a 5 million parameter 2-layer GRU-RNN in about 0.5 ms. It
achieves latency comparable with a 92 W Nvidia 1080 GPU.
It outperforms NVIDIA Jetson Nano, Jetson TX2 and Intel
Neural Compute Stick 2 in latency by 5X. For a batch size of 1,
EdgeDRNN achieves a mean effective throughput of 20.2 GOp/s
and a wall plug power efficiency that is over 4X higher than the
commercial edge AI platforms.

Index Terms— Edge computing, FPGA, embedded system,
deep learning, RNN, GRU, delta network.

I. INTRODUCTION

DEEP neural networks (DNNs) have been widely applied
to solve various practical problems with state-of-the-

art performance. Recurrent neural networks (RNNs) which
are a subset architecture of DNNs, are particularly useful
in applications involving time series inputs, such as speech
recognition [1], [2] and dynamical system control [3], [4].
In contrast to Convolutional Neural Networks (CNNs) which
use filter kernels, RNNs are fully-connected networks: They
take a 1D vector as input and produce a vector of output.
The feature vectors generated by CNNs can be fed into an
RNN for further processing. In this way, RNNs can connect
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Fig. 1. A: EdgeDRNN accelerator concept. B: Example target application
from [7].

the high dimensional input features over time, which is useful
for complex sequential classification or regression tasks. Gated
RNNs modify a “vanilla” RNN to add nonlinear operations to
the units that allow them to memorize and gate their output.
Long Short-Term Memory units (LSTM) [5] and Gated-
Recurrent Units (GRU) [6] are used to overcome the vanishing
gradient problem frequently encountered during vanilla RNN
training with backpropagation through time (BPTT), where
the sequential operations of the RNN are unrolled to compute
the weight updates based on output error. By using BPTT
with labeled training data, GRU and LSTM RNNs can be
trained to high accuracy for tasks involving time series such
as continuous speech recognition.

Edge computing devices that embed some intelligence
implemented through trained DNNs are gaining interest in
recent years. An advantage of edge computing is that compu-
tations are done locally on end-user devices to reduce latency
and protect privacy [8]. Most literature reports on the use of
CNNs for edge devices. There is less reported on devices that
use RNNs particularly on embedded low-latency, high energy-
efficient platforms that use FPGAs. RNNs also have larger
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memory footprints and memory access of the fully-connected
weight matrices dominates power consumption. RNNs are
usually computed on the cloud which introduces large and
variable latency, thereby making it hard to guarantee real-time
performance for edge applications such as human-computer
interaction devices and mobile, robotic applications.

Optimization methods have been applied to RNNs for
embedded hardware implementations (e.g. weight pruning
in ESE [9], and structure pruning in BBS [10]). We also
previously reported the DeltaRNN accelerator [11] that uses
the delta network algorithm [12]. Our first DeltaRNN imple-
mentation [11] stored the large weight matrices in FPGA
block RAM and thus needed expensive FPGA boards with
greater than 15 W power consumption. However, this work
only focused on pushing the limit of high batch-1 throughput
without considering the memory and power constraints of
extreme edge devices. Typical chips for edge applications,
such as microcontrollers and small-footprint FPGA, only have
a few hundreds of kilobytes (kB) of on-chip SRAM, but large
RNNs usually have megabytes (MB) of parameters, making
them difficult to be buffered on-chip even after compression.
In this case, storing RNN parameters in off-chip memory
such as flash or DDR memory is an inevitable choice for
edge devices. Therefore, reported hardware RNN implemen-
tations [9], [10] cannot be easily scaled down for edge
platforms.

This work is on EdgeDRNN, a hardware accelerator for
RNN computation on the edge [13]. Because of our interest
in real-time edge applications, our focus is on supporting low-
latency batch-1 inference of large RNNs for real-time perfor-
mance on low-cost and low power but very constrained edge
platforms. We show that our implementation can run large-
scale multi-layer RNNs using a small number of processing
elements with the large weight matrices stored on off-chip
DRAM. Besides accelerating RNN inference, it leaves most
cycles of the CPU in the system-on-chip (SoC) available for
other tasks, such as feature extraction and I/O management.
EdgeDRNN can be implemented on a small-footprint FPGA
with 19X less logic cells and 15X less on-chip memory com-
pared to the one used in DeltaRNN [11]. Thus, EdgeDRNN
is suitable for embedded system applications such as robotics
(Fig. 1B).

Moreover, in previous work using the current delta network
algorithm, a global threshold is applied on both the inputs
and hidden unit activations of every layer of the network in
sparsifying the activation vector. In this work, we looked at
how different threshold values on the inputs and activations
of hidden units affect the trade-off between the accuracy
of the network on a regression task and the sparsity levels
of the change in the activation vectors. A higher sparsity
level implies reduced weight memory access and reduced
computes.

This article makes the following contributions:
1) We describe a flexible, low-cost, high throughput edge

FPGA RNN accelerator that uses a spiking neural
network-inspired Delta RNN principle to provide state-
of-art latency and power efficiency for a wide range of
gated RNN network sizes with batch size of 1.

2) We report the first study of a delta network that uses
different delta thresholds for the input and activations
of the hidden units. On our tested regression task, this
modification increases temporal sparsity of hidden delta
states by 16% compared to using a global threshold.

3) We compare the usability and throughput performance
of two different EdgeDRNN implementation on the
SoC FPGA: Bare-metal and embedded Linux. The latter
enables faster development and we report the correct
FPGA memory bus port configuration that minimizes the
performance loss due to CPU contention for the memory
controller.

4) We report benchmark latency and throughput numbers of
RNN inference on state-of-the-art commercial chips for
edge applications. To our best knowledge, these numbers
have never been reported before.

The rest of this article is organized as follows. Section II
describes the background of gated recurrent unit (GRU) based
RNN and the algorithm of delta network based GRU-RNN,
which is called DeltaGRU. Section III describes the
architectural design of the accelerator and its implementation
on MiniZed. Section IV discusses experimental results
including the experiments using different delta thresholds for
the network. Section V compares the proposed accelerator
with prior work and commercial edge devices. Section VI
concludes the paper.

II. BACKGROUND

A. DNN Hardware Optimization Methods

Various methods have been proposed to reduce the dominant
RNN matrix-vector (MxV) operations. Static approximation
methods (i.e. constructed during training) include quantization,
arithmetic, and weight pruning.

1) Quantization: Quantizing floating-point weights or acti-
vations to fixed-point numbers with shorter bit width reduces
memory footprint of networks and make it possible to use
fixed-point MAC units instead of expensive floating-point
MAC units [9], [14]–[16]. Chip area can be further reduced
by replacing conventional fixed-point multipliers by look-up
table based [17] or multiplexer [18] based multipliers on low
bit precision networks with 2-4 bit weights. By including
quantization during training (e.g. by using an approach like
dual-copy rounding [19]) it is possible to reduce weight
precision to 8 bits without accuracy loss.

2) Weight Pruning: Pruning removes unimportant neu-
ron connections that results in sparse weight matrices [20].
Sparse matrices can be encoded into a sparse matrix for-
mat such as the Compressed Sparse Column (CSC) and
Compressed Sparse Row (CSR). With an accelerator that
can decode the sparse matrix format on-chip, the sparse
matrix-vector (SpMV) multiplication can be accelerated by
executing multiply-and-accumulate (MAC) operations only on
nonzero weights. This approach was adopted by the Efficient
Speech Recognition Engine (ESE) [9]. Because unstructured
pruning results in computation that is hard to balance across
processing elements, structured pruning methods have also
been proposed to improve load balancing during the SpMV



computation [10], [21]. This approach was used by the LSTM 
FPGA accelerator using Bank Balanced Sparsity (BBS) [10]. 
It is also used by the custom digital IC of [21] where it is 
called Hierarchical Coarse Grain Sparsity (HCGS). Structured 
pruning is a popular approach for improving RNN hardware 
performance; both BBS and HCGS use it to increase effective 
MAC efficiency, but large increases in efficiency result in sig-
nificantly worse inference accuracy [21]. For example, a 16X 
compression increases the error rate by a factor of about 1.2X. 
It allows static (compile-time) optimization, but training is 
fairly complicated since exploration of the additional structure 
hyperparameter values is needed to find optimum values that 
are matched to the particular hardware.

3) Arithmetic: Bit-serial NN accelerators such as [22],
[23] utilize a flexible bit-serial MAC to support various
precision of network parameters and are smaller in area
compared to conventional fixed-point MAC units. However,
since a bit-serial MAC units requires more cycles to fin-
ish a multiplication between high bit precision operands,
more bit-serial MAC units are required to achieve higher
throughput than using conventional MAC units and larger
adder trees are need for accumulating partial sums. Thus,
the average speedup using this method is only around 2X
but it comes with extra overhead area. The C-LSTM accel-
erator used Toeplitz-like weight matrices in the form of
blocked circulant matrices to reduce RNN memory require-
ments [24] since multiple rows in each circulant matrix block
can be generated from a single vector. The method also
enables the use of Fast Fourier Transform (FFT) to reduce
the MxV cost from O(n2) to O(n log(n)) [25]. However,
forcing weight matrices to be blocked circulant is coarse-
grained and leads to higher accuracy degradation compared
to weight pruning [9], [10]. Moreover, the method leads to
hardware overhead of computing the FFTs of activations and
weights.

4) Temporal Sparsity: The delta network algorithm [12]
capitalizes on the temporal sparsity of activation state vectors
in a network. Setting a finite threshold that is greater than
zero has the effect of zeroing-out below-threshold elements
of the activation vector, which results in sparse delta vectors.
Since zero activations have no downstream influence, these
MACs can be skipped. It means that entire columns of the
weight matrix can be skipped. Thus delta networks marry the
temporal sparsity of spiking networks with the synchronous
update and analog state transmission of conventional deep
networks. Combining these principles provides the benefits
of sparse computing and efficient communication of precise
analog information with reduced and predictable memory
access of inexpensive DRAM which is crucial for storing the
weights.

A set of studies [7], [12], [13] showed in a variety of
networks that by applying the delta principle during training,
the accuracy loss is minimal even with a 5-10X improvement
of RNN throughput and latency. For example, [12] used a
4-layer 320 units per layer GRU RNN for continuous speech
recognition on the Wall Street Journal dataset. The Word Error
Rate (WER) increased by only a factor of 1.08X but with a
reduced memory access of 6.2X.

B. Gated Recurrent Unit

The update equations for a GRU layer of H neurons and
I -dimensional input, which are as follows:

rt = σ (Wxr xt + Whr ht−1 + br )

ut = σ (Wxuxt + Whuht−1 + bu)

ct = tanh (Wxcxt + rt � (Whcht−1) + bc)

ht = (1 − ut ) � ct + ut � ht−1 (1)

where r, u, c ∈ RH are the reset gate, the update gate and the
cell state respectively. Wx ∈ RH×I , Wh ∈ RH×H are weight
matrices and b ∈ RH are bias vectors. The σ variable denotes
the logistic sigmoid function. Each GRU input is the vector
xt and its output is the vector ht .

Fig. 2A illustrates the update of the normal GRU reset gate
as a flow diagram.

C. DeltaGRU

The delta network method is applied to the GRU-RNN
architecture; we call this DeltaGRU. Assume an input vector
sequence X = {xt | t = 1, 2, . . . , T } with sequence length of
T , we first declare the following variables:

x̂i,t =
{

xi,t , |xi,t − x̂i,t−1| ≥ �x

x̂i,t−1, |xi,t − x̂i,t−1| < �x

ĥ j,t =
{

h j,t , |h j,t − ĥ j,t−1| ≥ �h

ĥ j,t−1, |h j,t − ĥ j,t−1| < �h

�xi,t =
{

xi,t − x̂i,t−1, |xi,t − x̂i,t−1| ≥ �x

0, |xi,t − x̂i,t−1| < �x

�h j,t =
{

h j,t − ĥ j,t−1, |h j,t − ĥ j,t−1| ≥ �h

0, |h j,t − ĥ j,t−1| < �h
(2)

where x̂i,t is the i -th element of input state memory vectors x̂t

in timestep t . ĥ j,t is the j -th element of hidden state memory
vectors ĥt in timestep t . �xi,t is the i -th element of delta
input state vectors �xt . �h j,t is the j -th element of delta
hidden state vectors �ht . �x and �h are respectively the delta
thresholds of inputs and hidden state for each layer. In the
initial timestep (t = 1), x̂i,0, hi,0, ĥi,−1 are all initialized to
zeros.

The update equations for the DeltaGRU are now:
Mr,t = Wxr�xt + Whr�ht−1 + Mr,t−1

Mu,t = Wxu�xt + Whu�ht−1 + Mu,t−1

Mxc,t = Wxc�xt + Mxc,t−1

Mhc,t = Whc�ht−1 + Mhc,t−1

rt = σ(Mr,t )

ut = σ(Mu,t )

ct = tanh(Mxc,t + rt � Mhc,t )

ht = (1 − ut ) � ct + ut � ht−1 (3)

where Mr,t=0 = br , Mu,t=0 = bu , Mxc,t=0 = bc, Mhc,t=0 = 0
are delta memory vectors and M ∈ RH . Variables σ and �
indicate the sigmoid function and element-wise multiplication
of vectors respectively.



Fig. 2. Computation flow of the reset gate in gated recurrent units (GRUs). A: Normal GRU reset gate update. B: A DeltaGRU reset gate update. See
Eqs.1-3.

Fig. 2B illustrates these operations for the DeltaGRU reset
gate. The input vector xt and the hidden state vector ht−1 are
respectively replaced by the delta input state vector �xt and
the delta hidden state vector �ht−1. Values of the previous
state memory vectors x̂t−1, ĥt−2 are updated using Eq. 2 to
generate new state memory vectors x̂t , ĥt−1. The previous
delta memory vector Mr,t−1 holds the previous step’s partial
sum-product and the resulting new delta memory vector Mr,t

is stored. Otherwise the operations are the same as for the
original GRU reset gate, as shown in Fig. 2A. The other gates
have similar flow diagrams. The state and delta memories are
1D vectors and can be easily fit into on-chip SRAM buffers.

D. Temporal Sparsity

The temporal sparsity � of a DeltaGRU network of L layers
with an input sequence length of T is defined as the fraction
of zeros in the �x and �h vectors, signified by ��x and
��h respectively. The effective temporal sparsity �Eff is the
weighted average of ��x and ��h according to the number
of network parameters they correspond to. The definition of
temporal sparsity is given by Eq. 4:

��x = 1

L · T · I

T∑
t=1

n1
x,t + 1

(L − 1) · T · H

L∑
l=2

T∑
t=1

nl
x,t

��h = 1

L · T · H

L∑
l=1

T∑
t=1

nl
h,t

�Eff =
(
3H I + 3H 2(L − 1)

) · ��x + 3H 2L · ��h

3H I + 3H 2(L − 1) + 3H 2L

= (I + H (L − 1)) · ��x + H L · ��h

I + H (L − 1) + H L
(4)

where nl
x,t and nl

h,t are the number of zero elements respec-
tively in the delta vectors �x and �h in layer l at timestep t .
Because operations on biases are negligible, they are ignored
in Eq. 4.

By skipping zero elements in delta vectors, whole columns
of matrix-vector MAC operations can be skipped. If the delta
network is properly trained (by including the delta operation),
[7], [12], [26] showed that the number of operations can be
reduced by 5X to 100X with negligible loss of accuracy,
depending on the temporal evolution of the states of the input
and hidden units.

Fig. 3. EdgeDRNN accelerator architecture.

E. Datasets

Two datasets are used in this article: the TIDIGITS [27]
dataset for the classification task and the SensorsGas dataset
for the regression task. The TIDIGITS speech dataset has more
than 25k digit sequences spoken by over 300 men, women,
and children. The entire training and test sets are used in our
experiments. The SensorsGas dataset consists of recordings of
metal-oxide sensors in response to various concentrations of
carbon monoxide gas over 14 days [28], [29]. This dataset was
used in [30] to evaluate the network performance of a gated
RNN in predicting the concentration of carbon monoxide. The
dataset used here comes from the 70/30 Split variant, that
is, 70% of the sequences are randomly selected to form the
training set, while the remaining sequences form the test set.

III. EDGEDRNN ACCELERATOR

A. Overview

Due to limited weight reuse, it is difficult to compute
RNNs efficiently for real-time applications that usually work
best with a batch size of 1. Therefore, a big challenge of
RNN inference on the edge is the scarce off-chip memory
bandwidth available on portable platforms, and the limited
amount of on-chip block RAM on small FPGAs. EdgeDRNN
uses cheap off-chip DRAM for weight storage and reduces
memory bandwidth by exploiting temporal sparsity in RNN
updates.

Fig. 3 shows the architecture of the EdgeDRNN accelerator.
The main modules consist of the Delta Unit for encoding delta



Fig. 4. Flow chart of the Delta Unit.

vectors and generating weight column pointers (pcol); the
Processing Element (PE) Array for matrix-sparse vector mul-
tiplications; the (CTRL) control module which contains finite
state machines (FSMs) and encodes instructions to control
the AXI Datamover. Other modules include the configuration
module (CFG) composed of configuration registers; the output
buffer (OBUF) for buffering and redirecting outputs back to
the Delta Unit and the W-FIFO for buffering weights.

B. Delta Unit & CTRL

The Delta Unit stores state memory for delta state vector
encoding in a block random access memory (BRAM1). The
FSM addresses the BRAM according to the valid signal of
input state vectors xt and ht , one of which, is selected to be
processed as st at a time depending on the FSM state. The
Delta Unit encodes one element of a delta state vector �st

in each clock cycle after the valid signal asserted until the
whole vector is processed.

The vector sizes are provided by the config signal from
the CFG module. Delta state vector elements that are greater
than or equal to threshold �x or �h; and their corresponding
physical weight column address pointer (pcol) are respec-
tively dispatched to the D-FIFO and CTRL. The corresponding
state element st is written into the BRAM to update the state
memory. Otherwise, elements are discarded without being
written into the D-FIFO. By using only 1 Delta unit, the
latency in clock cycles for the Delta Unit to process a vector
is exactly the length of that vector. It is possible to reduce the
latency by searching for nonzero elements in N subsections of
a vector simultaneously. It can be realized by using N Delta
Unit blocks in parallel to fill at most one nonzero value into the
D-FIFO on every clock cycle. Assuming that nonzero elements
are uniformly distributed in a delta state vector and using N
Delta Unit blocks running in parallel, the latency τDU in clock
cycles to process a whole vector is

τDU ≈ max

(⌈
D

N · d

⌉
, �D · (1 − �)�

)
(5)

where D is the length of the vector, d is the length of the
subsection of the vector or the look-ahead window side of the
Delta Unit; and � is the temporal sparsity defined in Eq. 4.

1BRAM is the standard SRAM memory block on FPGAs; on Xilinx Zynq
FPGAs a single BRAM block has 18-bit words and a capacity of 18kb.

Fig. 5. Architecture of the EdgeDRNN processing element (PE).

Although τDU can be hidden under τm , the latency of
computing MxV, τDU becomes a bottleneck of total latency
when τDU > τm , which could happen when an accelerator
uses a large number of MAC units to compute small networks.
However, in this work, we aim to run large network inference
with a small number of MAC units for edge applications,
making τDU � τm ; thus, η = 1 is used in EdgeDRNN. The
MAC utilization results shown in Section IV.D prove that this
choice did not lead to latency bottleneck.

The CTRL module contains FSMs that control the PE array.
This module generates 80-bit instructions for controlling the
Xilinx AXI Datamover IP [31] to fetch RNN parameters. The
instruction contains pcol and the burst length calculated from
the dimensions of the network stored in configuration registers.

C. Processing Element Array

Two-dimensional arithmetic unit arrays such as systolic
arrays are difficult to be fully utilized in portable edge devices
due to scarce on-chip memory resources, the low external
memory bandwidth of the system and the limited weight reuse
nature of RNNs. In order to fully utilize every PE, a vector PE
array is used in EdgeDRNN. Fig. 5 show the internal structure
of a PE.

The PE has a 16-bit multiplier MUL and two adders, 32-
bit ADD0 and 16-bit ADD1. Multiplexers are placed before
operands of MUL so that the PE can be reused for both
MxV and vector dot products. The multiplexer below ADD0
selects between ’0’ and the BRAM data. ’0’ is chosen when an
initialization of BRAM is needed as shown in Fig. 5. ADD1
is responsible for element-wise vector additions. All units are
parameterized in the System Verilog RTL and configurable at
compile-time to support any fixed-point precision within their
designed bit width. The PE supports tanh and sigmoid
functions by using look-up tables (LUTs). The input bit width
of LUTs is fixed to 16 bits while the output bit width can be
set anywhere between 5 (Q1.4) to 9 (Q1.8) bits.

Fig. 6 shows the sparse MxV flow. The weight matrices
of the GRU-RNN are concatenated following the arrangement
shown on the right half of the figure. Biases are appended
to the concatenated weight matrix as the first column and
an element 1 is appended to each input state vector xt as



Fig. 6. Flow of sparse matrix-vector multiplication in EdgeDRNN and the
arrangement of GRU weights in the concatenated weight matrix.

the first element. The PE array multiplies only nonzero delta
state elements with corresponding valid columns. Products are
accumulated in the Accumulation Memory (ACC Mem) to
compute delta memory vectors Mr , Mu , Mic , Mhc. Products
involving br , Wir , Whr are accumulated to Mr ; bu , Wiu , Whu

to Mu ; bc, Wic to Mic ; Whc to Mhc. According to the delta
update scheme defined by Eq. 2, the appended 1 in the delta
state vector �xt becomes 0 after the initial timestep, which
means that biases br , bu , bc are only accumulated to the ACC
Mem by once and will be skipped by the Delta Unit after the
initial timestep.

The calculation of activation ht after the MxV is also done
by the PE array and stages of this process are shown in Fig. 7.
The PE array fetches the delta memory vectors from the ACC
Mem to calculate ht in 8 pipeline stages. Paths without any
operator in any stage are buffered for 1 clock cycle using flip-
flops. During execution of the activation ht generation, stages
S0∼S2 are executed simultaneously with S5∼S7 to reuse the
arithmetic units using time-division multiplexing.

Finally, assuming that the DRAM interface can deliver
WDRAM bits per RNN clock cycle for weight fetch, the
optimum number K of PEs in the array is determined by the
weight precision bit width WWeight. The definition of K and
corresponding theoretical peak throughput, νPeak , is defined
below:

K = WDRAM/WWeight,

νPeak = 2 · f pl · K (6)

where f pl is the clock frequency of the programmable logic.
For example, the FPGA used in this article has a 64-bit DRAM
interface, so, with 16-bit weights, K = 8 is optimal.

D. Implementation on MiniZed

Fig. 8 shows the latest implementation of EdgeDRNN on
the $89 MiniZed development board [32] which has a Zynq-
7007S SoC. EdgeDRNN is implemented in the programmable
logic (PL). The SoC also has a programmable CPU which
is in a module called the Processing System (PS). Data is

TABLE I

RESOURCE UTILIZATION OF MINIZED USING 5-BIT (Q1.4) LUT

transferred between PS and PL through high performance
(HP) slave ports while control signals generated by the PS
is transferred through general purpose (GP) master ports. The
hard IP block, AXI Datamover, is controlled by the PS to
fetch weights to the PL from DDR3L memory. Another hard
IP block, AXI DMA is controlled by the PS to transfer inputs
and outputs of the accelerator. Compared to our previous
work [13], we reduced resource utilization by replacing the
AXI SmartConnect IP with the AXI Interconnect IP while
preserving the same throughput and latency. To further reduce
on-chip power, we used the power optimization strategy during
implementation in Xilinx Vivado and lower the ARM CPU
clock frequency from 667 MHz to 400 MHz for the bare-
metal version.

The peak DRAM read memory bandwidth is 1 GB/s at
the 125 MHz clock frequency (64-bits×125 MHz/8-bits/byte).
EdgeDRNN can be configured to support 1, 2, 4, 8, 16-bit
fixed-point weights and 16-bit fixed-point activations. In this
article, EdgeDRNN is configured to support 16-bit activation
and 8-bit weights. To fully exploit this HP port bandwidth,
we implement K = 8 PEs following Eq. 6. Adding more PEs
would only leave them idle since weight fetches are limited
by the DRAM bandwidth.

The AXI-Lite General Purpose (GP) master port is used
for the single-core ARM Cortex-A9 CPU to control the AXI-
DMA and to write the configuration to the accelerator. Con-
figurations include physical start address of the concatenated
weights, delta thresholds, and network dimensions.

The PL is driven by single clock domain of 125 MHz
generated by the PS. Table I shows the resource utilization
solely for EdgeDRNN (with 5-bit (Q1.4) LUTs) and for the
whole PL after synthesis and implementation. BRAMs are
used to store previous state memory in the Delta Units and
the accumulation memory in PEs and FIFOs. 8 DSPs are used
for the MAC units in the 8 PEs while the remaining DSP in
CTRL produces weight column addresses. The most consumed
resources are LUTs (72%). This entry-level XC7Z007S FPGA
has only 14.4k LUTs. By comparison, the top level XC7Z100
has 19X more LUTs and 11X more BRAM.

E. Petalinux OS Integration

Xilinx’s Zynq chips are hosted on heterogeneous embedded
platforms with a variety of peripherals and communication
interfaces. To work with this type of system there are two
workflows, bare-metal and embedded OS.

The bare-metal workflow is similar to the workflow of
conventional microcontrollers. Bare-metal has a set of libraries
that establish a very thin software layer over all the hardware
resources available in the system and that helps a little during
the elaboration of the software that will be deployed in



Fig. 7. Stages of GRU activation pipeline in the PE Array.

the system; however, detailed knowledge of the hardware is
still necessary to ensure correct functionality. The resulting
software runs on the PS processor making use of all its
computing power since it is the only software running on the
core. Bare-metal allows a more dedicated use of the system
resources to achieve high performance execution but it offers
little flexibility and versatility.

The second option is to use an embedded Linux OS pro-
vided by Xilinx called PetaLinux. This OS establishes several
software layers over the system hardware that simplifies its
use and the development of applications that make use of
the system’s peripherals like USB, Bluetooth, and Wi-Fi. The
Linux system is a preemptive multitasking operating system
that can make application development much faster. Since
running Linux slightly slows down inference (Sec. IV), users
can decide to pay the throughput price of using Linux for faster
development time and easier maintenance. For EdgeDRNN,
we implemented both systems to meet our various application
requirements.

IV. EXPERIMENTAL RESULTS

We previously developed two EdgeDRNN system-level
demonstrations: continuous spoken digit recognition [26] and
real-time control of a powered leg prosthetic [7]. Here we
report the results of new experiments to measure accuracy,
throughput, and power efficiency on the spoken digit task and
a new regression task on gas concentration estimation. We also
report measurements of embedded Linux implementation of
EdgeDRNN.

A. Experimental Setup: Training

We evaluate the accuracy of DeltaGRU and the hardware
performance of EdgeDRNN using this DeltaGRU network on
both a classification task using the TIDIGITS [27] dataset and
on a regression task using the SensorsGas [30] dataset.

1) Classification: For the classification task, we trained 6
different DeltaGRU network sizes and compared their WER on
the TIDIGITS audio digit dataset, evaluated using the greedy
decoder. Inputs to the networks consist of 40-dimensional log
filter bank features extracted from audio sampled at 20 kHz
using a frame size of 25 ms and frame stride of 10 ms. We
use the Connectionist Temporal Classification (CTC) loss [33]

Fig. 8. Top-level diagram of the EdgeDRNN implementation on the MiniZed
development board.

to handle variable input sequence lengths. The DeltaGRU
networks were trained for 50 epochs using a learning rate
of 3e-4 and batch size of 32. Following a similar procedure
in [26], a continuous spoken digit recognition demo is built
using EdgeDRNN to prove the system functionality.2

2) Regression: For the SensorsGas regression task, the input
dimension of the network is 14 corresponding to data from
the 14 sensors. We adopt a 2-step pretrain and retrain scheme
we developed for [7]: 1) We pretrain a cuDNN GRU model
on the training set for 100 epochs. The learning rate is 5e-4
and the batch size of 64. 2) We load these parameters into a
DeltaGRU network with same size as the cuDNN GRU and
retrain for another 10 epochs with learning rate of 3e-3 and
batch size of 256. In this step we optimize the deltas for the
visible and hidden units. Because the cuDNN GRU model is
highly optimized for NVIDIA GPUs, the pretrain step helps to
train the network to achieve high accuracy with 5X less time.

All networks are trained using the Adam optimizer and
quantization-aware training using quantization scheme similar
to [19]. To improve accuracy, we use nonlinear functions
with the same input and output bit precision as the LUT in
the forward phase of the training. In the backward phase,
the gradient of the nonlinear function is calculated using

2https://www.youtube.com/watch?v=XyN-jh5yiMI



Fig. 9. Mean effective throughput and word error rate evaluated on the
TIDIGITS test set as a function of the delta threshold used in both training
and inference of a 2L-768H-DeltaGRU network. �x = �h (� is shown as
Q8.8 integer values corresponding to 0∼0.5 floating point threshold).

the original nonlinear functions in FP32 precision. Training
was done with PyTorch 1.2.0 on NVIDIA GPUs running
CUDA 10 and cuDNN 7.6.

B. Experimental Setup: Network Implementation

After the quantized DeltaGRU is trained for a particular
task, a Python script converts the PyTorch network modules
into C/C++ hardware network header files. These files contain
the network parameters and configuration register values for
EdgeDRNN. By including the header files, bare-metal or
PetaLinux applications are compiled using the standard cross
compiler. The resulting system image is transferred to the
QSPI flash (bare-metal) or eMMC storage (PetaLinux) on the
MiniZed. In each timestep of the RNN, a feature vector is
transferred from the PS to the accelerator using the AXI DMA.
For measuring the performance of the accelerator, features are
calculated offline on a computer and stored in a header file.
For using the accelerator in real-world applications, features
such as log filter bank and spike count features for audio, are
calculated online by the ARM core in the PS. A flag connected
to a PS hardware register is raised at the end of each timestep.

C. Accuracy & Throughput

1) Classification: Fig. 9 shows the EdgeDRNN throughput
and WER on the TIDIGITS test set versus the � used in
training and testing of a 2L-768H-DeltaGRU network. � is the
same for both �x and �h. With K = 8 PEs and PL frequency
f pl = 125 MHz, EdgeDRNN has a theoretical peak throughput
of 2K f pl = 2 GOp/s. At � = 0, there is still a speedup of
about 2X from natural sparsity of the delta vectors. Higher
� leads to better effective throughput, but with gradually
increasing WER. The optimal point is at � = 64 (0.25),
just before a dramatic increase of WER, where EdgeDRNN
achieves an effective throughput around 20.2 GOp/s with 1.3%
WER. WER and throughput of smaller tested networks are
shown in Table II. The 5-bit (Q1.4) LUT was used for this
task and did not lead to accuracy loss compared to the network
running on CPU with FP32 nonlinear functions.

2) Regression: In this regression task, we evaluate the
impact of using different delta thresholds for �x and �h on
the accuracy results of a 2L-256H-DeltaGRU model evaluated

Fig. 10. RMSE (smaller is better) and R2 (larger is better) versus �x and
�h of the 2L-256H-DeltaGRU model evaluated on the SensorsGas test set.

Fig. 11. Temporal sparsity ��x and ��h versus �x and �h of the
2L-256H-DeltaGRU model evaluated on the SensorsGas test set.

on the SensorsGas testset. Fig. 10 and Fig. 11 show respec-
tively the regression accuracy and temporal sparsity versus �x

and �h . The pretrained 2L-256H-GRU network without using
a delta threshold, achieves a root-mean-square error (RMSE)
of 0.995 and coefficient of determination (R2) of 0.976. This
accuracy was achieved using 5-bit (Q1.4) LUTs, which gave
the lowest RMSE out of all other LUT bit precision values.

Similar to the results for the classification task, Fig. 10
shows that the accuracy degrades when larger delta thresholds
are used. Fig. 11 shows that the sparsity levels of ��x and ��h

are heavily influenced by their corresponding delta thresholds.
The accuracy degrades faster with increasing �x for a fixed
�h than with increasing �h for a fixed �x . �x has a minor



TABLE II

WORD ERROR RATE, LATENCY AND THROUGHPUT OF EDGEDRNN RUNNING WITH BARE-METAL ON DELTAGRU
NETWORKS TRAINED WITH � = 64, β =1E-5

TABLE III

LATENCY AND THROUGHPUT OF EDGEDRNN RUNNING WITH PETALINUX ON DELTAGRU
NETWORKS TRAINED WITH � = 64, β = 1E-5

impact on ��h and vice versa. The results from this regression
task indicate that propagating changes more often in input
states is more important than propagating changes in hidden
states. By exploiting this phenomenon, we get the optimal
point (�x ,�y) = (4, 8), where the RMSE and R2 are 1.078
and 0.972 respectively. With ��x = 59.7% and ��h = 69.2%,
the latency of the optimal model is 206μs. In comparison,
Jetson TX2 runs a 4.8X smaller 1L-200H-GRU network in
271μs [30].

D. Theoretical & Measured Performance

Eq. 7 gives the estimated mean effective throughput νE f f

of EdgeDRNN running a DeltaGRU layer:
νE f f = Op

τm + τa

≈ 2
(
3H I + 3H 2(L − 1) + 3H 2L

)
(3H I+3H2(L−1))(1−��x )+3H2 L(1−��h)

K f pl
+ 3H

K f pl

(7)

where Op is the number of operations in a DeltaGRU layer per
timestep, τm the latency of MxV, τa the latency of remaining
operations to produce the activation, and the other variables
are defined as in Eqs. 4 and 6.

Table II compares the Eq. 7 predictions with benchmark
results of different DeltaGRU network sizes running on Edge-
DRNN. Estimated results calculated from Eq. 7 are close to
measured results and the maximum relative error between
them is smaller than 7.1%. Thus Eq. 7 can be used to esti-
mate EdgeDRNN performance for a particular RNN network
size. On average, EdgeDRNN can run all tested networks
under 0.54 ms latency corresponding to 20.2 GOp/s effective
throughput for the 2L-768H-DeltaGRU.

E. Performance in PetaLinux

For performance measurements on the PetaLinux-based
system, we implemented an application that performs the same
operations as the software implemented for bare-metal but use
the AXI DMA driver included in the OS.

Table III shows the latency and performance results for
the 6 networks used in this work. The minimum and mean
latency numbers in the PetaLinux version are respectively up
to 3.4% and 11.3% higher than the numbers obtained for the
bare-metal version. Because the minimum PetaLinux latency
is nearly the same as the bare-metal latency, the big difference
in maximum latency numbers between the PetaLinux and the
bare-metal version is due to CPU contention for other tasks
running on the PS that lock the single PS DDR controller.
EdgeDRNN fetches weights from HP ports (Fig. 8) that are
routed through the PS DDR controller. (The FPGA’s ACP
interface should not be used to access DRAM memory under
PetaLinux because it is connected directly to the L2 cache
on the ARM core where the OS runs. This configuration
creates conflicts and the performance of the system is seriously
compromised.) Under PetaLinux, the HP interface should be
used to connect any module placed on the PL that requires
direct access to the DRAM memory.

To understand the impact of CPU load and CPU DRAM
access on the RNN inference time, we wrote a small program
that loops over a memory array and is designed to trigger L2
cache misses. We used two different memory array sizes to
study the effect of cache misses since the large memory array
causes more L2 cache misses. Table IV shows that the impact
on RNN latency is minor: a small network takes about 50%
longer to run with either memory array size, and a large RNN
is only slowed down by 10%.

The RNN inference time varies between 50 us to 0.5 ms
across the different network sizes. During this inference time,
the PS is free for other tasks (e.g. computing features) and
only needs to check if the RNN update is finished when these
tasks are completed.

F. Power Measurement

Table V shows the power breakdown of the MiniZed system.
The total power is measured by a USB power meter; the PS,
PL and static power is estimated by the Xilinx Power Analyzer.
The whole system burns at most 2.3 W but the EdgeDRNN



TABLE IV

EDGEDRNN RNN PETALINUX LATENCY WITH CPU
DRAM MEMORY ACCESS

TABLE V

WALL POWER BREAKDOWN OF THE MINIZED EDGEDRNN SYSTEM

DURING RNN INFERENCE (BARE-METAL)

only consumes 66 mW. It is interesting to note that the DRAM
power is about 8X more than the RNN logic. This result clearly
shows that the RNN computation is memory dominated.

V. COMPARISON

A. Comparison With FPGA RNN Accelerators

Table VI compares EdgeDRNN with other state-of-the-
art FPGA RNN accelerators. Both BBS [10] and DeltaRNN
were optimized for batch-1 inference by using all MACs
for a single input sample. BBS can use DRAM to sup-
port large networks and has the highest batch-1 throughput
among all accelerators; however the reported throughput num-
ber was obtained by buffering the whole network by using
expensive on-chip memory. After compression, the network
has around 0.8 MB parameters, which can be buffered on
large FPGAs like the GX1150 used by BBS, but it is still
too expensive for edge hardware platforms (e.g. MiniZed
has only 0.2 MB on-chip memory). ESE [9] reuses weights
fetched from off-chip memory to feed 1024 MACs for batch
inference and achieved 2520 GOp/s total throughput; however
only 32 out of 1024 MACs were used for each input sample
limiting its batch-1 throughput. Except for EdgeDRNN and
DeepRnn [14], other platforms are not designed for edge
applications. BBS, DeltaRNN and ESE provide much higher
throughput but their power consumption is around 3X-18X
larger than EdgeDRNN and they require expensive FPGA
development systems that are not very portable. By contrast,
the small number of processing elements in EdgeDRNN is
intentionally chosen to match the available memory bandwidth
of the DRAM interface, since there is no point in having idle
PEs.

To fairly compare architectures without the influence of
different specifications of FPGA platforms, it makes sense
to normalize the batch-1 throughput and other corresponding

numbers of accelerators to the same number of PEs (K = 8),3

clock frequency ( f pl = 125 MHz), DRAM interface bit width
for weight fetch (64-bit) and bit precision of weights (INT8) &
activations (INT16) as used by EdgeDRNN. We also assume
that the normalized platforms are implemented on MiniZed
having the same power consumption of EdgeDRNN. The
normalized batch-1 throughput νEff,Norm is defined below:

νPeak,Mem = 2 · f pl · WDRAM

WWeight + WIndex

νEff,Norm = νPeak,Mem · 1

1 − �Eff
(8)

where νPeak,Mem is the memory-bounded peak throughput and
WIndex is the bit width of the nonzero element index. To exploit
weight sparsity by skipping zero elements in the weights,
indices of nonzero weight elements have to be used and
introduces off-chip memory overhead. Both BBS and ESE
use WIndex = 4 for their tested networks. EdgeDRNN and
DeltaRNN only need indices of valid columns corresponding
to nonzero delta state vector elements, and they are calculated
on-chip without introducing off-chip memory overhead; thus,
WIndex = 0 for EdgeDRNN and DeltaRNN. In this normaliza-
tion process, we assume the ideal case, in which normalized
platforms reach the memory-bounded peak throughput and
can fully utilize sparsity. Thus, Eq. 8 gives the upper bound
throughput value of the normalized platform.

Table VI shows that EdgeDRNN achieves the highest nor-
malized throughput, and an even higher normalized throughput
than our previous BRAM-based DeltaRNN because of the
improved pipeline and higher sparsity achieved. Compared
with BBS, EdgeDRNN achieves only a small fraction of
the total batch-1 throughput, but the normalization makes
it clear that BBS achieves its high throughput by using
on-chip BRAM, a huge number of MACs, and a higher clock
frequency. Among all the accelerators, EdgeDRNN also shows
the highest effective MAC utilization and the lowest wall plug
power. Finally, the EdgeDRNN FPGA development kit is a
factor of at least 25X cheaper than other FPGA RNNs, and
the cost is comparable to the cheapest edge AI accelerators.

B. Architectural Comparison

Fig. 12 compares the architecture and MxV flow of Edge-
DRNN with BBS and ESE. We compare EdgeDRNN with
ESE and BBS because they are also FPGA RNN accelerators
using DRAM with high reported throughput. Both ESE and
BBS exploit weight sparsity with load balancing techniques.

1) ESE: In ESE, interleaving rows of matrix elements are
assigned to MAC units in the PE array and the MxV is
computed column by column. To balance the workload and
exploit weight sparsity better, the network weight matrix is
pruned so that the number of nonzero elements assigned
to each MAC unit is the same for the whole matrix. K
activation buffers (BUF) are required for K MAC units, which
immediately execute operations when nonzero activations and
weights are available.

3Each PE has a single MAC unit.



TABLE VI

COMPARISON WITH STATE-OF-THE-ART FPGA RNN ACCELERATORS

Fig. 12. Architecture comparison and MxV Flow of ESE, BBS and
EdgeDRNN. Bold text indicates differences. Colors in the MxV Flow part
indicate MAC unit, and zero and nonzero activation values. The text indicates
the clock cycle.

2) BBS: BBS balances the workload using structured prun-
ing. Rows of a weight matrix are split into banks of equal
length. Their pruning method forces the numbers of nonzero
values to be the same across all banks. By assigning the same
number of row banks to each MAC unit in the PE array, the
workload is balanced. As shown on the right side of Fig. 12,
each row of the matrix is equally divided into two banks
respectively for MAC 0 and MAC 1 and the computation is
done row by row. In this case, each MAC receives different
activation elements and K BUFs are required for K MAC
units. BBS also supports the buffering of a partial weight

matrix on-chip to enhance throughput, which is useful for
large FPGA platforms. The reported batch-1 throughput of
BBS in Table VI is obtained with all network parameters on-
chip, which is not practical on a small FPGA platform like
MiniZed that has only 0.2 MB on-chip memory.

3) EdgeDRNN: Unlike ESE and BBS, EdgeDRNN includes
an extra unit to compute delta state vectors. Similar to ESE,
EdgeDRNN also assigns interleaving rows to MAC units and
computes MxV column by column; however, all MAC units
share the same delta state vector elements; thus, only 1 BUF
(D-FIFO) is required.

Both ESE and BBS require indices of nonzero weight
elements to realize zero-skipping. The indices cause overhead
on memory access, reducing effective memory bandwidth.
EdgeDRNN skips whole columns of computation and indices
of valid columns are calculated on-the-fly to avoid memory
overhead.

Moreover, ESE and BBS require extra Element-wise
(E-wise) multiplication units for the RNN activation ht gen-
eration after MxV. EdgeDRNN reuses multipliers in the PE
array by time-division multiplexing to save DSP and LUT
resources. Element-wise addition is done by reusing adders in
the PE array and also using a single 16-bit adder per PE, as
shown in Fig. 5.

Our previous work, DeltaRNN [11], achieved high batch-1
throughput and MAC utilization with temporal sparsity, but it
stored all network parameters on chip, making it unscalable.
Meanwhile, EdgeDRNN is designed to match the external
memory bandwidth available on any FPGA platform with
external DRAM. The small number of MAC units along tall



TABLE VII

COMPARISON WITH COMMERCIAL EDGE AI PLATFORMS AND A DESKTOP GTX 1080 GPU AS BENCHMARKED
ON THE SPOKEN DIGIT RECOGNITION TASK

Fig. 13. Measured mean throughput (A) & latency (B) of GTX 1080 versus
different batch sizes up to the maximum batch size that fits into the available
DRAM.

concatenated weight matrix columns, as shown in Fig. 6,
makes the burst length long enough to maintain high DRAM
controller efficiency for large networks.

C. Comparison With an SNN Processor

We compare the performance metrics of TrueNorth [38],
an application-specific integrated circuit (ASIC) SNN proces-
sor, on the TIDIGITS dataset. The system is reported to dissi-
pate 38.6 mW power by using a feature extraction method that
can be implemented directly on TrueNorth [39]. We cannot
easily compare the power numbers of this ASIC processor with
the power dissipated by an FPGA which is a more general-
purpose platform. To run TrueNorth, an interfacing FPGA that
burns several Watts is needed so the system power would
much higher. The reported accuracy from their work is only
95% which is lower than the 99% accuracy achieved by the
quantized delta network reported in our previous work [12].

D. Comparison With Commercial Platforms

Table VII compares EdgeDRNN with popular commercial
platforms, including their cost and memory system bandwidth.
All platforms are benchmarked on the same spoken digit

Fig. 14. Measured batch-1 latency per frame of a sample (25896O4A.WAV)
from the TIDIGITS test set benchmarked on EdgeDRNN (INT16 & INT8)
and GPUs (FP16) with the first 50 timesteps excluded.

recognition task (first 10,000 timesteps of the TIDIGITS test
set) using networks of the same size, except that the Intel
Compute Stick 2 (NCS2) does not support GRU and was
benchmarked with an LSTM network with a similar parameter
count and trained with the same hyperparameters. The latency
requirement of the recognition task is 10 ms which is deter-
mined by the frame stride. To meet this requirement, frames
cannot be concatenated into a single tensor. The computation
of the RNN is executed when there is a new frame.

For benchmark of GPUs, we used GRUs because we
found that latency numbers of both FP32 and FP16 cuDNN
GRU implementations are 3X lower than that of running the
DeltaGRU algorithm using the NVIDIA cuSPARSE library.
In addition, we removed peripheral devices from the Jetson
board with the exclusion of the needed Ethernet cable to
the PC. Because GPUs also need time to boost their clock
frequency and to allocate memory, the first 50 timesteps of the
test sequence are excluded. The power efficiency results show
that EdgeDRNN still achieves over 5X higher system power
efficiency compared to commercial ASIC and GPU products.

GPUs are throughput-oriented architectures suitable for
neural network training with large batch sizes; however, it
is not optimal for edge inference where batch-1 throughput
is critical for achieving low latency. The claimed peak FP32
throughput of Jetson Nano [35], Jetson TX2 [36] and GTX
1080 [37] are respectively 0.5 TOp/s, 0.8 TOp/s and 9 TOp/s



Fig. 15. Measured hardware latency per sample on EdgeDRNN and
embedded processor using the 2L-128H-DeltaGRU network used in the real-
time control demonstration of AMPRO [7].

while the measured batch-1 throughput are only 1.9 GOp/s,
3.5 GOp/s and 20.5 GOp/s. The low batch-1 throughput of
GPUs is because weights fetched from off-chip DRAM can-
not be reused to fully utilize GPU cores. Fig. 13A shows
the throughput of GTX 1080 approaches the claimed peak
throughput with large batch sizes due to more weight data
reuse; however, increasing batch size also causes worse latency
numbers as shown in Fig. 13B. FP16 outperforms FP32
because of the smaller memory bottleneck.

Fig. 14 compares latency per frame on a test set sample.
EdgeDRNN latency is lower during the silent or quieter
periods (e.g. between 60 s and 80 s) when the input is changing
slowly. EdgeDRNN is as quick as the desktop 1080 GPU and
5X quicker than the other platforms, despite having a DRAM
bandwidth that is orders of magnitude slower.

In [7], we reported that EdgeDRNN ran the RNN for robotic
control about 51X faster than the embedded BeagleBone
Black platform with a ARM Cortex-A8 CPU, while burning
about the same total power of 2W. Moreover, to compare the
performance of EdgeDRNN and the ARM Cortex-A9 CPU on
the PS side of MiniZed, we took the same 2L-128H-DeltaGRU
network used in our previous real-time control demonstra-
tion [7] and measured the latency per frame on 1 minute
test data (sample rate = 200 Hz), which are 1000 frames
of motor encoder readings. Fig. 15 shows the latency of the
ARM CPU and EdgeDRNN. The mean latency of the ARM
CPU is 1281μs without sparsity and 428μs with sparsity. The
mean latency of EdgeDRNN with sparsity is 16μs, therefore
EdgeDRNN is 27X faster than the ARM CPU which exploits
temporal sparsity in the same network. In the case of the
robotic task, EdgeDRNN runs the network 300X faster than
the required maximum latency of 5ms.

VI. CONCLUSION

The 2 W EdgeDRNN runs batch-1 RNNs as fast as a 200 W
GPU+PC, and its power efficiency is at least a factor of
4X higher than any of the commercial edge AI platforms in
the benchmark. We found that the batch-1 RNN throughput
numbers of commercial GPUs are a factor of over 100X
less than their claimed peak throughput. Using the delta
network to exploit temporal sparsity allows a modest number
of 8 PEs to achieve an effective 162 Op per clock cycle,

equivalent to an MAC utilization efficiency of over 1000%.
EdgeDRNN uses a standard AXI4 interface for weight fetches;
thus it can be scaled up to larger FPGA platforms by simply
increasing the number of PEs to match the available memory
bandwidth provided by on-chip BRAM or off-chip DRAM.
Thus using temporal sparsity in delta activation vectors allows
the arithmetic units on this task to effectively compute 10X
more operations with the same amount of memory access.

The delta threshold � allows instantaneous trade-off of
accuracy versus latency. Future work could exploit a dynamic
trade-off of accuracy versus latency to quickly converge onto
optimal values in a guided search.
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